root/include/linux/bpf_verifier.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. bpf_verifier_log_full
  2. bpf_verifier_log_needed
  3. __printf
  4. cur_regs

   1 /* SPDX-License-Identifier: GPL-2.0-only */
   2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
   3  */
   4 #ifndef _LINUX_BPF_VERIFIER_H
   5 #define _LINUX_BPF_VERIFIER_H 1
   6 
   7 #include <linux/bpf.h> /* for enum bpf_reg_type */
   8 #include <linux/filter.h> /* for MAX_BPF_STACK */
   9 #include <linux/tnum.h>
  10 
  11 /* Maximum variable offset umax_value permitted when resolving memory accesses.
  12  * In practice this is far bigger than any realistic pointer offset; this limit
  13  * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
  14  */
  15 #define BPF_MAX_VAR_OFF (1 << 29)
  16 /* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO].  This ensures
  17  * that converting umax_value to int cannot overflow.
  18  */
  19 #define BPF_MAX_VAR_SIZ (1 << 29)
  20 
  21 /* Liveness marks, used for registers and spilled-regs (in stack slots).
  22  * Read marks propagate upwards until they find a write mark; they record that
  23  * "one of this state's descendants read this reg" (and therefore the reg is
  24  * relevant for states_equal() checks).
  25  * Write marks collect downwards and do not propagate; they record that "the
  26  * straight-line code that reached this state (from its parent) wrote this reg"
  27  * (and therefore that reads propagated from this state or its descendants
  28  * should not propagate to its parent).
  29  * A state with a write mark can receive read marks; it just won't propagate
  30  * them to its parent, since the write mark is a property, not of the state,
  31  * but of the link between it and its parent.  See mark_reg_read() and
  32  * mark_stack_slot_read() in kernel/bpf/verifier.c.
  33  */
  34 enum bpf_reg_liveness {
  35         REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
  36         REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */
  37         REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */
  38         REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64,
  39         REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */
  40         REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */
  41 };
  42 
  43 struct bpf_reg_state {
  44         /* Ordering of fields matters.  See states_equal() */
  45         enum bpf_reg_type type;
  46         union {
  47                 /* valid when type == PTR_TO_PACKET */
  48                 u16 range;
  49 
  50                 /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
  51                  *   PTR_TO_MAP_VALUE_OR_NULL
  52                  */
  53                 struct bpf_map *map_ptr;
  54 
  55                 /* Max size from any of the above. */
  56                 unsigned long raw;
  57         };
  58         /* Fixed part of pointer offset, pointer types only */
  59         s32 off;
  60         /* For PTR_TO_PACKET, used to find other pointers with the same variable
  61          * offset, so they can share range knowledge.
  62          * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
  63          * came from, when one is tested for != NULL.
  64          * For PTR_TO_SOCKET this is used to share which pointers retain the
  65          * same reference to the socket, to determine proper reference freeing.
  66          */
  67         u32 id;
  68         /* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned
  69          * from a pointer-cast helper, bpf_sk_fullsock() and
  70          * bpf_tcp_sock().
  71          *
  72          * Consider the following where "sk" is a reference counted
  73          * pointer returned from "sk = bpf_sk_lookup_tcp();":
  74          *
  75          * 1: sk = bpf_sk_lookup_tcp();
  76          * 2: if (!sk) { return 0; }
  77          * 3: fullsock = bpf_sk_fullsock(sk);
  78          * 4: if (!fullsock) { bpf_sk_release(sk); return 0; }
  79          * 5: tp = bpf_tcp_sock(fullsock);
  80          * 6: if (!tp) { bpf_sk_release(sk); return 0; }
  81          * 7: bpf_sk_release(sk);
  82          * 8: snd_cwnd = tp->snd_cwnd;  // verifier will complain
  83          *
  84          * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and
  85          * "tp" ptr should be invalidated also.  In order to do that,
  86          * the reg holding "fullsock" and "sk" need to remember
  87          * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id
  88          * such that the verifier can reset all regs which have
  89          * ref_obj_id matching the sk_reg->id.
  90          *
  91          * sk_reg->ref_obj_id is set to sk_reg->id at line 1.
  92          * sk_reg->id will stay as NULL-marking purpose only.
  93          * After NULL-marking is done, sk_reg->id can be reset to 0.
  94          *
  95          * After "fullsock = bpf_sk_fullsock(sk);" at line 3,
  96          * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id.
