root/include/linux/rcupdate.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. __rcu_read_lock
  2. __rcu_read_unlock
  3. rcu_preempt_depth
  4. rcu_sysrq_start
  5. rcu_sysrq_end
  6. rcu_user_enter
  7. rcu_user_exit
  8. rcu_init_nohz
  9. exit_tasks_rcu_start
  10. exit_tasks_rcu_finish
  11. init_rcu_head
  12. destroy_rcu_head
  13. init_rcu_head_on_stack
  14. destroy_rcu_head_on_stack
  15. rcu_lockdep_current_cpu_online
  16. rcu_lock_acquire
  17. rcu_lock_release
  18. rcu_read_lock_held
  19. rcu_read_lock_bh_held
  20. rcu_read_lock_sched_held
  21. rcu_read_lock_any_held
  22. rcu_preempt_sleep_check
  23. rcu_preempt_sleep_check
  24. rcu_read_lock
  25. rcu_read_unlock
  26. rcu_read_lock_bh
  27. rcu_read_unlock_bh
  28. rcu_read_lock_sched
  29. rcu_read_lock_sched_notrace
  30. rcu_read_unlock_sched
  31. rcu_read_unlock_sched_notrace
  32. rcu_head_init
  33. rcu_head_after_call_rcu

   1 /* SPDX-License-Identifier: GPL-2.0+ */
   2 /*
   3  * Read-Copy Update mechanism for mutual exclusion
   4  *
   5  * Copyright IBM Corporation, 2001
   6  *
   7  * Author: Dipankar Sarma <dipankar@in.ibm.com>
   8  *
   9  * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
  10  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  11  * Papers:
  12  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
  13  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
  14  *
  15  * For detailed explanation of Read-Copy Update mechanism see -
  16  *              http://lse.sourceforge.net/locking/rcupdate.html
  17  *
  18  */
  19 
  20 #ifndef __LINUX_RCUPDATE_H
  21 #define __LINUX_RCUPDATE_H
  22 
  23 #include <linux/types.h>
  24 #include <linux/compiler.h>
  25 #include <linux/atomic.h>
  26 #include <linux/irqflags.h>
  27 #include <linux/preempt.h>
  28 #include <linux/bottom_half.h>
  29 #include <linux/lockdep.h>
  30 #include <asm/processor.h>
  31 #include <linux/cpumask.h>
  32 
  33 #define ULONG_CMP_GE(a, b)      (ULONG_MAX / 2 >= (a) - (b))
  34 #define ULONG_CMP_LT(a, b)      (ULONG_MAX / 2 < (a) - (b))
  35 #define ulong2long(a)           (*(long *)(&(a)))
  36 
  37 /* Exported common interfaces */
  38 void call_rcu(struct rcu_head *head, rcu_callback_t func);
  39 void rcu_barrier_tasks(void);
  40 void synchronize_rcu(void);
  41 
  42 #ifdef CONFIG_PREEMPT_RCU
  43 
  44 void __rcu_read_lock(void);
  45 void __rcu_read_unlock(void);
  46 
  47 /*
  48  * Defined as a macro as it is a very low level header included from
  49  * areas that don't even know about current.  This gives the rcu_read_lock()
  50  * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
  51  * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
  52  */
  53 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
  54 
  55 #else /* #ifdef CONFIG_PREEMPT_RCU */
  56 
  57 static inline void __rcu_read_lock(void)
  58 {
  59         preempt_disable();
  60 }
  61 
  62 static inline void __rcu_read_unlock(void)
  63 {
  64         preempt_enable();
  65 }
  66 
  67 static inline int rcu_preempt_depth(void)
  68 {
  69         return 0;
  70 }
  71 
  72 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
  73 
  74 /* Internal to kernel */
  75 void rcu_init(void);
  76 extern int rcu_scheduler_active __read_mostly;
  77 void rcu_sched_clock_irq(int user);
  78 void rcu_report_dead(unsigned int cpu);
  79 void rcutree_migrate_callbacks(int cpu);
  80 
  81 #ifdef CONFIG_RCU_STALL_COMMON
  82 void rcu_sysrq_start(void);
  83 void rcu_sysrq_end(void);
  84 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
  85 static inline void rcu_sysrq_start(void) { }
  86 static inline void rcu_sysrq_end(void) { }
  87 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
  88 
  89 #ifdef CONFIG_NO_HZ_FULL
  90 void rcu_user_enter(void);
  91 void rcu_user_exit(void);
  92 #else
  93 static inline void rcu_user_enter(void) { }
  94 static inline void rcu_user_exit(void) { }
  95 #endif /* CONFIG_NO_HZ_FULL */
  96 
  97 #ifdef CONFIG_RCU_NOCB_CPU
  98 void rcu_init_nohz(void);
  99 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
 100 static inline void rcu_init_nohz(void) { }
 101 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
 102 
 103 /**
 104  * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
 105  * @a: Code that RCU needs to pay attention to.
