root/include/linux/mtd/nand.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. mtd_to_nanddev
  2. nanddev_to_mtd
  3. nanddev_bits_per_cell
  4. nanddev_page_size
  5. nanddev_per_page_oobsize
  6. nanddev_pages_per_eraseblock
  7. nanddev_pages_per_target
  8. nanddev_eraseblock_size
  9. nanddev_eraseblocks_per_lun
  10. nanddev_eraseblocks_per_target
  11. nanddev_target_size
  12. nanddev_ntargets
  13. nanddev_neraseblocks
  14. nanddev_size
  15. nanddev_get_memorg
  16. nanddev_register
  17. nanddev_unregister
  18. nanddev_set_of_node
  19. nanddev_get_of_node
  20. nanddev_offs_to_pos
  21. nanddev_pos_cmp
  22. nanddev_pos_to_offs
  23. nanddev_pos_to_row
  24. nanddev_pos_next_target
  25. nanddev_pos_next_lun
  26. nanddev_pos_next_eraseblock
  27. nanddev_pos_next_page
  28. nanddev_io_iter_init
  29. nanddev_io_iter_next_page
  30. nanddev_io_iter_end
  31. nanddev_bbt_pos_to_entry
  32. nanddev_bbt_is_initialized

   1 /* SPDX-License-Identifier: GPL-2.0 */
   2 /*
   3  *  Copyright 2017 - Free Electrons
   4  *
   5  *  Authors:
   6  *      Boris Brezillon <boris.brezillon@free-electrons.com>
   7  *      Peter Pan <peterpandong@micron.com>
   8  */
   9 
  10 #ifndef __LINUX_MTD_NAND_H
  11 #define __LINUX_MTD_NAND_H
  12 
  13 #include <linux/mtd/mtd.h>
  14 
  15 /**
  16  * struct nand_memory_organization - Memory organization structure
  17  * @bits_per_cell: number of bits per NAND cell
  18  * @pagesize: page size
  19  * @oobsize: OOB area size
  20  * @pages_per_eraseblock: number of pages per eraseblock
  21  * @eraseblocks_per_lun: number of eraseblocks per LUN (Logical Unit Number)
  22  * @max_bad_eraseblocks_per_lun: maximum number of eraseblocks per LUN
  23  * @planes_per_lun: number of planes per LUN
  24  * @luns_per_target: number of LUN per target (target is a synonym for die)
  25  * @ntargets: total number of targets exposed by the NAND device
  26  */
  27 struct nand_memory_organization {
  28         unsigned int bits_per_cell;
  29         unsigned int pagesize;
  30         unsigned int oobsize;
  31         unsigned int pages_per_eraseblock;
  32         unsigned int eraseblocks_per_lun;
  33         unsigned int max_bad_eraseblocks_per_lun;
  34         unsigned int planes_per_lun;
  35         unsigned int luns_per_target;
  36         unsigned int ntargets;
  37 };
  38 
  39 #define NAND_MEMORG(bpc, ps, os, ppe, epl, mbb, ppl, lpt, nt)   \
  40         {                                                       \
  41                 .bits_per_cell = (bpc),                         \
  42                 .pagesize = (ps),                               \
  43                 .oobsize = (os),                                \
  44                 .pages_per_eraseblock = (ppe),                  \
  45                 .eraseblocks_per_lun = (epl),                   \
  46                 .max_bad_eraseblocks_per_lun = (mbb),           \
  47                 .planes_per_lun = (ppl),                        \
  48                 .luns_per_target = (lpt),                       \
  49                 .ntargets = (nt),                               \
  50         }
  51 
  52 /**
  53  * struct nand_row_converter - Information needed to convert an absolute offset
  54  *                             into a row address
  55  * @lun_addr_shift: position of the LUN identifier in the row address
  56  * @eraseblock_addr_shift: position of the eraseblock identifier in the row
  57  *                         address
  58  */
  59 struct nand_row_converter {
  60         unsigned int lun_addr_shift;
  61         unsigned int eraseblock_addr_shift;
  62 };
  63 
  64 /**
  65  * struct nand_pos - NAND position object
  66  * @target: the NAND target/die
  67  * @lun: the LUN identifier
  68  * @plane: the plane within the LUN
  69  * @eraseblock: the eraseblock within the LUN
  70  * @page: the page within the LUN
  71  *
  72  * These information are usually used by specific sub-layers to select the
  73  * appropriate target/die and generate a row address to pass to the device.
