root/include/linux/spi/spi.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. to_spi_device
  2. spi_dev_get
  3. spi_dev_put
  4. spi_get_ctldata
  5. spi_set_ctldata
  6. spi_set_drvdata
  7. spi_get_drvdata
  8. to_spi_driver
  9. spi_unregister_driver
  10. spi_controller_get_devdata
  11. spi_controller_set_devdata
  12. spi_controller_get
  13. spi_controller_put
  14. spi_controller_is_slave
  15. spi_alloc_master
  16. spi_alloc_slave
  17. spi_message_init_no_memset
  18. spi_message_init
  19. spi_message_add_tail
  20. spi_transfer_del
  21. spi_message_init_with_transfers
  22. spi_message_alloc
  23. spi_message_free
  24. spi_max_message_size
  25. spi_max_transfer_size
  26. spi_is_bpw_supported
  27. spi_sync_transfer
  28. spi_write
  29. spi_read
  30. spi_w8r8
  31. spi_w8r16
  32. spi_w8r16be
  33. spi_register_board_info
  34. spi_transfer_is_last
  35. of_find_spi_device_by_node

   1 /* SPDX-License-Identifier: GPL-2.0-or-later
   2  *
   3  * Copyright (C) 2005 David Brownell
   4  */
   5 
   6 #ifndef __LINUX_SPI_H
   7 #define __LINUX_SPI_H
   8 
   9 #include <linux/device.h>
  10 #include <linux/mod_devicetable.h>
  11 #include <linux/slab.h>
  12 #include <linux/kthread.h>
  13 #include <linux/completion.h>
  14 #include <linux/scatterlist.h>
  15 #include <linux/gpio/consumer.h>
  16 
  17 struct dma_chan;
  18 struct property_entry;
  19 struct spi_controller;
  20 struct spi_transfer;
  21 struct spi_controller_mem_ops;
  22 
  23 /*
  24  * INTERFACES between SPI master-side drivers and SPI slave protocol handlers,
  25  * and SPI infrastructure.
  26  */
  27 extern struct bus_type spi_bus_type;
  28 
  29 /**
  30  * struct spi_statistics - statistics for spi transfers
  31  * @lock:          lock protecting this structure
  32  *
  33  * @messages:      number of spi-messages handled
  34  * @transfers:     number of spi_transfers handled
  35  * @errors:        number of errors during spi_transfer
  36  * @timedout:      number of timeouts during spi_transfer
  37  *
  38  * @spi_sync:      number of times spi_sync is used
  39  * @spi_sync_immediate:
  40  *                 number of times spi_sync is executed immediately
  41  *                 in calling context without queuing and scheduling
  42  * @spi_async:     number of times spi_async is used
  43  *
  44  * @bytes:         number of bytes transferred to/from device
  45  * @bytes_tx:      number of bytes sent to device
  46  * @bytes_rx:      number of bytes received from device
  47  *
  48  * @transfer_bytes_histo:
  49  *                 transfer bytes histogramm
  50  *
  51  * @transfers_split_maxsize:
  52  *                 number of transfers that have been split because of
  53  *                 maxsize limit
  54  */
  55 struct spi_statistics {
  56         spinlock_t              lock; /* lock for the whole structure */
  57 
  58         unsigned long           messages;
  59         unsigned long           transfers;
  60         unsigned long           errors;
  61         unsigned long           timedout;
  62 
  63         unsigned long           spi_sync;
  64         unsigned long           spi_sync_immediate;
  65         unsigned long           spi_async;
  66 
  67         unsigned long long      bytes;
  68         unsigned long long      bytes_rx;
  69         unsigned long long      bytes_tx;
  70 
  71 #define SPI_STATISTICS_HISTO_SIZE 17
  72         unsigned long transfer_bytes_histo[SPI_STATISTICS_HISTO_SIZE];
  73 
  74         unsigned long transfers_split_maxsize;
  75 };
  76 
  77 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
  78                                        struct spi_transfer *xfer,
  79                                        struct spi_controller *ctlr);
  80 
  81 #define SPI_STATISTICS_ADD_TO_FIELD(stats, field, count)        \
  82         do {                                                    \
  83                 unsigned long flags;                            \
  84                 spin_lock_irqsave(&(stats)->lock, flags);       \
  85                 (stats)->field += count;                        \
  86                 spin_unlock_irqrestore(&(stats)->lock, flags);  \
  87         } while (0)
  88 
  89 #define SPI_STATISTICS_INCREMENT_FIELD(stats, field)    \
  90         SPI_STATISTICS_ADD_TO_FIELD(stats, field, 1)
  91 
  92 /**
  93  * struct spi_device - Controller side proxy for an SPI slave device
  94  * @dev: Driver model representation of the device.
  95  * @controller: SPI controller used with the device.
  96  * @master: Copy of controller, for backwards compatibility.
  97  * @max_speed_hz: Maximum clock rate to be used with this chip
  98  *      (on this board); may be changed by the device's driver.
  99  *      The spi_transfer.speed_hz can override this for each transfer.
 100  * @chip_select: Chipselect, distinguishing chips handled by @controller.
 101  * @mode: The spi mode defines how data is clocked out and in.
 102  *      This may be changed by the device's driver.
 103  *      The "active low" default for chipselect mode can be overridden
 104  *      (by specifying SPI_CS_HIGH) as can the "MSB first" default for
 105  *      each word in a transfer (by specifying SPI_LSB_FIRST).
 106  * @bits_per_word: Data transfers involve one or more words; word sizes
 107  *      like eight or 12 bits are common.  In-memory wordsizes are
 108  *      powers of two bytes (e.g. 20 bit samples use 32 bits).
 109  *      This may be changed by the device's driver, or left at the
 110  *      default (0) indicating protocol words are eight bit bytes.
 111  *      The spi_transfer.bits_per_word can override this for each transfer.
 112  * @rt: Make the pump thread real time priority.
 113  * @irq: Negative, or the number passed to request_irq() to receive
 114  *      interrupts from this device.
 115  * @controller_state: Controller's runtime state
 116  * @controller_data: Board-specific definitions for controller, such as
 117  *      FIFO initialization parameters; from board_info.controller_data
 118  * @modalias: Name of the driver to use with this device, or an alias
 119  *      for that name.  This appears in the sysfs "modalias" attribute
 120  *      for driver coldplugging, and in uevents used for hotplugging
 121  * @cs_gpio: LEGACY: gpio number of the chipselect line (optional, -ENOENT when
 122  *      not using a GPIO line) use cs_gpiod in new drivers by opting in on
 123  *      the spi_master.
 124  * @cs_gpiod: gpio descriptor of the chipselect line (optional, NULL when
 125  *      not using a GPIO line)
 126  * @word_delay_usecs: microsecond delay to be inserted between consecutive
 127  *      words of a transfer
 128  *
 129  * @statistics: statistics for the spi_device
 130  *
 131  * A @spi_device is used to interchange data between an SPI slave
 132  * (usually a discrete chip) and CPU memory.
 133  *
 134  * In @dev, the platform_data is used to hold information about this
 135  * device that's meaningful to the device's protocol driver, but not
 136  * to its controller.  One example might be an identifier for a chip
 137  * variant with slightly different functionality; another might be
 138  * information about how this particular board wires the chip's pins.
