root/drivers/nvme/target/fc.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. nvmet_fc_iodnum
  2. nvmet_fc_fodnum
  3. nvmet_fc_makeconnid
  4. nvmet_fc_getassociationid
  5. nvmet_fc_getqueueid
  6. targetport_to_tgtport
  7. nvmet_req_to_fod
  8. fc_dma_map_single
  9. fc_dma_mapping_error
  10. fc_dma_unmap_single
  11. fc_dma_sync_single_for_cpu
  12. fc_dma_sync_single_for_device
  13. fc_map_sg
  14. fc_dma_map_sg
  15. fc_dma_unmap_sg
  16. nvmet_fc_alloc_ls_iodlist
  17. nvmet_fc_free_ls_iodlist
  18. nvmet_fc_alloc_ls_iod
  19. nvmet_fc_free_ls_iod
  20. nvmet_fc_prep_fcp_iodlist
  21. nvmet_fc_destroy_fcp_iodlist
  22. nvmet_fc_alloc_fcp_iod
  23. nvmet_fc_queue_fcp_req
  24. nvmet_fc_fcp_rqst_op_defer_work
  25. nvmet_fc_free_fcp_iod
  26. nvmet_fc_alloc_target_queue
  27. nvmet_fc_tgt_queue_free
  28. nvmet_fc_tgt_q_put
  29. nvmet_fc_tgt_q_get
  30. nvmet_fc_delete_target_queue
  31. nvmet_fc_find_target_queue
  32. nvmet_fc_delete_assoc
  33. nvmet_fc_alloc_target_assoc
  34. nvmet_fc_target_assoc_free
  35. nvmet_fc_tgt_a_put
  36. nvmet_fc_tgt_a_get
  37. nvmet_fc_delete_target_assoc
  38. nvmet_fc_find_target_assoc
  39. nvmet_fc_portentry_bind
  40. nvmet_fc_portentry_unbind
  41. nvmet_fc_portentry_unbind_tgt
  42. nvmet_fc_portentry_rebind_tgt
  43. nvmet_fc_register_targetport
  44. nvmet_fc_free_tgtport
  45. nvmet_fc_tgtport_put
  46. nvmet_fc_tgtport_get
  47. __nvmet_fc_free_assocs
  48. nvmet_fc_delete_ctrl
  49. nvmet_fc_unregister_targetport
  50. nvmet_fc_format_rsp_hdr
  51. nvmet_fc_format_rjt
  52. nvmet_fc_ls_create_association
  53. nvmet_fc_ls_create_connection
  54. nvmet_fc_ls_disconnect
  55. nvmet_fc_xmt_ls_rsp_done
  56. nvmet_fc_xmt_ls_rsp
  57. nvmet_fc_handle_ls_rqst
  58. nvmet_fc_handle_ls_rqst_work
  59. nvmet_fc_rcv_ls_req
  60. nvmet_fc_alloc_tgt_pgs
  61. nvmet_fc_free_tgt_pgs
  62. queue_90percent_full
  63. nvmet_fc_prep_fcp_rsp
  64. nvmet_fc_abort_op
  65. nvmet_fc_xmt_fcp_rsp
  66. nvmet_fc_transfer_fcp_data
  67. __nvmet_fc_fod_op_abort
  68. nvmet_fc_fod_op_done
  69. nvmet_fc_xmt_fcp_op_done
  70. __nvmet_fc_fcp_nvme_cmd_done
  71. nvmet_fc_fcp_nvme_cmd_done
  72. nvmet_fc_handle_fcp_rqst
  73. nvmet_fc_rcv_fcp_req
  74. nvmet_fc_rcv_fcp_abort
  75. __nvme_fc_parse_u64
  76. nvme_fc_parse_traddr
  77. nvmet_fc_add_port
  78. nvmet_fc_remove_port
  79. nvmet_fc_discovery_chg
  80. nvmet_fc_init_module
  81. nvmet_fc_exit_module

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
   4  */
   5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   6 #include <linux/module.h>
   7 #include <linux/slab.h>
   8 #include <linux/blk-mq.h>
   9 #include <linux/parser.h>
  10 #include <linux/random.h>
  11 #include <uapi/scsi/fc/fc_fs.h>
  12 #include <uapi/scsi/fc/fc_els.h>
  13 
  14 #include "nvmet.h"
  15 #include <linux/nvme-fc-driver.h>
  16 #include <linux/nvme-fc.h>
  17 
  18 
  19 /* *************************** Data Structures/Defines ****************** */
  20 
  21 
  22 #define NVMET_LS_CTX_COUNT              256
  23 
  24 /* for this implementation, assume small single frame rqst/rsp */
  25 #define NVME_FC_MAX_LS_BUFFER_SIZE              2048
  26 
  27 struct nvmet_fc_tgtport;
  28 struct nvmet_fc_tgt_assoc;
  29 
  30 struct nvmet_fc_ls_iod {
  31         struct nvmefc_tgt_ls_req        *lsreq;
  32         struct nvmefc_tgt_fcp_req       *fcpreq;        /* only if RS */
  33 
  34         struct list_head                ls_list;        /* tgtport->ls_list */
  35 
  36         struct nvmet_fc_tgtport         *tgtport;
  37         struct nvmet_fc_tgt_assoc       *assoc;
  38 
  39         u8                              *rqstbuf;
  40         u8                              *rspbuf;
  41         u16                             rqstdatalen;
  42         dma_addr_t                      rspdma;
  43 
  44         struct scatterlist              sg[2];
  45 
  46         struct work_struct              work;
  47 } __aligned(sizeof(unsigned long long));
  48 
  49 /* desired maximum for a single sequence - if sg list allows it */
  50 #define NVMET_FC_MAX_SEQ_LENGTH         (256 * 1024)
  51 
  52 enum nvmet_fcp_datadir {
  53         NVMET_FCP_NODATA,
  54         NVMET_FCP_WRITE,
  55         NVMET_FCP_READ,
  56         NVMET_FCP_ABORTED,
  57 };
  58 
  59 struct nvmet_fc_fcp_iod {
  60         struct nvmefc_tgt_fcp_req       *fcpreq;
  61 
  62         struct nvme_fc_cmd_iu           cmdiubuf;
  63         struct nvme_fc_ersp_iu          rspiubuf;
  64         dma_addr_t                      rspdma;
  65         struct scatterlist              *next_sg;
  66         struct scatterlist              *data_sg;
  67         int                             data_sg_cnt;
  68         u32                             offset;
  69         enum nvmet_fcp_datadir          io_dir;
  70         bool                            active;
  71         bool                            abort;
  72         bool                            aborted;
  73         bool                            writedataactive;
  74         spinlock_t                      flock;
  75 
  76         struct nvmet_req                req;
  77         struct work_struct              defer_work;
  78 
  79         struct nvmet_fc_tgtport         *tgtport;
  80         struct nvmet_fc_tgt_queue       *queue;
  81 
  82         struct list_head                fcp_list;       /* tgtport->fcp_list */
  83 };
  84 
  85 struct nvmet_fc_tgtport {
  86 
  87         struct nvmet_fc_target_port     fc_target_port;
  88 
  89         struct list_head                tgt_list; /* nvmet_fc_target_list */
  90         struct device                   *dev;   /* dev for dma mapping */
  91         struct nvmet_fc_target_template *ops;
  92 
  93         struct nvmet_fc_ls_iod          *iod;
  94         spinlock_t                      lock;
  95         struct list_head                ls_list;
  96         struct list_head                ls_busylist;
  97         struct list_head                assoc_list;
  98         struct ida                      assoc_cnt;
  99         struct nvmet_fc_port_entry      *pe;
 100         struct kref                     ref;
 101         u32                             max_sg_cnt;
 102 };
 103 
 104 struct nvmet_fc_port_entry {
 105         struct nvmet_fc_tgtport         *tgtport;
 106         struct nvmet_port               *port;
 107         u64                             node_name;
 108         u64                             port_name;
 109         struct list_head                pe_list;
 110 };
 111 
 112 struct nvmet_fc_defer_fcp_req {
 113         struct list_head                req_list;
 114         struct nvmefc_tgt_fcp_req       *fcp_req;
 115 };
 116 
 117 struct nvmet_fc_tgt_queue {
 118         bool                            ninetypercent;
 119         u16                             qid;
 120         u16                             sqsize;
 121         u16                             ersp_ratio;
 122         __le16                          sqhd;
 123         atomic_t                        connected;
 124         atomic_t                        sqtail;
 125         atomic_t                        zrspcnt;
 126         atomic_t                        rsn;
 127         spinlock_t                      qlock;
 128         struct nvmet_cq                 nvme_cq;
 129         struct nvmet_sq                 nvme_sq;
 130         struct nvmet_fc_tgt_assoc       *assoc;
 131         struct list_head                fod_list;
 132         struct list_head                pending_cmd_list;
 133         struct list_head                avail_defer_list;
 134         struct workqueue_struct         *work_q;
 135         struct kref                     ref;
 136         struct nvmet_fc_fcp_iod         fod[];          /* array of fcp_iods */
 137 } __aligned(sizeof(unsigned long long));
 138 
 139 struct nvmet_fc_tgt_assoc {
 140         u64                             association_id;
 141         u32                             a_id;
 142         struct nvmet_fc_tgtport         *tgtport;
 143         struct list_head                a_list;
 144         struct nvmet_fc_tgt_queue       *queues[NVMET_NR_QUEUES + 1];
 145         struct kref                     ref;
 146         struct work_struct              del_work;
 147 };
 148 
 149 
 150 static inline int
 151 nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr)
 152 {
 153         return (iodptr - iodptr->tgtport->iod);
 154 }
 155 
 156 static inline int
 157 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr)
 158 {
 159         return (fodptr - fodptr->queue->fod);
 160 }
 161 
 162 
 163 /*
 164  * Association and Connection IDs:
 165  *
 166  * Association ID will have random number in upper 6 bytes and zero
 167  *   in lower 2 bytes
 168  *
 169  * Connection IDs will be Association ID with QID or'd in lower 2 bytes
 170  *
 171  * note: Association ID = Connection ID for queue 0
 172  */
 173 #define BYTES_FOR_QID                   sizeof(u16)
 174 #define BYTES_FOR_QID_SHIFT             (BYTES_FOR_QID * 8)
 175 #define NVMET_FC_QUEUEID_MASK           ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
 176 
 177 static inline u64
 178 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid)
 179 {
 180         return (assoc->association_id | qid);
 181 }
 182 
 183 static inline u64
 184 nvmet_fc_getassociationid(u64 connectionid)
 185 {
 186         return connectionid & ~NVMET_FC_QUEUEID_MASK;
 187 }
 188 
 189 static inline u16
 190 nvmet_fc_getqueueid(u64 connectionid)
 191 {
 192         return (u16)(connectionid & NVMET_FC_QUEUEID_MASK);
 193 }
 194 
 195 static inline struct nvmet_fc_tgtport *
 196 targetport_to_tgtport(struct nvmet_fc_target_port *targetport)
 197 {
 198         return container_of(targetport, struct nvmet_fc_tgtport,
 199                                  fc_target_port);
 200 }
 201 
 202 static inline struct nvmet_fc_fcp_iod *
 203 nvmet_req_to_fod(struct nvmet_req *nvme_req)
 204 {
 205         return container_of(nvme_req, struct nvmet_fc_fcp_iod, req);
 206 }
 207 
 208 
 209 /* *************************** Globals **************************** */
 210 
 211 
 212 static DEFINE_SPINLOCK(nvmet_fc_tgtlock);
 213 
 214 static LIST_HEAD(nvmet_fc_target_list);
 215 static DEFINE_IDA(nvmet_fc_tgtport_cnt);
 216 static LIST_HEAD(nvmet_fc_portentry_list);
 217 
 218 
 219 static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work);
 220 static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work);
 221 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc);
 222 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc);
 223 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue);
 224 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue);
 225 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport);
 226 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport);
 227 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
 228                                         struct nvmet_fc_fcp_iod *fod);
 229 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc);
 230 
 231 
 232 /* *********************** FC-NVME DMA Handling **************************** */
 233 
 234 /*
 235  * The fcloop device passes in a NULL device pointer. Real LLD's will
 236  * pass in a valid device pointer. If NULL is passed to the dma mapping
 237  * routines, depending on the platform, it may or may not succeed, and
 238  * may crash.