  74  */
  75 struct nand_pos {
  76         unsigned int target;
  77         unsigned int lun;
  78         unsigned int plane;
  79         unsigned int eraseblock;
  80         unsigned int page;
  81 };
  82 
  83 /**
  84  * struct nand_page_io_req - NAND I/O request object
  85  * @pos: the position this I/O request is targeting
  86  * @dataoffs: the offset within the page
  87  * @datalen: number of data bytes to read from/write to this page
  88  * @databuf: buffer to store data in or get data from
  89  * @ooboffs: the OOB offset within the page
  90  * @ooblen: the number of OOB bytes to read from/write to this page
  91  * @oobbuf: buffer to store OOB data in or get OOB data from
  92  * @mode: one of the %MTD_OPS_XXX mode
  93  *
  94  * This object is used to pass per-page I/O requests to NAND sub-layers. This
  95  * way all useful information are already formatted in a useful way and
  96  * specific NAND layers can focus on translating these information into
  97  * specific commands/operations.
  98  */
  99 struct nand_page_io_req {
 100         struct nand_pos pos;
 101         unsigned int dataoffs;
 102         unsigned int datalen;
 103         union {
 104                 const void *out;
 105                 void *in;
 106         } databuf;
 107         unsigned int ooboffs;
 108         unsigned int ooblen;
 109         union {
 110                 const void *out;
 111                 void *in;
 112         } oobbuf;
 113         int mode;
 114 };
 115 
 116 /**
 117  * struct nand_ecc_req - NAND ECC requirements
 118  * @strength: ECC strength
 119  * @step_size: ECC step/block size
 120  */
 121 struct nand_ecc_req {
 122         unsigned int strength;
 123         unsigned int step_size;
 124 };
 125 
 126 #define NAND_ECCREQ(str, stp) { .strength = (str), .step_size = (stp) }
 127 
 128 /**
 129  * struct nand_bbt - bad block table object
 130  * @cache: in memory BBT cache
 131  */
 132 struct nand_bbt {
 133         unsigned long *cache;
 134 };
 135 
 136 struct nand_device;
 137 
 138 /**
 139  * struct nand_ops - NAND operations
 140  * @erase: erase a specific block. No need to check if the block is bad before
 141  *         erasing, this has been taken care of by the generic NAND layer
 142  * @markbad: mark a specific block bad. No need to check if the block is
 143  *           already marked bad, this has been taken care of by the generic
 144  *           NAND layer. This method should just write the BBM (Bad Block
 145  *           Marker) so that future call to struct_nand_ops->isbad() return
 146  *           true
 147  * @isbad: check whether a block is bad or not. This method should just read
 148  *         the BBM and return whether the block is bad or not based on what it
 149  *         reads
 150  *
 151  * These are all low level operations that should be implemented by specialized
 152  * NAND layers (SPI NAND, raw NAND, ...).
 153  */
 154 struct nand_ops {
 155         int (*erase)(struct nand_device *nand, const struct nand_pos *pos);
 156         int (*markbad)(struct nand_device *nand, const struct nand_pos *pos);
 157         bool (*isbad)(struct nand_device *nand, const struct nand_pos *pos);
 158 };
 159 
 160 /**
 161  * struct nand_device - NAND device
 162  * @mtd: MTD instance attached to the NAND device
 163  * @memorg: memory layout
 164  * @eccreq: ECC requirements
 165  * @rowconv: position to row address converter
 166  * @bbt: bad block table info
 167  * @ops: NAND operations attached to the NAND device
 168  *
 169  * Generic NAND object. Specialized NAND layers (raw NAND, SPI NAND, OneNAND)
 170  * should declare their own NAND object embedding a nand_device struct (that's
 171  * how inheritance is done).
 172  * struct_nand_device->memorg and struct_nand_device->eccreq should be filled
 173  * at device detection time to reflect the NAND device
 174  * capabilities/requirements. Once this is done nanddev_init() can be called.
 175  * It will take care of converting NAND information into MTD ones, which means
 176  * the specialized NAND layers should never manually tweak
 177  * struct_nand_device->mtd except for the ->_read/write() hooks.