 106  *
 107  * RCU read-side critical sections are forbidden in the inner idle loop,
 108  * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU
 109  * will happily ignore any such read-side critical sections.  However,
 110  * things like powertop need tracepoints in the inner idle loop.
 111  *
 112  * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
 113  * will tell RCU that it needs to pay attention, invoke its argument
 114  * (in this example, calling the do_something_with_RCU() function),
 115  * and then tell RCU to go back to ignoring this CPU.  It is permissible
 116  * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
 117  * on the order of a million or so, even on 32-bit systems).  It is
 118  * not legal to block within RCU_NONIDLE(), nor is it permissible to
 119  * transfer control either into or out of RCU_NONIDLE()'s statement.
 120  */
 121 #define RCU_NONIDLE(a) \
 122         do { \
 123                 rcu_irq_enter_irqson(); \
 124                 do { a; } while (0); \
 125                 rcu_irq_exit_irqson(); \
 126         } while (0)
 127 
 128 /*
 129  * Note a quasi-voluntary context switch for RCU-tasks's benefit.
 130  * This is a macro rather than an inline function to avoid #include hell.
 131  */
 132 #ifdef CONFIG_TASKS_RCU
 133 #define rcu_tasks_qs(t) \
 134         do { \
 135                 if (READ_ONCE((t)->rcu_tasks_holdout)) \
 136                         WRITE_ONCE((t)->rcu_tasks_holdout, false); \
 137         } while (0)
 138 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t)
 139 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
 140 void synchronize_rcu_tasks(void);
 141 void exit_tasks_rcu_start(void);
 142 void exit_tasks_rcu_finish(void);
 143 #else /* #ifdef CONFIG_TASKS_RCU */
 144 #define rcu_tasks_qs(t) do { } while (0)
 145 #define rcu_note_voluntary_context_switch(t) do { } while (0)
 146 #define call_rcu_tasks call_rcu
 147 #define synchronize_rcu_tasks synchronize_rcu
 148 static inline void exit_tasks_rcu_start(void) { }
 149 static inline void exit_tasks_rcu_finish(void) { }
 150 #endif /* #else #ifdef CONFIG_TASKS_RCU */
 151 
 152 /**
 153  * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
 154  *
 155  * This macro resembles cond_resched(), except that it is defined to
 156  * report potential quiescent states to RCU-tasks even if the cond_resched()
 157  * machinery were to be shut off, as some advocate for PREEMPT kernels.
 158  */
 159 #define cond_resched_tasks_rcu_qs() \
 160 do { \
 161         rcu_tasks_qs(current); \
 162         cond_resched(); \
 163 } while (0)
 164 
 165 /*
 166  * Infrastructure to implement the synchronize_() primitives in
 167  * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
 168  */
 169 
 170 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
 171 #include <linux/rcutree.h>
 172 #elif defined(CONFIG_TINY_RCU)
 173 #include <linux/rcutiny.h>
 174 #else
 175 #error "Unknown RCU implementation specified to kernel configuration"
 176 #endif
 177 
 178 /*
 179  * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
 180  * are needed for dynamic initialization and destruction of rcu_head
 181  * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
 182  * dynamic initialization and destruction of statically allocated rcu_head
 183  * structures.  However, rcu_head structures allocated dynamically in the
 184  * heap don't need any initialization.