 239  *
 240  * As such:
 241  * Wrapper all the dma routines and check the dev pointer.
 242  *
 243  * If simple mappings (return just a dma address, we'll noop them,
 244  * returning a dma address of 0.
 245  *
 246  * On more complex mappings (dma_map_sg), a pseudo routine fills
 247  * in the scatter list, setting all dma addresses to 0.
 248  */
 249 
 250 static inline dma_addr_t
 251 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
 252                 enum dma_data_direction dir)
 253 {
 254         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
 255 }
 256 
 257 static inline int
 258 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
 259 {
 260         return dev ? dma_mapping_error(dev, dma_addr) : 0;
 261 }
 262 
 263 static inline void
 264 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
 265         enum dma_data_direction dir)
 266 {
 267         if (dev)
 268                 dma_unmap_single(dev, addr, size, dir);
 269 }
 270 
 271 static inline void
 272 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
 273                 enum dma_data_direction dir)
 274 {
 275         if (dev)
 276                 dma_sync_single_for_cpu(dev, addr, size, dir);
 277 }
 278 
 279 static inline void
 280 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
 281                 enum dma_data_direction dir)
 282 {
 283         if (dev)
 284                 dma_sync_single_for_device(dev, addr, size, dir);
 285 }
 286 
 287 /* pseudo dma_map_sg call */
 288 static int
 289 fc_map_sg(struct scatterlist *sg, int nents)
 290 {
 291         struct scatterlist *s;
 292         int i;
 293 
 294         WARN_ON(nents == 0 || sg[0].length == 0);
 295 
 296         for_each_sg(sg, s, nents, i) {
 297                 s->dma_address = 0L;
 298 #ifdef CONFIG_NEED_SG_DMA_LENGTH
 299                 s->dma_length = s->length;
 300 #endif
 301         }
 302         return nents;
 303 }
 304 
 305 static inline int
 306 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
 307                 enum dma_data_direction dir)
 308 {
 309         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
 310 }
 311 
 312 static inline void
 313 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
 314                 enum dma_data_direction dir)
 315 {
 316         if (dev)
 317                 dma_unmap_sg(dev, sg, nents, dir);
 318 }
 319 
 320 
 321 /* *********************** FC-NVME Port Management ************************ */
 322 
 323 
 324 static int
 325 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
 326 {
 327         struct nvmet_fc_ls_iod *iod;
 328         int i;
 329 
 330         iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod),
 331                         GFP_KERNEL);
 332         if (!iod)
 333                 return -ENOMEM;
 334 
 335         tgtport->iod = iod;
 336 
 337         for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
 338                 INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work);
 339                 iod->tgtport = tgtport;
 340                 list_add_tail(&iod->ls_list, &tgtport->ls_list);
 341 
 342                 iod->rqstbuf = kcalloc(2, NVME_FC_MAX_LS_BUFFER_SIZE,
 343                         GFP_KERNEL);
 344                 if (!iod->rqstbuf)
 345                         goto out_fail;
 346 
 347                 iod->rspbuf = iod->rqstbuf + NVME_FC_MAX_LS_BUFFER_SIZE;
 348 
 349                 iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf,
 350                                                 NVME_FC_MAX_LS_BUFFER_SIZE,
 351                                                 DMA_TO_DEVICE);
 352                 if (fc_dma_mapping_error(tgtport->dev, iod->rspdma))
 353                         goto out_fail;
 354         }
 355 
 356         return 0;
 357 
 358 out_fail:
 359         kfree(iod->rqstbuf);
 360         list_del(&iod->ls_list);
 361         for (iod--, i--; i >= 0; iod--, i--) {
 362                 fc_dma_unmap_single(tgtport->dev, iod->rspdma,
 363                                 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
 364                 kfree(iod->rqstbuf);
 365                 list_del(&iod->ls_list);
 366         }
 367 
 368         kfree(iod);
 369 
 370         return -EFAULT;
 371 }
 372 
 373 static void
 374 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport)
 375 {
 376         struct nvmet_fc_ls_iod *iod = tgtport->iod;
 377         int i;
 378 
 379         for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) {
 380                 fc_dma_unmap_single(tgtport->dev,
 381                                 iod->rspdma, NVME_FC_MAX_LS_BUFFER_SIZE,
 382                                 DMA_TO_DEVICE);
 383                 kfree(iod->rqstbuf);
 384                 list_del(&iod->ls_list);
 385         }
 386         kfree(tgtport->iod);
 387 }
 388 
 389 static struct nvmet_fc_ls_iod *
 390 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport)
 391 {
 392         struct nvmet_fc_ls_iod *iod;
 393         unsigned long flags;
 394 
 395         spin_lock_irqsave(&tgtport->lock, flags);
 396         iod = list_first_entry_or_null(&tgtport->ls_list,
 397                                         struct nvmet_fc_ls_iod, ls_list);
 398         if (iod)
 399                 list_move_tail(&iod->ls_list, &tgtport->ls_busylist);
 400         spin_unlock_irqrestore(&tgtport->lock, flags);
 401         return iod;
 402 }
 403 
 404 
 405 static void
 406 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport,
 407                         struct nvmet_fc_ls_iod *iod)
 408 {
 409         unsigned long flags;
 410 
 411         spin_lock_irqsave(&tgtport->lock, flags);
 412         list_move(&iod->ls_list, &tgtport->ls_list);
 413         spin_unlock_irqrestore(&tgtport->lock, flags);
 414 }
 415 
 416 static void
 417 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
 418                                 struct nvmet_fc_tgt_queue *queue)
 419 {
 420         struct nvmet_fc_fcp_iod *fod = queue->fod;
 421         int i;
 422 
 423         for (i = 0; i < queue->sqsize; fod++, i++) {
 424                 INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work);
 425                 fod->tgtport = tgtport;
 426                 fod->queue = queue;
 427                 fod->active = false;
 428                 fod->abort = false;
 429                 fod->aborted = false;
 430                 fod->fcpreq = NULL;
 431                 list_add_tail(&fod->fcp_list, &queue->fod_list);
 432                 spin_lock_init(&fod->flock);
 433 
 434                 fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf,
 435                                         sizeof(fod->rspiubuf), DMA_TO_DEVICE);
 436                 if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) {
 437                         list_del(&fod->fcp_list);
 438                         for (fod--, i--; i >= 0; fod--, i--) {
 439                                 fc_dma_unmap_single(tgtport->dev, fod->rspdma,
 440                                                 sizeof(fod->rspiubuf),
 441                                                 DMA_TO_DEVICE);
 442                                 fod->rspdma = 0L;
 443                                 list_del(&fod->fcp_list);
 444                         }
 445 
 446                         return;
 447                 }
 448         }
 449 }
 450 
 451 static void
 452 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport,
 453                                 struct nvmet_fc_tgt_queue *queue)
 454 {
 455         struct nvmet_fc_fcp_iod *fod = queue->fod;
 456         int i;
 457 
 458         for (i = 0; i < queue->sqsize; fod++, i++) {
 459                 if (fod->rspdma)
 460                         fc_dma_unmap_single(tgtport->dev, fod->rspdma,
 461                                 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
 462         }
 463 }
 464 
 465 static struct nvmet_fc_fcp_iod *
 466 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue)
 467 {
 468         struct nvmet_fc_fcp_iod *fod;
 469 
 470         lockdep_assert_held(&queue->qlock);
 471 
 472         fod = list_first_entry_or_null(&queue->fod_list,
 473                                         struct nvmet_fc_fcp_iod, fcp_list);
 474         if (fod) {
 475                 list_del(&fod->fcp_list);
 476                 fod->active = true;
 477                 /*
 478                  * no queue reference is taken, as it was taken by the
 479                  * queue lookup just prior to the allocation. The iod
 480                  * will "inherit" that reference.
 481                  */
 482         }
 483         return fod;
 484 }
 485 
 486 
 487 static void
 488 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport,
 489                        struct nvmet_fc_tgt_queue *queue,
 490                        struct nvmefc_tgt_fcp_req *fcpreq)
 491 {
 492         struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
 493 
 494         /*
 495          * put all admin cmds on hw queue id 0. All io commands go to
 496          * the respective hw queue based on a modulo basis
 497          */
 498         fcpreq->hwqid = queue->qid ?
 499                         ((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0;
 500 
 501         nvmet_fc_handle_fcp_rqst(tgtport, fod);
 502 }
 503 
 504 static void
 505 nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work)
 506 {
 507         struct nvmet_fc_fcp_iod *fod =
 508                 container_of(work, struct nvmet_fc_fcp_iod, defer_work);
 509 
 510         /* Submit deferred IO for processing */
 511         nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq);
 512 
 513 }
 514 
 515 static void
 516 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue,
 517                         struct nvmet_fc_fcp_iod *fod)
 518 {
 519         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
 520         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
 521         struct nvmet_fc_defer_fcp_req *deferfcp;
 522         unsigned long flags;
 523 
 524         fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma,
 525                                 sizeof(fod->rspiubuf), DMA_TO_DEVICE);
 526 
 527         fcpreq->nvmet_fc_private = NULL;
 528 
 529         fod->active = false;
 530         fod->abort = false;
 531         fod->aborted = false;
 532         fod->writedataactive = false;
 533         fod->fcpreq = NULL;
 534 
 535         tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq);
 536 
 537         /* release the queue lookup reference on the completed IO */
 538         nvmet_fc_tgt_q_put(queue);
 539 
 540         spin_lock_irqsave(&queue->qlock, flags);
 541         deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
 542                                 struct nvmet_fc_defer_fcp_req, req_list);
 543         if (!deferfcp) {
 544                 list_add_tail(&fod->fcp_list, &fod->queue->fod_list);
 545                 spin_unlock_irqrestore(&queue->qlock, flags);
 546                 return;
 547         }
 548 
 549         /* Re-use the fod for the next pending cmd that was deferred */
 550         list_del(&deferfcp->req_list);
 551 
 552         fcpreq = deferfcp->fcp_req;
 553 
 554         /* deferfcp can be reused for another IO at a later date */
 555         list_add_tail(&deferfcp->req_list, &queue->avail_defer_list);
 556 
 557         spin_unlock_irqrestore(&queue->qlock, flags);
 558 
 559         /* Save NVME CMD IO in fod */
 560         memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen);
 561 
 562         /* Setup new fcpreq to be processed */
 563         fcpreq->rspaddr = NULL;
 564         fcpreq->rsplen  = 0;
 565         fcpreq->nvmet_fc_private = fod;
 566         fod->fcpreq = fcpreq;
 567         fod->active = true;
 568 
 569         /* inform LLDD IO is now being processed */
 570         tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq);
 571 
 572         /*
 573          * Leave the queue lookup get reference taken when
 574          * fod was originally allocated.