 139  */
 140 struct spi_device {
 141         struct device           dev;
 142         struct spi_controller   *controller;
 143         struct spi_controller   *master;        /* compatibility layer */
 144         u32                     max_speed_hz;
 145         u8                      chip_select;
 146         u8                      bits_per_word;
 147         bool                    rt;
 148         u32                     mode;
 149 #define SPI_CPHA        0x01                    /* clock phase */
 150 #define SPI_CPOL        0x02                    /* clock polarity */
 151 #define SPI_MODE_0      (0|0)                   /* (original MicroWire) */
 152 #define SPI_MODE_1      (0|SPI_CPHA)
 153 #define SPI_MODE_2      (SPI_CPOL|0)
 154 #define SPI_MODE_3      (SPI_CPOL|SPI_CPHA)
 155 #define SPI_CS_HIGH     0x04                    /* chipselect active high? */
 156 #define SPI_LSB_FIRST   0x08                    /* per-word bits-on-wire */
 157 #define SPI_3WIRE       0x10                    /* SI/SO signals shared */
 158 #define SPI_LOOP        0x20                    /* loopback mode */
 159 #define SPI_NO_CS       0x40                    /* 1 dev/bus, no chipselect */
 160 #define SPI_READY       0x80                    /* slave pulls low to pause */
 161 #define SPI_TX_DUAL     0x100                   /* transmit with 2 wires */
 162 #define SPI_TX_QUAD     0x200                   /* transmit with 4 wires */
 163 #define SPI_RX_DUAL     0x400                   /* receive with 2 wires */
 164 #define SPI_RX_QUAD     0x800                   /* receive with 4 wires */
 165 #define SPI_CS_WORD     0x1000                  /* toggle cs after each word */
 166 #define SPI_TX_OCTAL    0x2000                  /* transmit with 8 wires */
 167 #define SPI_RX_OCTAL    0x4000                  /* receive with 8 wires */
 168 #define SPI_3WIRE_HIZ   0x8000                  /* high impedance turnaround */
 169         int                     irq;
 170         void                    *controller_state;
 171         void                    *controller_data;
 172         char                    modalias[SPI_NAME_SIZE];
 173         const char              *driver_override;
 174         int                     cs_gpio;        /* LEGACY: chip select gpio */
 175         struct gpio_desc        *cs_gpiod;      /* chip select gpio desc */
 176         uint8_t                 word_delay_usecs; /* inter-word delay */
 177 
 178         /* the statistics */
 179         struct spi_statistics   statistics;
 180 
 181         /*
 182          * likely need more hooks for more protocol options affecting how
 183          * the controller talks to each chip, like:
 184          *  - memory packing (12 bit samples into low bits, others zeroed)
 185          *  - priority
 186          *  - chipselect delays
 187          *  - ...
 188          */
 189 };
 190 
 191 static inline struct spi_device *to_spi_device(struct device *dev)
 192 {
 193         return dev ? container_of(dev, struct spi_device, dev) : NULL;
 194 }
 195 
 196 /* most drivers won't need to care about device refcounting */
 197 static inline struct spi_device *spi_dev_get(struct spi_device *spi)
 198 {
 199         return (spi && get_device(&spi->dev)) ? spi : NULL;
 200 }
 201 
 202 static inline void spi_dev_put(struct spi_device *spi)
 203 {
 204         if (spi)
 205                 put_device(&spi->dev);
 206 }
 207 
 208 /* ctldata is for the bus_controller driver's runtime state */
 209 static inline void *spi_get_ctldata(struct spi_device *spi)
 210 {
 211         return spi->controller_state;
 212 }
 213 
 214 static inline void spi_set_ctldata(struct spi_device *spi, void *state)
 215 {
 216         spi->controller_state = state;
 217 }
 218 
 219 /* device driver data */
 220 
 221 static inline void spi_set_drvdata(struct spi_device *spi, void *data)
 222 {
 223         dev_set_drvdata(&spi->dev, data);
 224 }
 225 
 226 static inline void *spi_get_drvdata(struct spi_device *spi)
 227 {
 228         return dev_get_drvdata(&spi->dev);
 229 }
 230 
 231 struct spi_message;
 232 struct spi_transfer;
 233 
 234 /**
 235  * struct spi_driver - Host side "protocol" driver
 236  * @id_table: List of SPI devices supported by this driver
 237  * @probe: Binds this driver to the spi device.  Drivers can verify
 238  *      that the device is actually present, and may need to configure
 239  *      characteristics (such as bits_per_word) which weren't needed for
 240  *      the initial configuration done during system setup.
 241  * @remove: Unbinds this driver from the spi device
 242  * @shutdown: Standard shutdown callback used during system state
 243  *      transitions such as powerdown/halt and kexec
 244  * @driver: SPI device drivers should initialize the name and owner
 245  *      field of this structure.
 246  *
 247  * This represents the kind of device driver that uses SPI messages to
 248  * interact with the hardware at the other end of a SPI link.  It's called
 249  * a "protocol" driver because it works through messages rather than talking
 250  * directly to SPI hardware (which is what the underlying SPI controller
 251  * driver does to pass those messages).  These protocols are defined in the
 252  * specification for the device(s) supported by the driver.
 253  *
 254  * As a rule, those device protocols represent the lowest level interface
 255  * supported by a driver, and it will support upper level interfaces too.
 256  * Examples of such upper levels include frameworks like MTD, networking,
 257  * MMC, RTC, filesystem character device nodes, and hardware monitoring.
 258  */
 259 struct spi_driver {
 260         const struct spi_device_id *id_table;
 261         int                     (*probe)(struct spi_device *spi);
 262         int                     (*remove)(struct spi_device *spi);
 263         void                    (*shutdown)(struct spi_device *spi);
 264         struct device_driver    driver;
 265 };
 266 
 267 static inline struct spi_driver *to_spi_driver(struct device_driver *drv)
 268 {
 269         return drv ? container_of(drv, struct spi_driver, driver) : NULL;
 270 }
 271 
 272 extern int __spi_register_driver(struct module *owner, struct spi_driver *sdrv);
 273 
 274 /**
 275  * spi_unregister_driver - reverse effect of spi_register_driver
 276  * @sdrv: the driver to unregister
 277  * Context: can sleep
 278  */
 279 static inline void spi_unregister_driver(struct spi_driver *sdrv)
 280 {
 281         if (sdrv)
 282                 driver_unregister(&sdrv->driver);
 283 }
 284 
 285 /* use a define to avoid include chaining to get THIS_MODULE */
 286 #define spi_register_driver(driver) \
 287         __spi_register_driver(THIS_MODULE, driver)
 288 
 289 /**
 290  * module_spi_driver() - Helper macro for registering a SPI driver
 291  * @__spi_driver: spi_driver struct
 292  *
 293  * Helper macro for SPI drivers which do not do anything special in module
 294  * init/exit. This eliminates a lot of boilerplate. Each module may only
 295  * use this macro once, and calling it replaces module_init() and module_exit()
 296  */
 297 #define module_spi_driver(__spi_driver) \
 298         module_driver(__spi_driver, spi_register_driver, \
 299                         spi_unregister_driver)
 300 
 301 /**
 302  * struct spi_controller - interface to SPI master or slave controller
 303  * @dev: device interface to this driver
 304  * @list: link with the global spi_controller list
 305  * @bus_num: board-specific (and often SOC-specific) identifier for a
 306  *      given SPI controller.
 307  * @num_chipselect: chipselects are used to distinguish individual
 308  *      SPI slaves, and are numbered from zero to num_chipselects.
 309  *      each slave has a chipselect signal, but it's common that not
 310  *      every chipselect is connected to a slave.
 311  * @dma_alignment: SPI controller constraint on DMA buffers alignment.
 312  * @mode_bits: flags understood by this controller driver
 313  * @bits_per_word_mask: A mask indicating which values of bits_per_word are
 314  *      supported by the driver. Bit n indicates that a bits_per_word n+1 is
 315  *      supported. If set, the SPI core will reject any transfer with an
 316  *      unsupported bits_per_word. If not set, this value is simply ignored,
 317  *      and it's up to the individual driver to perform any validation.
