root/drivers/nvme/host/rdma.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. to_rdma_ctrl
  2. put_unaligned_le24
  3. nvme_rdma_queue_idx
  4. nvme_rdma_poll_queue
  5. nvme_rdma_inline_data_size
  6. nvme_rdma_free_qe
  7. nvme_rdma_alloc_qe
  8. nvme_rdma_free_ring
  9. nvme_rdma_alloc_ring
  10. nvme_rdma_qp_event
  11. nvme_rdma_wait_for_cm
  12. nvme_rdma_create_qp
  13. nvme_rdma_exit_request
  14. nvme_rdma_init_request
  15. nvme_rdma_init_hctx
  16. nvme_rdma_init_admin_hctx
  17. nvme_rdma_free_dev
  18. nvme_rdma_dev_put
  19. nvme_rdma_dev_get
  20. nvme_rdma_find_get_device
  21. nvme_rdma_destroy_queue_ib
  22. nvme_rdma_get_max_fr_pages
  23. nvme_rdma_create_queue_ib
  24. nvme_rdma_alloc_queue
  25. __nvme_rdma_stop_queue
  26. nvme_rdma_stop_queue
  27. nvme_rdma_free_queue
  28. nvme_rdma_free_io_queues
  29. nvme_rdma_stop_io_queues
  30. nvme_rdma_start_queue
  31. nvme_rdma_start_io_queues
  32. nvme_rdma_alloc_io_queues
  33. nvme_rdma_alloc_tagset
  34. nvme_rdma_destroy_admin_queue
  35. nvme_rdma_configure_admin_queue
  36. nvme_rdma_destroy_io_queues
  37. nvme_rdma_configure_io_queues
  38. nvme_rdma_teardown_admin_queue
  39. nvme_rdma_teardown_io_queues
  40. nvme_rdma_free_ctrl
  41. nvme_rdma_reconnect_or_remove
  42. nvme_rdma_setup_ctrl
  43. nvme_rdma_reconnect_ctrl_work
  44. nvme_rdma_error_recovery_work
  45. nvme_rdma_error_recovery
  46. nvme_rdma_wr_error
  47. nvme_rdma_memreg_done
  48. nvme_rdma_inv_rkey_done
  49. nvme_rdma_inv_rkey
  50. nvme_rdma_unmap_data
  51. nvme_rdma_set_sg_null
  52. nvme_rdma_map_sg_inline
  53. nvme_rdma_map_sg_single
  54. nvme_rdma_map_sg_fr
  55. nvme_rdma_map_data
  56. nvme_rdma_send_done
  57. nvme_rdma_post_send
  58. nvme_rdma_post_recv
  59. nvme_rdma_tagset
  60. nvme_rdma_async_done
  61. nvme_rdma_submit_async_event
  62. nvme_rdma_process_nvme_rsp
  63. nvme_rdma_recv_done
  64. nvme_rdma_conn_established
  65. nvme_rdma_conn_rejected
  66. nvme_rdma_addr_resolved
  67. nvme_rdma_route_resolved
  68. nvme_rdma_cm_handler
  69. nvme_rdma_timeout
  70. nvme_rdma_queue_rq
  71. nvme_rdma_poll
  72. nvme_rdma_complete_rq
  73. nvme_rdma_map_queues
  74. nvme_rdma_shutdown_ctrl
  75. nvme_rdma_delete_ctrl
  76. nvme_rdma_reset_ctrl_work
  77. nvme_rdma_existing_controller
  78. nvme_rdma_create_ctrl
  79. nvme_rdma_remove_one
  80. nvme_rdma_init_module
  81. nvme_rdma_cleanup_module

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * NVMe over Fabrics RDMA host code.