 178  */
 179 struct nand_device {
 180         struct mtd_info mtd;
 181         struct nand_memory_organization memorg;
 182         struct nand_ecc_req eccreq;
 183         struct nand_row_converter rowconv;
 184         struct nand_bbt bbt;
 185         const struct nand_ops *ops;
 186 };
 187 
 188 /**
 189  * struct nand_io_iter - NAND I/O iterator
 190  * @req: current I/O request
 191  * @oobbytes_per_page: maximum number of OOB bytes per page
 192  * @dataleft: remaining number of data bytes to read/write
 193  * @oobleft: remaining number of OOB bytes to read/write
 194  *
 195  * Can be used by specialized NAND layers to iterate over all pages covered
 196  * by an MTD I/O request, which should greatly simplifies the boiler-plate
 197  * code needed to read/write data from/to a NAND device.
 198  */
 199 struct nand_io_iter {
 200         struct nand_page_io_req req;
 201         unsigned int oobbytes_per_page;
 202         unsigned int dataleft;
 203         unsigned int oobleft;
 204 };
 205 
 206 /**
 207  * mtd_to_nanddev() - Get the NAND device attached to the MTD instance
 208  * @mtd: MTD instance
 209  *
 210  * Return: the NAND device embedding @mtd.
 211  */
 212 static inline struct nand_device *mtd_to_nanddev(struct mtd_info *mtd)
 213 {
 214         return container_of(mtd, struct nand_device, mtd);
 215 }
 216 
 217 /**
 218  * nanddev_to_mtd() - Get the MTD device attached to a NAND device
 219  * @nand: NAND device
 220  *
 221  * Return: the MTD device embedded in @nand.
 222  */
 223 static inline struct mtd_info *nanddev_to_mtd(struct nand_device *nand)
 224 {
 225         return &nand->mtd;
 226 }
 227 
 228 /*
 229  * nanddev_bits_per_cell() - Get the number of bits per cell
 230  * @nand: NAND device
 231  *
 232  * Return: the number of bits per cell.
 233  */
 234 static inline unsigned int nanddev_bits_per_cell(const struct nand_device *nand)
 235 {
 236         return nand->memorg.bits_per_cell;
 237 }
 238 
 239 /**
 240  * nanddev_page_size() - Get NAND page size
 241  * @nand: NAND device
 242  *
 243  * Return: the page size.
 244  */
 245 static inline size_t nanddev_page_size(const struct nand_device *nand)
 246 {
 247         return nand->memorg.pagesize;
 248 }
 249 
 250 /**
 251  * nanddev_per_page_oobsize() - Get NAND OOB size
 252  * @nand: NAND device
 253  *
 254  * Return: the OOB size.
 255  */
 256 static inline unsigned int
 257 nanddev_per_page_oobsize(const struct nand_device *nand)
 258 {
 259         return nand->memorg.oobsize;
 260 }
 261 
 262 /**
 263  * nanddev_pages_per_eraseblock() - Get the number of pages per eraseblock
 264  * @nand: NAND device
 265  *
 266  * Return: the number of pages per eraseblock.
 267  */
 268 static inline unsigned int
 269 nanddev_pages_per_eraseblock(const struct nand_device *nand)
 270 {
 271         return nand->memorg.pages_per_eraseblock;
 272 }
 273 
 274 /**
 275  * nanddev_pages_per_target() - Get the number of pages per target
 276  * @nand: NAND device
 277  *
 278  * Return: the number of pages per target.
 279  */
 280 static inline unsigned int
 281 nanddev_pages_per_target(const struct nand_device *nand)
 282 {
 283         return nand->memorg.pages_per_eraseblock *
 284                nand->memorg.eraseblocks_per_lun *
 285                nand->memorg.luns_per_target;
 286 }
 287 
 288 /**
 289  * nanddev_per_page_oobsize() - Get NAND erase block size
 290  * @nand: NAND device
 291  *
 292  * Return: the eraseblock size.
 293  */
 294 static inline size_t nanddev_eraseblock_size(const struct nand_device *nand)
 295 {
 296         return nand->memorg.pagesize * nand->memorg.pages_per_eraseblock;
 297 }
 298 
 299 /**
 300  * nanddev_eraseblocks_per_lun() - Get the number of eraseblocks per LUN
 301  * @nand: NAND device
 302  *
 303  * Return: the number of eraseblocks per LUN.
 304  */
 305 static inline unsigned int
 306 nanddev_eraseblocks_per_lun(const struct nand_device *nand)
 307 {
 308         return nand->memorg.eraseblocks_per_lun;
 309 }
 310 
 311 /**
 312  * nanddev_eraseblocks_per_target() - Get the number of eraseblocks per target
 313  * @nand: NAND device
 314  *
 315  * Return: the number of eraseblocks per target.