 318  * @min_speed_hz: Lowest supported transfer speed
 319  * @max_speed_hz: Highest supported transfer speed
 320  * @flags: other constraints relevant to this driver
 321  * @slave: indicates that this is an SPI slave controller
 322  * @max_transfer_size: function that returns the max transfer size for
 323  *      a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
 324  * @max_message_size: function that returns the max message size for
 325  *      a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
 326  * @io_mutex: mutex for physical bus access
 327  * @bus_lock_spinlock: spinlock for SPI bus locking
 328  * @bus_lock_mutex: mutex for exclusion of multiple callers
 329  * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
 330  * @setup: updates the device mode and clocking records used by a
 331  *      device's SPI controller; protocol code may call this.  This
 332  *      must fail if an unrecognized or unsupported mode is requested.
 333  *      It's always safe to call this unless transfers are pending on
 334  *      the device whose settings are being modified.
 335  * @set_cs_timing: optional hook for SPI devices to request SPI master
 336  * controller for configuring specific CS setup time, hold time and inactive
 337  * delay interms of clock counts
 338  * @transfer: adds a message to the controller's transfer queue.
 339  * @cleanup: frees controller-specific state
 340  * @can_dma: determine whether this controller supports DMA
 341  * @queued: whether this controller is providing an internal message queue
 342  * @kworker: thread struct for message pump
 343  * @kworker_task: pointer to task for message pump kworker thread
 344  * @pump_messages: work struct for scheduling work to the message pump
 345  * @queue_lock: spinlock to syncronise access to message queue
 346  * @queue: message queue
 347  * @idling: the device is entering idle state
 348  * @cur_msg: the currently in-flight message
 349  * @cur_msg_prepared: spi_prepare_message was called for the currently
 350  *                    in-flight message
 351  * @cur_msg_mapped: message has been mapped for DMA
 352  * @xfer_completion: used by core transfer_one_message()
 353  * @busy: message pump is busy
 354  * @running: message pump is running
 355  * @rt: whether this queue is set to run as a realtime task
 356  * @auto_runtime_pm: the core should ensure a runtime PM reference is held
 357  *                   while the hardware is prepared, using the parent
 358  *                   device for the spidev
 359  * @max_dma_len: Maximum length of a DMA transfer for the device.
 360  * @prepare_transfer_hardware: a message will soon arrive from the queue
 361  *      so the subsystem requests the driver to prepare the transfer hardware
 362  *      by issuing this call
 363  * @transfer_one_message: the subsystem calls the driver to transfer a single
 364  *      message while queuing transfers that arrive in the meantime. When the
 365  *      driver is finished with this message, it must call
 366  *      spi_finalize_current_message() so the subsystem can issue the next
 367  *      message
 368  * @unprepare_transfer_hardware: there are currently no more messages on the
 369  *      queue so the subsystem notifies the driver that it may relax the
 370  *      hardware by issuing this call
 371  *
 372  * @set_cs: set the logic level of the chip select line.  May be called
 373  *          from interrupt context.
 374  * @prepare_message: set up the controller to transfer a single message,
 375  *                   for example doing DMA mapping.  Called from threaded
 376  *                   context.
 377  * @transfer_one: transfer a single spi_transfer.
 378  *                  - return 0 if the transfer is finished,
 379  *                  - return 1 if the transfer is still in progress. When
 380  *                    the driver is finished with this transfer it must
 381  *                    call spi_finalize_current_transfer() so the subsystem
 382  *                    can issue the next transfer. Note: transfer_one and
 383  *                    transfer_one_message are mutually exclusive; when both
 384  *                    are set, the generic subsystem does not call your
 385  *                    transfer_one callback.
 386  * @handle_err: the subsystem calls the driver to handle an error that occurs
 387  *              in the generic implementation of transfer_one_message().
 388  * @mem_ops: optimized/dedicated operations for interactions with SPI memory.
 389  *           This field is optional and should only be implemented if the
 390  *           controller has native support for memory like operations.
 391  * @unprepare_message: undo any work done by prepare_message().
 392  * @slave_abort: abort the ongoing transfer request on an SPI slave controller
 393  * @cs_gpios: LEGACY: array of GPIO descs to use as chip select lines; one per
 394  *      CS number. Any individual value may be -ENOENT for CS lines that
 395  *      are not GPIOs (driven by the SPI controller itself). Use the cs_gpiods
 396  *      in new drivers.
 397  * @cs_gpiods: Array of GPIO descs to use as chip select lines; one per CS
 398  *      number. Any individual value may be NULL for CS lines that
 399  *      are not GPIOs (driven by the SPI controller itself).
 400  * @use_gpio_descriptors: Turns on the code in the SPI core to parse and grab
 401  *      GPIO descriptors rather than using global GPIO numbers grabbed by the
 402  *      driver. This will fill in @cs_gpiods and @cs_gpios should not be used,
 403  *      and SPI devices will have the cs_gpiod assigned rather than cs_gpio.
 404  * @statistics: statistics for the spi_controller
 405  * @dma_tx: DMA transmit channel
 406  * @dma_rx: DMA receive channel
 407  * @dummy_rx: dummy receive buffer for full-duplex devices
 408  * @dummy_tx: dummy transmit buffer for full-duplex devices
 409  * @fw_translate_cs: If the boot firmware uses different numbering scheme
 410  *      what Linux expects, this optional hook can be used to translate
 411  *      between the two.
 412  *
 413  * Each SPI controller can communicate with one or more @spi_device
 414  * children.  These make a small bus, sharing MOSI, MISO and SCK signals
 415  * but not chip select signals.  Each device may be configured to use a
 416  * different clock rate, since those shared signals are ignored unless
 417  * the chip is selected.
 418  *
 419  * The driver for an SPI controller manages access to those devices through
 420  * a queue of spi_message transactions, copying data between CPU memory and
 421  * an SPI slave device.  For each such message it queues, it calls the
 422  * message's completion function when the transaction completes.
 423  */
 424 struct spi_controller {
 425         struct device   dev;
 426 
 427         struct list_head list;
 428 
 429         /* other than negative (== assign one dynamically), bus_num is fully
 430          * board-specific.  usually that simplifies to being SOC-specific.
 431          * example:  one SOC has three SPI controllers, numbered 0..2,
 432          * and one board's schematics might show it using SPI-2.  software
 433          * would normally use bus_num=2 for that controller.
 434          */
 435         s16                     bus_num;
 436 
 437         /* chipselects will be integral to many controllers; some others
 438          * might use board-specific GPIOs.
 439          */
 440         u16                     num_chipselect;
 441 
 442         /* some SPI controllers pose alignment requirements on DMAable
 443          * buffers; let protocol drivers know about these requirements.