   4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
   5  */
   6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7 #include <linux/module.h>
   8 #include <linux/init.h>
   9 #include <linux/slab.h>
  10 #include <rdma/mr_pool.h>
  11 #include <linux/err.h>
  12 #include <linux/string.h>
  13 #include <linux/atomic.h>
  14 #include <linux/blk-mq.h>
  15 #include <linux/blk-mq-rdma.h>
  16 #include <linux/types.h>
  17 #include <linux/list.h>
  18 #include <linux/mutex.h>
  19 #include <linux/scatterlist.h>
  20 #include <linux/nvme.h>
  21 #include <asm/unaligned.h>
  22 
  23 #include <rdma/ib_verbs.h>
  24 #include <rdma/rdma_cm.h>
  25 #include <linux/nvme-rdma.h>
  26 
  27 #include "nvme.h"
  28 #include "fabrics.h"
  29 
  30 
  31 #define NVME_RDMA_CONNECT_TIMEOUT_MS    3000            /* 3 second */
  32 
  33 #define NVME_RDMA_MAX_SEGMENTS          256
  34 
  35 #define NVME_RDMA_MAX_INLINE_SEGMENTS   4
  36 
  37 struct nvme_rdma_device {
  38         struct ib_device        *dev;
  39         struct ib_pd            *pd;
  40         struct kref             ref;
  41         struct list_head        entry;
  42         unsigned int            num_inline_segments;
  43 };
  44 
  45 struct nvme_rdma_qe {
  46         struct ib_cqe           cqe;
  47         void                    *data;
  48         u64                     dma;
  49 };
  50 
  51 struct nvme_rdma_queue;
  52 struct nvme_rdma_request {
  53         struct nvme_request     req;
  54         struct ib_mr            *mr;
  55         struct nvme_rdma_qe     sqe;
  56         union nvme_result       result;
  57         __le16                  status;
  58         refcount_t              ref;
  59         struct ib_sge           sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
  60         u32                     num_sge;
  61         int                     nents;
  62         struct ib_reg_wr        reg_wr;
  63         struct ib_cqe           reg_cqe;
  64         struct nvme_rdma_queue  *queue;
  65         struct sg_table         sg_table;
  66         struct scatterlist      first_sgl[];
  67 };
  68 
  69 enum nvme_rdma_queue_flags {
  70         NVME_RDMA_Q_ALLOCATED           = 0,
  71         NVME_RDMA_Q_LIVE                = 1,
  72         NVME_RDMA_Q_TR_READY            = 2,
  73 };
  74 
  75 struct nvme_rdma_queue {
  76         struct nvme_rdma_qe     *rsp_ring;
  77         int                     queue_size;
  78         size_t                  cmnd_capsule_len;
  79         struct nvme_rdma_ctrl   *ctrl;
  80         struct nvme_rdma_device *device;
  81         struct ib_cq            *ib_cq;
  82         struct ib_qp            *qp;
  83 
  84         unsigned long           flags;
  85         struct rdma_cm_id       *cm_id;
  86         int                     cm_error;
  87         struct completion       cm_done;
  88 };
  89 
  90 struct nvme_rdma_ctrl {
  91         /* read only in the hot path */
  92         struct nvme_rdma_queue  *queues;
  93 
  94         /* other member variables */
  95         struct blk_mq_tag_set   tag_set;
  96         struct work_struct      err_work;
  97 
  98         struct nvme_rdma_qe     async_event_sqe;
  99 
 100         struct delayed_work     reconnect_work;
 101 
 102         struct list_head        list;
 103 
 104         struct blk_mq_tag_set   admin_tag_set;
 105         struct nvme_rdma_device *device;
 106 
 107         u32                     max_fr_pages;
 108 
 109         struct sockaddr_storage addr;
 110         struct sockaddr_storage src_addr;
 111 
 112         struct nvme_ctrl        ctrl;
 113         bool                    use_inline_data;
 114         u32                     io_queues[HCTX_MAX_TYPES];
 115 };
 116 
 117 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
 118 {
 119         return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
 120 }
 121 
 122 static LIST_HEAD(device_list);
 123 static DEFINE_MUTEX(device_list_mutex);
 124 
 125 static LIST_HEAD(nvme_rdma_ctrl_list);
 126 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
 127 
 128 /*
 129  * Disabling this option makes small I/O goes faster, but is fundamentally
 130  * unsafe.  With it turned off we will have to register a global rkey that
 131  * allows read and write access to all physical memory.
 132  */
 133 static bool register_always = true;
 134 module_param(register_always, bool, 0444);
 135 MODULE_PARM_DESC(register_always,
 136          "Use memory registration even for contiguous memory regions");
 137 
 138 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
 139                 struct rdma_cm_event *event);
 140 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
 141 
 142 static const struct blk_mq_ops nvme_rdma_mq_ops;
 143 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
 144 
 145 /* XXX: really should move to a generic header sooner or later.. */
 146 static inline void put_unaligned_le24(u32 val, u8 *p)
 147 {
 148         *p++ = val;
 149         *p++ = val >> 8;
 150         *p++ = val >> 16;
 151 }
 152 
 153 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
 154 {
 155         return queue - queue->ctrl->queues;
 156 }
 157 
 158 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
 159 {
 160         return nvme_rdma_queue_idx(queue) >
 161                 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
 162                 queue->ctrl->io_queues[HCTX_TYPE_READ];
 163 }
 164 
 165 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
 166 {
 167         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
 168 }
 169 
 170 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
 171                 size_t capsule_size, enum dma_data_direction dir)
 172 {
 173         ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
 174         kfree(qe->data);
 175 }
 176 
 177 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
 178                 size_t capsule_size, enum dma_data_direction dir)
 179 {
 180         qe->data = kzalloc(capsule_size, GFP_KERNEL);
 181         if (!qe->data)
 182                 return -ENOMEM;
 183 
 184         qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
 185         if (ib_dma_mapping_error(ibdev, qe->dma)) {
 186                 kfree(qe->data);
 187                 qe->data = NULL;
 188                 return -ENOMEM;
 189         }
 190 
 191         return 0;
 192 }
 193 
 194 static void nvme_rdma_free_ring(struct ib_device *ibdev,
 195                 struct nvme_rdma_qe *ring, size_t ib_queue_size,
 196                 size_t capsule_size, enum dma_data_direction dir)
 197 {
 198         int i;
 199 
 200         for (i = 0; i < ib_queue_size; i++)
 201                 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
 202         kfree(ring);
 203 }
 204 
 205 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
 206                 size_t ib_queue_size, size_t capsule_size,
 207                 enum dma_data_direction dir)
 208 {
 209         struct nvme_rdma_qe *ring;
 210         int i;
 211 
 212         ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
 213         if (!ring)
 214                 return NULL;
 215 
 216         /*
 217          * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
 218          * lifetime. It's safe, since any chage in the underlying RDMA device
 219          * will issue error recovery and queue re-creation.