 185  */
 186 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 187 void init_rcu_head(struct rcu_head *head);
 188 void destroy_rcu_head(struct rcu_head *head);
 189 void init_rcu_head_on_stack(struct rcu_head *head);
 190 void destroy_rcu_head_on_stack(struct rcu_head *head);
 191 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 192 static inline void init_rcu_head(struct rcu_head *head) { }
 193 static inline void destroy_rcu_head(struct rcu_head *head) { }
 194 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
 195 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
 196 #endif  /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 197 
 198 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
 199 bool rcu_lockdep_current_cpu_online(void);
 200 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
 201 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
 202 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
 203 
 204 #ifdef CONFIG_DEBUG_LOCK_ALLOC
 205 
 206 static inline void rcu_lock_acquire(struct lockdep_map *map)
 207 {
 208         lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
 209 }
 210 
 211 static inline void rcu_lock_release(struct lockdep_map *map)
 212 {
 213         lock_release(map, 1, _THIS_IP_);
 214 }
 215 
 216 extern struct lockdep_map rcu_lock_map;
 217 extern struct lockdep_map rcu_bh_lock_map;
 218 extern struct lockdep_map rcu_sched_lock_map;
 219 extern struct lockdep_map rcu_callback_map;
 220 int debug_lockdep_rcu_enabled(void);
 221 int rcu_read_lock_held(void);
 222 int rcu_read_lock_bh_held(void);
 223 int rcu_read_lock_sched_held(void);
 224 int rcu_read_lock_any_held(void);
 225 
 226 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 227 
 228 # define rcu_lock_acquire(a)            do { } while (0)
 229 # define rcu_lock_release(a)            do { } while (0)
 230 
 231 static inline int rcu_read_lock_held(void)
 232 {
 233         return 1;
 234 }
 235 
 236 static inline int rcu_read_lock_bh_held(void)
 237 {
 238         return 1;
 239 }
 240 
 241 static inline int rcu_read_lock_sched_held(void)
 242 {
 243         return !preemptible();
 244 }
 245 
 246 static inline int rcu_read_lock_any_held(void)
 247 {
 248         return !preemptible();
 249 }
 250 
 251 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 252 
 253 #ifdef CONFIG_PROVE_RCU
 254 
 255 /**
 256  * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
 257  * @c: condition to check
 258  * @s: informative message
 259  */
 260 #define RCU_LOCKDEP_WARN(c, s)                                          \
 261         do {                                                            \
 262                 static bool __section(.data.unlikely) __warned;         \
 263                 if (debug_lockdep_rcu_enabled() && !__warned && (c)) {  \
 264                         __warned = true;                                \
 265                         lockdep_rcu_suspicious(__FILE__, __LINE__, s);  \
 266                 }                                                       \
 267         } while (0)
 268 
 269 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
 270 static inline void rcu_preempt_sleep_check(void)
 271 {
 272         RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
 273                          "Illegal context switch in RCU read-side critical section");
 274 }
 275 #else /* #ifdef CONFIG_PROVE_RCU */
 276 static inline void rcu_preempt_sleep_check(void) { }
 277 #endif /* #else #ifdef CONFIG_PROVE_RCU */
 278 
 279 #define rcu_sleep_check()                                               \
 280         do {                                                            \
 281                 rcu_preempt_sleep_check();                              \
 282                 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),        \
 283                                  "Illegal context switch in RCU-bh read-side critical section"); \
 284                 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),     \
 285                                  "Illegal context switch in RCU-sched read-side critical section"); \
 286         } while (0)
 287 
 288 #else /* #ifdef CONFIG_PROVE_RCU */
 289 
 290 #define RCU_LOCKDEP_WARN(c, s) do { } while (0)
 291 #define rcu_sleep_check() do { } while (0)
 292 
 293 #endif /* #else #ifdef CONFIG_PROVE_RCU */
 294 
 295 /*
 296  * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
 297  * and rcu_assign_pointer().  Some of these could be folded into their
 298  * callers, but they are left separate in order to ease introduction of
 299  * multiple pointers markings to match different RCU implementations
 300  * (e.g., __srcu), should this make sense in the future.
 301  */
 302 
 303 #ifdef __CHECKER__
 304 #define rcu_check_sparse(p, space) \
 305         ((void)(((typeof(*p) space *)p) == p))
 306 #else /* #ifdef __CHECKER__ */
 307 #define rcu_check_sparse(p, space)
 308 #endif /* #else #ifdef __CHECKER__ */
 309 
 310 #define __rcu_access_pointer(p, space) \
 311 ({ \
 312         typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
 313         rcu_check_sparse(p, space); \
 314         ((typeof(*p) __force __kernel *)(_________p1)); \
 315 })
 316 #define __rcu_dereference_check(p, c, space) \
 317 ({ \
 318         /* Dependency order vs. p above. */ \
 319         typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
 320         RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
 321         rcu_check_sparse(p, space); \
 322         ((typeof(*p) __force __kernel *)(________p1)); \
 323 })
 324 #define __rcu_dereference_protected(p, c, space) \
 325 ({ \
 326         RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
 327         rcu_check_sparse(p, space); \
 328         ((typeof(*p) __force __kernel *)(p)); \
 329 })
 330 #define rcu_dereference_raw(p) \
 331 ({ \
 332         /* Dependency order vs. p above. */ \
 333         typeof(p) ________p1 = READ_ONCE(p); \
 334         ((typeof(*p) __force __kernel *)(________p1)); \
 335 })
 336 
 337 /**
 338  * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
 339  * @v: The value to statically initialize with.