 444          */
 445         u16                     dma_alignment;
 446 
 447         /* spi_device.mode flags understood by this controller driver */
 448         u32                     mode_bits;
 449 
 450         /* bitmask of supported bits_per_word for transfers */
 451         u32                     bits_per_word_mask;
 452 #define SPI_BPW_MASK(bits) BIT((bits) - 1)
 453 #define SPI_BPW_RANGE_MASK(min, max) GENMASK((max) - 1, (min) - 1)
 454 
 455         /* limits on transfer speed */
 456         u32                     min_speed_hz;
 457         u32                     max_speed_hz;
 458 
 459         /* other constraints relevant to this driver */
 460         u16                     flags;
 461 #define SPI_CONTROLLER_HALF_DUPLEX      BIT(0)  /* can't do full duplex */
 462 #define SPI_CONTROLLER_NO_RX            BIT(1)  /* can't do buffer read */
 463 #define SPI_CONTROLLER_NO_TX            BIT(2)  /* can't do buffer write */
 464 #define SPI_CONTROLLER_MUST_RX          BIT(3)  /* requires rx */
 465 #define SPI_CONTROLLER_MUST_TX          BIT(4)  /* requires tx */
 466 
 467 #define SPI_MASTER_GPIO_SS              BIT(5)  /* GPIO CS must select slave */
 468 
 469         /* flag indicating this is an SPI slave controller */
 470         bool                    slave;
 471 
 472         /*
 473          * on some hardware transfer / message size may be constrained
 474          * the limit may depend on device transfer settings
 475          */
 476         size_t (*max_transfer_size)(struct spi_device *spi);
 477         size_t (*max_message_size)(struct spi_device *spi);
 478 
 479         /* I/O mutex */
 480         struct mutex            io_mutex;
 481 
 482         /* lock and mutex for SPI bus locking */
 483         spinlock_t              bus_lock_spinlock;
 484         struct mutex            bus_lock_mutex;
 485 
 486         /* flag indicating that the SPI bus is locked for exclusive use */
 487         bool                    bus_lock_flag;
 488 
 489         /* Setup mode and clock, etc (spi driver may call many times).
 490          *
 491          * IMPORTANT:  this may be called when transfers to another
 492          * device are active.  DO NOT UPDATE SHARED REGISTERS in ways
 493          * which could break those transfers.
 494          */
 495         int                     (*setup)(struct spi_device *spi);
 496 
 497         /*
 498          * set_cs_timing() method is for SPI controllers that supports
 499          * configuring CS timing.
 500          *
 501          * This hook allows SPI client drivers to request SPI controllers
 502          * to configure specific CS timing through spi_set_cs_timing() after
 503          * spi_setup().
 504          */
 505         void (*set_cs_timing)(struct spi_device *spi, u8 setup_clk_cycles,
 506                               u8 hold_clk_cycles, u8 inactive_clk_cycles);
 507 
 508         /* bidirectional bulk transfers
 509          *
 510          * + The transfer() method may not sleep; its main role is
 511          *   just to add the message to the queue.
 512          * + For now there's no remove-from-queue operation, or
 513          *   any other request management
 514          * + To a given spi_device, message queueing is pure fifo
 515          *
 516          * + The controller's main job is to process its message queue,
 517          *   selecting a chip (for masters), then transferring data
 518          * + If there are multiple spi_device children, the i/o queue
 519          *   arbitration algorithm is unspecified (round robin, fifo,
 520          *   priority, reservations, preemption, etc)
 521          *
 522          * + Chipselect stays active during the entire message
 523          *   (unless modified by spi_transfer.cs_change != 0).
 524          * + The message transfers use clock and SPI mode parameters
 525          *   previously established by setup() for this device
 526          */
 527         int                     (*transfer)(struct spi_device *spi,
 528                                                 struct spi_message *mesg);
 529 
 530         /* called on release() to free memory provided by spi_controller */
 531         void                    (*cleanup)(struct spi_device *spi);
 532 
 533         /*
 534          * Used to enable core support for DMA handling, if can_dma()
 535          * exists and returns true then the transfer will be mapped
 536          * prior to transfer_one() being called.  The driver should
 537          * not modify or store xfer and dma_tx and dma_rx must be set
 538          * while the device is prepared.
 539          */
 540         bool                    (*can_dma)(struct spi_controller *ctlr,
 541                                            struct spi_device *spi,
 542                                            struct spi_transfer *xfer);
 543 
 544         /*
 545          * These hooks are for drivers that want to use the generic
 546          * controller transfer queueing mechanism. If these are used, the
 547          * transfer() function above must NOT be specified by the driver.
 548          * Over time we expect SPI drivers to be phased over to this API.
 549          */
 550         bool                            queued;
 551         struct kthread_worker           kworker;
 552         struct task_struct              *kworker_task;
 553         struct kthread_work             pump_messages;
 554         spinlock_t                      queue_lock;
 555         struct list_head                queue;
 556         struct spi_message              *cur_msg;
 557         bool                            idling;
 558         bool                            busy;
 559         bool                            running;
 560         bool                            rt;
 561         bool                            auto_runtime_pm;
 562         bool                            cur_msg_prepared;
 563         bool                            cur_msg_mapped;
 564         struct completion               xfer_completion;
 565         size_t                          max_dma_len;
 566 
 567         int (*prepare_transfer_hardware)(struct spi_controller *ctlr);
 568         int (*transfer_one_message)(struct spi_controller *ctlr,
 569                                     struct spi_message *mesg);
 570         int (*unprepare_transfer_hardware)(struct spi_controller *ctlr);
 571         int (*prepare_message)(struct spi_controller *ctlr,
 572                                struct spi_message *message);
 573         int (*unprepare_message)(struct spi_controller *ctlr,
 574                                  struct spi_message *message);
 575         int (*slave_abort)(struct spi_controller *ctlr);
 576 
 577         /*
 578          * These hooks are for drivers that use a generic implementation
 579          * of transfer_one_message() provied by the core.
 580          */
 581         void (*set_cs)(struct spi_device *spi, bool enable);
 582         int (*transfer_one)(struct spi_controller *ctlr, struct spi_device *spi,
 583                             struct spi_transfer *transfer);
 584         void (*handle_err)(struct spi_controller *ctlr,
 585                            struct spi_message *message);
 586 
 587         /* Optimized handlers for SPI memory-like operations. */
 588         const struct spi_controller_mem_ops *mem_ops;
 589 
 590         /* gpio chip select */
 591         int                     *cs_gpios;
 592         struct gpio_desc        **cs_gpiods;
 593         bool                    use_gpio_descriptors;
 594 
 595         /* statistics */
 596         struct spi_statistics   statistics;
 597 
 598         /* DMA channels for use with core dmaengine helpers */
 599         struct dma_chan         *dma_tx;
 600         struct dma_chan         *dma_rx;
 601 
 602         /* dummy data for full duplex devices */
 603         void                    *dummy_rx;
 604         void                    *dummy_tx;
 605 
 606         int (*fw_translate_cs)(struct spi_controller *ctlr, unsigned cs);
 607 };
 608 
 609 static inline void *spi_controller_get_devdata(struct spi_controller *ctlr)
 610 {
 611         return dev_get_drvdata(&ctlr->dev);
 612 }
 613 
 614 static inline void spi_controller_set_devdata(struct spi_controller *ctlr,
 615                                               void *data)
 616 {
 617         dev_set_drvdata(&ctlr->dev, data);
 618 }
 619 
 620 static inline struct spi_controller *spi_controller_get(struct spi_controller *ctlr)
 621 {
 622         if (!ctlr || !get_device(&ctlr->dev))
 623                 return NULL;
 624         return ctlr;
 625 }
 626 
 627 static inline void spi_controller_put(struct spi_controller *ctlr)
 628 {
 629         if (ctlr)
 630                 put_device(&ctlr->dev);
 631 }
 632 
 633 static inline bool spi_controller_is_slave(struct spi_controller *ctlr)
 634 {
 635         return IS_ENABLED(CONFIG_SPI_SLAVE) && ctlr->slave;
 636 }
 637 
 638 /* PM calls that need to be issued by the driver */