 220          */
 221         for (i = 0; i < ib_queue_size; i++) {
 222                 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
 223                         goto out_free_ring;
 224         }
 225 
 226         return ring;
 227 
 228 out_free_ring:
 229         nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
 230         return NULL;
 231 }
 232 
 233 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
 234 {
 235         pr_debug("QP event %s (%d)\n",
 236                  ib_event_msg(event->event), event->event);
 237 
 238 }
 239 
 240 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
 241 {
 242         int ret;
 243 
 244         ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
 245                         msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
 246         if (ret < 0)
 247                 return ret;
 248         if (ret == 0)
 249                 return -ETIMEDOUT;
 250         WARN_ON_ONCE(queue->cm_error > 0);
 251         return queue->cm_error;
 252 }
 253 
 254 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
 255 {
 256         struct nvme_rdma_device *dev = queue->device;
 257         struct ib_qp_init_attr init_attr;
 258         int ret;
 259 
 260         memset(&init_attr, 0, sizeof(init_attr));
 261         init_attr.event_handler = nvme_rdma_qp_event;
 262         /* +1 for drain */
 263         init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
 264         /* +1 for drain */
 265         init_attr.cap.max_recv_wr = queue->queue_size + 1;
 266         init_attr.cap.max_recv_sge = 1;
 267         init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
 268         init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
 269         init_attr.qp_type = IB_QPT_RC;
 270         init_attr.send_cq = queue->ib_cq;
 271         init_attr.recv_cq = queue->ib_cq;
 272 
 273         ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
 274 
 275         queue->qp = queue->cm_id->qp;
 276         return ret;
 277 }
 278 
 279 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
 280                 struct request *rq, unsigned int hctx_idx)
 281 {
 282         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
 283 
 284         kfree(req->sqe.data);
 285 }
 286 
 287 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
 288                 struct request *rq, unsigned int hctx_idx,
 289                 unsigned int numa_node)
 290 {
 291         struct nvme_rdma_ctrl *ctrl = set->driver_data;
 292         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
 293         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
 294         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
 295 
 296         nvme_req(rq)->ctrl = &ctrl->ctrl;
 297         req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
 298         if (!req->sqe.data)
 299                 return -ENOMEM;
 300 
 301         req->queue = queue;
 302 
 303         return 0;
 304 }
 305 
 306 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 307                 unsigned int hctx_idx)
 308 {
 309         struct nvme_rdma_ctrl *ctrl = data;
 310         struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
 311 
 312         BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
 313 
 314         hctx->driver_data = queue;
 315         return 0;
 316 }
 317 
 318 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 319                 unsigned int hctx_idx)
 320 {
 321         struct nvme_rdma_ctrl *ctrl = data;
 322         struct nvme_rdma_queue *queue = &ctrl->queues[0];
 323 
 324         BUG_ON(hctx_idx != 0);
 325 
 326         hctx->driver_data = queue;
 327         return 0;
 328 }
 329 
 330 static void nvme_rdma_free_dev(struct kref *ref)
 331 {
 332         struct nvme_rdma_device *ndev =
 333                 container_of(ref, struct nvme_rdma_device, ref);
 334 
 335         mutex_lock(&device_list_mutex);
 336         list_del(&ndev->entry);
 337         mutex_unlock(&device_list_mutex);
 338 
 339         ib_dealloc_pd(ndev->pd);
 340         kfree(ndev);
 341 }
 342 
 343 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
 344 {
 345         kref_put(&dev->ref, nvme_rdma_free_dev);
 346 }
 347 
 348 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
 349 {
 350         return kref_get_unless_zero(&dev->ref);
 351 }
 352 
 353 static struct nvme_rdma_device *
 354 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
 355 {
 356         struct nvme_rdma_device *ndev;
 357 
 358         mutex_lock(&device_list_mutex);
 359         list_for_each_entry(ndev, &device_list, entry) {
 360                 if (ndev->dev->node_guid == cm_id->device->node_guid &&