 340  */
 341 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
 342 
 343 /**
 344  * rcu_assign_pointer() - assign to RCU-protected pointer
 345  * @p: pointer to assign to
 346  * @v: value to assign (publish)
 347  *
 348  * Assigns the specified value to the specified RCU-protected
 349  * pointer, ensuring that any concurrent RCU readers will see
 350  * any prior initialization.
 351  *
 352  * Inserts memory barriers on architectures that require them
 353  * (which is most of them), and also prevents the compiler from
 354  * reordering the code that initializes the structure after the pointer
 355  * assignment.  More importantly, this call documents which pointers
 356  * will be dereferenced by RCU read-side code.
 357  *
 358  * In some special cases, you may use RCU_INIT_POINTER() instead
 359  * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
 360  * to the fact that it does not constrain either the CPU or the compiler.
 361  * That said, using RCU_INIT_POINTER() when you should have used
 362  * rcu_assign_pointer() is a very bad thing that results in
 363  * impossible-to-diagnose memory corruption.  So please be careful.
 364  * See the RCU_INIT_POINTER() comment header for details.
 365  *
 366  * Note that rcu_assign_pointer() evaluates each of its arguments only
 367  * once, appearances notwithstanding.  One of the "extra" evaluations
 368  * is in typeof() and the other visible only to sparse (__CHECKER__),
 369  * neither of which actually execute the argument.  As with most cpp
 370  * macros, this execute-arguments-only-once property is important, so
 371  * please be careful when making changes to rcu_assign_pointer() and the
 372  * other macros that it invokes.
 373  */
 374 #define rcu_assign_pointer(p, v)                                              \
 375 do {                                                                          \
 376         uintptr_t _r_a_p__v = (uintptr_t)(v);                                 \
 377         rcu_check_sparse(p, __rcu);                                           \
 378                                                                               \
 379         if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)        \
 380                 WRITE_ONCE((p), (typeof(p))(_r_a_p__v));                      \
 381         else                                                                  \
 382                 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
 383 } while (0)
 384 
 385 /**
 386  * rcu_swap_protected() - swap an RCU and a regular pointer
 387  * @rcu_ptr: RCU pointer
 388  * @ptr: regular pointer
 389  * @c: the conditions under which the dereference will take place
 390  *
 391  * Perform swap(@rcu_ptr, @ptr) where @rcu_ptr is an RCU-annotated pointer and
 392  * @c is the argument that is passed to the rcu_dereference_protected() call
 393  * used to read that pointer.
 394  */
 395 #define rcu_swap_protected(rcu_ptr, ptr, c) do {                        \
 396         typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));  \
 397         rcu_assign_pointer((rcu_ptr), (ptr));                           \
 398         (ptr) = __tmp;                                                  \
 399 } while (0)
 400 
 401 /**
 402  * rcu_access_pointer() - fetch RCU pointer with no dereferencing
 403  * @p: The pointer to read
 404  *
 405  * Return the value of the specified RCU-protected pointer, but omit the
 406  * lockdep checks for being in an RCU read-side critical section.  This is
 407  * useful when the value of this pointer is accessed, but the pointer is
 408  * not dereferenced, for example, when testing an RCU-protected pointer
 409  * against NULL.  Although rcu_access_pointer() may also be used in cases
 410  * where update-side locks prevent the value of the pointer from changing,
 411  * you should instead use rcu_dereference_protected() for this use case.
 412  *
 413  * It is also permissible to use rcu_access_pointer() when read-side
 414  * access to the pointer was removed at least one grace period ago, as
 415  * is the case in the context of the RCU callback that is freeing up
 416  * the data, or after a synchronize_rcu() returns.  This can be useful
 417  * when tearing down multi-linked structures after a grace period
 418  * has elapsed.
 419  */
 420 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
 421 
 422 /**
 423  * rcu_dereference_check() - rcu_dereference with debug checking
 424  * @p: The pointer to read, prior to dereferencing
 425  * @c: The conditions under which the dereference will take place
 426  *
 427  * Do an rcu_dereference(), but check that the conditions under which the
 428  * dereference will take place are correct.  Typically the conditions
 429  * indicate the various locking conditions that should be held at that
 430  * point.  The check should return true if the conditions are satisfied.
 431  * An implicit check for being in an RCU read-side critical section
 432  * (rcu_read_lock()) is included.
 433  *
 434  * For example:
 435  *
 436  *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
 437  *
 438  * could be used to indicate to lockdep that foo->bar may only be dereferenced
 439  * if either rcu_read_lock() is held, or that the lock required to replace
 440  * the bar struct at foo->bar is held.