 639 extern int spi_controller_suspend(struct spi_controller *ctlr);
 640 extern int spi_controller_resume(struct spi_controller *ctlr);
 641 
 642 /* Calls the driver make to interact with the message queue */
 643 extern struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr);
 644 extern void spi_finalize_current_message(struct spi_controller *ctlr);
 645 extern void spi_finalize_current_transfer(struct spi_controller *ctlr);
 646 
 647 /* the spi driver core manages memory for the spi_controller classdev */
 648 extern struct spi_controller *__spi_alloc_controller(struct device *host,
 649                                                 unsigned int size, bool slave);
 650 
 651 static inline struct spi_controller *spi_alloc_master(struct device *host,
 652                                                       unsigned int size)
 653 {
 654         return __spi_alloc_controller(host, size, false);
 655 }
 656 
 657 static inline struct spi_controller *spi_alloc_slave(struct device *host,
 658                                                      unsigned int size)
 659 {
 660         if (!IS_ENABLED(CONFIG_SPI_SLAVE))
 661                 return NULL;
 662 
 663         return __spi_alloc_controller(host, size, true);
 664 }
 665 
 666 extern int spi_register_controller(struct spi_controller *ctlr);
 667 extern int devm_spi_register_controller(struct device *dev,
 668                                         struct spi_controller *ctlr);
 669 extern void spi_unregister_controller(struct spi_controller *ctlr);
 670 
 671 extern struct spi_controller *spi_busnum_to_master(u16 busnum);
 672 
 673 /*
 674  * SPI resource management while processing a SPI message
 675  */
 676 
 677 typedef void (*spi_res_release_t)(struct spi_controller *ctlr,
 678                                   struct spi_message *msg,
 679                                   void *res);
 680 
 681 /**
 682  * struct spi_res - spi resource management structure
 683  * @entry:   list entry
 684  * @release: release code called prior to freeing this resource
 685  * @data:    extra data allocated for the specific use-case
 686  *
 687  * this is based on ideas from devres, but focused on life-cycle
 688  * management during spi_message processing
 689  */
 690 struct spi_res {
 691         struct list_head        entry;
 692         spi_res_release_t       release;
 693         unsigned long long      data[]; /* guarantee ull alignment */
 694 };
 695 
 696 extern void *spi_res_alloc(struct spi_device *spi,
 697                            spi_res_release_t release,
 698                            size_t size, gfp_t gfp);
 699 extern void spi_res_add(struct spi_message *message, void *res);
 700 extern void spi_res_free(void *res);
 701 
 702 extern void spi_res_release(struct spi_controller *ctlr,
 703                             struct spi_message *message);
 704 
 705 /*---------------------------------------------------------------------------*/
 706 
 707 /*
 708  * I/O INTERFACE between SPI controller and protocol drivers
 709  *
 710  * Protocol drivers use a queue of spi_messages, each transferring data
 711  * between the controller and memory buffers.
 712  *
 713  * The spi_messages themselves consist of a series of read+write transfer
 714  * segments.  Those segments always read the same number of bits as they
 715  * write; but one or the other is easily ignored by passing a null buffer
 716  * pointer.  (This is unlike most types of I/O API, because SPI hardware
 717  * is full duplex.)
 718  *
 719  * NOTE:  Allocation of spi_transfer and spi_message memory is entirely
 720  * up to the protocol driver, which guarantees the integrity of both (as
 721  * well as the data buffers) for as long as the message is queued.
 722  */
 723 
 724 /**
 725  * struct spi_transfer - a read/write buffer pair
 726  * @tx_buf: data to be written (dma-safe memory), or NULL
 727  * @rx_buf: data to be read (dma-safe memory), or NULL
 728  * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
 729  * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
 730  * @tx_nbits: number of bits used for writing. If 0 the default
 731  *      (SPI_NBITS_SINGLE) is used.
 732  * @rx_nbits: number of bits used for reading. If 0 the default
 733  *      (SPI_NBITS_SINGLE) is used.
 734  * @len: size of rx and tx buffers (in bytes)
 735  * @speed_hz: Select a speed other than the device default for this
 736  *      transfer. If 0 the default (from @spi_device) is used.
 737  * @bits_per_word: select a bits_per_word other than the device default
 738  *      for this transfer. If 0 the default (from @spi_device) is used.
 739  * @cs_change: affects chipselect after this transfer completes
 740  * @cs_change_delay: delay between cs deassert and assert when
 741  *      @cs_change is set and @spi_transfer is not the last in @spi_message
 742  * @cs_change_delay_unit: unit of cs_change_delay
 743  * @delay_usecs: microseconds to delay after this transfer before
 744  *      (optionally) changing the chipselect status, then starting
 745  *      the next transfer or completing this @spi_message.
 746  * @word_delay_usecs: microseconds to inter word delay after each word size
 747  *      (set by bits_per_word) transmission.
 748  * @word_delay: clock cycles to inter word delay after each word size
 749  *      (set by bits_per_word) transmission.
 750  * @effective_speed_hz: the effective SCK-speed that was used to
 751  *      transfer this transfer. Set to 0 if the spi bus driver does
 752  *      not support it.
 753  * @transfer_list: transfers are sequenced through @spi_message.transfers
 754  * @tx_sg: Scatterlist for transmit, currently not for client use
 755  * @rx_sg: Scatterlist for receive, currently not for client use
 756  *
 757  * SPI transfers always write the same number of bytes as they read.
 758  * Protocol drivers should always provide @rx_buf and/or @tx_buf.
 759  * In some cases, they may also want to provide DMA addresses for
 760  * the data being transferred; that may reduce overhead, when the
 761  * underlying driver uses dma.
 762  *
 763  * If the transmit buffer is null, zeroes will be shifted out
 764  * while filling @rx_buf.  If the receive buffer is null, the data
 765  * shifted in will be discarded.  Only "len" bytes shift out (or in).
 766  * It's an error to try to shift out a partial word.  (For example, by
 767  * shifting out three bytes with word size of sixteen or twenty bits;
 768  * the former uses two bytes per word, the latter uses four bytes.)
 769  *
 770  * In-memory data values are always in native CPU byte order, translated
 771  * from the wire byte order (big-endian except with SPI_LSB_FIRST).  So
 772  * for example when bits_per_word is sixteen, buffers are 2N bytes long
 773  * (@len = 2N) and hold N sixteen bit words in CPU byte order.
 774  *
 775  * When the word size of the SPI transfer is not a power-of-two multiple
 776  * of eight bits, those in-memory words include extra bits.  In-memory
 777  * words are always seen by protocol drivers as right-justified, so the
 778  * undefined (rx) or unused (tx) bits are always the most significant bits.
 779  *
 780  * All SPI transfers start with the relevant chipselect active.  Normally
 781  * it stays selected until after the last transfer in a message.  Drivers
 782  * can affect the chipselect signal using cs_change.
 783  *
 784  * (i) If the transfer isn't the last one in the message, this flag is
 785  * used to make the chipselect briefly go inactive in the middle of the
 786  * message.  Toggling chipselect in this way may be needed to terminate
 787  * a chip command, letting a single spi_message perform all of group of
 788  * chip transactions together.
 789  *
 790  * (ii) When the transfer is the last one in the message, the chip may
 791  * stay selected until the next transfer.  On multi-device SPI busses
 792  * with nothing blocking messages going to other devices, this is just
 793  * a performance hint; starting a message to another device deselects
 794  * this one.  But in other cases, this can be used to ensure correctness.
 795  * Some devices need protocol transactions to be built from a series of
 796  * spi_message submissions, where the content of one message is determined
 797  * by the results of previous messages and where the whole transaction
 798  * ends when the chipselect goes intactive.
 799  *
 800  * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
 801  * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
 802  * two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x)
 803  * SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer.
 804  *
 805  * The code that submits an spi_message (and its spi_transfers)
 806  * to the lower layers is responsible for managing its memory.
 807  * Zero-initialize every field you don't set up explicitly, to
 808  * insulate against future API updates.  After you submit a message
 809  * and its transfers, ignore them until its completion callback.
 810  */
 811 struct spi_transfer {
 812         /* it's ok if tx_buf == rx_buf (right?)
