This source file includes following definitions.
- nvme_mpath_unfreeze
- nvme_mpath_wait_freeze
- nvme_mpath_start_freeze
- nvme_set_disk_name
- nvme_failover_req
- nvme_kick_requeue_lists
- nvme_mpath_clear_current_path
- nvme_mpath_clear_ctrl_paths
- nvme_path_is_disabled
- __nvme_find_path
- nvme_next_ns
- nvme_round_robin_path
- nvme_path_is_optimized
- nvme_find_path
- nvme_available_path
- nvme_ns_head_make_request
- nvme_requeue_work
- nvme_mpath_alloc_disk
- nvme_mpath_set_live
- nvme_parse_ana_log
- nvme_state_is_live
- nvme_update_ns_ana_state
- nvme_update_ana_state
- nvme_read_ana_log
- nvme_ana_work
- nvme_anatt_timeout
- nvme_mpath_stop
- nvme_subsys_iopolicy_show
- nvme_subsys_iopolicy_store
- ana_grpid_show
- ana_state_show
- nvme_set_ns_ana_state
- nvme_mpath_add_disk
- nvme_mpath_remove_disk
- nvme_mpath_init
- nvme_mpath_uninit
1
2
3
4
5
6 #include <linux/moduleparam.h>
7 #include <trace/events/block.h>
8 #include "nvme.h"
9
10 static bool multipath = true;
11 module_param(multipath, bool, 0444);
12 MODULE_PARM_DESC(multipath,
13 "turn on native support for multiple controllers per subsystem");
14
15 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
16 {
17 struct nvme_ns_head *h;
18
19 lockdep_assert_held(&subsys->lock);
20 list_for_each_entry(h, &subsys->nsheads, entry)
21 if (h->disk)
22 blk_mq_unfreeze_queue(h->disk->queue);
23 }
24
25 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
26 {
27 struct nvme_ns_head *h;
28
29 lockdep_assert_held(&subsys->lock);
30 list_for_each_entry(h, &subsys->nsheads, entry)
31 if (h->disk)
32 blk_mq_freeze_queue_wait(h->disk->queue);
33 }
34
35 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
36 {
37 struct nvme_ns_head *h;
38
39 lockdep_assert_held(&subsys->lock);
40 list_for_each_entry(h, &subsys->nsheads, entry)
41 if (h->disk)
42 blk_freeze_queue_start(h->disk->queue);
43 }
44
45
46
47
48
49
50
51
52 void nvme_set_disk_name(char *disk_name, struct nvme_ns *ns,
53 struct nvme_ctrl *ctrl, int *flags)
54 {
55 if (!multipath) {
56 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance);
57 } else if (ns->head->disk) {
58 sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
59 ctrl->instance, ns->head->instance);
60 *flags = GENHD_FL_HIDDEN;
61 } else {
62 sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance,
63 ns->head->instance);
64 }
65 }
66
67 void nvme_failover_req(struct request *req)
68 {
69 struct nvme_ns *ns = req->q->queuedata;
70 u16 status = nvme_req(req)->status;
71 unsigned long flags;
72
73 spin_lock_irqsave(&ns->head->requeue_lock, flags);
74 blk_steal_bios(&ns->head->requeue_list, req);
75 spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
76 blk_mq_end_request(req, 0);
77
78 switch (status & 0x7ff) {
79 case NVME_SC_ANA_TRANSITION:
80 case NVME_SC_ANA_INACCESSIBLE:
81 case NVME_SC_ANA_PERSISTENT_LOSS:
82
83
84
85
86
87
88
89
90
91 nvme_mpath_clear_current_path(ns);
92 if (ns->ctrl->ana_log_buf) {
93 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
94 queue_work(nvme_wq, &ns->ctrl->ana_work);
95 }
96 break;
97 case NVME_SC_HOST_PATH_ERROR:
98 case NVME_SC_HOST_ABORTED_CMD:
99
100
101
102
103 nvme_mpath_clear_current_path(ns);
104 break;
105 default:
106
107
108
109
110 nvme_reset_ctrl(ns->ctrl);
111 break;
112 }
113
114 kblockd_schedule_work(&ns->head->requeue_work);
115 }
116
117 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
118 {
119 struct nvme_ns *ns;
120
121 down_read(&ctrl->namespaces_rwsem);
122 list_for_each_entry(ns, &ctrl->namespaces, list) {
123 if (ns->head->disk)
124 kblockd_schedule_work(&ns->head->requeue_work);
125 }
126 up_read(&ctrl->namespaces_rwsem);
127 }
128
129 static const char *nvme_ana_state_names[] = {
130 [0] = "invalid state",
131 [NVME_ANA_OPTIMIZED] = "optimized",
132 [NVME_ANA_NONOPTIMIZED] = "non-optimized",
133 [NVME_ANA_INACCESSIBLE] = "inaccessible",