 441  *
 442  * Note that the list of conditions may also include indications of when a lock
 443  * need not be held, for example during initialisation or destruction of the
 444  * target struct:
 445  *
 446  *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
 447  *                                            atomic_read(&foo->usage) == 0);
 448  *
 449  * Inserts memory barriers on architectures that require them
 450  * (currently only the Alpha), prevents the compiler from refetching
 451  * (and from merging fetches), and, more importantly, documents exactly
 452  * which pointers are protected by RCU and checks that the pointer is
 453  * annotated as __rcu.
 454  */
 455 #define rcu_dereference_check(p, c) \
 456         __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
 457 
 458 /**
 459  * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
 460  * @p: The pointer to read, prior to dereferencing
 461  * @c: The conditions under which the dereference will take place
 462  *
 463  * This is the RCU-bh counterpart to rcu_dereference_check().
 464  */
 465 #define rcu_dereference_bh_check(p, c) \
 466         __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
 467 
 468 /**
 469  * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
 470  * @p: The pointer to read, prior to dereferencing
 471  * @c: The conditions under which the dereference will take place
 472  *
 473  * This is the RCU-sched counterpart to rcu_dereference_check().
 474  */
 475 #define rcu_dereference_sched_check(p, c) \
 476         __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
 477                                 __rcu)
 478 
 479 /*
 480  * The tracing infrastructure traces RCU (we want that), but unfortunately
 481  * some of the RCU checks causes tracing to lock up the system.
 482  *
 483  * The no-tracing version of rcu_dereference_raw() must not call
 484  * rcu_read_lock_held().
 485  */
 486 #define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu)
 487 
 488 /**
 489  * rcu_dereference_protected() - fetch RCU pointer when updates prevented
 490  * @p: The pointer to read, prior to dereferencing
 491  * @c: The conditions under which the dereference will take place
 492  *
 493  * Return the value of the specified RCU-protected pointer, but omit
 494  * the READ_ONCE().  This is useful in cases where update-side locks
 495  * prevent the value of the pointer from changing.  Please note that this
 496  * primitive does *not* prevent the compiler from repeating this reference
 497  * or combining it with other references, so it should not be used without
 498  * protection of appropriate locks.
 499  *
 500  * This function is only for update-side use.  Using this function
 501  * when protected only by rcu_read_lock() will result in infrequent
 502  * but very ugly failures.
 503  */
 504 #define rcu_dereference_protected(p, c) \
 505         __rcu_dereference_protected((p), (c), __rcu)
 506 
 507 
 508 /**
 509  * rcu_dereference() - fetch RCU-protected pointer for dereferencing
 510  * @p: The pointer to read, prior to dereferencing
 511  *
 512  * This is a simple wrapper around rcu_dereference_check().
 513  */
 514 #define rcu_dereference(p) rcu_dereference_check(p, 0)
 515 
 516 /**
 517  * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
 518  * @p: The pointer to read, prior to dereferencing
 519  *
 520  * Makes rcu_dereference_check() do the dirty work.
 521  */
 522 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
 523 
 524 /**
 525  * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
 526  * @p: The pointer to read, prior to dereferencing
 527  *
 528  * Makes rcu_dereference_check() do the dirty work.
 529  */
 530 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
 531 
 532 /**
 533  * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
 534  * @p: The pointer to hand off
 535  *
 536  * This is simply an identity function, but it documents where a pointer
 537  * is handed off from RCU to some other synchronization mechanism, for
 538  * example, reference counting or locking.  In C11, it would map to
 539  * kill_dependency().  It could be used as follows::
 540  *
 541  *      rcu_read_lock();
 542  *      p = rcu_dereference(gp);
 543  *      long_lived = is_long_lived(p);
 544  *      if (long_lived) {
 545  *              if (!atomic_inc_not_zero(p->refcnt))
 546  *                      long_lived = false;
 547  *              else
 548  *                      p = rcu_pointer_handoff(p);
 549  *      }
 550  *      rcu_read_unlock();
 551  */
 552 #define rcu_pointer_handoff(p) (p)
 553 
 554 /**
 555  * rcu_read_lock() - mark the beginning of an RCU read-side critical section
 556  *
 557  * When synchronize_rcu() is invoked on one CPU while other CPUs
 558  * are within RCU read-side critical sections, then the
 559  * synchronize_rcu() is guaranteed to block until after all the other
 560  * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
 561  * on one CPU while other CPUs are within RCU read-side critical
 562  * sections, invocation of the corresponding RCU callback is deferred
 563  * until after the all the other CPUs exit their critical sections.