 316  */
 317 static inline unsigned int
 318 nanddev_eraseblocks_per_target(const struct nand_device *nand)
 319 {
 320         return nand->memorg.eraseblocks_per_lun * nand->memorg.luns_per_target;
 321 }
 322 
 323 /**
 324  * nanddev_target_size() - Get the total size provided by a single target/die
 325  * @nand: NAND device
 326  *
 327  * Return: the total size exposed by a single target/die in bytes.
 328  */
 329 static inline u64 nanddev_target_size(const struct nand_device *nand)
 330 {
 331         return (u64)nand->memorg.luns_per_target *
 332                nand->memorg.eraseblocks_per_lun *
 333                nand->memorg.pages_per_eraseblock *
 334                nand->memorg.pagesize;
 335 }
 336 
 337 /**
 338  * nanddev_ntarget() - Get the total of targets
 339  * @nand: NAND device
 340  *
 341  * Return: the number of targets/dies exposed by @nand.
 342  */
 343 static inline unsigned int nanddev_ntargets(const struct nand_device *nand)
 344 {
 345         return nand->memorg.ntargets;
 346 }
 347 
 348 /**
 349  * nanddev_neraseblocks() - Get the total number of eraseblocks
 350  * @nand: NAND device
 351  *
 352  * Return: the total number of eraseblocks exposed by @nand.
 353  */
 354 static inline unsigned int nanddev_neraseblocks(const struct nand_device *nand)
 355 {
 356         return nand->memorg.ntargets * nand->memorg.luns_per_target *
 357                nand->memorg.eraseblocks_per_lun;
 358 }
 359 
 360 /**
 361  * nanddev_size() - Get NAND size
 362  * @nand: NAND device
 363  *
 364  * Return: the total size (in bytes) exposed by @nand.
 365  */
 366 static inline u64 nanddev_size(const struct nand_device *nand)
 367 {
 368         return nanddev_target_size(nand) * nanddev_ntargets(nand);
 369 }
 370 
 371 /**
 372  * nanddev_get_memorg() - Extract memory organization info from a NAND device
 373  * @nand: NAND device
 374  *
 375  * This can be used by the upper layer to fill the memorg info before calling
 376  * nanddev_init().
 377  *
 378  * Return: the memorg object embedded in the NAND device.
 379  */
 380 static inline struct nand_memory_organization *
 381 nanddev_get_memorg(struct nand_device *nand)
 382 {
 383         return &nand->memorg;
 384 }
 385 
 386 int nanddev_init(struct nand_device *nand, const struct nand_ops *ops,
 387                  struct module *owner);
 388 void nanddev_cleanup(struct nand_device *nand);
 389 
 390 /**
 391  * nanddev_register() - Register a NAND device
 392  * @nand: NAND device
 393  *
 394  * Register a NAND device.
 395  * This function is just a wrapper around mtd_device_register()
 396  * registering the MTD device embedded in @nand.
 397  *
 398  * Return: 0 in case of success, a negative error code otherwise.
 399  */
 400 static inline int nanddev_register(struct nand_device *nand)
 401 {
 402         return mtd_device_register(&nand->mtd, NULL, 0);
 403 }
 404 
 405 /**
 406  * nanddev_unregister() - Unregister a NAND device
 407  * @nand: NAND device
 408  *
 409  * Unregister a NAND device.
 410  * This function is just a wrapper around mtd_device_unregister()
 411  * unregistering the MTD device embedded in @nand.
 412  *
 413  * Return: 0 in case of success, a negative error code otherwise.
 414  */
 415 static inline int nanddev_unregister(struct nand_device *nand)
 416 {
 417         return mtd_device_unregister(&nand->mtd);
 418 }
 419 
 420 /**
 421  * nanddev_set_of_node() - Attach a DT node to a NAND device
 422  * @nand: NAND device
 423  * @np: DT node
 424  *
 425  * Attach a DT node to a NAND device.
 426  */
 427 static inline void nanddev_set_of_node(struct nand_device *nand,
 428                                        struct device_node *np)
 429 {
 430         mtd_set_of_node(&nand->mtd, np);
 431 }
 432 
 433 /**
 434  * nanddev_get_of_node() - Retrieve the DT node attached to a NAND device
 435  * @nand: NAND device
 436  *
 437  * Return: the DT node attached to @nand.