  97          *
  98          * After "tp = bpf_tcp_sock(fullsock);" at line 5,
  99          * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id
 100          * which is the same as sk_reg->ref_obj_id.
 101          *
 102          * From the verifier perspective, if sk, fullsock and tp
 103          * are not NULL, they are the same ptr with different
 104          * reg->type.  In particular, bpf_sk_release(tp) is also
 105          * allowed and has the same effect as bpf_sk_release(sk).
 106          */
 107         u32 ref_obj_id;
 108         /* For scalar types (SCALAR_VALUE), this represents our knowledge of
 109          * the actual value.
 110          * For pointer types, this represents the variable part of the offset
 111          * from the pointed-to object, and is shared with all bpf_reg_states
 112          * with the same id as us.
 113          */
 114         struct tnum var_off;
 115         /* Used to determine if any memory access using this register will
 116          * result in a bad access.
 117          * These refer to the same value as var_off, not necessarily the actual
 118          * contents of the register.
 119          */
 120         s64 smin_value; /* minimum possible (s64)value */
 121         s64 smax_value; /* maximum possible (s64)value */
 122         u64 umin_value; /* minimum possible (u64)value */
 123         u64 umax_value; /* maximum possible (u64)value */
 124         /* parentage chain for liveness checking */
 125         struct bpf_reg_state *parent;
 126         /* Inside the callee two registers can be both PTR_TO_STACK like
 127          * R1=fp-8 and R2=fp-8, but one of them points to this function stack
 128          * while another to the caller's stack. To differentiate them 'frameno'
 129          * is used which is an index in bpf_verifier_state->frame[] array
 130          * pointing to bpf_func_state.
 131          */
 132         u32 frameno;
 133         /* Tracks subreg definition. The stored value is the insn_idx of the
 134          * writing insn. This is safe because subreg_def is used before any insn
 135          * patching which only happens after main verification finished.
 136          */
 137         s32 subreg_def;
 138         enum bpf_reg_liveness live;
 139         /* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */
 140         bool precise;
 141 };
 142 
 143 enum bpf_stack_slot_type {
 144         STACK_INVALID,    /* nothing was stored in this stack slot */
 145         STACK_SPILL,      /* register spilled into stack */
 146         STACK_MISC,       /* BPF program wrote some data into this slot */
 147         STACK_ZERO,       /* BPF program wrote constant zero */
 148 };
 149 
 150 #define BPF_REG_SIZE 8  /* size of eBPF register in bytes */
 151 
 152 struct bpf_stack_state {
 153         struct bpf_reg_state spilled_ptr;
 154         u8 slot_type[BPF_REG_SIZE];
 155 };
 156 
 157 struct bpf_reference_state {
 158         /* Track each reference created with a unique id, even if the same
 159          * instruction creates the reference multiple times (eg, via CALL).
 160          */
 161         int id;
 162         /* Instruction where the allocation of this reference occurred. This
 163          * is used purely to inform the user of a reference leak.
 164          */
 165         int insn_idx;
 166 };
 167 
 168 /* state of the program:
 169  * type of all registers and stack info
 170  */
 171 struct bpf_func_state {
 172         struct bpf_reg_state regs[MAX_BPF_REG];
 173         /* index of call instruction that called into this func */
 174         int callsite;
 175         /* stack frame number of this function state from pov of
 176          * enclosing bpf_verifier_state.
 177          * 0 = main function, 1 = first callee.
 178          */
 179         u32 frameno;
 180         /* subprog number == index within subprog_stack_depth
 181          * zero == main subprog
 182          */
 183         u32 subprogno;
 184 
 185         /* The following fields should be last. See copy_func_state() */
 186         int acquired_refs;
 187         struct bpf_reference_state *refs;
 188         int allocated_stack;
 189         struct bpf_stack_state *stack;
 190 };
 191 
 192 struct bpf_idx_pair {
 193         u32 prev_idx;
 194         u32 idx;
 195 };
 196 
 197 #define MAX_CALL_FRAMES 8
 198 struct bpf_verifier_state {
 199         /* call stack tracking */
 200         struct bpf_func_state *frame[MAX_CALL_FRAMES];
 201         struct bpf_verifier_state *parent;
 202         /*
 203          * 'branches' field is the number of branches left to explore:
 204          * 0 - all possible paths from this state reached bpf_exit or
 205          * were safely pruned
 206          * 1 - at least one path is being explored.