 564  *
 565  * Note, however, that RCU callbacks are permitted to run concurrently
 566  * with new RCU read-side critical sections.  One way that this can happen
 567  * is via the following sequence of events: (1) CPU 0 enters an RCU
 568  * read-side critical section, (2) CPU 1 invokes call_rcu() to register
 569  * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
 570  * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
 571  * callback is invoked.  This is legal, because the RCU read-side critical
 572  * section that was running concurrently with the call_rcu() (and which
 573  * therefore might be referencing something that the corresponding RCU
 574  * callback would free up) has completed before the corresponding
 575  * RCU callback is invoked.
 576  *
 577  * RCU read-side critical sections may be nested.  Any deferred actions
 578  * will be deferred until the outermost RCU read-side critical section
 579  * completes.
 580  *
 581  * You can avoid reading and understanding the next paragraph by
 582  * following this rule: don't put anything in an rcu_read_lock() RCU
 583  * read-side critical section that would block in a !PREEMPT kernel.
 584  * But if you want the full story, read on!
 585  *
 586  * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
 587  * it is illegal to block while in an RCU read-side critical section.
 588  * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
 589  * kernel builds, RCU read-side critical sections may be preempted,
 590  * but explicit blocking is illegal.  Finally, in preemptible RCU
 591  * implementations in real-time (with -rt patchset) kernel builds, RCU
 592  * read-side critical sections may be preempted and they may also block, but
 593  * only when acquiring spinlocks that are subject to priority inheritance.
 594  */
 595 static __always_inline void rcu_read_lock(void)
 596 {
 597         __rcu_read_lock();
 598         __acquire(RCU);
 599         rcu_lock_acquire(&rcu_lock_map);
 600         RCU_LOCKDEP_WARN(!rcu_is_watching(),
 601                          "rcu_read_lock() used illegally while idle");
 602 }
 603 
 604 /*
 605  * So where is rcu_write_lock()?  It does not exist, as there is no
 606  * way for writers to lock out RCU readers.  This is a feature, not
 607  * a bug -- this property is what provides RCU's performance benefits.
 608  * Of course, writers must coordinate with each other.  The normal
 609  * spinlock primitives work well for this, but any other technique may be
 610  * used as well.  RCU does not care how the writers keep out of each
 611  * others' way, as long as they do so.
 612  */
 613 
 614 /**
 615  * rcu_read_unlock() - marks the end of an RCU read-side critical section.
 616  *
 617  * In most situations, rcu_read_unlock() is immune from deadlock.
 618  * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
 619  * is responsible for deboosting, which it does via rt_mutex_unlock().
 620  * Unfortunately, this function acquires the scheduler's runqueue and
 621  * priority-inheritance spinlocks.  This means that deadlock could result
 622  * if the caller of rcu_read_unlock() already holds one of these locks or
 623  * any lock that is ever acquired while holding them.
 624  *
 625  * That said, RCU readers are never priority boosted unless they were
 626  * preempted.  Therefore, one way to avoid deadlock is to make sure
 627  * that preemption never happens within any RCU read-side critical
 628  * section whose outermost rcu_read_unlock() is called with one of
 629  * rt_mutex_unlock()'s locks held.  Such preemption can be avoided in
 630  * a number of ways, for example, by invoking preempt_disable() before
 631  * critical section's outermost rcu_read_lock().
 632  *
 633  * Given that the set of locks acquired by rt_mutex_unlock() might change
 634  * at any time, a somewhat more future-proofed approach is to make sure
 635  * that that preemption never happens within any RCU read-side critical
 636  * section whose outermost rcu_read_unlock() is called with irqs disabled.
 637  * This approach relies on the fact that rt_mutex_unlock() currently only
 638  * acquires irq-disabled locks.
 639  *
 640  * The second of these two approaches is best in most situations,
 641  * however, the first approach can also be useful, at least to those
 642  * developers willing to keep abreast of the set of locks acquired by
 643  * rt_mutex_unlock().
 644  *
 645  * See rcu_read_lock() for more information.
 646  */
 647 static inline void rcu_read_unlock(void)
 648 {
 649         RCU_LOCKDEP_WARN(!rcu_is_watching(),
 650                          "rcu_read_unlock() used illegally while idle");
 651         __release(RCU);
 652         __rcu_read_unlock();
 653         rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
 654 }
 655 
 656 /**
 657  * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
 658  *
 659  * This is equivalent of rcu_read_lock(), but also disables softirqs.
 660  * Note that anything else that disables softirqs can also serve as
 661  * an RCU read-side critical section.
 662  *
 663  * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
 664  * must occur in the same context, for example, it is illegal to invoke
 665  * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
 666  * was invoked from some other task.