 813          * for MicroWire, one buffer must be null
 814          * buffers must work with dma_*map_single() calls, unless
 815          *   spi_message.is_dma_mapped reports a pre-existing mapping
 816          */
 817         const void      *tx_buf;
 818         void            *rx_buf;
 819         unsigned        len;
 820 
 821         dma_addr_t      tx_dma;
 822         dma_addr_t      rx_dma;
 823         struct sg_table tx_sg;
 824         struct sg_table rx_sg;
 825 
 826         unsigned        cs_change:1;
 827         unsigned        tx_nbits:3;
 828         unsigned        rx_nbits:3;
 829 #define SPI_NBITS_SINGLE        0x01 /* 1bit transfer */
 830 #define SPI_NBITS_DUAL          0x02 /* 2bits transfer */
 831 #define SPI_NBITS_QUAD          0x04 /* 4bits transfer */
 832         u8              bits_per_word;
 833         u8              word_delay_usecs;
 834         u16             delay_usecs;
 835         u16             cs_change_delay;
 836         u8              cs_change_delay_unit;
 837 #define SPI_DELAY_UNIT_USECS    0
 838 #define SPI_DELAY_UNIT_NSECS    1
 839 #define SPI_DELAY_UNIT_SCK      2
 840         u32             speed_hz;
 841         u16             word_delay;
 842 
 843         u32             effective_speed_hz;
 844 
 845         struct list_head transfer_list;
 846 };
 847 
 848 /**
 849  * struct spi_message - one multi-segment SPI transaction
 850  * @transfers: list of transfer segments in this transaction
 851  * @spi: SPI device to which the transaction is queued
 852  * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
 853  *      addresses for each transfer buffer
 854  * @complete: called to report transaction completions
 855  * @context: the argument to complete() when it's called
 856  * @frame_length: the total number of bytes in the message
 857  * @actual_length: the total number of bytes that were transferred in all
 858  *      successful segments
 859  * @status: zero for success, else negative errno
 860  * @queue: for use by whichever driver currently owns the message
 861  * @state: for use by whichever driver currently owns the message
 862  * @resources: for resource management when the spi message is processed
 863  *
 864  * A @spi_message is used to execute an atomic sequence of data transfers,
 865  * each represented by a struct spi_transfer.  The sequence is "atomic"
 866  * in the sense that no other spi_message may use that SPI bus until that
 867  * sequence completes.  On some systems, many such sequences can execute as
 868  * as single programmed DMA transfer.  On all systems, these messages are
 869  * queued, and might complete after transactions to other devices.  Messages
 870  * sent to a given spi_device are always executed in FIFO order.
 871  *
 872  * The code that submits an spi_message (and its spi_transfers)
 873  * to the lower layers is responsible for managing its memory.
 874  * Zero-initialize every field you don't set up explicitly, to
 875  * insulate against future API updates.  After you submit a message
 876  * and its transfers, ignore them until its completion callback.
 877  */
 878 struct spi_message {
 879         struct list_head        transfers;
 880 
 881         struct spi_device       *spi;
 882 
 883         unsigned                is_dma_mapped:1;
 884 
 885         /* REVISIT:  we might want a flag affecting the behavior of the
 886          * last transfer ... allowing things like "read 16 bit length L"
 887          * immediately followed by "read L bytes".  Basically imposing
 888          * a specific message scheduling algorithm.
 889          *
 890          * Some controller drivers (message-at-a-time queue processing)
 891          * could provide that as their default scheduling algorithm.  But
 892          * others (with multi-message pipelines) could need a flag to
 893          * tell them about such special cases.
 894          */
 895 
 896         /* completion is reported through a callback */
 897         void                    (*complete)(void *context);
 898         void                    *context;
 899         unsigned                frame_length;
 900         unsigned                actual_length;
 901         int                     status;
 902 
 903         /* for optional use by whatever driver currently owns the
 904          * spi_message ...  between calls to spi_async and then later
 905          * complete(), that's the spi_controller controller driver.
 906          */
 907         struct list_head        queue;
 908         void                    *state;
 909 
 910         /* list of spi_res reources when the spi message is processed */
 911         struct list_head        resources;
 912 };
 913 
 914 static inline void spi_message_init_no_memset(struct spi_message *m)
 915 {
 916         INIT_LIST_HEAD(&m->transfers);
 917         INIT_LIST_HEAD(&m->resources);
 918 }
 919 
 920 static inline void spi_message_init(struct spi_message *m)
 921 {
 922         memset(m, 0, sizeof *m);
 923         spi_message_init_no_memset(m);
 924 }
 925 
 926 static inline void
 927 spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
 928 {
 929         list_add_tail(&t->transfer_list, &m->transfers);
 930 }
 931 
 932 static inline void
 933 spi_transfer_del(struct spi_transfer *t)
 934 {
 935         list_del(&t->transfer_list);
 936 }
 937 
 938 /**
 939  * spi_message_init_with_transfers - Initialize spi_message and append transfers
 940  * @m: spi_message to be initialized
 941  * @xfers: An array of spi transfers
 942  * @num_xfers: Number of items in the xfer array
 943  *
 944  * This function initializes the given spi_message and adds each spi_transfer in
 945  * the given array to the message.
 946  */
 947 static inline void
 948 spi_message_init_with_transfers(struct spi_message *m,
 949 struct spi_transfer *xfers, unsigned int num_xfers)
 950 {
 951         unsigned int i;
 952 
 953         spi_message_init(m);
 954         for (i = 0; i < num_xfers; ++i)
 955                 spi_message_add_tail(&xfers[i], m);
 956 }
 957 
 958 /* It's fine to embed message and transaction structures in other data
 959  * structures so long as you don't free them while they're in use.
 960  */
 961 
 962 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
 963 {
 964         struct spi_message *m;
 965 
 966         m = kzalloc(sizeof(struct spi_message)
 967                         + ntrans * sizeof(struct spi_transfer),
 968                         flags);
 969         if (m) {
 970                 unsigned i;
 971                 struct spi_transfer *t = (struct spi_transfer *)(m + 1);
 972 
 973                 spi_message_init_no_memset(m);
 974                 for (i = 0; i < ntrans; i++, t++)
 975                         spi_message_add_tail(t, m);
 976         }
 977         return m;
 978 }
 979 
 980 static inline void spi_message_free(struct spi_message *m)
 981 {
 982         kfree(m);
 983 }
 984 
 985 extern void spi_set_cs_timing(struct spi_device *spi, u8 setup, u8 hold, u8 inactive_dly);
 986 
 987 extern int spi_setup(struct spi_device *spi);
 988 extern int spi_async(struct spi_device *spi, struct spi_message *message);
 989 extern int spi_async_locked(struct spi_device *spi,
 990                             struct spi_message *message);
 991 extern int spi_slave_abort(struct spi_device *spi);
 992 
 993 static inline size_t
 994 spi_max_message_size(struct spi_device *spi)
 995 {
 996         struct spi_controller *ctlr = spi->controller;
 997 
 998         if (!ctlr->max_message_size)
 999                 return SIZE_MAX;
1000         return ctlr->max_message_size(spi);
1001 }
1002 
1003 static inline size_t
1004 spi_max_transfer_size(struct spi_device *spi)
1005 {
1006         struct spi_controller *ctlr = spi->controller;
1007         size_t tr_max = SIZE_MAX;
1008         size_t msg_max = spi_max_message_size(spi);
1009 
1010         if (ctlr->max_transfer_size)
1011                 tr_max = ctlr->max_transfer_size(spi);
1012 
1013         /* transfer size limit must not be greater than messsage size limit */
1014         return min(tr_max, msg_max);
1015 }
1016 
1017 /**
1018  * spi_is_bpw_supported - Check if bits per word is supported
1019  * @spi: SPI device
1020  * @bpw: Bits per word
1021  *
1022  * This function checks to see if the SPI controller supports @bpw.