 207          * This state hasn't reached bpf_exit
 208          * 2 - at least two paths are being explored.
 209          * This state is an immediate parent of two children.
 210          * One is fallthrough branch with branches==1 and another
 211          * state is pushed into stack (to be explored later) also with
 212          * branches==1. The parent of this state has branches==1.
 213          * The verifier state tree connected via 'parent' pointer looks like:
 214          * 1
 215          * 1
 216          * 2 -> 1 (first 'if' pushed into stack)
 217          * 1
 218          * 2 -> 1 (second 'if' pushed into stack)
 219          * 1
 220          * 1
 221          * 1 bpf_exit.
 222          *
 223          * Once do_check() reaches bpf_exit, it calls update_branch_counts()
 224          * and the verifier state tree will look:
 225          * 1
 226          * 1
 227          * 2 -> 1 (first 'if' pushed into stack)
 228          * 1
 229          * 1 -> 1 (second 'if' pushed into stack)
 230          * 0
 231          * 0
 232          * 0 bpf_exit.
 233          * After pop_stack() the do_check() will resume at second 'if'.
 234          *
 235          * If is_state_visited() sees a state with branches > 0 it means
 236          * there is a loop. If such state is exactly equal to the current state
 237          * it's an infinite loop. Note states_equal() checks for states
 238          * equvalency, so two states being 'states_equal' does not mean
 239          * infinite loop. The exact comparison is provided by
 240          * states_maybe_looping() function. It's a stronger pre-check and
 241          * much faster than states_equal().
 242          *
 243          * This algorithm may not find all possible infinite loops or
 244          * loop iteration count may be too high.
 245          * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in.
 246          */
 247         u32 branches;
 248         u32 insn_idx;
 249         u32 curframe;
 250         u32 active_spin_lock;
 251         bool speculative;
 252 
 253         /* first and last insn idx of this verifier state */
 254         u32 first_insn_idx;
 255         u32 last_insn_idx;
 256         /* jmp history recorded from first to last.
 257          * backtracking is using it to go from last to first.
 258          * For most states jmp_history_cnt is [0-3].
 259          * For loops can go up to ~40.
 260          */
 261         struct bpf_idx_pair *jmp_history;
 262         u32 jmp_history_cnt;
 263 };
 264 
 265 #define bpf_get_spilled_reg(slot, frame)                                \
 266         (((slot < frame->allocated_stack / BPF_REG_SIZE) &&             \
 267           (frame->stack[slot].slot_type[0] == STACK_SPILL))             \
 268          ? &frame->stack[slot].spilled_ptr : NULL)
 269 
 270 /* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */
 271 #define bpf_for_each_spilled_reg(iter, frame, reg)                      \
 272         for (iter = 0, reg = bpf_get_spilled_reg(iter, frame);          \
 273              iter < frame->allocated_stack / BPF_REG_SIZE;              \
 274              iter++, reg = bpf_get_spilled_reg(iter, frame))
 275 
 276 /* linked list of verifier states used to prune search */
 277 struct bpf_verifier_state_list {
 278         struct bpf_verifier_state state;
 279         struct bpf_verifier_state_list *next;
 280         int miss_cnt, hit_cnt;
 281 };
 282 
 283 /* Possible states for alu_state member. */
 284 #define BPF_ALU_SANITIZE_SRC            1U
 285 #define BPF_ALU_SANITIZE_DST            2U
 286 #define BPF_ALU_NEG_VALUE               (1U << 2)
 287 #define BPF_ALU_NON_POINTER             (1U << 3)
 288 #define BPF_ALU_SANITIZE                (BPF_ALU_SANITIZE_SRC | \
 289                                          BPF_ALU_SANITIZE_DST)
 290 
 291 struct bpf_insn_aux_data {
 292         union {
 293                 enum bpf_reg_type ptr_type;     /* pointer type for load/store insns */
 294                 unsigned long map_state;        /* pointer/poison value for maps */
 295                 s32 call_imm;                   /* saved imm field of call insn */
 296                 u32 alu_limit;                  /* limit for add/sub register with pointer */
 297                 struct {
 298                         u32 map_index;          /* index into used_maps[] */
 299                         u32 map_off;            /* offset from value base address */
 300                 };
 301         };
 302         int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
 303         int sanitize_stack_off; /* stack slot to be cleared */
 304         bool seen; /* this insn was processed by the verifier */
 305         bool zext_dst; /* this insn zero extends dst reg */
 306         u8 alu_state; /* used in combination with alu_limit */
 307         bool prune_point;
 308         unsigned int orig_idx; /* original instruction index */