134 [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss",
135 [NVME_ANA_CHANGE] = "change",
136 };
137
138 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
139 {
140 struct nvme_ns_head *head = ns->head;
141 bool changed = false;
142 int node;
143
144 if (!head)
145 goto out;
146
147 for_each_node(node) {
148 if (ns == rcu_access_pointer(head->current_path[node])) {
149 rcu_assign_pointer(head->current_path[node], NULL);
150 changed = true;
151 }
152 }
153 out:
154 return changed;
155 }
156
157 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
158 {
159 struct nvme_ns *ns;
160
161 mutex_lock(&ctrl->scan_lock);
162 down_read(&ctrl->namespaces_rwsem);
163 list_for_each_entry(ns, &ctrl->namespaces, list)
164 if (nvme_mpath_clear_current_path(ns))
165 kblockd_schedule_work(&ns->head->requeue_work);
166 up_read(&ctrl->namespaces_rwsem);
167 mutex_unlock(&ctrl->scan_lock);
168 }
169
170 static bool nvme_path_is_disabled(struct nvme_ns *ns)
171 {
172 return ns->ctrl->state != NVME_CTRL_LIVE ||
173 test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
174 test_bit(NVME_NS_REMOVING, &ns->flags);
175 }
176
177 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
178 {
179 int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
180 struct nvme_ns *found = NULL, *fallback = NULL, *ns;
181
182 list_for_each_entry_rcu(ns, &head->list, siblings) {
183 if (nvme_path_is_disabled(ns))
184 continue;
185
186 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
187 distance = node_distance(node, ns->ctrl->numa_node);
188 else
189 distance = LOCAL_DISTANCE;
190
191 switch (ns->ana_state) {
192 case NVME_ANA_OPTIMIZED:
193 if (distance < found_distance) {
194 found_distance = distance;
195 found = ns;
196 }
197 break;
198 case NVME_ANA_NONOPTIMIZED:
199 if (distance < fallback_distance) {
200 fallback_distance = distance;
201 fallback = ns;
202 }
203 break;
204 default:
205 break;
206 }
207 }
208
209 if (!found)
210 found = fallback;
211 if (found)
212 rcu_assign_pointer(head->current_path[node], found);
213 return found;
214 }
215
216 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
217 struct nvme_ns *ns)
218 {
219 ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
220 siblings);
221 if (ns)
222 return ns;
223 return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
224 }
225
226 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
227 int node, struct nvme_ns *old)
228 {
229 struct nvme_ns *ns, *found, *fallback = NULL;
230
231 if (list_is_singular(&head->list)) {
232 if (nvme_path_is_disabled(old))
233 return NULL;
234 return old;
235 }
236
237 for (ns = nvme_next_ns(head, old);
238 ns != old;
239 ns = nvme_next_ns(head, ns)) {
240 if (nvme_path_is_disabled(ns))
241 continue;
242
243 if (ns->ana_state == NVME_ANA_OPTIMIZED) {
244 found = ns;
245 goto out;
246 }
247 if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
248 fallback = ns;
249 }
250
251 if (!fallback)
252 return NULL;
253 found = fallback;
254 out:
255 rcu_assign_pointer(head->current_path[node], found);
256 return found;
257 }
258
259 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
260 {
261 return ns->ctrl->state == NVME_CTRL_LIVE &&
262 ns->ana_state == NVME_ANA_OPTIMIZED;
263 }
264
265 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
266 {
267 int node = numa_node_id();
268 struct nvme_ns *ns;
269
270 ns = srcu_dereference(head->current_path[node], &head->srcu);
271 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR && ns)
272 ns = nvme_round_robin_path(head, node, ns);
273 if (unlikely(!ns || !nvme_path_is_optimized(ns)))
274 ns = __nvme_find_path(head, node);
275 return ns;
276 }
277
278 static bool nvme_available_path(struct nvme_ns_head *head)
279 {
280 struct nvme_ns *ns;
281
282 list_for_each_entry_rcu(ns, &head->list, siblings) {
283 switch (ns->ctrl->state) {
284 case NVME_CTRL_LIVE:
285 case NVME_CTRL_RESETTING:
286 case NVME_CTRL_CONNECTING:
287
288 return true;
289 default:
290 break;
291 }
292 }
293 return false;
294 }
295
296 static blk_qc_t nvme_ns_head_make_request(struct request_queue *q,
297 struct bio *bio)
298 {
299 struct nvme_ns_head *head = q->queuedata;
300 struct device *dev = disk_to_dev(head->disk);
301 struct nvme_ns *ns;
302 blk_qc_t ret = BLK_QC_T_NONE;
303 int srcu_idx;
304
305
306
307
308
309
310
311 blk_queue_split(q, &bio);
312
313 srcu_idx = srcu_read_lock(&head->srcu);
314 ns = nvme_find_path(head);
315 if (likely(ns)) {
316 bio->bi_disk = ns->disk;
317 bio->bi_opf |= REQ_NVME_MPATH;
318 trace_block_bio_remap(bio->bi_disk->queue, bio,
319 disk_devt(ns->head->disk),
320 bio->bi_iter.bi_sector);
321 ret = direct_make_request(bio);
322 } else if (nvme_available_path(head)) {
323 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
324
325 spin_lock_irq(&head->requeue_lock);
326 bio_list_add(&head->requeue_list, bio);
327 spin_unlock_irq(&head->requeue_lock);
328 } else {
329 dev_warn_ratelimited(dev, "no available path - failing I/O\n");
330
331 bio->bi_status = BLK_STS_IOERR;
332 bio_endio(bio);
333 }
334
335 srcu_read_unlock(&head->srcu, srcu_idx);
336 return ret;
337 }
338
339 static void nvme_requeue_work(struct work_struct *work)
340 {
341 struct nvme_ns_head *head =
342 container_of(work, struct nvme_ns_head, requeue_work);
343 struct bio *bio, *next;
344
345 spin_lock_irq(&head->requeue_lock);
346 next = bio_list_get(&head->requeue_list);
347 spin_unlock_irq(&head->requeue_lock);
348
349 while ((bio = next) != NULL) {
350 next = bio->bi_next;
351 bio->bi_next = NULL;
352
353
354
355
356
357 bio->bi_disk = head->disk;
358 generic_make_request(bio);
359 }
360 }
361
362 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
363 {
364 struct request_queue *q;
365 bool vwc = false;
366
367 mutex_init(&head->lock);
368 bio_list_init(&head->requeue_list);
369 spin_lock_init(&head->requeue_lock);
370 INIT_WORK(&head->requeue_work, nvme_requeue_work);
371
372
373
374
375
376
377 if (!(ctrl->subsys->cmic & (1 << 1)) || !multipath)
378 return 0;
379
380 q = blk_alloc_queue_node(GFP_KERNEL, ctrl->numa_node);
381 if (!q)
382 goto out;
383 q->queuedata = head;
384 blk_queue_make_request(q, nvme_ns_head_make_request);
385 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
386
387 blk_queue_logical_block_size(q, 512);
388 blk_set_stacking_limits(&q->limits);
389
390
391 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
392 vwc = true;
393 blk_queue_write_cache(q, vwc, vwc);
394
395 head->disk = alloc_disk(0);
396 if (!head->disk)
397 goto out_cleanup_queue;
398 head->disk->fops = &nvme_ns_head_ops;
399 head->disk->private_data = head;
400 head->disk->queue = q;
401 head->disk->flags = GENHD_FL_EXT_DEVT;
402 sprintf(head->disk->disk_name, "nvme%dn%d",
403 ctrl->subsys->instance, head->instance);
404 return 0;
405
406 out_cleanup_queue:
407 blk_cleanup_queue(q);
408 out:
409 return -ENOMEM;
410 }
411
412 static void nvme_mpath_set_live(struct nvme_ns *ns)
413 {
414 struct nvme_ns_head *head = ns->head;
415
416 lockdep_assert_held(&ns->head->lock);
417
418 if (!head->disk)
419 return;
420
421 if (!(head->disk->flags & GENHD_FL_UP))
422 device_add_disk(&head->subsys->dev, head->disk,
423 nvme_ns_id_attr_groups);
424
425 if (nvme_path_is_optimized(ns)) {
426 int node, srcu_idx;
427
428 srcu_idx = srcu_read_lock(&head->srcu);
429 for_each_node(node)
430 __nvme_find_path(head, node);
431 srcu_read_unlock(&head->srcu, srcu_idx);
432 }
433
434 synchronize_srcu(&ns->head->srcu);
435 kblockd_schedule_work(&ns->head->requeue_work);
436 }
437
438 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
439 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
440 void *))
441 {
442 void *base = ctrl->ana_log_buf;
443 size_t offset = sizeof(struct nvme_ana_rsp_hdr);
444 int error, i;
445
446 lockdep_assert_held(&ctrl->ana_lock);
447