1023  *
1024  * Returns:
1025  * True if @bpw is supported, false otherwise.
1026  */
1027 static inline bool spi_is_bpw_supported(struct spi_device *spi, u32 bpw)
1028 {
1029         u32 bpw_mask = spi->master->bits_per_word_mask;
1030 
1031         if (bpw == 8 || (bpw <= 32 && bpw_mask & SPI_BPW_MASK(bpw)))
1032                 return true;
1033 
1034         return false;
1035 }
1036 
1037 /*---------------------------------------------------------------------------*/
1038 
1039 /* SPI transfer replacement methods which make use of spi_res */
1040 
1041 struct spi_replaced_transfers;
1042 typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr,
1043                                        struct spi_message *msg,
1044                                        struct spi_replaced_transfers *res);
1045 /**
1046  * struct spi_replaced_transfers - structure describing the spi_transfer
1047  *                                 replacements that have occurred
1048  *                                 so that they can get reverted
1049  * @release:            some extra release code to get executed prior to
1050  *                      relasing this structure
1051  * @extradata:          pointer to some extra data if requested or NULL
1052  * @replaced_transfers: transfers that have been replaced and which need
1053  *                      to get restored
1054  * @replaced_after:     the transfer after which the @replaced_transfers
1055  *                      are to get re-inserted
1056  * @inserted:           number of transfers inserted
1057  * @inserted_transfers: array of spi_transfers of array-size @inserted,
1058  *                      that have been replacing replaced_transfers
1059  *
1060  * note: that @extradata will point to @inserted_transfers[@inserted]
1061  * if some extra allocation is requested, so alignment will be the same
1062  * as for spi_transfers
1063  */
1064 struct spi_replaced_transfers {
1065         spi_replaced_release_t release;
1066         void *extradata;
1067         struct list_head replaced_transfers;
1068         struct list_head *replaced_after;
1069         size_t inserted;
1070         struct spi_transfer inserted_transfers[];
1071 };
1072 
1073 extern struct spi_replaced_transfers *spi_replace_transfers(
1074         struct spi_message *msg,
1075         struct spi_transfer *xfer_first,
1076         size_t remove,
1077         size_t insert,
1078         spi_replaced_release_t release,
1079         size_t extradatasize,
1080         gfp_t gfp);
1081 
1082 /*---------------------------------------------------------------------------*/
1083 
1084 /* SPI transfer transformation methods */
1085 
1086 extern int spi_split_transfers_maxsize(struct spi_controller *ctlr,
1087                                        struct spi_message *msg,
1088                                        size_t maxsize,
1089                                        gfp_t gfp);
1090 
1091 /*---------------------------------------------------------------------------*/
1092 
1093 /* All these synchronous SPI transfer routines are utilities layered
1094  * over the core async transfer primitive.  Here, "synchronous" means
1095  * they will sleep uninterruptibly until the async transfer completes.
1096  */
1097 
1098 extern int spi_sync(struct spi_device *spi, struct spi_message *message);
1099 extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
1100 extern int spi_bus_lock(struct spi_controller *ctlr);
1101 extern int spi_bus_unlock(struct spi_controller *ctlr);
1102 
1103 /**
1104  * spi_sync_transfer - synchronous SPI data transfer
1105  * @spi: device with which data will be exchanged
1106  * @xfers: An array of spi_transfers
1107  * @num_xfers: Number of items in the xfer array
1108  * Context: can sleep
1109  *
1110  * Does a synchronous SPI data transfer of the given spi_transfer array.
1111  *
1112  * For more specific semantics see spi_sync().
1113  *
1114  * Return: Return: zero on success, else a negative error code.
1115  */
1116 static inline int
1117 spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers,
1118         unsigned int num_xfers)
1119 {
1120         struct spi_message msg;
1121 
1122         spi_message_init_with_transfers(&msg, xfers, num_xfers);
1123 
1124         return spi_sync(spi, &msg);
1125 }
1126 
1127 /**
1128  * spi_write - SPI synchronous write
1129  * @spi: device to which data will be written
1130  * @buf: data buffer
1131  * @len: data buffer size
1132  * Context: can sleep
1133  *
1134  * This function writes the buffer @buf.
1135  * Callable only from contexts that can sleep.
1136  *
1137  * Return: zero on success, else a negative error code.
1138  */
1139 static inline int
1140 spi_write(struct spi_device *spi, const void *buf, size_t len)
1141 {
1142         struct spi_transfer     t = {
1143                         .tx_buf         = buf,
1144                         .len            = len,
1145                 };
1146 
1147         return spi_sync_transfer(spi, &t, 1);
1148 }
1149 
1150 /**
1151  * spi_read - SPI synchronous read
1152  * @spi: device from which data will be read
1153  * @buf: data buffer
1154  * @len: data buffer size
1155  * Context: can sleep
1156  *
1157  * This function reads the buffer @buf.
1158  * Callable only from contexts that can sleep.
1159  *
1160  * Return: zero on success, else a negative error code.
1161  */
1162 static inline int
1163 spi_read(struct spi_device *spi, void *buf, size_t len)
1164 {
1165         struct spi_transfer     t = {
1166                         .rx_buf         = buf,
1167                         .len            = len,
1168                 };
1169 
1170         return spi_sync_transfer(spi, &t, 1);
1171 }
1172 
1173 /* this copies txbuf and rxbuf data; for small transfers only! */
1174 extern int spi_write_then_read(struct spi_device *spi,
1175                 const void *txbuf, unsigned n_tx,
1176                 void *rxbuf, unsigned n_rx);
1177 
1178 /**
1179  * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
1180  * @spi: device with which data will be exchanged
1181  * @cmd: command to be written before data is read back
1182  * Context: can sleep
1183  *
1184  * Callable only from contexts that can sleep.
1185  *
1186  * Return: the (unsigned) eight bit number returned by the
1187  * device, or else a negative error code.
1188  */
1189 static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
1190 {
1191         ssize_t                 status;
1192         u8                      result;
1193 
1194         status = spi_write_then_read(spi, &cmd, 1, &result, 1);
1195 
1196         /* return negative errno or unsigned value */
1197         return (status < 0) ? status : result;
1198 }
1199 
1200 /**
1201  * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
1202  * @spi: device with which data will be exchanged
1203  * @cmd: command to be written before data is read back
1204  * Context: can sleep
1205  *
1206  * The number is returned in wire-order, which is at least sometimes
1207  * big-endian.
1208  *
1209  * Callable only from contexts that can sleep.
1210  *
1211  * Return: the (unsigned) sixteen bit number returned by the
1212  * device, or else a negative error code.
1213  */
1214 static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
1215 {
1216         ssize_t                 status;
1217         u16                     result;
1218 
1219         status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1220 
1221         /* return negative errno or unsigned value */
1222         return (status < 0) ? status : result;
1223 }
1224 
1225 /**
1226  * spi_w8r16be - SPI synchronous 8 bit write followed by 16 bit big-endian read
1227  * @spi: device with which data will be exchanged
1228  * @cmd: command to be written before data is read back
1229  * Context: can sleep
1230  *
1231  * This function is similar to spi_w8r16, with the exception that it will
1232  * convert the read 16 bit data word from big-endian to native endianness.
1233  *
1234  * Callable only from contexts that can sleep.
1235  *
1236  * Return: the (unsigned) sixteen bit number returned by the device in cpu
1237  * endianness, or else a negative error code.