 667  */
 668 static inline void rcu_read_lock_bh(void)
 669 {
 670         local_bh_disable();
 671         __acquire(RCU_BH);
 672         rcu_lock_acquire(&rcu_bh_lock_map);
 673         RCU_LOCKDEP_WARN(!rcu_is_watching(),
 674                          "rcu_read_lock_bh() used illegally while idle");
 675 }
 676 
 677 /*
 678  * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
 679  *
 680  * See rcu_read_lock_bh() for more information.
 681  */
 682 static inline void rcu_read_unlock_bh(void)
 683 {
 684         RCU_LOCKDEP_WARN(!rcu_is_watching(),
 685                          "rcu_read_unlock_bh() used illegally while idle");
 686         rcu_lock_release(&rcu_bh_lock_map);
 687         __release(RCU_BH);
 688         local_bh_enable();
 689 }
 690 
 691 /**
 692  * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
 693  *
 694  * This is equivalent of rcu_read_lock(), but disables preemption.
 695  * Read-side critical sections can also be introduced by anything else
 696  * that disables preemption, including local_irq_disable() and friends.
 697  *
 698  * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
 699  * must occur in the same context, for example, it is illegal to invoke
 700  * rcu_read_unlock_sched() from process context if the matching
 701  * rcu_read_lock_sched() was invoked from an NMI handler.
 702  */
 703 static inline void rcu_read_lock_sched(void)
 704 {
 705         preempt_disable();
 706         __acquire(RCU_SCHED);
 707         rcu_lock_acquire(&rcu_sched_lock_map);
 708         RCU_LOCKDEP_WARN(!rcu_is_watching(),
 709                          "rcu_read_lock_sched() used illegally while idle");
 710 }
 711 
 712 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
 713 static inline notrace void rcu_read_lock_sched_notrace(void)
 714 {
 715         preempt_disable_notrace();
 716         __acquire(RCU_SCHED);
 717 }
 718 
 719 /*
 720  * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
 721  *
 722  * See rcu_read_lock_sched for more information.
 723  */
 724 static inline void rcu_read_unlock_sched(void)
 725 {
 726         RCU_LOCKDEP_WARN(!rcu_is_watching(),
 727                          "rcu_read_unlock_sched() used illegally while idle");
 728         rcu_lock_release(&rcu_sched_lock_map);
 729         __release(RCU_SCHED);
 730         preempt_enable();
 731 }
 732 
 733 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
 734 static inline notrace void rcu_read_unlock_sched_notrace(void)
 735 {
 736         __release(RCU_SCHED);
 737         preempt_enable_notrace();
 738 }
 739 
 740 /**
 741  * RCU_INIT_POINTER() - initialize an RCU protected pointer
 742  * @p: The pointer to be initialized.
 743  * @v: The value to initialized the pointer to.
 744  *
 745  * Initialize an RCU-protected pointer in special cases where readers
 746  * do not need ordering constraints on the CPU or the compiler.  These
 747  * special cases are:
 748  *
 749  * 1.   This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
 750  * 2.   The caller has taken whatever steps are required to prevent
 751  *      RCU readers from concurrently accessing this pointer *or*
 752  * 3.   The referenced data structure has already been exposed to
 753  *      readers either at compile time or via rcu_assign_pointer() *and*
 754  *
 755  *      a.      You have not made *any* reader-visible changes to
 756  *              this structure since then *or*
 757  *      b.      It is OK for readers accessing this structure from its
 758  *              new location to see the old state of the structure.  (For
 759  *              example, the changes were to statistical counters or to
 760  *              other state where exact synchronization is not required.)
 761  *
 762  * Failure to follow these rules governing use of RCU_INIT_POINTER() will
 763  * result in impossible-to-diagnose memory corruption.  As in the structures
 764  * will look OK in crash dumps, but any concurrent RCU readers might
 765  * see pre-initialized values of the referenced data structure.  So
 766  * please be very careful how you use RCU_INIT_POINTER()!!!
 767  *
 768  * If you are creating an RCU-protected linked structure that is accessed
 769  * by a single external-to-structure RCU-protected pointer, then you may
 770  * use RCU_INIT_POINTER() to initialize the internal RCU-protected
 771  * pointers, but you must use rcu_assign_pointer() to initialize the
 772  * external-to-structure pointer *after* you have completely initialized
 773  * the reader-accessible portions of the linked structure.
 774  *
 775  * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
 776  * ordering guarantees for either the CPU or the compiler.
 777  */
 778 #define RCU_INIT_POINTER(p, v) \
 779         do { \
 780                 rcu_check_sparse(p, __rcu); \
 781                 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
 782         } while (0)
 783 
 784 /**
 785  * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
 786  * @p: The pointer to be initialized.