 575          */
 576 
 577         queue_work(queue->work_q, &fod->defer_work);
 578 }
 579 
 580 static struct nvmet_fc_tgt_queue *
 581 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc,
 582                         u16 qid, u16 sqsize)
 583 {
 584         struct nvmet_fc_tgt_queue *queue;
 585         unsigned long flags;
 586         int ret;
 587 
 588         if (qid > NVMET_NR_QUEUES)
 589                 return NULL;
 590 
 591         queue = kzalloc(struct_size(queue, fod, sqsize), GFP_KERNEL);
 592         if (!queue)
 593                 return NULL;
 594 
 595         if (!nvmet_fc_tgt_a_get(assoc))
 596                 goto out_free_queue;
 597 
 598         queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0,
 599                                 assoc->tgtport->fc_target_port.port_num,
 600                                 assoc->a_id, qid);
 601         if (!queue->work_q)
 602                 goto out_a_put;
 603 
 604         queue->qid = qid;
 605         queue->sqsize = sqsize;
 606         queue->assoc = assoc;
 607         INIT_LIST_HEAD(&queue->fod_list);
 608         INIT_LIST_HEAD(&queue->avail_defer_list);
 609         INIT_LIST_HEAD(&queue->pending_cmd_list);
 610         atomic_set(&queue->connected, 0);
 611         atomic_set(&queue->sqtail, 0);
 612         atomic_set(&queue->rsn, 1);
 613         atomic_set(&queue->zrspcnt, 0);
 614         spin_lock_init(&queue->qlock);
 615         kref_init(&queue->ref);
 616 
 617         nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue);
 618 
 619         ret = nvmet_sq_init(&queue->nvme_sq);
 620         if (ret)
 621                 goto out_fail_iodlist;
 622 
 623         WARN_ON(assoc->queues[qid]);
 624         spin_lock_irqsave(&assoc->tgtport->lock, flags);
 625         assoc->queues[qid] = queue;
 626         spin_unlock_irqrestore(&assoc->tgtport->lock, flags);
 627 
 628         return queue;
 629 
 630 out_fail_iodlist:
 631         nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue);
 632         destroy_workqueue(queue->work_q);
 633 out_a_put:
 634         nvmet_fc_tgt_a_put(assoc);
 635 out_free_queue:
 636         kfree(queue);
 637         return NULL;
 638 }
 639 
 640 
 641 static void
 642 nvmet_fc_tgt_queue_free(struct kref *ref)
 643 {
 644         struct nvmet_fc_tgt_queue *queue =
 645                 container_of(ref, struct nvmet_fc_tgt_queue, ref);
 646         unsigned long flags;
 647 
 648         spin_lock_irqsave(&queue->assoc->tgtport->lock, flags);
 649         queue->assoc->queues[queue->qid] = NULL;
 650         spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags);
 651 
 652         nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue);
 653 
 654         nvmet_fc_tgt_a_put(queue->assoc);
 655 
 656         destroy_workqueue(queue->work_q);
 657 
 658         kfree(queue);
 659 }
 660 
 661 static void
 662 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue)
 663 {
 664         kref_put(&queue->ref, nvmet_fc_tgt_queue_free);
 665 }
 666 
 667 static int
 668 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue)
 669 {
 670         return kref_get_unless_zero(&queue->ref);
 671 }
 672 
 673 
 674 static void
 675 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue)
 676 {
 677         struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport;
 678         struct nvmet_fc_fcp_iod *fod = queue->fod;
 679         struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr;
 680         unsigned long flags;
 681         int i, writedataactive;
 682         bool disconnect;
 683 
 684         disconnect = atomic_xchg(&queue->connected, 0);
 685 
 686         spin_lock_irqsave(&queue->qlock, flags);
 687         /* about outstanding io's */
 688         for (i = 0; i < queue->sqsize; fod++, i++) {
 689                 if (fod->active) {
 690                         spin_lock(&fod->flock);
 691                         fod->abort = true;
 692                         writedataactive = fod->writedataactive;
 693                         spin_unlock(&fod->flock);
 694                         /*
 695                          * only call lldd abort routine if waiting for
 696                          * writedata. other outstanding ops should finish
 697                          * on their own.
 698                          */
 699                         if (writedataactive) {
 700                                 spin_lock(&fod->flock);
 701                                 fod->aborted = true;
 702                                 spin_unlock(&fod->flock);
 703                                 tgtport->ops->fcp_abort(
 704                                         &tgtport->fc_target_port, fod->fcpreq);
 705                         }
 706                 }
 707         }
 708 
 709         /* Cleanup defer'ed IOs in queue */
 710         list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list,
 711                                 req_list) {
 712                 list_del(&deferfcp->req_list);
 713                 kfree(deferfcp);
 714         }
 715 
 716         for (;;) {
 717                 deferfcp = list_first_entry_or_null(&queue->pending_cmd_list,
 718                                 struct nvmet_fc_defer_fcp_req, req_list);
 719                 if (!deferfcp)
 720                         break;
 721 
 722                 list_del(&deferfcp->req_list);
 723                 spin_unlock_irqrestore(&queue->qlock, flags);
 724 
 725                 tgtport->ops->defer_rcv(&tgtport->fc_target_port,
 726                                 deferfcp->fcp_req);
 727 
 728                 tgtport->ops->fcp_abort(&tgtport->fc_target_port,
 729                                 deferfcp->fcp_req);
 730 
 731                 tgtport->ops->fcp_req_release(&tgtport->fc_target_port,
 732                                 deferfcp->fcp_req);
 733 
 734                 /* release the queue lookup reference */
 735                 nvmet_fc_tgt_q_put(queue);
 736 
 737                 kfree(deferfcp);
 738 
 739                 spin_lock_irqsave(&queue->qlock, flags);
 740         }
 741         spin_unlock_irqrestore(&queue->qlock, flags);
 742 
 743         flush_workqueue(queue->work_q);
 744 
 745         if (disconnect)
 746                 nvmet_sq_destroy(&queue->nvme_sq);
 747 
 748         nvmet_fc_tgt_q_put(queue);
 749 }
 750 
 751 static struct nvmet_fc_tgt_queue *
 752 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport,
 753                                 u64 connection_id)
 754 {
 755         struct nvmet_fc_tgt_assoc *assoc;
 756         struct nvmet_fc_tgt_queue *queue;
 757         u64 association_id = nvmet_fc_getassociationid(connection_id);
 758         u16 qid = nvmet_fc_getqueueid(connection_id);
 759         unsigned long flags;
 760 
 761         if (qid > NVMET_NR_QUEUES)
 762                 return NULL;
 763 
 764         spin_lock_irqsave(&tgtport->lock, flags);
 765         list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
 766                 if (association_id == assoc->association_id) {
 767                         queue = assoc->queues[qid];
 768                         if (queue &&
 769                             (!atomic_read(&queue->connected) ||
 770                              !nvmet_fc_tgt_q_get(queue)))
 771                                 queue = NULL;
 772                         spin_unlock_irqrestore(&tgtport->lock, flags);
 773                         return queue;
 774                 }
 775         }
 776         spin_unlock_irqrestore(&tgtport->lock, flags);
 777         return NULL;
 778 }
 779 
 780 static void
 781 nvmet_fc_delete_assoc(struct work_struct *work)
 782 {
 783         struct nvmet_fc_tgt_assoc *assoc =
 784                 container_of(work, struct nvmet_fc_tgt_assoc, del_work);
 785 
 786         nvmet_fc_delete_target_assoc(assoc);
 787         nvmet_fc_tgt_a_put(assoc);
 788 }
 789 
 790 static struct nvmet_fc_tgt_assoc *
 791 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport)
 792 {
 793         struct nvmet_fc_tgt_assoc *assoc, *tmpassoc;
 794         unsigned long flags;
 795         u64 ran;
 796         int idx;
 797         bool needrandom = true;
 798 
 799         assoc = kzalloc(sizeof(*assoc), GFP_KERNEL);
 800         if (!assoc)
 801                 return NULL;
 802 
 803         idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL);
 804         if (idx < 0)
 805                 goto out_free_assoc;
 806 
 807         if (!nvmet_fc_tgtport_get(tgtport))
 808                 goto out_ida_put;
 809 
 810         assoc->tgtport = tgtport;
 811         assoc->a_id = idx;
 812         INIT_LIST_HEAD(&assoc->a_list);
 813         kref_init(&assoc->ref);
 814         INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc);
 815 
 816         while (needrandom) {
 817                 get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID);
 818                 ran = ran << BYTES_FOR_QID_SHIFT;
 819 
 820                 spin_lock_irqsave(&tgtport->lock, flags);
 821                 needrandom = false;
 822                 list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list)
 823                         if (ran == tmpassoc->association_id) {
 824                                 needrandom = true;
 825                                 break;
 826                         }
 827                 if (!needrandom) {
 828                         assoc->association_id = ran;
 829                         list_add_tail(&assoc->a_list, &tgtport->assoc_list);
 830                 }
 831                 spin_unlock_irqrestore(&tgtport->lock, flags);
 832         }
 833 
 834         return assoc;
 835 
 836 out_ida_put:
 837         ida_simple_remove(&tgtport->assoc_cnt, idx);
 838 out_free_assoc:
 839         kfree(assoc);
 840         return NULL;
 841 }
 842 
 843 static void
 844 nvmet_fc_target_assoc_free(struct kref *ref)
 845 {
 846         struct nvmet_fc_tgt_assoc *assoc =
 847                 container_of(ref, struct nvmet_fc_tgt_assoc, ref);
 848         struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
 849         unsigned long flags;
 850 
 851         spin_lock_irqsave(&tgtport->lock, flags);
 852         list_del(&assoc->a_list);
 853         spin_unlock_irqrestore(&tgtport->lock, flags);
 854         ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id);
 855         kfree(assoc);
 856         nvmet_fc_tgtport_put(tgtport);
 857 }
 858 
 859 static void
 860 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc)
 861 {
 862         kref_put(&assoc->ref, nvmet_fc_target_assoc_free);
 863 }
 864 
 865 static int
 866 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc)
 867 {
 868         return kref_get_unless_zero(&assoc->ref);
 869 }
 870 
 871 static void
 872 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc)
 873 {
 874         struct nvmet_fc_tgtport *tgtport = assoc->tgtport;
 875         struct nvmet_fc_tgt_queue *queue;
 876         unsigned long flags;
 877         int i;
 878 
 879         spin_lock_irqsave(&tgtport->lock, flags);
 880         for (i = NVMET_NR_QUEUES; i >= 0; i--) {
 881                 queue = assoc->queues[i];
 882                 if (queue) {
 883                         if (!nvmet_fc_tgt_q_get(queue))
 884                                 continue;
 885                         spin_unlock_irqrestore(&tgtport->lock, flags);
 886                         nvmet_fc_delete_target_queue(queue);
 887                         nvmet_fc_tgt_q_put(queue);
 888                         spin_lock_irqsave(&tgtport->lock, flags);
 889                 }
 890         }
 891         spin_unlock_irqrestore(&tgtport->lock, flags);
 892 
 893         nvmet_fc_tgt_a_put(assoc);
 894 }
 895 
 896 static struct nvmet_fc_tgt_assoc *
 897 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport,
 898                                 u64 association_id)
 899 {
 900         struct nvmet_fc_tgt_assoc *assoc;
 901         struct nvmet_fc_tgt_assoc *ret = NULL;
 902         unsigned long flags;
 903 
 904         spin_lock_irqsave(&tgtport->lock, flags);
 905         list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
 906                 if (association_id == assoc->association_id) {
 907                         ret = assoc;
 908                         nvmet_fc_tgt_a_get(assoc);
 909                         break;
 910                 }
 911         }
 912         spin_unlock_irqrestore(&tgtport->lock, flags);
 913 
 914         return ret;
 915 }
 916 
 917 static void
 918 nvmet_fc_portentry_bind(struct nvmet_fc_tgtport *tgtport,
 919                         struct nvmet_fc_port_entry *pe,
 920                         struct nvmet_port *port)
 921 {
 922         lockdep_assert_held(&nvmet_fc_tgtlock);
 923 
 924         pe->tgtport = tgtport;
 925         tgtport->pe = pe;
 926 
 927         pe->port = port;
 928         port->priv = pe;
 929 
 930         pe->node_name = tgtport->fc_target_port.node_name;
 931         pe->port_name = tgtport->fc_target_port.port_name;
 932         INIT_LIST_HEAD(&pe->pe_list);
 933 
 934         list_add_tail(&pe->pe_list, &nvmet_fc_portentry_list);
 935 }
 936 
 937 static void
 938 nvmet_fc_portentry_unbind(struct nvmet_fc_port_entry *pe)
 939 {
 940         unsigned long flags;
 941 
 942         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
 943         if (pe->tgtport)
 944                 pe->tgtport->pe = NULL;
 945         list_del(&pe->pe_list);
 946         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
 947 }
 948 
 949 /*
 950  * called when a targetport deregisters. Breaks the relationship
 951  * with the nvmet port, but leaves the port_entry in place so that
 952  * re-registration can resume operation.