448 for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
449 struct nvme_ana_group_desc *desc = base + offset;
450 u32 nr_nsids = le32_to_cpu(desc->nnsids);
451 size_t nsid_buf_size = nr_nsids * sizeof(__le32);
452
453 if (WARN_ON_ONCE(desc->grpid == 0))
454 return -EINVAL;
455 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
456 return -EINVAL;
457 if (WARN_ON_ONCE(desc->state == 0))
458 return -EINVAL;
459 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
460 return -EINVAL;
461
462 offset += sizeof(*desc);
463 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
464 return -EINVAL;
465
466 error = cb(ctrl, desc, data);
467 if (error)
468 return error;
469
470 offset += nsid_buf_size;
471 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
472 return -EINVAL;
473 }
474
475 return 0;
476 }
477
478 static inline bool nvme_state_is_live(enum nvme_ana_state state)
479 {
480 return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
481 }
482
483 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
484 struct nvme_ns *ns)
485 {
486 mutex_lock(&ns->head->lock);
487 ns->ana_grpid = le32_to_cpu(desc->grpid);
488 ns->ana_state = desc->state;
489 clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
490
491 if (nvme_state_is_live(ns->ana_state))
492 nvme_mpath_set_live(ns);
493 mutex_unlock(&ns->head->lock);
494 }
495
496 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
497 struct nvme_ana_group_desc *desc, void *data)
498 {
499 u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
500 unsigned *nr_change_groups = data;
501 struct nvme_ns *ns;
502
503 dev_dbg(ctrl->device, "ANA group %d: %s.\n",
504 le32_to_cpu(desc->grpid),
505 nvme_ana_state_names[desc->state]);
506
507 if (desc->state == NVME_ANA_CHANGE)
508 (*nr_change_groups)++;
509
510 if (!nr_nsids)
511 return 0;
512
513 down_read(&ctrl->namespaces_rwsem);
514 list_for_each_entry(ns, &ctrl->namespaces, list) {
515 unsigned nsid = le32_to_cpu(desc->nsids[n]);
516
517 if (ns->head->ns_id < nsid)
518 continue;
519 if (ns->head->ns_id == nsid)
520 nvme_update_ns_ana_state(desc, ns);
521 if (++n == nr_nsids)
522 break;
523 }
524 up_read(&ctrl->namespaces_rwsem);
525 return 0;
526 }
527
528 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
529 {
530 u32 nr_change_groups = 0;
531 int error;
532
533 mutex_lock(&ctrl->ana_lock);
534 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0,
535 ctrl->ana_log_buf, ctrl->ana_log_size, 0);
536 if (error) {
537 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
538 goto out_unlock;
539 }
540
541 error = nvme_parse_ana_log(ctrl, &nr_change_groups,
542 nvme_update_ana_state);
543 if (error)
544 goto out_unlock;
545
546
547
548
549
550
551
552
553
554
555
556
557 if (nr_change_groups)
558 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
559 else
560 del_timer_sync(&ctrl->anatt_timer);
561 out_unlock:
562 mutex_unlock(&ctrl->ana_lock);
563 return error;
564 }
565
566 static void nvme_ana_work(struct work_struct *work)
567 {
568 struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
569
570 nvme_read_ana_log(ctrl);
571 }
572
573 static void nvme_anatt_timeout(struct timer_list *t)
574 {
575 struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
576
577 dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
578 nvme_reset_ctrl(ctrl);
579 }
580
581 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
582 {
583 if (!nvme_ctrl_use_ana(ctrl))
584 return;
585 del_timer_sync(&ctrl->anatt_timer);
586 cancel_work_sync(&ctrl->ana_work);
587 }
588
589 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \
590 struct device_attribute subsys_attr_##_name = \
591 __ATTR(_name, _mode, _show, _store)
592
593 static const char *nvme_iopolicy_names[] = {
594 [NVME_IOPOLICY_NUMA] = "numa",
595 [NVME_IOPOLICY_RR] = "round-robin",
596 };
597
598 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
599 struct device_attribute *attr, char *buf)