 361                     nvme_rdma_dev_get(ndev))
 362                         goto out_unlock;
 363         }
 364 
 365         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
 366         if (!ndev)
 367                 goto out_err;
 368 
 369         ndev->dev = cm_id->device;
 370         kref_init(&ndev->ref);
 371 
 372         ndev->pd = ib_alloc_pd(ndev->dev,
 373                 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
 374         if (IS_ERR(ndev->pd))
 375                 goto out_free_dev;
 376 
 377         if (!(ndev->dev->attrs.device_cap_flags &
 378               IB_DEVICE_MEM_MGT_EXTENSIONS)) {
 379                 dev_err(&ndev->dev->dev,
 380                         "Memory registrations not supported.\n");
 381                 goto out_free_pd;
 382         }
 383 
 384         ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
 385                                         ndev->dev->attrs.max_send_sge - 1);
 386         list_add(&ndev->entry, &device_list);
 387 out_unlock:
 388         mutex_unlock(&device_list_mutex);
 389         return ndev;
 390 
 391 out_free_pd:
 392         ib_dealloc_pd(ndev->pd);
 393 out_free_dev:
 394         kfree(ndev);
 395 out_err:
 396         mutex_unlock(&device_list_mutex);
 397         return NULL;
 398 }
 399 
 400 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
 401 {
 402         struct nvme_rdma_device *dev;
 403         struct ib_device *ibdev;
 404 
 405         if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
 406                 return;
 407 
 408         dev = queue->device;
 409         ibdev = dev->dev;
 410 
 411         ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
 412 
 413         /*
 414          * The cm_id object might have been destroyed during RDMA connection
 415          * establishment error flow to avoid getting other cma events, thus
 416          * the destruction of the QP shouldn't use rdma_cm API.
 417          */
 418         ib_destroy_qp(queue->qp);
 419         ib_free_cq(queue->ib_cq);
 420 
 421         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
 422                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
 423 
 424         nvme_rdma_dev_put(dev);
 425 }
 426 
 427 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
 428 {
 429         return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
 430                      ibdev->attrs.max_fast_reg_page_list_len - 1);
 431 }
 432 
 433 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
 434 {
 435         struct ib_device *ibdev;
 436         const int send_wr_factor = 3;                   /* MR, SEND, INV */
 437         const int cq_factor = send_wr_factor + 1;       /* + RECV */
 438         int comp_vector, idx = nvme_rdma_queue_idx(queue);
 439         enum ib_poll_context poll_ctx;
 440         int ret, pages_per_mr;
 441 
 442         queue->device = nvme_rdma_find_get_device(queue->cm_id);
 443         if (!queue->device) {
 444                 dev_err(queue->cm_id->device->dev.parent,
 445                         "no client data found!\n");
 446                 return -ECONNREFUSED;
 447         }
 448         ibdev = queue->device->dev;
 449 
 450         /*
 451          * Spread I/O queues completion vectors according their queue index.
 452          * Admin queues can always go on completion vector 0.
 453          */
 454         comp_vector = idx == 0 ? idx : idx - 1;
 455 
 456         /* Polling queues need direct cq polling context */
 457         if (nvme_rdma_poll_queue(queue))
 458                 poll_ctx = IB_POLL_DIRECT;
 459         else
 460                 poll_ctx = IB_POLL_SOFTIRQ;
 461 
 462         /* +1 for ib_stop_cq */
 463         queue->ib_cq = ib_alloc_cq(ibdev, queue,
 464                                 cq_factor * queue->queue_size + 1,
 465                                 comp_vector, poll_ctx);
 466         if (IS_ERR(queue->ib_cq)) {
 467                 ret = PTR_ERR(queue->ib_cq);
 468                 goto out_put_dev;
 469         }
 470 
 471         ret = nvme_rdma_create_qp(queue, send_wr_factor);
 472         if (ret)
 473                 goto out_destroy_ib_cq;
 474 
 475         queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
 476                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
 477         if (!queue->rsp_ring) {
 478                 ret = -ENOMEM;
 479                 goto out_destroy_qp;
 480         }
 481 
 482         /*
 483          * Currently we don't use SG_GAPS MR's so if the first entry is
 484          * misaligned we'll end up using two entries for a single data page,
 485          * so one additional entry is required.