1238  */
1239 static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
1240 
1241 {
1242         ssize_t status;
1243         __be16 result;
1244 
1245         status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1246         if (status < 0)
1247                 return status;
1248 
1249         return be16_to_cpu(result);
1250 }
1251 
1252 /*---------------------------------------------------------------------------*/
1253 
1254 /*
1255  * INTERFACE between board init code and SPI infrastructure.
1256  *
1257  * No SPI driver ever sees these SPI device table segments, but
1258  * it's how the SPI core (or adapters that get hotplugged) grows
1259  * the driver model tree.
1260  *
1261  * As a rule, SPI devices can't be probed.  Instead, board init code
1262  * provides a table listing the devices which are present, with enough
1263  * information to bind and set up the device's driver.  There's basic
1264  * support for nonstatic configurations too; enough to handle adding
1265  * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
1266  */
1267 
1268 /**
1269  * struct spi_board_info - board-specific template for a SPI device
1270  * @modalias: Initializes spi_device.modalias; identifies the driver.
1271  * @platform_data: Initializes spi_device.platform_data; the particular
1272  *      data stored there is driver-specific.
1273  * @properties: Additional device properties for the device.
1274  * @controller_data: Initializes spi_device.controller_data; some
1275  *      controllers need hints about hardware setup, e.g. for DMA.
1276  * @irq: Initializes spi_device.irq; depends on how the board is wired.
1277  * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
1278  *      from the chip datasheet and board-specific signal quality issues.
1279  * @bus_num: Identifies which spi_controller parents the spi_device; unused
1280  *      by spi_new_device(), and otherwise depends on board wiring.
1281  * @chip_select: Initializes spi_device.chip_select; depends on how
1282  *      the board is wired.
1283  * @mode: Initializes spi_device.mode; based on the chip datasheet, board
1284  *      wiring (some devices support both 3WIRE and standard modes), and
1285  *      possibly presence of an inverter in the chipselect path.
1286  *
1287  * When adding new SPI devices to the device tree, these structures serve
1288  * as a partial device template.  They hold information which can't always
1289  * be determined by drivers.  Information that probe() can establish (such
1290  * as the default transfer wordsize) is not included here.
1291  *
1292  * These structures are used in two places.  Their primary role is to
1293  * be stored in tables of board-specific device descriptors, which are
1294  * declared early in board initialization and then used (much later) to
1295  * populate a controller's device tree after the that controller's driver
1296  * initializes.  A secondary (and atypical) role is as a parameter to
1297  * spi_new_device() call, which happens after those controller drivers
1298  * are active in some dynamic board configuration models.
1299  */
1300 struct spi_board_info {
1301         /* the device name and module name are coupled, like platform_bus;
1302          * "modalias" is normally the driver name.
1303          *
1304          * platform_data goes to spi_device.dev.platform_data,
1305          * controller_data goes to spi_device.controller_data,
1306          * device properties are copied and attached to spi_device,
1307          * irq is copied too
1308          */
1309         char            modalias[SPI_NAME_SIZE];
1310         const void      *platform_data;
1311         const struct property_entry *properties;
1312         void            *controller_data;
1313         int             irq;
1314 
1315         /* slower signaling on noisy or low voltage boards */
1316         u32             max_speed_hz;
1317 
1318 
1319         /* bus_num is board specific and matches the bus_num of some
1320          * spi_controller that will probably be registered later.
1321          *
1322          * chip_select reflects how this chip is wired to that master;
1323          * it's less than num_chipselect.
1324          */
1325         u16             bus_num;
1326         u16             chip_select;
1327 
1328         /* mode becomes spi_device.mode, and is essential for chips
1329          * where the default of SPI_CS_HIGH = 0 is wrong.
1330          */
1331         u32             mode;
1332 
1333         /* ... may need additional spi_device chip config data here.
1334          * avoid stuff protocol drivers can set; but include stuff
1335          * needed to behave without being bound to a driver:
1336          *  - quirks like clock rate mattering when not selected
1337          */
1338 };
1339 
1340 #ifdef  CONFIG_SPI
1341 extern int
1342 spi_register_board_info(struct spi_board_info const *info, unsigned n);
1343 #else
1344 /* board init code may ignore whether SPI is configured or not */
1345 static inline int
1346 spi_register_board_info(struct spi_board_info const *info, unsigned n)
1347         { return 0; }
1348 #endif
1349 
1350 /* If you're hotplugging an adapter with devices (parport, usb, etc)
1351  * use spi_new_device() to describe each device.  You can also call
1352  * spi_unregister_device() to start making that device vanish, but
1353  * normally that would be handled by spi_unregister_controller().
1354  *
1355  * You can also use spi_alloc_device() and spi_add_device() to use a two
1356  * stage registration sequence for each spi_device.  This gives the caller
1357  * some more control over the spi_device structure before it is registered,
1358  * but requires that caller to initialize fields that would otherwise
1359  * be defined using the board info.
1360  */
1361 extern struct spi_device *
1362 spi_alloc_device(struct spi_controller *ctlr);
1363 
1364 extern int
1365 spi_add_device(struct spi_device *spi);
1366 
1367 extern struct spi_device *
1368 spi_new_device(struct spi_controller *, struct spi_board_info *);
1369 
1370 extern void spi_unregister_device(struct spi_device *spi);
1371 
1372 extern const struct spi_device_id *
1373 spi_get_device_id(const struct spi_device *sdev);
1374 
1375 static inline bool
1376 spi_transfer_is_last(struct spi_controller *ctlr, struct spi_transfer *xfer)
1377 {
1378         return list_is_last(&xfer->transfer_list, &ctlr->cur_msg->transfers);
1379 }
1380 
1381 /* OF support code */
1382 #if IS_ENABLED(CONFIG_OF)
1383 
1384 /* must call put_device() when done with returned spi_device device */
1385 extern struct spi_device *
1386 of_find_spi_device_by_node(struct device_node *node);
1387 
1388 #else
1389 
1390 static inline struct spi_device *
1391 of_find_spi_device_by_node(struct device_node *node)
1392 {
1393         return NULL;
1394 }
1395 
1396 #endif /* IS_ENABLED(CONFIG_OF) */
1397 
1398 /* Compatibility layer */
1399 #define spi_master                      spi_controller
1400 
1401 #define SPI_MASTER_HALF_DUPLEX          SPI_CONTROLLER_HALF_DUPLEX
1402 #define SPI_MASTER_NO_RX                SPI_CONTROLLER_NO_RX
1403 #define SPI_MASTER_NO_TX                SPI_CONTROLLER_NO_TX
1404 #define SPI_MASTER_MUST_RX              SPI_CONTROLLER_MUST_RX
1405 #define SPI_MASTER_MUST_TX              SPI_CONTROLLER_MUST_TX
1406 
1407 #define spi_master_get_devdata(_ctlr)   spi_controller_get_devdata(_ctlr)
1408 #define spi_master_set_devdata(_ctlr, _data)    \
1409         spi_controller_set_devdata(_ctlr, _data)
1410 #define spi_master_get(_ctlr)           spi_controller_get(_ctlr)
1411 #define spi_master_put(_ctlr)           spi_controller_put(_ctlr)
1412 #define spi_master_suspend(_ctlr)       spi_controller_suspend(_ctlr)
1413 #define spi_master_resume(_ctlr)        spi_controller_resume(_ctlr)
1414 
1415 #define spi_register_master(_ctlr)      spi_register_controller(_ctlr)
1416 #define devm_spi_register_master(_dev, _ctlr) \
1417         devm_spi_register_controller(_dev, _ctlr)
1418 #define spi_unregister_master(_ctlr)    spi_unregister_controller(_ctlr)
1419 
1420 #endif /* __LINUX_SPI_H */

/* [<][>][^][v][top][bottom][index][help] */