 953  */
 954 static void
 955 nvmet_fc_portentry_unbind_tgt(struct nvmet_fc_tgtport *tgtport)
 956 {
 957         struct nvmet_fc_port_entry *pe;
 958         unsigned long flags;
 959 
 960         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
 961         pe = tgtport->pe;
 962         if (pe)
 963                 pe->tgtport = NULL;
 964         tgtport->pe = NULL;
 965         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
 966 }
 967 
 968 /*
 969  * called when a new targetport is registered. Looks in the
 970  * existing nvmet port_entries to see if the nvmet layer is
 971  * configured for the targetport's wwn's. (the targetport existed,
 972  * nvmet configured, the lldd unregistered the tgtport, and is now
 973  * reregistering the same targetport).  If so, set the nvmet port
 974  * port entry on the targetport.
 975  */
 976 static void
 977 nvmet_fc_portentry_rebind_tgt(struct nvmet_fc_tgtport *tgtport)
 978 {
 979         struct nvmet_fc_port_entry *pe;
 980         unsigned long flags;
 981 
 982         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
 983         list_for_each_entry(pe, &nvmet_fc_portentry_list, pe_list) {
 984                 if (tgtport->fc_target_port.node_name == pe->node_name &&
 985                     tgtport->fc_target_port.port_name == pe->port_name) {
 986                         WARN_ON(pe->tgtport);
 987                         tgtport->pe = pe;
 988                         pe->tgtport = tgtport;
 989                         break;
 990                 }
 991         }
 992         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
 993 }
 994 
 995 /**
 996  * nvme_fc_register_targetport - transport entry point called by an
 997  *                              LLDD to register the existence of a local
 998  *                              NVME subystem FC port.
 999  * @pinfo:     pointer to information about the port to be registered
1000  * @template:  LLDD entrypoints and operational parameters for the port
1001  * @dev:       physical hardware device node port corresponds to. Will be
1002  *             used for DMA mappings
1003  * @portptr:   pointer to a local port pointer. Upon success, the routine
1004  *             will allocate a nvme_fc_local_port structure and place its
1005  *             address in the local port pointer. Upon failure, local port
1006  *             pointer will be set to NULL.
1007  *
1008  * Returns:
1009  * a completion status. Must be 0 upon success; a negative errno
1010  * (ex: -ENXIO) upon failure.
1011  */
1012 int
1013 nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo,
1014                         struct nvmet_fc_target_template *template,
1015                         struct device *dev,
1016                         struct nvmet_fc_target_port **portptr)
1017 {
1018         struct nvmet_fc_tgtport *newrec;
1019         unsigned long flags;
1020         int ret, idx;
1021 
1022         if (!template->xmt_ls_rsp || !template->fcp_op ||
1023             !template->fcp_abort ||
1024             !template->fcp_req_release || !template->targetport_delete ||
1025             !template->max_hw_queues || !template->max_sgl_segments ||
1026             !template->max_dif_sgl_segments || !template->dma_boundary) {
1027                 ret = -EINVAL;
1028                 goto out_regtgt_failed;
1029         }
1030 
1031         newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz),
1032                          GFP_KERNEL);
1033         if (!newrec) {
1034                 ret = -ENOMEM;
1035                 goto out_regtgt_failed;
1036         }
1037 
1038         idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL);
1039         if (idx < 0) {
1040                 ret = -ENOSPC;
1041                 goto out_fail_kfree;
1042         }
1043 
1044         if (!get_device(dev) && dev) {
1045                 ret = -ENODEV;
1046                 goto out_ida_put;
1047         }
1048 
1049         newrec->fc_target_port.node_name = pinfo->node_name;
1050         newrec->fc_target_port.port_name = pinfo->port_name;
1051         newrec->fc_target_port.private = &newrec[1];
1052         newrec->fc_target_port.port_id = pinfo->port_id;
1053         newrec->fc_target_port.port_num = idx;
1054         INIT_LIST_HEAD(&newrec->tgt_list);
1055         newrec->dev = dev;
1056         newrec->ops = template;
1057         spin_lock_init(&newrec->lock);
1058         INIT_LIST_HEAD(&newrec->ls_list);
1059         INIT_LIST_HEAD(&newrec->ls_busylist);
1060         INIT_LIST_HEAD(&newrec->assoc_list);
1061         kref_init(&newrec->ref);
1062         ida_init(&newrec->assoc_cnt);
1063         newrec->max_sg_cnt = template->max_sgl_segments;
1064 
1065         ret = nvmet_fc_alloc_ls_iodlist(newrec);
1066         if (ret) {
1067                 ret = -ENOMEM;
1068                 goto out_free_newrec;
1069         }
1070 
1071         nvmet_fc_portentry_rebind_tgt(newrec);
1072 
1073         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1074         list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list);
1075         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1076 
1077         *portptr = &newrec->fc_target_port;
1078         return 0;
1079 
1080 out_free_newrec:
1081         put_device(dev);
1082 out_ida_put:
1083         ida_simple_remove(&nvmet_fc_tgtport_cnt, idx);
1084 out_fail_kfree:
1085         kfree(newrec);
1086 out_regtgt_failed:
1087         *portptr = NULL;
1088         return ret;
1089 }
1090 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport);
1091 
1092 
1093 static void
1094 nvmet_fc_free_tgtport(struct kref *ref)
1095 {
1096         struct nvmet_fc_tgtport *tgtport =
1097                 container_of(ref, struct nvmet_fc_tgtport, ref);
1098         struct device *dev = tgtport->dev;
1099         unsigned long flags;
1100 
1101         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1102         list_del(&tgtport->tgt_list);
1103         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1104 
1105         nvmet_fc_free_ls_iodlist(tgtport);
1106 
1107         /* let the LLDD know we've finished tearing it down */
1108         tgtport->ops->targetport_delete(&tgtport->fc_target_port);
1109 
1110         ida_simple_remove(&nvmet_fc_tgtport_cnt,
1111                         tgtport->fc_target_port.port_num);
1112 
1113         ida_destroy(&tgtport->assoc_cnt);
1114 
1115         kfree(tgtport);
1116 
1117         put_device(dev);
1118 }
1119 
1120 static void
1121 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport)
1122 {
1123         kref_put(&tgtport->ref, nvmet_fc_free_tgtport);
1124 }
1125 
1126 static int
1127 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport)
1128 {
1129         return kref_get_unless_zero(&tgtport->ref);
1130 }
1131 
1132 static void
1133 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport)
1134 {
1135         struct nvmet_fc_tgt_assoc *assoc, *next;
1136         unsigned long flags;
1137 
1138         spin_lock_irqsave(&tgtport->lock, flags);
1139         list_for_each_entry_safe(assoc, next,
1140                                 &tgtport->assoc_list, a_list) {
1141                 if (!nvmet_fc_tgt_a_get(assoc))
1142                         continue;
1143                 if (!schedule_work(&assoc->del_work))
1144                         nvmet_fc_tgt_a_put(assoc);
1145         }
1146         spin_unlock_irqrestore(&tgtport->lock, flags);
1147 }
1148 
1149 /*
1150  * nvmet layer has called to terminate an association
1151  */
1152 static void
1153 nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl)
1154 {
1155         struct nvmet_fc_tgtport *tgtport, *next;
1156         struct nvmet_fc_tgt_assoc *assoc;
1157         struct nvmet_fc_tgt_queue *queue;
1158         unsigned long flags;
1159         bool found_ctrl = false;
1160 
1161         /* this is a bit ugly, but don't want to make locks layered */
1162         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1163         list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list,
1164                         tgt_list) {
1165                 if (!nvmet_fc_tgtport_get(tgtport))
1166                         continue;
1167                 spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1168 
1169                 spin_lock_irqsave(&tgtport->lock, flags);
1170                 list_for_each_entry(assoc, &tgtport->assoc_list, a_list) {
1171                         queue = assoc->queues[0];
1172                         if (queue && queue->nvme_sq.ctrl == ctrl) {
1173                                 if (nvmet_fc_tgt_a_get(assoc))
1174                                         found_ctrl = true;
1175                                 break;
1176                         }
1177                 }
1178                 spin_unlock_irqrestore(&tgtport->lock, flags);
1179 
1180                 nvmet_fc_tgtport_put(tgtport);
1181 
1182                 if (found_ctrl) {
1183                         if (!schedule_work(&assoc->del_work))
1184                                 nvmet_fc_tgt_a_put(assoc);
1185                         return;
1186                 }
1187 
1188                 spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
1189         }
1190         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
1191 }
1192 
1193 /**
1194  * nvme_fc_unregister_targetport - transport entry point called by an
1195  *                              LLDD to deregister/remove a previously
1196  *                              registered a local NVME subsystem FC port.
1197  * @target_port: pointer to the (registered) target port that is to be
1198  *               deregistered.
1199  *
1200  * Returns:
1201  * a completion status. Must be 0 upon success; a negative errno
1202  * (ex: -ENXIO) upon failure.
1203  */
1204 int
1205 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port)
1206 {
1207         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1208 
1209         nvmet_fc_portentry_unbind_tgt(tgtport);
1210 
1211         /* terminate any outstanding associations */
1212         __nvmet_fc_free_assocs(tgtport);
1213 
1214         nvmet_fc_tgtport_put(tgtport);
1215 
1216         return 0;
1217 }
1218 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport);
1219 
1220 
1221 /* *********************** FC-NVME LS Handling **************************** */
1222 
1223 
1224 static void
1225 nvmet_fc_format_rsp_hdr(void *buf, u8 ls_cmd, __be32 desc_len, u8 rqst_ls_cmd)
1226 {
1227         struct fcnvme_ls_acc_hdr *acc = buf;
1228 
1229         acc->w0.ls_cmd = ls_cmd;
1230         acc->desc_list_len = desc_len;
1231         acc->rqst.desc_tag = cpu_to_be32(FCNVME_LSDESC_RQST);
1232         acc->rqst.desc_len =
1233                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst));
1234         acc->rqst.w0.ls_cmd = rqst_ls_cmd;
1235 }
1236 
1237 static int
1238 nvmet_fc_format_rjt(void *buf, u16 buflen, u8 ls_cmd,
1239                         u8 reason, u8 explanation, u8 vendor)
1240 {
1241         struct fcnvme_ls_rjt *rjt = buf;
1242 
1243         nvmet_fc_format_rsp_hdr(buf, FCNVME_LSDESC_RQST,
1244                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_rjt)),
1245                         ls_cmd);
1246         rjt->rjt.desc_tag = cpu_to_be32(FCNVME_LSDESC_RJT);
1247         rjt->rjt.desc_len = fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rjt));
1248         rjt->rjt.reason_code = reason;
1249         rjt->rjt.reason_explanation = explanation;
1250         rjt->rjt.vendor = vendor;
1251 
1252         return sizeof(struct fcnvme_ls_rjt);
1253 }
1254 
1255 /* Validation Error indexes into the string table below */
1256 enum {
1257         VERR_NO_ERROR           = 0,
1258         VERR_CR_ASSOC_LEN       = 1,
1259         VERR_CR_ASSOC_RQST_LEN  = 2,
1260         VERR_CR_ASSOC_CMD       = 3,
1261         VERR_CR_ASSOC_CMD_LEN   = 4,
1262         VERR_ERSP_RATIO         = 5,
1263         VERR_ASSOC_ALLOC_FAIL   = 6,
1264         VERR_QUEUE_ALLOC_FAIL   = 7,
1265         VERR_CR_CONN_LEN        = 8,
1266         VERR_CR_CONN_RQST_LEN   = 9,
1267         VERR_ASSOC_ID           = 10,
1268         VERR_ASSOC_ID_LEN       = 11,
1269         VERR_NO_ASSOC           = 12,
1270         VERR_CONN_ID            = 13,
1271         VERR_CONN_ID_LEN        = 14,
1272         VERR_NO_CONN            = 15,
1273         VERR_CR_CONN_CMD        = 16,
1274         VERR_CR_CONN_CMD_LEN    = 17,
1275         VERR_DISCONN_LEN        = 18,
1276         VERR_DISCONN_RQST_LEN   = 19,
1277         VERR_DISCONN_CMD        = 20,
1278         VERR_DISCONN_CMD_LEN    = 21,
1279         VERR_DISCONN_SCOPE      = 22,
1280         VERR_RS_LEN             = 23,
1281         VERR_RS_RQST_LEN        = 24,
1282         VERR_RS_CMD             = 25,
1283         VERR_RS_CMD_LEN         = 26,
1284         VERR_RS_RCTL            = 27,
1285         VERR_RS_RO              = 28,
1286 };
1287 
1288 static char *validation_errors[] = {
1289         "OK",
1290         "Bad CR_ASSOC Length",
1291         "Bad CR_ASSOC Rqst Length",
1292         "Not CR_ASSOC Cmd",
1293         "Bad CR_ASSOC Cmd Length",
1294         "Bad Ersp Ratio",
1295         "Association Allocation Failed",
1296         "Queue Allocation Failed",
1297         "Bad CR_CONN Length",
1298         "Bad CR_CONN Rqst Length",
1299         "Not Association ID",
1300         "Bad Association ID Length",
1301         "No Association",
1302         "Not Connection ID",
1303         "Bad Connection ID Length",
1304         "No Connection",
1305         "Not CR_CONN Cmd",
1306         "Bad CR_CONN Cmd Length",
1307         "Bad DISCONN Length",
1308         "Bad DISCONN Rqst Length",
1309         "Not DISCONN Cmd",
1310         "Bad DISCONN Cmd Length",
1311         "Bad Disconnect Scope",
1312         "Bad RS Length",
1313         "Bad RS Rqst Length",
1314         "Not RS Cmd",
1315         "Bad RS Cmd Length",
1316         "Bad RS R_CTL",
1317         "Bad RS Relative Offset",
1318 };
1319 
1320 static void
1321 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport,
1322                         struct nvmet_fc_ls_iod *iod)
1323 {
1324         struct fcnvme_ls_cr_assoc_rqst *rqst =
1325                                 (struct fcnvme_ls_cr_assoc_rqst *)iod->rqstbuf;
1326         struct fcnvme_ls_cr_assoc_acc *acc =
1327                                 (struct fcnvme_ls_cr_assoc_acc *)iod->rspbuf;
1328         struct nvmet_fc_tgt_queue *queue;
1329         int ret = 0;
1330 
1331         memset(acc, 0, sizeof(*acc));
1332 
1333         /*
1334          * FC-NVME spec changes. There are initiators sending different
1335          * lengths as padding sizes for Create Association Cmd descriptor
1336          * was incorrect.