 486          */
 487         pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev) + 1;
 488         ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
 489                               queue->queue_size,
 490                               IB_MR_TYPE_MEM_REG,
 491                               pages_per_mr, 0);
 492         if (ret) {
 493                 dev_err(queue->ctrl->ctrl.device,
 494                         "failed to initialize MR pool sized %d for QID %d\n",
 495                         queue->queue_size, idx);
 496                 goto out_destroy_ring;
 497         }
 498 
 499         set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
 500 
 501         return 0;
 502 
 503 out_destroy_ring:
 504         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
 505                             sizeof(struct nvme_completion), DMA_FROM_DEVICE);
 506 out_destroy_qp:
 507         rdma_destroy_qp(queue->cm_id);
 508 out_destroy_ib_cq:
 509         ib_free_cq(queue->ib_cq);
 510 out_put_dev:
 511         nvme_rdma_dev_put(queue->device);
 512         return ret;
 513 }
 514 
 515 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
 516                 int idx, size_t queue_size)
 517 {
 518         struct nvme_rdma_queue *queue;
 519         struct sockaddr *src_addr = NULL;
 520         int ret;
 521 
 522         queue = &ctrl->queues[idx];
 523         queue->ctrl = ctrl;
 524         init_completion(&queue->cm_done);
 525 
 526         if (idx > 0)
 527                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
 528         else
 529                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
 530 
 531         queue->queue_size = queue_size;
 532 
 533         queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
 534                         RDMA_PS_TCP, IB_QPT_RC);
 535         if (IS_ERR(queue->cm_id)) {
 536                 dev_info(ctrl->ctrl.device,
 537                         "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
 538                 return PTR_ERR(queue->cm_id);
 539         }
 540 
 541         if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
 542                 src_addr = (struct sockaddr *)&ctrl->src_addr;
 543 
 544         queue->cm_error = -ETIMEDOUT;
 545         ret = rdma_resolve_addr(queue->cm_id, src_addr,
 546                         (struct sockaddr *)&ctrl->addr,
 547                         NVME_RDMA_CONNECT_TIMEOUT_MS);
 548         if (ret) {
 549                 dev_info(ctrl->ctrl.device,
 550                         "rdma_resolve_addr failed (%d).\n", ret);
 551                 goto out_destroy_cm_id;
 552         }
 553 
 554         ret = nvme_rdma_wait_for_cm(queue);
 555         if (ret) {
 556                 dev_info(ctrl->ctrl.device,
 557                         "rdma connection establishment failed (%d)\n", ret);
 558                 goto out_destroy_cm_id;
 559         }
 560 
 561         set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
 562 
 563         return 0;
 564 
 565 out_destroy_cm_id:
 566         rdma_destroy_id(queue->cm_id);
 567         nvme_rdma_destroy_queue_ib(queue);
 568         return ret;
 569 }
 570 
 571 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
 572 {
 573         rdma_disconnect(queue->cm_id);
 574         ib_drain_qp(queue->qp);
 575 }
 576 
 577 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
 578 {
 579         if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
 580                 return;
 581         __nvme_rdma_stop_queue(queue);
 582 }
 583 
 584 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
 585 {
 586         if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
 587                 return;
 588 
 589         nvme_rdma_destroy_queue_ib(queue);
 590         rdma_destroy_id(queue->cm_id);
 591 }
 592 
 593 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
 594 {
 595         int i;
 596 
 597         for (i = 1; i < ctrl->ctrl.queue_count; i++)
 598                 nvme_rdma_free_queue(&ctrl->queues[i]);
 599 }
 600 
 601 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
 602 {
 603         int i;
 604 
 605         for (i = 1; i < ctrl->ctrl.queue_count; i++)
 606                 nvme_rdma_stop_queue(&ctrl->queues[i]);
 607 }
 608 
 609 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
 610 {
 611         struct nvme_rdma_queue *queue = &ctrl->queues[idx];
 612         bool poll = nvme_rdma_poll_queue(queue);
 613         int ret;
 614 
 615         if (idx)
 616                 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
 617         else
 618                 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
 619 
 620         if (!ret) {
 621                 set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
 622         } else {
 623                 if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
 624                         __nvme_rdma_stop_queue(queue);
 625                 dev_info(ctrl->ctrl.device,
 626                         "failed to connect queue: %d ret=%d\n", idx, ret);
 627         }
 628         return ret;
 629 }
 630 
 631 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
 632 {
 633         int i, ret = 0;
 634 
 635         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
 636                 ret = nvme_rdma_start_queue(ctrl, i);
 637                 if (ret)
 638                         goto out_stop_queues;
 639         }
 640 
 641         return 0;
 642 
 643 out_stop_queues:
 644         for (i--; i >= 1; i--)
 645                 nvme_rdma_stop_queue(&ctrl->queues[i]);
 646         return ret;
 647 }
 648 
 649 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
 650 {
 651         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
 652         struct ib_device *ibdev = ctrl->device->dev;
 653         unsigned int nr_io_queues, nr_default_queues;
 654         unsigned int nr_read_queues, nr_poll_queues;
 655         int i, ret;
 656 
 657         nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
 658                                 min(opts->nr_io_queues, num_online_cpus()));
 659         nr_default_queues =  min_t(unsigned int, ibdev->num_comp_vectors,
 660                                 min(opts->nr_write_queues, num_online_cpus()));
 661         nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
 662         nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
 663 
 664         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
 665         if (ret)
 666                 return ret;
 667 
 668         ctrl->ctrl.queue_count = nr_io_queues + 1;
 669         if (ctrl->ctrl.queue_count < 2)
 670                 return 0;
 671 
 672         dev_info(ctrl->ctrl.device,
 673                 "creating %d I/O queues.\n", nr_io_queues);
 674 
 675         if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
 676                 /*
 677                  * separate read/write queues
 678                  * hand out dedicated default queues only after we have
 679                  * sufficient read queues.