 787  * @v: The value to initialized the pointer to.
 788  *
 789  * GCC-style initialization for an RCU-protected pointer in a structure field.
 790  */
 791 #define RCU_POINTER_INITIALIZER(p, v) \
 792                 .p = RCU_INITIALIZER(v)
 793 
 794 /*
 795  * Does the specified offset indicate that the corresponding rcu_head
 796  * structure can be handled by kfree_rcu()?
 797  */
 798 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
 799 
 800 /*
 801  * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
 802  */
 803 #define __kfree_rcu(head, offset) \
 804         do { \
 805                 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
 806                 kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
 807         } while (0)
 808 
 809 /**
 810  * kfree_rcu() - kfree an object after a grace period.
 811  * @ptr:        pointer to kfree
 812  * @rhf:        the name of the struct rcu_head within the type of @ptr.
 813  *
 814  * Many rcu callbacks functions just call kfree() on the base structure.
 815  * These functions are trivial, but their size adds up, and furthermore
 816  * when they are used in a kernel module, that module must invoke the
 817  * high-latency rcu_barrier() function at module-unload time.
 818  *
 819  * The kfree_rcu() function handles this issue.  Rather than encoding a
 820  * function address in the embedded rcu_head structure, kfree_rcu() instead
 821  * encodes the offset of the rcu_head structure within the base structure.
 822  * Because the functions are not allowed in the low-order 4096 bytes of
 823  * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
 824  * If the offset is larger than 4095 bytes, a compile-time error will
 825  * be generated in __kfree_rcu().  If this error is triggered, you can
 826  * either fall back to use of call_rcu() or rearrange the structure to
 827  * position the rcu_head structure into the first 4096 bytes.
 828  *
 829  * Note that the allowable offset might decrease in the future, for example,
 830  * to allow something like kmem_cache_free_rcu().
 831  *
 832  * The BUILD_BUG_ON check must not involve any function calls, hence the
 833  * checks are done in macros here.
 834  */
 835 #define kfree_rcu(ptr, rhf)                                             \
 836 do {                                                                    \
 837         typeof (ptr) ___p = (ptr);                                      \
 838                                                                         \
 839         if (___p)                                                       \
 840                 __kfree_rcu(&((___p)->rhf), offsetof(typeof(*(ptr)), rhf)); \
 841 } while (0)
 842 
 843 /*
 844  * Place this after a lock-acquisition primitive to guarantee that
 845  * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
 846  * if the UNLOCK and LOCK are executed by the same CPU or if the
 847  * UNLOCK and LOCK operate on the same lock variable.
 848  */
 849 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
 850 #define smp_mb__after_unlock_lock()     smp_mb()  /* Full ordering for lock. */
 851 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
 852 #define smp_mb__after_unlock_lock()     do { } while (0)
 853 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
 854 
 855 
 856 /* Has the specified rcu_head structure been handed to call_rcu()? */
 857 
 858 /**
 859  * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
 860  * @rhp: The rcu_head structure to initialize.
 861  *
 862  * If you intend to invoke rcu_head_after_call_rcu() to test whether a
 863  * given rcu_head structure has already been passed to call_rcu(), then
 864  * you must also invoke this rcu_head_init() function on it just after
 865  * allocating that structure.  Calls to this function must not race with
 866  * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
 867  */
 868 static inline void rcu_head_init(struct rcu_head *rhp)
 869 {
 870         rhp->func = (rcu_callback_t)~0L;
 871 }
 872 
 873 /**
 874  * rcu_head_after_call_rcu - Has this rcu_head been passed to call_rcu()?
 875  * @rhp: The rcu_head structure to test.
 876  * @f: The function passed to call_rcu() along with @rhp.
 877  *
 878  * Returns @true if the @rhp has been passed to call_rcu() with @func,
 879  * and @false otherwise.  Emits a warning in any other case, including
 880  * the case where @rhp has already been invoked after a grace period.
 881  * Calls to this function must not race with callback invocation.  One way
 882  * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
 883  * in an RCU read-side critical section that includes a read-side fetch
 884  * of the pointer to the structure containing @rhp.
 885  */
 886 static inline bool
 887 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
 888 {
 889         rcu_callback_t func = READ_ONCE(rhp->func);
 890 
 891         if (func == f)
 892                 return true;
 893         WARN_ON_ONCE(func != (rcu_callback_t)~0L);
 894         return false;
 895 }
 896 
 897 #endif /* __LINUX_RCUPDATE_H */

/* [<][>][^][v][top][bottom][index][help] */