1337          * Accept anything of "minimum" length. Assume format per 1.15
1338          * spec (with HOSTID reduced to 16 bytes), ignore how long the
1339          * trailing pad length is.
1340          */
1341         if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN)
1342                 ret = VERR_CR_ASSOC_LEN;
1343         else if (be32_to_cpu(rqst->desc_list_len) <
1344                         FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN)
1345                 ret = VERR_CR_ASSOC_RQST_LEN;
1346         else if (rqst->assoc_cmd.desc_tag !=
1347                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD))
1348                 ret = VERR_CR_ASSOC_CMD;
1349         else if (be32_to_cpu(rqst->assoc_cmd.desc_len) <
1350                         FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN)
1351                 ret = VERR_CR_ASSOC_CMD_LEN;
1352         else if (!rqst->assoc_cmd.ersp_ratio ||
1353                  (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >=
1354                                 be16_to_cpu(rqst->assoc_cmd.sqsize)))
1355                 ret = VERR_ERSP_RATIO;
1356 
1357         else {
1358                 /* new association w/ admin queue */
1359                 iod->assoc = nvmet_fc_alloc_target_assoc(tgtport);
1360                 if (!iod->assoc)
1361                         ret = VERR_ASSOC_ALLOC_FAIL;
1362                 else {
1363                         queue = nvmet_fc_alloc_target_queue(iod->assoc, 0,
1364                                         be16_to_cpu(rqst->assoc_cmd.sqsize));
1365                         if (!queue)
1366                                 ret = VERR_QUEUE_ALLOC_FAIL;
1367                 }
1368         }
1369 
1370         if (ret) {
1371                 dev_err(tgtport->dev,
1372                         "Create Association LS failed: %s\n",
1373                         validation_errors[ret]);
1374                 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1375                                 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1376                                 FCNVME_RJT_RC_LOGIC,
1377                                 FCNVME_RJT_EXP_NONE, 0);
1378                 return;
1379         }
1380 
1381         queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio);
1382         atomic_set(&queue->connected, 1);
1383         queue->sqhd = 0;        /* best place to init value */
1384 
1385         /* format a response */
1386 
1387         iod->lsreq->rsplen = sizeof(*acc);
1388 
1389         nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1390                         fcnvme_lsdesc_len(
1391                                 sizeof(struct fcnvme_ls_cr_assoc_acc)),
1392                         FCNVME_LS_CREATE_ASSOCIATION);
1393         acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1394         acc->associd.desc_len =
1395                         fcnvme_lsdesc_len(
1396                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1397         acc->associd.association_id =
1398                         cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0));
1399         acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1400         acc->connectid.desc_len =
1401                         fcnvme_lsdesc_len(
1402                                 sizeof(struct fcnvme_lsdesc_conn_id));
1403         acc->connectid.connection_id = acc->associd.association_id;
1404 }
1405 
1406 static void
1407 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport,
1408                         struct nvmet_fc_ls_iod *iod)
1409 {
1410         struct fcnvme_ls_cr_conn_rqst *rqst =
1411                                 (struct fcnvme_ls_cr_conn_rqst *)iod->rqstbuf;
1412         struct fcnvme_ls_cr_conn_acc *acc =
1413                                 (struct fcnvme_ls_cr_conn_acc *)iod->rspbuf;
1414         struct nvmet_fc_tgt_queue *queue;
1415         int ret = 0;
1416 
1417         memset(acc, 0, sizeof(*acc));
1418 
1419         if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst))
1420                 ret = VERR_CR_CONN_LEN;
1421         else if (rqst->desc_list_len !=
1422                         fcnvme_lsdesc_len(
1423                                 sizeof(struct fcnvme_ls_cr_conn_rqst)))
1424                 ret = VERR_CR_CONN_RQST_LEN;
1425         else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1426                 ret = VERR_ASSOC_ID;
1427         else if (rqst->associd.desc_len !=
1428                         fcnvme_lsdesc_len(
1429                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
1430                 ret = VERR_ASSOC_ID_LEN;
1431         else if (rqst->connect_cmd.desc_tag !=
1432                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD))
1433                 ret = VERR_CR_CONN_CMD;
1434         else if (rqst->connect_cmd.desc_len !=
1435                         fcnvme_lsdesc_len(
1436                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd)))
1437                 ret = VERR_CR_CONN_CMD_LEN;
1438         else if (!rqst->connect_cmd.ersp_ratio ||
1439                  (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >=
1440                                 be16_to_cpu(rqst->connect_cmd.sqsize)))
1441                 ret = VERR_ERSP_RATIO;
1442 
1443         else {
1444                 /* new io queue */
1445                 iod->assoc = nvmet_fc_find_target_assoc(tgtport,
1446                                 be64_to_cpu(rqst->associd.association_id));
1447                 if (!iod->assoc)
1448                         ret = VERR_NO_ASSOC;
1449                 else {
1450                         queue = nvmet_fc_alloc_target_queue(iod->assoc,
1451                                         be16_to_cpu(rqst->connect_cmd.qid),
1452                                         be16_to_cpu(rqst->connect_cmd.sqsize));
1453                         if (!queue)
1454                                 ret = VERR_QUEUE_ALLOC_FAIL;
1455 
1456                         /* release get taken in nvmet_fc_find_target_assoc */
1457                         nvmet_fc_tgt_a_put(iod->assoc);
1458                 }
1459         }
1460 
1461         if (ret) {
1462                 dev_err(tgtport->dev,
1463                         "Create Connection LS failed: %s\n",
1464                         validation_errors[ret]);
1465                 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1466                                 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1467                                 (ret == VERR_NO_ASSOC) ?
1468                                         FCNVME_RJT_RC_INV_ASSOC :
1469                                         FCNVME_RJT_RC_LOGIC,
1470                                 FCNVME_RJT_EXP_NONE, 0);
1471                 return;
1472         }
1473 
1474         queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio);
1475         atomic_set(&queue->connected, 1);
1476         queue->sqhd = 0;        /* best place to init value */
1477 
1478         /* format a response */
1479 
1480         iod->lsreq->rsplen = sizeof(*acc);
1481 
1482         nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1483                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)),
1484                         FCNVME_LS_CREATE_CONNECTION);
1485         acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID);
1486         acc->connectid.desc_len =
1487                         fcnvme_lsdesc_len(
1488                                 sizeof(struct fcnvme_lsdesc_conn_id));
1489         acc->connectid.connection_id =
1490                         cpu_to_be64(nvmet_fc_makeconnid(iod->assoc,
1491                                 be16_to_cpu(rqst->connect_cmd.qid)));
1492 }
1493 
1494 static void
1495 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport,
1496                         struct nvmet_fc_ls_iod *iod)
1497 {
1498         struct fcnvme_ls_disconnect_rqst *rqst =
1499                         (struct fcnvme_ls_disconnect_rqst *)iod->rqstbuf;
1500         struct fcnvme_ls_disconnect_acc *acc =
1501                         (struct fcnvme_ls_disconnect_acc *)iod->rspbuf;
1502         struct nvmet_fc_tgt_assoc *assoc;
1503         int ret = 0;
1504 
1505         memset(acc, 0, sizeof(*acc));
1506 
1507         if (iod->rqstdatalen < sizeof(struct fcnvme_ls_disconnect_rqst))
1508                 ret = VERR_DISCONN_LEN;
1509         else if (rqst->desc_list_len !=
1510                         fcnvme_lsdesc_len(
1511                                 sizeof(struct fcnvme_ls_disconnect_rqst)))
1512                 ret = VERR_DISCONN_RQST_LEN;
1513         else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1514                 ret = VERR_ASSOC_ID;
1515         else if (rqst->associd.desc_len !=
1516                         fcnvme_lsdesc_len(
1517                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
1518                 ret = VERR_ASSOC_ID_LEN;
1519         else if (rqst->discon_cmd.desc_tag !=
1520                         cpu_to_be32(FCNVME_LSDESC_DISCONN_CMD))
1521                 ret = VERR_DISCONN_CMD;
1522         else if (rqst->discon_cmd.desc_len !=
1523                         fcnvme_lsdesc_len(
1524                                 sizeof(struct fcnvme_lsdesc_disconn_cmd)))
1525                 ret = VERR_DISCONN_CMD_LEN;
1526         else if ((rqst->discon_cmd.scope != FCNVME_DISCONN_ASSOCIATION) &&
1527                         (rqst->discon_cmd.scope != FCNVME_DISCONN_CONNECTION))
1528                 ret = VERR_DISCONN_SCOPE;
1529         else {
1530                 /* match an active association */
1531                 assoc = nvmet_fc_find_target_assoc(tgtport,
1532                                 be64_to_cpu(rqst->associd.association_id));
1533                 iod->assoc = assoc;
1534                 if (!assoc)
1535                         ret = VERR_NO_ASSOC;
1536         }
1537 
1538         if (ret) {
1539                 dev_err(tgtport->dev,
1540                         "Disconnect LS failed: %s\n",
1541                         validation_errors[ret]);
1542                 iod->lsreq->rsplen = nvmet_fc_format_rjt(acc,
1543                                 NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd,
1544                                 (ret == VERR_NO_ASSOC) ?
1545                                         FCNVME_RJT_RC_INV_ASSOC :
1546                                         (ret == VERR_NO_CONN) ?