 680                  */
 681                 ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
 682                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
 683                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
 684                         min(nr_default_queues, nr_io_queues);
 685                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
 686         } else {
 687                 /*
 688                  * shared read/write queues
 689                  * either no write queues were requested, or we don't have
 690                  * sufficient queue count to have dedicated default queues.
 691                  */
 692                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
 693                         min(nr_read_queues, nr_io_queues);
 694                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
 695         }
 696 
 697         if (opts->nr_poll_queues && nr_io_queues) {
 698                 /* map dedicated poll queues only if we have queues left */
 699                 ctrl->io_queues[HCTX_TYPE_POLL] =
 700                         min(nr_poll_queues, nr_io_queues);
 701         }
 702 
 703         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
 704                 ret = nvme_rdma_alloc_queue(ctrl, i,
 705                                 ctrl->ctrl.sqsize + 1);
 706                 if (ret)
 707                         goto out_free_queues;
 708         }
 709 
 710         return 0;
 711 
 712 out_free_queues:
 713         for (i--; i >= 1; i--)
 714                 nvme_rdma_free_queue(&ctrl->queues[i]);
 715 
 716         return ret;
 717 }
 718 
 719 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
 720                 bool admin)
 721 {
 722         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
 723         struct blk_mq_tag_set *set;
 724         int ret;
 725 
 726         if (admin) {
 727                 set = &ctrl->admin_tag_set;
 728                 memset(set, 0, sizeof(*set));
 729                 set->ops = &nvme_rdma_admin_mq_ops;
 730                 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
 731                 set->reserved_tags = 2; /* connect + keep-alive */
 732                 set->numa_node = nctrl->numa_node;
 733                 set->cmd_size = sizeof(struct nvme_rdma_request) +
 734                         SG_CHUNK_SIZE * sizeof(struct scatterlist);
 735                 set->driver_data = ctrl;
 736                 set->nr_hw_queues = 1;
 737                 set->timeout = ADMIN_TIMEOUT;
 738                 set->flags = BLK_MQ_F_NO_SCHED;
 739         } else {
 740                 set = &ctrl->tag_set;
 741                 memset(set, 0, sizeof(*set));
 742                 set->ops = &nvme_rdma_mq_ops;
 743                 set->queue_depth = nctrl->sqsize + 1;
 744                 set->reserved_tags = 1; /* fabric connect */
 745                 set->numa_node = nctrl->numa_node;
 746                 set->flags = BLK_MQ_F_SHOULD_MERGE;
 747                 set->cmd_size = sizeof(struct nvme_rdma_request) +
 748                         SG_CHUNK_SIZE * sizeof(struct scatterlist);
 749                 set->driver_data = ctrl;
 750                 set->nr_hw_queues = nctrl->queue_count - 1;
 751                 set->timeout = NVME_IO_TIMEOUT;
 752                 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
 753         }
 754 
 755         ret = blk_mq_alloc_tag_set(set);
 756         if (ret)
 757                 return ERR_PTR(ret);
 758 
 759         return set;
 760 }
 761 
 762 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
 763                 bool remove)
 764 {
 765         if (remove) {
 766                 blk_cleanup_queue(ctrl->ctrl.admin_q);
 767                 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
 768                 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
 769         }
 770         if (ctrl->async_event_sqe.data) {
 771                 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
 772                                 sizeof(struct nvme_command), DMA_TO_DEVICE);
 773                 ctrl->async_event_sqe.data = NULL;
 774         }
 775         nvme_rdma_free_queue(&ctrl->queues[0]);
 776 }
 777 
 778 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
 779                 bool new)
 780 {
 781         int error;
 782 
 783         error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
 784         if (error)
 785                 return error;
 786 
 787         ctrl->device = ctrl->queues[0].device;
 788         ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device);
 789 
 790         ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
 791 
 792         /*
 793          * Bind the async event SQE DMA mapping to the admin queue lifetime.