 438  */
 439 static inline struct device_node *nanddev_get_of_node(struct nand_device *nand)
 440 {
 441         return mtd_get_of_node(&nand->mtd);
 442 }
 443 
 444 /**
 445  * nanddev_offs_to_pos() - Convert an absolute NAND offset into a NAND position
 446  * @nand: NAND device
 447  * @offs: absolute NAND offset (usually passed by the MTD layer)
 448  * @pos: a NAND position object to fill in
 449  *
 450  * Converts @offs into a nand_pos representation.
 451  *
 452  * Return: the offset within the NAND page pointed by @pos.
 453  */
 454 static inline unsigned int nanddev_offs_to_pos(struct nand_device *nand,
 455                                                loff_t offs,
 456                                                struct nand_pos *pos)
 457 {
 458         unsigned int pageoffs;
 459         u64 tmp = offs;
 460 
 461         pageoffs = do_div(tmp, nand->memorg.pagesize);
 462         pos->page = do_div(tmp, nand->memorg.pages_per_eraseblock);
 463         pos->eraseblock = do_div(tmp, nand->memorg.eraseblocks_per_lun);
 464         pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
 465         pos->lun = do_div(tmp, nand->memorg.luns_per_target);
 466         pos->target = tmp;
 467 
 468         return pageoffs;
 469 }
 470 
 471 /**
 472  * nanddev_pos_cmp() - Compare two NAND positions
 473  * @a: First NAND position
 474  * @b: Second NAND position
 475  *
 476  * Compares two NAND positions.
 477  *
 478  * Return: -1 if @a < @b, 0 if @a == @b and 1 if @a > @b.
 479  */
 480 static inline int nanddev_pos_cmp(const struct nand_pos *a,
 481                                   const struct nand_pos *b)
 482 {
 483         if (a->target != b->target)
 484                 return a->target < b->target ? -1 : 1;
 485 
 486         if (a->lun != b->lun)
 487                 return a->lun < b->lun ? -1 : 1;
 488 
 489         if (a->eraseblock != b->eraseblock)
 490                 return a->eraseblock < b->eraseblock ? -1 : 1;
 491 
 492         if (a->page != b->page)
 493                 return a->page < b->page ? -1 : 1;
 494 
 495         return 0;
 496 }
 497 
 498 /**
 499  * nanddev_pos_to_offs() - Convert a NAND position into an absolute offset
 500  * @nand: NAND device
 501  * @pos: the NAND position to convert
 502  *
 503  * Converts @pos NAND position into an absolute offset.
 504  *
 505  * Return: the absolute offset. Note that @pos points to the beginning of a
 506  *         page, if one wants to point to a specific offset within this page
 507  *         the returned offset has to be adjusted manually.
 508  */
 509 static inline loff_t nanddev_pos_to_offs(struct nand_device *nand,
 510                                          const struct nand_pos *pos)
 511 {
 512         unsigned int npages;
 513 
 514         npages = pos->page +
 515                  ((pos->eraseblock +
 516                    (pos->lun +
 517                     (pos->target * nand->memorg.luns_per_target)) *
 518                    nand->memorg.eraseblocks_per_lun) *
 519                   nand->memorg.pages_per_eraseblock);
 520 
 521         return (loff_t)npages * nand->memorg.pagesize;
 522 }
 523 
 524 /**
 525  * nanddev_pos_to_row() - Extract a row address from a NAND position
 526  * @nand: NAND device
 527  * @pos: the position to convert
 528  *
 529  * Converts a NAND position into a row address that can then be passed to the
 530  * device.
 531  *
 532  * Return: the row address extracted from @pos.
 533  */
 534 static inline unsigned int nanddev_pos_to_row(struct nand_device *nand,
 535                                               const struct nand_pos *pos)
 536 {
 537         return (pos->lun << nand->rowconv.lun_addr_shift) |
 538                (pos->eraseblock << nand->rowconv.eraseblock_addr_shift) |
 539                pos->page;
 540 }
 541 
 542 /**
 543  * nanddev_pos_next_target() - Move a position to the next target/die
 544  * @nand: NAND device
 545  * @pos: the position to update
 546  *
 547  * Updates @pos to point to the start of the next target/die. Useful when you
 548  * want to iterate over all targets/dies of a NAND device.