1547                                                 FCNVME_RJT_RC_INV_CONN :
1548                                                 FCNVME_RJT_RC_LOGIC,
1549                                 FCNVME_RJT_EXP_NONE, 0);
1550                 return;
1551         }
1552 
1553         /* format a response */
1554 
1555         iod->lsreq->rsplen = sizeof(*acc);
1556 
1557         nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1558                         fcnvme_lsdesc_len(
1559                                 sizeof(struct fcnvme_ls_disconnect_acc)),
1560                         FCNVME_LS_DISCONNECT);
1561 
1562         /* release get taken in nvmet_fc_find_target_assoc */
1563         nvmet_fc_tgt_a_put(iod->assoc);
1564 
1565         nvmet_fc_delete_target_assoc(iod->assoc);
1566 }
1567 
1568 
1569 /* *********************** NVME Ctrl Routines **************************** */
1570 
1571 
1572 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req);
1573 
1574 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops;
1575 
1576 static void
1577 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_tgt_ls_req *lsreq)
1578 {
1579         struct nvmet_fc_ls_iod *iod = lsreq->nvmet_fc_private;
1580         struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1581 
1582         fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma,
1583                                 NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1584         nvmet_fc_free_ls_iod(tgtport, iod);
1585         nvmet_fc_tgtport_put(tgtport);
1586 }
1587 
1588 static void
1589 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport,
1590                                 struct nvmet_fc_ls_iod *iod)
1591 {
1592         int ret;
1593 
1594         fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma,
1595                                   NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE);
1596 
1597         ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsreq);
1598         if (ret)
1599                 nvmet_fc_xmt_ls_rsp_done(iod->lsreq);
1600 }
1601 
1602 /*
1603  * Actual processing routine for received FC-NVME LS Requests from the LLD
1604  */
1605 static void
1606 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport,
1607                         struct nvmet_fc_ls_iod *iod)
1608 {
1609         struct fcnvme_ls_rqst_w0 *w0 =
1610                         (struct fcnvme_ls_rqst_w0 *)iod->rqstbuf;
1611 
1612         iod->lsreq->nvmet_fc_private = iod;
1613         iod->lsreq->rspbuf = iod->rspbuf;
1614         iod->lsreq->rspdma = iod->rspdma;
1615         iod->lsreq->done = nvmet_fc_xmt_ls_rsp_done;
1616         /* Be preventative. handlers will later set to valid length */
1617         iod->lsreq->rsplen = 0;
1618 
1619         iod->assoc = NULL;
1620 
1621         /*
1622          * handlers:
1623          *   parse request input, execute the request, and format the
1624          *   LS response
1625          */
1626         switch (w0->ls_cmd) {
1627         case FCNVME_LS_CREATE_ASSOCIATION:
1628                 /* Creates Association and initial Admin Queue/Connection */
1629                 nvmet_fc_ls_create_association(tgtport, iod);
1630                 break;
1631         case FCNVME_LS_CREATE_CONNECTION:
1632                 /* Creates an IO Queue/Connection */
1633                 nvmet_fc_ls_create_connection(tgtport, iod);
1634                 break;
1635         case FCNVME_LS_DISCONNECT:
1636                 /* Terminate a Queue/Connection or the Association */
1637                 nvmet_fc_ls_disconnect(tgtport, iod);
1638                 break;
1639         default:
1640                 iod->lsreq->rsplen = nvmet_fc_format_rjt(iod->rspbuf,
1641                                 NVME_FC_MAX_LS_BUFFER_SIZE, w0->ls_cmd,
1642                                 FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1643         }
1644 
1645         nvmet_fc_xmt_ls_rsp(tgtport, iod);
1646 }
1647 
1648 /*
1649  * Actual processing routine for received FC-NVME LS Requests from the LLD
1650  */
1651 static void
1652 nvmet_fc_handle_ls_rqst_work(struct work_struct *work)
1653 {
1654         struct nvmet_fc_ls_iod *iod =
1655                 container_of(work, struct nvmet_fc_ls_iod, work);
1656         struct nvmet_fc_tgtport *tgtport = iod->tgtport;
1657 
1658         nvmet_fc_handle_ls_rqst(tgtport, iod);
1659 }
1660 
1661 
1662 /**
1663  * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
1664  *                       upon the reception of a NVME LS request.
1665  *
1666  * The nvmet-fc layer will copy payload to an internal structure for
1667  * processing.  As such, upon completion of the routine, the LLDD may
1668  * immediately free/reuse the LS request buffer passed in the call.
1669  *
1670  * If this routine returns error, the LLDD should abort the exchange.
1671  *
1672  * @target_port: pointer to the (registered) target port the LS was
1673  *              received on.
1674  * @lsreq:      pointer to a lsreq request structure to be used to reference
1675  *              the exchange corresponding to the LS.
1676  * @lsreqbuf:   pointer to the buffer containing the LS Request
1677  * @lsreqbuf_len: length, in bytes, of the received LS request
1678  */
1679 int
1680 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port,
1681                         struct nvmefc_tgt_ls_req *lsreq,
1682                         void *lsreqbuf, u32 lsreqbuf_len)
1683 {
1684         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
1685         struct nvmet_fc_ls_iod *iod;
1686 
1687         if (lsreqbuf_len > NVME_FC_MAX_LS_BUFFER_SIZE)
1688                 return -E2BIG;
1689 
1690         if (!nvmet_fc_tgtport_get(tgtport))
1691                 return -ESHUTDOWN;
1692 
1693         iod = nvmet_fc_alloc_ls_iod(tgtport);
1694         if (!iod) {
1695                 nvmet_fc_tgtport_put(tgtport);
1696                 return -ENOENT;
1697         }
1698 
1699         iod->lsreq = lsreq;
1700         iod->fcpreq = NULL;
1701         memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len);
1702         iod->rqstdatalen = lsreqbuf_len;
1703 
1704         schedule_work(&iod->work);
1705 
1706         return 0;
1707 }
1708 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req);
1709 
1710 
1711 /*
1712  * **********************
1713  * Start of FCP handling
1714  * **********************
1715  */
1716 
1717 static int
1718 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1719 {
1720         struct scatterlist *sg;
1721         unsigned int nent;
1722 
1723         sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent);
1724         if (!sg)
1725                 goto out;
1726 
1727         fod->data_sg = sg;
1728         fod->data_sg_cnt = nent;
1729         fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent,
1730                                 ((fod->io_dir == NVMET_FCP_WRITE) ?
1731                                         DMA_FROM_DEVICE : DMA_TO_DEVICE));
1732                                 /* note: write from initiator perspective */
1733         fod->next_sg = fod->data_sg;
1734 
1735         return 0;
1736 
1737 out:
1738         return NVME_SC_INTERNAL;
1739 }
1740 
1741 static void
1742 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod)
1743 {
1744         if (!fod->data_sg || !fod->data_sg_cnt)
1745                 return;
1746 
1747         fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt,
1748                                 ((fod->io_dir == NVMET_FCP_WRITE) ?
1749                                         DMA_FROM_DEVICE : DMA_TO_DEVICE));
1750         sgl_free(fod->data_sg);
1751         fod->data_sg = NULL;
1752         fod->data_sg_cnt = 0;
1753 }
1754 
1755 
1756 static bool
1757 queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd)
1758 {
1759         u32 sqtail, used;
1760 
1761         /* egad, this is ugly. And sqtail is just a best guess */
1762         sqtail = atomic_read(&q->sqtail) % q->sqsize;
1763 
1764         used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd);
1765         return ((used * 10) >= (((u32)(q->sqsize - 1) * 9)));
1766 }
1767 
1768 /*
1769  * Prep RSP payload.
1770  * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
1771  */
1772 static void
1773 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1774                                 struct nvmet_fc_fcp_iod *fod)
1775 {
1776         struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf;
1777         struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
1778         struct nvme_completion *cqe = &ersp->cqe;
1779         u32 *cqewd = (u32 *)cqe;
1780         bool send_ersp = false;
1781         u32 rsn, rspcnt, xfr_length;
1782 
1783         if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP)
1784                 xfr_length = fod->req.transfer_len;
1785         else
1786                 xfr_length = fod->offset;
1787 
1788         /*
1789          * check to see if we can send a 0's rsp.
1790          *   Note: to send a 0's response, the NVME-FC host transport will
1791          *   recreate the CQE. The host transport knows: sq id, SQHD (last
1792          *   seen in an ersp), and command_id. Thus it will create a
1793          *   zero-filled CQE with those known fields filled in. Transport
1794          *   must send an ersp for any condition where the cqe won't match
1795          *   this.
1796          *
1797          * Here are the FC-NVME mandated cases where we must send an ersp:
1798          *  every N responses, where N=ersp_ratio
1799          *  force fabric commands to send ersp's (not in FC-NVME but good
1800          *    practice)
1801          *  normal cmds: any time status is non-zero, or status is zero
1802          *     but words 0 or 1 are non-zero.
1803          *  the SQ is 90% or more full
1804          *  the cmd is a fused command
1805          *  transferred data length not equal to cmd iu length
1806          */
1807         rspcnt = atomic_inc_return(&fod->queue->zrspcnt);
1808         if (!(rspcnt % fod->queue->ersp_ratio) ||
1809             nvme_is_fabrics((struct nvme_command *) sqe) ||
1810             xfr_length != fod->req.transfer_len ||
1811             (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] ||
1812             (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) ||
1813             queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head)))
1814                 send_ersp = true;
1815 
1816         /* re-set the fields */
1817         fod->fcpreq->rspaddr = ersp;
1818         fod->fcpreq->rspdma = fod->rspdma;
1819 
1820         if (!send_ersp) {
1821                 memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP);
1822                 fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP;
1823         } else {
1824                 ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32));
1825                 rsn = atomic_inc_return(&fod->queue->rsn);
1826                 ersp->rsn = cpu_to_be32(rsn);
1827                 ersp->xfrd_len = cpu_to_be32(xfr_length);
1828                 fod->fcpreq->rsplen = sizeof(*ersp);
1829         }
1830 
1831         fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma,
1832                                   sizeof(fod->rspiubuf), DMA_TO_DEVICE);
1833 }
1834 
1835 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq);
1836 
1837 static void
1838 nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport,
1839                                 struct nvmet_fc_fcp_iod *fod)
1840 {
1841         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1842 
1843         /* data no longer needed */
1844         nvmet_fc_free_tgt_pgs(fod);
1845 
1846         /*
1847          * if an ABTS was received or we issued the fcp_abort early
1848          * don't call abort routine again.
1849          */
1850         /* no need to take lock - lock was taken earlier to get here */
1851         if (!fod->aborted)
1852                 tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq);
1853 
1854         nvmet_fc_free_fcp_iod(fod->queue, fod);
1855 }
1856 
1857 static void
1858 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport,
1859                                 struct nvmet_fc_fcp_iod *fod)
1860 {
1861         int ret;
1862 
1863         fod->fcpreq->op = NVMET_FCOP_RSP;
1864         fod->fcpreq->timeout = 0;
1865 
1866         nvmet_fc_prep_fcp_rsp(tgtport, fod);
1867 
1868         ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1869         if (ret)
1870                 nvmet_fc_abort_op(tgtport, fod);
1871 }
1872 
1873 static void
1874 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport,
1875                                 struct nvmet_fc_fcp_iod *fod, u8 op)
1876 {
1877         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1878         struct scatterlist *sg = fod->next_sg;
1879         unsigned long flags;
1880         u32 remaininglen = fod->req.transfer_len - fod->offset;
1881         u32 tlen = 0;
1882         int ret;
1883 
1884         fcpreq->op = op;
1885         fcpreq->offset = fod->offset;
1886         fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC;
1887 
1888         /*
1889          * for next sequence:
1890          *  break at a sg element boundary
1891          *  attempt to keep sequence length capped at
1892          *    NVMET_FC_MAX_SEQ_LENGTH but allow sequence to
1893          *    be longer if a single sg element is larger
1894          *    than that amount. This is done to avoid creating
1895          *    a new sg list to use for the tgtport api.