 794          * It's safe, since any chage in the underlying RDMA device will issue
 795          * error recovery and queue re-creation.
 796          */
 797         error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
 798                         sizeof(struct nvme_command), DMA_TO_DEVICE);
 799         if (error)
 800                 goto out_free_queue;
 801 
 802         if (new) {
 803                 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
 804                 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
 805                         error = PTR_ERR(ctrl->ctrl.admin_tagset);
 806                         goto out_free_async_qe;
 807                 }
 808 
 809                 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
 810                 if (IS_ERR(ctrl->ctrl.fabrics_q)) {
 811                         error = PTR_ERR(ctrl->ctrl.fabrics_q);
 812                         goto out_free_tagset;
 813                 }
 814 
 815                 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
 816                 if (IS_ERR(ctrl->ctrl.admin_q)) {
 817                         error = PTR_ERR(ctrl->ctrl.admin_q);
 818                         goto out_cleanup_fabrics_q;
 819                 }
 820         }
 821 
 822         error = nvme_rdma_start_queue(ctrl, 0);
 823         if (error)
 824                 goto out_cleanup_queue;
 825 
 826         error = nvme_enable_ctrl(&ctrl->ctrl);
 827         if (error)
 828                 goto out_stop_queue;
 829 
 830         ctrl->ctrl.max_segments = ctrl->max_fr_pages;
 831         ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
 832 
 833         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
 834 
 835         error = nvme_init_identify(&ctrl->ctrl);
 836         if (error)
 837                 goto out_stop_queue;
 838 
 839         return 0;
 840 
 841 out_stop_queue:
 842         nvme_rdma_stop_queue(&ctrl->queues[0]);
 843 out_cleanup_queue:
 844         if (new)
 845                 blk_cleanup_queue(ctrl->ctrl.admin_q);
 846 out_cleanup_fabrics_q:
 847         if (new)
 848                 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
 849 out_free_tagset:
 850         if (new)
 851                 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
 852 out_free_async_qe:
 853         if (ctrl->async_event_sqe.data) {
 854                 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
 855                         sizeof(struct nvme_command), DMA_TO_DEVICE);
 856                 ctrl->async_event_sqe.data = NULL;
 857         }
 858 out_free_queue:
 859         nvme_rdma_free_queue(&ctrl->queues[0]);
 860         return error;
 861 }
 862 
 863 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
 864                 bool remove)
 865 {
 866         if (remove) {
 867                 blk_cleanup_queue(ctrl->ctrl.connect_q);
 868                 blk_mq_free_tag_set(ctrl->ctrl.tagset);
 869         }
 870         nvme_rdma_free_io_queues(ctrl);
 871 }
 872 
 873 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
 874 {
 875         int ret;
 876 
 877         ret = nvme_rdma_alloc_io_queues(ctrl);
 878         if (ret)
 879                 return ret;
 880 
 881         if (new) {
 882                 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
 883                 if (IS_ERR(ctrl->ctrl.tagset)) {
 884                         ret = PTR_ERR(ctrl->ctrl.tagset);
 885                         goto out_free_io_queues;
 886                 }
 887 
 888                 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
 889                 if (IS_ERR(ctrl->ctrl.connect_q)) {
 890                         ret = PTR_ERR(ctrl->ctrl.connect_q);
 891                         goto out_free_tag_set;
 892                 }
 893         } else {
 894                 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
 895                         ctrl->ctrl.queue_count - 1);
 896         }
 897 
 898         ret = nvme_rdma_start_io_queues(ctrl);
 899         if (ret)
 900                 goto out_cleanup_connect_q;
 901 
 902         return 0;
 903 
 904 out_cleanup_connect_q:
 905         if (new)
 906                 blk_cleanup_queue(ctrl->ctrl.connect_q);
 907 out_free_tag_set:
 908         if (new)
 909                 blk_mq_free_tag_set(ctrl->ctrl.tagset);
 910 out_free_io_queues:
 911         nvme_rdma_free_io_queues(ctrl);
 912         return ret;
 913 }
 914 
 915 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
 916                 bool remove)
 917 {
 918         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
 919         nvme_rdma_stop_queue(&ctrl->queues[0]);
 920         if (ctrl->ctrl.admin_tagset) {
 921                 blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
 922                         nvme_cancel_request, &ctrl->ctrl);
 923                 blk_mq_tagset_wait_completed_request(ctrl->ctrl.admin_tagset);
 924         }
 925         if (remove)
 926                 blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
 927         nvme_rdma_destroy_admin_queue(ctrl, remove);
 928 }
 929 
 930 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
 931                 bool remove)
 932 {