 549  */
 550 static inline void nanddev_pos_next_target(struct nand_device *nand,
 551                                            struct nand_pos *pos)
 552 {
 553         pos->page = 0;
 554         pos->plane = 0;
 555         pos->eraseblock = 0;
 556         pos->lun = 0;
 557         pos->target++;
 558 }
 559 
 560 /**
 561  * nanddev_pos_next_lun() - Move a position to the next LUN
 562  * @nand: NAND device
 563  * @pos: the position to update
 564  *
 565  * Updates @pos to point to the start of the next LUN. Useful when you want to
 566  * iterate over all LUNs of a NAND device.
 567  */
 568 static inline void nanddev_pos_next_lun(struct nand_device *nand,
 569                                         struct nand_pos *pos)
 570 {
 571         if (pos->lun >= nand->memorg.luns_per_target - 1)
 572                 return nanddev_pos_next_target(nand, pos);
 573 
 574         pos->lun++;
 575         pos->page = 0;
 576         pos->plane = 0;
 577         pos->eraseblock = 0;
 578 }
 579 
 580 /**
 581  * nanddev_pos_next_eraseblock() - Move a position to the next eraseblock
 582  * @nand: NAND device
 583  * @pos: the position to update
 584  *
 585  * Updates @pos to point to the start of the next eraseblock. Useful when you
 586  * want to iterate over all eraseblocks of a NAND device.
 587  */
 588 static inline void nanddev_pos_next_eraseblock(struct nand_device *nand,
 589                                                struct nand_pos *pos)
 590 {
 591         if (pos->eraseblock >= nand->memorg.eraseblocks_per_lun - 1)
 592                 return nanddev_pos_next_lun(nand, pos);
 593 
 594         pos->eraseblock++;
 595         pos->page = 0;
 596         pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
 597 }
 598 
 599 /**
 600  * nanddev_pos_next_page() - Move a position to the next page
 601  * @nand: NAND device
 602  * @pos: the position to update
 603  *
 604  * Updates @pos to point to the start of the next page. Useful when you want to
 605  * iterate over all pages of a NAND device.
 606  */
 607 static inline void nanddev_pos_next_page(struct nand_device *nand,
 608                                          struct nand_pos *pos)
 609 {
 610         if (pos->page >= nand->memorg.pages_per_eraseblock - 1)
 611                 return nanddev_pos_next_eraseblock(nand, pos);
 612 
 613         pos->page++;
 614 }
 615 
 616 /**
 617  * nand_io_iter_init - Initialize a NAND I/O iterator
 618  * @nand: NAND device
 619  * @offs: absolute offset
 620  * @req: MTD request
 621  * @iter: NAND I/O iterator
 622  *
 623  * Initializes a NAND iterator based on the information passed by the MTD
 624  * layer.
 625  */
 626 static inline void nanddev_io_iter_init(struct nand_device *nand,
 627                                         loff_t offs, struct mtd_oob_ops *req,
 628                                         struct nand_io_iter *iter)
 629 {
 630         struct mtd_info *mtd = nanddev_to_mtd(nand);
 631 
 632         iter->req.mode = req->mode;
 633         iter->req.dataoffs = nanddev_offs_to_pos(nand, offs, &iter->req.pos);
 634         iter->req.ooboffs = req->ooboffs;
 635         iter->oobbytes_per_page = mtd_oobavail(mtd, req);
 636         iter->dataleft = req->len;
 637         iter->oobleft = req->ooblen;
 638         iter->req.databuf.in = req->datbuf;
 639         iter->req.datalen = min_t(unsigned int,
 640                                   nand->memorg.pagesize - iter->req.dataoffs,
 641                                   iter->dataleft);
 642         iter->req.oobbuf.in = req->oobbuf;
 643         iter->req.ooblen = min_t(unsigned int,
 644                                  iter->oobbytes_per_page - iter->req.ooboffs,
 645                                  iter->oobleft);
 646 }
 647 
 648 /**
 649  * nand_io_iter_next_page - Move to the next page
 650  * @nand: NAND device
 651  * @iter: NAND I/O iterator
 652  *
 653  * Updates the @iter to point to the next page.