1896          */
1897         fcpreq->sg = sg;
1898         fcpreq->sg_cnt = 0;
1899         while (tlen < remaininglen &&
1900                fcpreq->sg_cnt < tgtport->max_sg_cnt &&
1901                tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) {
1902                 fcpreq->sg_cnt++;
1903                 tlen += sg_dma_len(sg);
1904                 sg = sg_next(sg);
1905         }
1906         if (tlen < remaininglen && fcpreq->sg_cnt == 0) {
1907                 fcpreq->sg_cnt++;
1908                 tlen += min_t(u32, sg_dma_len(sg), remaininglen);
1909                 sg = sg_next(sg);
1910         }
1911         if (tlen < remaininglen)
1912                 fod->next_sg = sg;
1913         else
1914                 fod->next_sg = NULL;
1915 
1916         fcpreq->transfer_length = tlen;
1917         fcpreq->transferred_length = 0;
1918         fcpreq->fcp_error = 0;
1919         fcpreq->rsplen = 0;
1920 
1921         /*
1922          * If the last READDATA request: check if LLDD supports
1923          * combined xfr with response.
1924          */
1925         if ((op == NVMET_FCOP_READDATA) &&
1926             ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) &&
1927             (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) {
1928                 fcpreq->op = NVMET_FCOP_READDATA_RSP;
1929                 nvmet_fc_prep_fcp_rsp(tgtport, fod);
1930         }
1931 
1932         ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq);
1933         if (ret) {
1934                 /*
1935                  * should be ok to set w/o lock as its in the thread of
1936                  * execution (not an async timer routine) and doesn't
1937                  * contend with any clearing action
1938                  */
1939                 fod->abort = true;
1940 
1941                 if (op == NVMET_FCOP_WRITEDATA) {
1942                         spin_lock_irqsave(&fod->flock, flags);
1943                         fod->writedataactive = false;
1944                         spin_unlock_irqrestore(&fod->flock, flags);
1945                         nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
1946                 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
1947                         fcpreq->fcp_error = ret;
1948                         fcpreq->transferred_length = 0;
1949                         nvmet_fc_xmt_fcp_op_done(fod->fcpreq);
1950                 }
1951         }
1952 }
1953 
1954 static inline bool
1955 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort)
1956 {
1957         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1958         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1959 
1960         /* if in the middle of an io and we need to tear down */
1961         if (abort) {
1962                 if (fcpreq->op == NVMET_FCOP_WRITEDATA) {
1963                         nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
1964                         return true;
1965                 }
1966 
1967                 nvmet_fc_abort_op(tgtport, fod);
1968                 return true;
1969         }
1970 
1971         return false;
1972 }
1973 
1974 /*
1975  * actual done handler for FCP operations when completed by the lldd
1976  */
1977 static void
1978 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod)
1979 {
1980         struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq;
1981         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
1982         unsigned long flags;
1983         bool abort;
1984 
1985         spin_lock_irqsave(&fod->flock, flags);
1986         abort = fod->abort;
1987         fod->writedataactive = false;
1988         spin_unlock_irqrestore(&fod->flock, flags);
1989 
1990         switch (fcpreq->op) {
1991 
1992         case NVMET_FCOP_WRITEDATA:
1993                 if (__nvmet_fc_fod_op_abort(fod, abort))
1994                         return;
1995                 if (fcpreq->fcp_error ||
1996                     fcpreq->transferred_length != fcpreq->transfer_length) {
1997                         spin_lock(&fod->flock);
1998                         fod->abort = true;
1999                         spin_unlock(&fod->flock);
2000 
2001                         nvmet_req_complete(&fod->req, NVME_SC_INTERNAL);
2002                         return;
2003                 }
2004 
2005                 fod->offset += fcpreq->transferred_length;
2006                 if (fod->offset != fod->req.transfer_len) {
2007                         spin_lock_irqsave(&fod->flock, flags);
2008                         fod->writedataactive = true;
2009                         spin_unlock_irqrestore(&fod->flock, flags);
2010 
2011                         /* transfer the next chunk */
2012                         nvmet_fc_transfer_fcp_data(tgtport, fod,
2013                                                 NVMET_FCOP_WRITEDATA);
2014                         return;
2015                 }
2016 
2017                 /* data transfer complete, resume with nvmet layer */
2018                 nvmet_req_execute(&fod->req);
2019                 break;
2020 
2021         case NVMET_FCOP_READDATA:
2022         case NVMET_FCOP_READDATA_RSP:
2023                 if (__nvmet_fc_fod_op_abort(fod, abort))
2024                         return;
2025                 if (fcpreq->fcp_error ||
2026                     fcpreq->transferred_length != fcpreq->transfer_length) {
2027                         nvmet_fc_abort_op(tgtport, fod);
2028                         return;
2029                 }
2030 
2031                 /* success */
2032 
2033                 if (fcpreq->op == NVMET_FCOP_READDATA_RSP) {
2034                         /* data no longer needed */
2035                         nvmet_fc_free_tgt_pgs(fod);
2036                         nvmet_fc_free_fcp_iod(fod->queue, fod);
2037                         return;
2038                 }
2039 
2040                 fod->offset += fcpreq->transferred_length;
2041                 if (fod->offset != fod->req.transfer_len) {
2042                         /* transfer the next chunk */
2043                         nvmet_fc_transfer_fcp_data(tgtport, fod,
2044                                                 NVMET_FCOP_READDATA);
2045                         return;
2046                 }
2047 
2048                 /* data transfer complete, send response */
2049 
2050                 /* data no longer needed */
2051                 nvmet_fc_free_tgt_pgs(fod);
2052 
2053                 nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2054 
2055                 break;
2056 
2057         case NVMET_FCOP_RSP:
2058                 if (__nvmet_fc_fod_op_abort(fod, abort))
2059                         return;
2060                 nvmet_fc_free_fcp_iod(fod->queue, fod);
2061                 break;
2062 
2063         default:
2064                 break;
2065         }
2066 }
2067 
2068 static void
2069 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq)
2070 {
2071         struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2072 
2073         nvmet_fc_fod_op_done(fod);
2074 }
2075 
2076 /*
2077  * actual completion handler after execution by the nvmet layer
2078  */
2079 static void
2080 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport,
2081                         struct nvmet_fc_fcp_iod *fod, int status)
2082 {
2083         struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common;
2084         struct nvme_completion *cqe = &fod->rspiubuf.cqe;
2085         unsigned long flags;
2086         bool abort;
2087 
2088         spin_lock_irqsave(&fod->flock, flags);
2089         abort = fod->abort;
2090         spin_unlock_irqrestore(&fod->flock, flags);
2091 
2092         /* if we have a CQE, snoop the last sq_head value */
2093         if (!status)
2094                 fod->queue->sqhd = cqe->sq_head;
2095 
2096         if (abort) {
2097                 nvmet_fc_abort_op(tgtport, fod);
2098                 return;
2099         }
2100 
2101         /* if an error handling the cmd post initial parsing */
2102         if (status) {
2103                 /* fudge up a failed CQE status for our transport error */
2104                 memset(cqe, 0, sizeof(*cqe));
2105                 cqe->sq_head = fod->queue->sqhd;        /* echo last cqe sqhd */
2106                 cqe->sq_id = cpu_to_le16(fod->queue->qid);
2107                 cqe->command_id = sqe->command_id;
2108                 cqe->status = cpu_to_le16(status);
2109         } else {
2110 
2111                 /*
2112                  * try to push the data even if the SQE status is non-zero.
2113                  * There may be a status where data still was intended to
2114                  * be moved
2115                  */
2116                 if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) {
2117                         /* push the data over before sending rsp */
2118                         nvmet_fc_transfer_fcp_data(tgtport, fod,
2119                                                 NVMET_FCOP_READDATA);
2120                         return;
2121                 }
2122 
2123                 /* writes & no data - fall thru */
2124         }
2125 
2126         /* data no longer needed */
2127         nvmet_fc_free_tgt_pgs(fod);
2128 
2129         nvmet_fc_xmt_fcp_rsp(tgtport, fod);
2130 }
2131 
2132 
2133 static void
2134 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req)
2135 {
2136         struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req);
2137         struct nvmet_fc_tgtport *tgtport = fod->tgtport;
2138 
2139         __nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0);
2140 }
2141 
2142 
2143 /*
2144  * Actual processing routine for received FC-NVME I/O Requests from the LLD
2145  */
2146 static void
2147 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport,
2148                         struct nvmet_fc_fcp_iod *fod)
2149 {
2150         struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf;
2151         u32 xfrlen = be32_to_cpu(cmdiu->data_len);
2152         int ret;
2153 
2154         /*
2155          * if there is no nvmet mapping to the targetport there
2156          * shouldn't be requests. just terminate them.
2157          */
2158         if (!tgtport->pe)
2159                 goto transport_error;
2160 
2161         /*
2162          * Fused commands are currently not supported in the linux
2163          * implementation.
2164          *
2165          * As such, the implementation of the FC transport does not
2166          * look at the fused commands and order delivery to the upper
2167          * layer until we have both based on csn.
2168          */
2169 
2170         fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done;
2171 
2172         if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) {
2173                 fod->io_dir = NVMET_FCP_WRITE;
2174                 if (!nvme_is_write(&cmdiu->sqe))
2175                         goto transport_error;
2176         } else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) {
2177                 fod->io_dir = NVMET_FCP_READ;
2178                 if (nvme_is_write(&cmdiu->sqe))
2179                         goto transport_error;
2180         } else {
2181                 fod->io_dir = NVMET_FCP_NODATA;
2182                 if (xfrlen)
2183                         goto transport_error;
2184         }
2185 
2186         fod->req.cmd = &fod->cmdiubuf.sqe;
2187         fod->req.cqe = &fod->rspiubuf.cqe;
2188         fod->req.port = tgtport->pe->port;
2189 
2190         /* clear any response payload */
2191         memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf));
2192 
2193         fod->data_sg = NULL;
2194         fod->data_sg_cnt = 0;
2195 
2196         ret = nvmet_req_init(&fod->req,
2197                                 &fod->queue->nvme_cq,
2198                                 &fod->queue->nvme_sq,
2199                                 &nvmet_fc_tgt_fcp_ops);
2200         if (!ret) {
2201                 /* bad SQE content or invalid ctrl state */
2202                 /* nvmet layer has already called op done to send rsp. */
2203                 return;
2204         }
2205 
2206         fod->req.transfer_len = xfrlen;
2207 
2208         /* keep a running counter of tail position */
2209         atomic_inc(&fod->queue->sqtail);
2210 
2211         if (fod->req.transfer_len) {
2212                 ret = nvmet_fc_alloc_tgt_pgs(fod);
2213                 if (ret) {
2214                         nvmet_req_complete(&fod->req, ret);
2215                         return;
2216                 }
2217         }
2218         fod->req.sg = fod->data_sg;
2219         fod->req.sg_cnt = fod->data_sg_cnt;
2220         fod->offset = 0;
2221 
2222         if (fod->io_dir == NVMET_FCP_WRITE) {
2223                 /* pull the data over before invoking nvmet layer */
2224                 nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA);
2225                 return;
2226         }
2227 
2228         /*
2229          * Reads or no data:
2230          *
2231          * can invoke the nvmet_layer now. If read data, cmd completion will
2232          * push the data
2233          */
2234         nvmet_req_execute(&fod->req);
2235         return;
2236 
2237 transport_error:
2238         nvmet_fc_abort_op(tgtport, fod);
2239 }
2240 
2241 /**
2242  * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2243  *                       upon the reception of a NVME FCP CMD IU.
2244  *
2245  * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2246  * layer for processing.
2247  *
2248  * The nvmet_fc layer allocates a local job structure (struct
2249  * nvmet_fc_fcp_iod) from the queue for the io and copies the
2250  * CMD IU buffer to the job structure. As such, on a successful
2251  * completion (returns 0), the LLDD may immediately free/reuse
2252  * the CMD IU buffer passed in the call.