600 {
601 struct nvme_subsystem *subsys =
602 container_of(dev, struct nvme_subsystem, dev);
603
604 return sprintf(buf, "%s\n",
605 nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
606 }
607
608 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
609 struct device_attribute *attr, const char *buf, size_t count)
610 {
611 struct nvme_subsystem *subsys =
612 container_of(dev, struct nvme_subsystem, dev);
613 int i;
614
615 for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
616 if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
617 WRITE_ONCE(subsys->iopolicy, i);
618 return count;
619 }
620 }
621
622 return -EINVAL;
623 }
624 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
625 nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
626
627 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
628 char *buf)
629 {
630 return sprintf(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
631 }
632 DEVICE_ATTR_RO(ana_grpid);
633
634 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
635 char *buf)
636 {
637 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
638
639 return sprintf(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
640 }
641 DEVICE_ATTR_RO(ana_state);
642
643 static int nvme_set_ns_ana_state(struct nvme_ctrl *ctrl,
644 struct nvme_ana_group_desc *desc, void *data)
645 {
646 struct nvme_ns *ns = data;
647
648 if (ns->ana_grpid == le32_to_cpu(desc->grpid)) {
649 nvme_update_ns_ana_state(desc, ns);
650 return -ENXIO;
651 }
652
653 return 0;
654 }
655
656 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id)
657 {
658 if (nvme_ctrl_use_ana(ns->ctrl)) {
659 mutex_lock(&ns->ctrl->ana_lock);
660 ns->ana_grpid = le32_to_cpu(id->anagrpid);
661 nvme_parse_ana_log(ns->ctrl, ns, nvme_set_ns_ana_state);
662 mutex_unlock(&ns->ctrl->ana_lock);
663 } else {
664 mutex_lock(&ns->head->lock);
665 ns->ana_state = NVME_ANA_OPTIMIZED;
666 nvme_mpath_set_live(ns);
667 mutex_unlock(&ns->head->lock);
668 }
669 }
670
671 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
672 {
673 if (!head->disk)
674 return;
675 if (head->disk->flags & GENHD_FL_UP)
676 del_gendisk(head->disk);
677 blk_set_queue_dying(head->disk->queue);
678
679 kblockd_schedule_work(&head->requeue_work);
680 flush_work(&head->requeue_work);
681 blk_cleanup_queue(head->disk->queue);
682 put_disk(head->disk);
683 }
684
685 int nvme_mpath_init(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
686 {
687 int error;
688
689
690 if (!multipath || !ctrl->subsys || !(ctrl->subsys->cmic & (1 << 3)))
691 return 0;
692
693 ctrl->anacap = id->anacap;
694 ctrl->anatt = id->anatt;
695 ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
696 ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
697
698 mutex_init(&ctrl->ana_lock);
699 timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
700 ctrl->ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
701 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc);
702 ctrl->ana_log_size += ctrl->max_namespaces * sizeof(__le32);
703
704 if (ctrl->ana_log_size > ctrl->max_hw_sectors << SECTOR_SHIFT) {
705 dev_err(ctrl->device,
706 "ANA log page size (%zd) larger than MDTS (%d).\n",
707 ctrl->ana_log_size,
708 ctrl->max_hw_sectors << SECTOR_SHIFT);
709 dev_err(ctrl->device, "disabling ANA support.\n");
710 return 0;
711 }
712
713 INIT_WORK(&ctrl->ana_work, nvme_ana_work);
714 kfree(ctrl->ana_log_buf);
715 ctrl->ana_log_buf = kmalloc(ctrl->ana_log_size, GFP_KERNEL);
716 if (!ctrl->ana_log_buf) {
717 error = -ENOMEM;
718 goto out;
719 }
720
721 error = nvme_read_ana_log(ctrl);
722 if (error)
723 goto out_free_ana_log_buf;
724 return 0;
725 out_free_ana_log_buf:
726 kfree(ctrl->ana_log_buf);
727 ctrl->ana_log_buf = NULL;
728 out:
729 return error;
730 }
731
732 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
733 {
734 kfree(ctrl->ana_log_buf);
735 ctrl->ana_log_buf = NULL;
736 }
737