 654  */
 655 static inline void nanddev_io_iter_next_page(struct nand_device *nand,
 656                                              struct nand_io_iter *iter)
 657 {
 658         nanddev_pos_next_page(nand, &iter->req.pos);
 659         iter->dataleft -= iter->req.datalen;
 660         iter->req.databuf.in += iter->req.datalen;
 661         iter->oobleft -= iter->req.ooblen;
 662         iter->req.oobbuf.in += iter->req.ooblen;
 663         iter->req.dataoffs = 0;
 664         iter->req.ooboffs = 0;
 665         iter->req.datalen = min_t(unsigned int, nand->memorg.pagesize,
 666                                   iter->dataleft);
 667         iter->req.ooblen = min_t(unsigned int, iter->oobbytes_per_page,
 668                                  iter->oobleft);
 669 }
 670 
 671 /**
 672  * nand_io_iter_end - Should end iteration or not
 673  * @nand: NAND device
 674  * @iter: NAND I/O iterator
 675  *
 676  * Check whether @iter has reached the end of the NAND portion it was asked to
 677  * iterate on or not.
 678  *
 679  * Return: true if @iter has reached the end of the iteration request, false
 680  *         otherwise.
 681  */
 682 static inline bool nanddev_io_iter_end(struct nand_device *nand,
 683                                        const struct nand_io_iter *iter)
 684 {
 685         if (iter->dataleft || iter->oobleft)
 686                 return false;
 687 
 688         return true;
 689 }
 690 
 691 /**
 692  * nand_io_for_each_page - Iterate over all NAND pages contained in an MTD I/O
 693  *                         request
 694  * @nand: NAND device
 695  * @start: start address to read/write from
 696  * @req: MTD I/O request
 697  * @iter: NAND I/O iterator
 698  *
 699  * Should be used for iterate over pages that are contained in an MTD request.
 700  */
 701 #define nanddev_io_for_each_page(nand, start, req, iter)                \
 702         for (nanddev_io_iter_init(nand, start, req, iter);              \
 703              !nanddev_io_iter_end(nand, iter);                          \
 704              nanddev_io_iter_next_page(nand, iter))
 705 
 706 bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos);
 707 bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos);
 708 int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos);
 709 int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos);
 710 
 711 /* BBT related functions */
 712 enum nand_bbt_block_status {
 713         NAND_BBT_BLOCK_STATUS_UNKNOWN,
 714         NAND_BBT_BLOCK_GOOD,
 715         NAND_BBT_BLOCK_WORN,
 716         NAND_BBT_BLOCK_RESERVED,
 717         NAND_BBT_BLOCK_FACTORY_BAD,
 718         NAND_BBT_BLOCK_NUM_STATUS,
 719 };
 720 
 721 int nanddev_bbt_init(struct nand_device *nand);
 722 void nanddev_bbt_cleanup(struct nand_device *nand);
 723 int nanddev_bbt_update(struct nand_device *nand);
 724 int nanddev_bbt_get_block_status(const struct nand_device *nand,
 725                                  unsigned int entry);
 726 int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry,
 727                                  enum nand_bbt_block_status status);
 728 int nanddev_bbt_markbad(struct nand_device *nand, unsigned int block);
 729 
 730 /**
 731  * nanddev_bbt_pos_to_entry() - Convert a NAND position into a BBT entry
 732  * @nand: NAND device
 733  * @pos: the NAND position we want to get BBT entry for
 734  *
 735  * Return the BBT entry used to store information about the eraseblock pointed
 736  * by @pos.
 737  *
 738  * Return: the BBT entry storing information about eraseblock pointed by @pos.
 739  */
 740 static inline unsigned int nanddev_bbt_pos_to_entry(struct nand_device *nand,
 741                                                     const struct nand_pos *pos)
 742 {
 743         return pos->eraseblock +
 744                ((pos->lun + (pos->target * nand->memorg.luns_per_target)) *
 745                 nand->memorg.eraseblocks_per_lun);
 746 }
 747 
 748 /**
 749  * nanddev_bbt_is_initialized() - Check if the BBT has been initialized
 750  * @nand: NAND device
 751  *
 752  * Return: true if the BBT has been initialized, false otherwise.
 753  */
 754 static inline bool nanddev_bbt_is_initialized(struct nand_device *nand)
 755 {
 756         return !!nand->bbt.cache;
 757 }
 758 
 759 /* MTD -> NAND helper functions. */
 760 int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo);
 761 int nanddev_mtd_max_bad_blocks(struct mtd_info *mtd, loff_t offs, size_t len);
 762 
 763 #endif /* __LINUX_MTD_NAND_H */

/* [<][>][^][v][top][bottom][index][help] */