2253  *
2254  * However, in some circumstances, due to the packetized nature of FC
2255  * and the api of the FC LLDD which may issue a hw command to send the
2256  * response, but the LLDD may not get the hw completion for that command
2257  * and upcall the nvmet_fc layer before a new command may be
2258  * asynchronously received - its possible for a command to be received
2259  * before the LLDD and nvmet_fc have recycled the job structure. It gives
2260  * the appearance of more commands received than fits in the sq.
2261  * To alleviate this scenario, a temporary queue is maintained in the
2262  * transport for pending LLDD requests waiting for a queue job structure.
2263  * In these "overrun" cases, a temporary queue element is allocated
2264  * the LLDD request and CMD iu buffer information remembered, and the
2265  * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2266  * structure is freed, it is immediately reallocated for anything on the
2267  * pending request list. The LLDDs defer_rcv() callback is called,
2268  * informing the LLDD that it may reuse the CMD IU buffer, and the io
2269  * is then started normally with the transport.
2270  *
2271  * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2272  * the completion as successful but must not reuse the CMD IU buffer
2273  * until the LLDD's defer_rcv() callback has been called for the
2274  * corresponding struct nvmefc_tgt_fcp_req pointer.
2275  *
2276  * If there is any other condition in which an error occurs, the
2277  * transport will return a non-zero status indicating the error.
2278  * In all cases other than -EOVERFLOW, the transport has not accepted the
2279  * request and the LLDD should abort the exchange.
2280  *
2281  * @target_port: pointer to the (registered) target port the FCP CMD IU
2282  *              was received on.
2283  * @fcpreq:     pointer to a fcpreq request structure to be used to reference
2284  *              the exchange corresponding to the FCP Exchange.
2285  * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU
2286  * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2287  */
2288 int
2289 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port,
2290                         struct nvmefc_tgt_fcp_req *fcpreq,
2291                         void *cmdiubuf, u32 cmdiubuf_len)
2292 {
2293         struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port);
2294         struct nvme_fc_cmd_iu *cmdiu = cmdiubuf;
2295         struct nvmet_fc_tgt_queue *queue;
2296         struct nvmet_fc_fcp_iod *fod;
2297         struct nvmet_fc_defer_fcp_req *deferfcp;
2298         unsigned long flags;
2299 
2300         /* validate iu, so the connection id can be used to find the queue */
2301         if ((cmdiubuf_len != sizeof(*cmdiu)) ||
2302                         (cmdiu->scsi_id != NVME_CMD_SCSI_ID) ||
2303                         (cmdiu->fc_id != NVME_CMD_FC_ID) ||
2304                         (be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4)))
2305                 return -EIO;
2306 
2307         queue = nvmet_fc_find_target_queue(tgtport,
2308                                 be64_to_cpu(cmdiu->connection_id));
2309         if (!queue)
2310                 return -ENOTCONN;
2311 
2312         /*
2313          * note: reference taken by find_target_queue
2314          * After successful fod allocation, the fod will inherit the
2315          * ownership of that reference and will remove the reference
2316          * when the fod is freed.
2317          */
2318 
2319         spin_lock_irqsave(&queue->qlock, flags);
2320 
2321         fod = nvmet_fc_alloc_fcp_iod(queue);
2322         if (fod) {
2323                 spin_unlock_irqrestore(&queue->qlock, flags);
2324 
2325                 fcpreq->nvmet_fc_private = fod;
2326                 fod->fcpreq = fcpreq;
2327 
2328                 memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len);
2329 
2330                 nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq);
2331 
2332                 return 0;
2333         }
2334 
2335         if (!tgtport->ops->defer_rcv) {
2336                 spin_unlock_irqrestore(&queue->qlock, flags);
2337                 /* release the queue lookup reference */
2338                 nvmet_fc_tgt_q_put(queue);
2339                 return -ENOENT;
2340         }
2341 
2342         deferfcp = list_first_entry_or_null(&queue->avail_defer_list,
2343                         struct nvmet_fc_defer_fcp_req, req_list);
2344         if (deferfcp) {
2345                 /* Just re-use one that was previously allocated */
2346                 list_del(&deferfcp->req_list);
2347         } else {
2348                 spin_unlock_irqrestore(&queue->qlock, flags);
2349 
2350                 /* Now we need to dynamically allocate one */
2351                 deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL);
2352                 if (!deferfcp) {
2353                         /* release the queue lookup reference */
2354                         nvmet_fc_tgt_q_put(queue);
2355                         return -ENOMEM;
2356                 }
2357                 spin_lock_irqsave(&queue->qlock, flags);
2358         }
2359 
2360         /* For now, use rspaddr / rsplen to save payload information */
2361         fcpreq->rspaddr = cmdiubuf;
2362         fcpreq->rsplen  = cmdiubuf_len;
2363         deferfcp->fcp_req = fcpreq;
2364 
2365         /* defer processing till a fod becomes available */
2366         list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list);
2367 
2368         /* NOTE: the queue lookup reference is still valid */
2369 
2370         spin_unlock_irqrestore(&queue->qlock, flags);
2371 
2372         return -EOVERFLOW;
2373 }
2374 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req);
2375 
2376 /**
2377  * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2378  *                       upon the reception of an ABTS for a FCP command
2379  *
2380  * Notify the transport that an ABTS has been received for a FCP command
2381  * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2382  * LLDD believes the command is still being worked on
2383  * (template_ops->fcp_req_release() has not been called).
2384  *
2385  * The transport will wait for any outstanding work (an op to the LLDD,
2386  * which the lldd should complete with error due to the ABTS; or the
2387  * completion from the nvmet layer of the nvme command), then will
2388  * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2389  * return the i/o context to the LLDD.  The LLDD may send the BA_ACC
2390  * to the ABTS either after return from this function (assuming any
2391  * outstanding op work has been terminated) or upon the callback being
2392  * called.
2393  *
2394  * @target_port: pointer to the (registered) target port the FCP CMD IU
2395  *              was received on.
2396  * @fcpreq:     pointer to the fcpreq request structure that corresponds
2397  *              to the exchange that received the ABTS.
2398  */
2399 void
2400 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port,
2401                         struct nvmefc_tgt_fcp_req *fcpreq)
2402 {
2403         struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private;
2404         struct nvmet_fc_tgt_queue *queue;
2405         unsigned long flags;
2406 
2407         if (!fod || fod->fcpreq != fcpreq)
2408                 /* job appears to have already completed, ignore abort */
2409                 return;
2410 
2411         queue = fod->queue;
2412 
2413         spin_lock_irqsave(&queue->qlock, flags);
2414         if (fod->active) {
2415                 /*
2416                  * mark as abort. The abort handler, invoked upon completion
2417                  * of any work, will detect the aborted status and do the
2418                  * callback.
2419                  */
2420                 spin_lock(&fod->flock);
2421                 fod->abort = true;
2422                 fod->aborted = true;
2423                 spin_unlock(&fod->flock);
2424         }
2425         spin_unlock_irqrestore(&queue->qlock, flags);
2426 }
2427 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort);
2428 
2429 
2430 struct nvmet_fc_traddr {
2431         u64     nn;
2432         u64     pn;
2433 };
2434 
2435 static int
2436 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
2437 {
2438         u64 token64;
2439 
2440         if (match_u64(sstr, &token64))
2441                 return -EINVAL;
2442         *val = token64;
2443 
2444         return 0;
2445 }
2446 
2447 /*
2448  * This routine validates and extracts the WWN's from the TRADDR string.
2449  * As kernel parsers need the 0x to determine number base, universally
2450  * build string to parse with 0x prefix before parsing name strings.
2451  */
2452 static int
2453 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
2454 {
2455         char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
2456         substring_t wwn = { name, &name[sizeof(name)-1] };
2457         int nnoffset, pnoffset;
2458 
2459         /* validate if string is one of the 2 allowed formats */
2460         if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
2461                         !strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
2462                         !strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
2463                                 "pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
2464                 nnoffset = NVME_FC_TRADDR_OXNNLEN;
2465                 pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
2466                                                 NVME_FC_TRADDR_OXNNLEN;
2467         } else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
2468                         !strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
2469                         !strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
2470                                 "pn-", NVME_FC_TRADDR_NNLEN))) {
2471                 nnoffset = NVME_FC_TRADDR_NNLEN;
2472                 pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
2473         } else
2474                 goto out_einval;
2475 
2476         name[0] = '0';
2477         name[1] = 'x';
2478         name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
2479 
2480         memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2481         if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
2482                 goto out_einval;
2483 
2484         memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
2485         if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
2486                 goto out_einval;
2487 
2488         return 0;
2489 
2490 out_einval:
2491         pr_warn("%s: bad traddr string\n", __func__);
2492         return -EINVAL;
2493 }
2494 
2495 static int
2496 nvmet_fc_add_port(struct nvmet_port *port)
2497 {
2498         struct nvmet_fc_tgtport *tgtport;
2499         struct nvmet_fc_port_entry *pe;
2500         struct nvmet_fc_traddr traddr = { 0L, 0L };
2501         unsigned long flags;
2502         int ret;
2503 
2504         /* validate the address info */
2505         if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) ||
2506             (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC))
2507                 return -EINVAL;
2508 
2509         /* map the traddr address info to a target port */
2510 
2511         ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr,
2512                         sizeof(port->disc_addr.traddr));
2513         if (ret)
2514                 return ret;
2515 
2516         pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2517         if (!pe)
2518                 return -ENOMEM;
2519 
2520         ret = -ENXIO;
2521         spin_lock_irqsave(&nvmet_fc_tgtlock, flags);
2522         list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) {
2523                 if ((tgtport->fc_target_port.node_name == traddr.nn) &&
2524                     (tgtport->fc_target_port.port_name == traddr.pn)) {
2525                         /* a FC port can only be 1 nvmet port id */
2526                         if (!tgtport->pe) {
2527                                 nvmet_fc_portentry_bind(tgtport, pe, port);
2528                                 ret = 0;
2529                         } else
2530                                 ret = -EALREADY;
2531                         break;
2532                 }
2533         }
2534         spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags);
2535 
2536         if (ret)
2537                 kfree(pe);
2538 
2539         return ret;
2540 }
2541 
2542 static void
2543 nvmet_fc_remove_port(struct nvmet_port *port)
2544 {
2545         struct nvmet_fc_port_entry *pe = port->priv;
2546 
2547         nvmet_fc_portentry_unbind(pe);
2548 
2549         kfree(pe);
2550 }
2551 
2552 static void
2553 nvmet_fc_discovery_chg(struct nvmet_port *port)
2554 {
2555         struct nvmet_fc_port_entry *pe = port->priv;
2556         struct nvmet_fc_tgtport *tgtport = pe->tgtport;
2557 
2558         if (tgtport && tgtport->ops->discovery_event)
2559                 tgtport->ops->discovery_event(&tgtport->fc_target_port);
2560 }
2561 
2562 static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = {
2563         .owner                  = THIS_MODULE,
2564         .type                   = NVMF_TRTYPE_FC,
2565         .msdbd                  = 1,
2566         .add_port               = nvmet_fc_add_port,
2567         .remove_port            = nvmet_fc_remove_port,
2568         .queue_response         = nvmet_fc_fcp_nvme_cmd_done,
2569         .delete_ctrl            = nvmet_fc_delete_ctrl,
2570         .discovery_chg          = nvmet_fc_discovery_chg,
2571 };
2572 
2573 static int __init nvmet_fc_init_module(void)
2574 {
2575         return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops);
2576 }
2577 
2578 static void __exit nvmet_fc_exit_module(void)
2579 {
2580         /* sanity check - all lports should be removed */
2581         if (!list_empty(&nvmet_fc_target_list))
2582                 pr_warn("%s: targetport list not empty\n", __func__);
2583 
2584         nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops);
2585 
2586         ida_destroy(&nvmet_fc_tgtport_cnt);
2587 }
2588 
2589 module_init(nvmet_fc_init_module);
2590 module_exit(nvmet_fc_exit_module);
2591 
2592 MODULE_LICENSE("GPL v2");

/* [<][>][^][v][top][bottom][index][help] */