 309 };
 310 
 311 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
 312 
 313 #define BPF_VERIFIER_TMP_LOG_SIZE       1024
 314 
 315 struct bpf_verifier_log {
 316         u32 level;
 317         char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
 318         char __user *ubuf;
 319         u32 len_used;
 320         u32 len_total;
 321 };
 322 
 323 static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log)
 324 {
 325         return log->len_used >= log->len_total - 1;
 326 }
 327 
 328 #define BPF_LOG_LEVEL1  1
 329 #define BPF_LOG_LEVEL2  2
 330 #define BPF_LOG_STATS   4
 331 #define BPF_LOG_LEVEL   (BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2)
 332 #define BPF_LOG_MASK    (BPF_LOG_LEVEL | BPF_LOG_STATS)
 333 
 334 static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log)
 335 {
 336         return log->level && log->ubuf && !bpf_verifier_log_full(log);
 337 }
 338 
 339 #define BPF_MAX_SUBPROGS 256
 340 
 341 struct bpf_subprog_info {
 342         u32 start; /* insn idx of function entry point */
 343         u32 linfo_idx; /* The idx to the main_prog->aux->linfo */
 344         u16 stack_depth; /* max. stack depth used by this function */
 345 };
 346 
 347 /* single container for all structs
 348  * one verifier_env per bpf_check() call
 349  */
 350 struct bpf_verifier_env {
 351         u32 insn_idx;
 352         u32 prev_insn_idx;
 353         struct bpf_prog *prog;          /* eBPF program being verified */
 354         const struct bpf_verifier_ops *ops;
 355         struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
 356         int stack_size;                 /* number of states to be processed */
 357         bool strict_alignment;          /* perform strict pointer alignment checks */
 358         bool test_state_freq;           /* test verifier with different pruning frequency */
 359         struct bpf_verifier_state *cur_state; /* current verifier state */
 360         struct bpf_verifier_state_list **explored_states; /* search pruning optimization */
 361         struct bpf_verifier_state_list *free_list;
 362         struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
 363         u32 used_map_cnt;               /* number of used maps */
 364         u32 id_gen;                     /* used to generate unique reg IDs */
 365         bool allow_ptr_leaks;
 366         bool seen_direct_write;
 367         struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
 368         const struct bpf_line_info *prev_linfo;
 369         struct bpf_verifier_log log;
 370         struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1];
 371         struct {
 372                 int *insn_state;
 373                 int *insn_stack;
 374                 int cur_stack;
 375         } cfg;
 376         u32 subprog_cnt;
 377         /* number of instructions analyzed by the verifier */
 378         u32 prev_insn_processed, insn_processed;
 379         /* number of jmps, calls, exits analyzed so far */
 380         u32 prev_jmps_processed, jmps_processed;
 381         /* total verification time */
 382         u64 verification_time;
 383         /* maximum number of verifier states kept in 'branching' instructions */
 384         u32 max_states_per_insn;
 385         /* total number of allocated verifier states */
 386         u32 total_states;
 387         /* some states are freed during program analysis.
 388          * this is peak number of states. this number dominates kernel
 389          * memory consumption during verification
 390          */
 391         u32 peak_states;
 392         /* longest register parentage chain walked for liveness marking */
 393         u32 longest_mark_read_walk;
 394 };
 395 
 396 __printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log,
 397                                       const char *fmt, va_list args);
 398 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
 399                                            const char *fmt, ...);
 400 
 401 static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env)
 402 {
 403         struct bpf_verifier_state *cur = env->cur_state;
 404 
 405         return cur->frame[cur->curframe];
 406 }
 407 
 408 static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env)
 409 {
 410         return cur_func(env)->regs;
 411 }
 412 
 413 int bpf_prog_offload_verifier_prep(struct bpf_prog *prog);
 414 int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env,
 415                                  int insn_idx, int prev_insn_idx);
 416 int bpf_prog_offload_finalize(struct bpf_verifier_env *env);
 417 void
 418 bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off,
 419                               struct bpf_insn *insn);
 420 void
 421 bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt);
 422 
 423 #endif /* _LINUX_BPF_VERIFIER_H */

/* [<][>][^][v][top][bottom][index][help] */