 933         if (ctrl->ctrl.queue_count > 1) {
 934                 nvme_stop_queues(&ctrl->ctrl);
 935                 nvme_rdma_stop_io_queues(ctrl);
 936                 if (ctrl->ctrl.tagset) {
 937                         blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
 938                                 nvme_cancel_request, &ctrl->ctrl);
 939                         blk_mq_tagset_wait_completed_request(ctrl->ctrl.tagset);
 940                 }
 941                 if (remove)
 942                         nvme_start_queues(&ctrl->ctrl);
 943                 nvme_rdma_destroy_io_queues(ctrl, remove);
 944         }
 945 }
 946 
 947 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
 948 {
 949         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
 950 
 951         if (list_empty(&ctrl->list))
 952                 goto free_ctrl;
 953 
 954         mutex_lock(&nvme_rdma_ctrl_mutex);
 955         list_del(&ctrl->list);
 956         mutex_unlock(&nvme_rdma_ctrl_mutex);
 957 
 958         nvmf_free_options(nctrl->opts);
 959 free_ctrl:
 960         kfree(ctrl->queues);
 961         kfree(ctrl);
 962 }
 963 
 964 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
 965 {
 966         /* If we are resetting/deleting then do nothing */
 967         if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
 968                 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
 969                         ctrl->ctrl.state == NVME_CTRL_LIVE);
 970                 return;
 971         }
 972 
 973         if (nvmf_should_reconnect(&ctrl->ctrl)) {
 974                 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
 975                         ctrl->ctrl.opts->reconnect_delay);
 976                 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
 977                                 ctrl->ctrl.opts->reconnect_delay * HZ);
 978         } else {
 979                 nvme_delete_ctrl(&ctrl->ctrl);
 980         }
 981 }
 982 
 983 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
 984 {
 985         int ret = -EINVAL;
 986         bool changed;
 987 
 988         ret = nvme_rdma_configure_admin_queue(ctrl, new);
 989         if (ret)
 990                 return ret;
 991 
 992         if (ctrl->ctrl.icdoff) {
 993                 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
 994                 goto destroy_admin;
 995         }
 996 
 997         if (!(ctrl->ctrl.sgls & (1 << 2))) {
 998                 dev_err(ctrl->ctrl.device,
 999                         "Mandatory keyed sgls are not supported!\n");
1000                 goto destroy_admin;
1001         }
1002 
1003         if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1004                 dev_warn(ctrl->ctrl.device,
1005                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
1006                         ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1007         }
1008 
1009         if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1010                 dev_warn(ctrl->ctrl.device,
1011                         "sqsize %u > ctrl maxcmd %u, clamping down\n",
1012                         ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1013                 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1014         }
1015 
1016         if (ctrl->ctrl.sgls & (1 << 20))
1017                 ctrl->use_inline_data = true;
1018 
1019         if (ctrl->ctrl.queue_count > 1) {
1020                 ret = nvme_rdma_configure_io_queues(ctrl, new);
1021                 if (ret)
1022                         goto destroy_admin;
1023         }
1024 
1025         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1026         if (!changed) {
1027                 /* state change failure is ok if we're in DELETING state */
1028                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1029                 ret = -EINVAL;
1030                 goto destroy_io;
1031         }
1032 
1033         nvme_start_ctrl(&ctrl->ctrl);
1034         return 0;
1035 
1036 destroy_io:
1037         if (ctrl->ctrl.queue_count > 1)
1038                 nvme_rdma_destroy_io_queues(ctrl, new);
1039 destroy_admin:
1040         nvme_rdma_stop_queue(&ctrl->queues[0]);
1041         nvme_rdma_destroy_admin_queue(ctrl, new);
1042         return ret;
1043 }
1044 
1045 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1046 {
1047         struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1048                         struct nvme_rdma_ctrl, reconnect_work);
1049 
1050         ++ctrl->ctrl.nr_reconnects;
1051 
1052         if (nvme_rdma_setup_ctrl(ctrl, false))
1053                 goto requeue;
1054 
1055         dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1056                         ctrl->ctrl.nr_reconnects);
1057 
1058         ctrl->ctrl.nr_reconnects = 0;
1059 
1060         return;
1061 
1062 requeue:
1063         dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1064                         ctrl->ctrl.nr_reconnects);
1065         nvme_rdma_reconnect_or_remove(ctrl);
1066 }
1067 
1068 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1069 {
1070         struct nvme_rdma_ctrl *ctrl = container_of(work,
1071                         struct nvme_rdma_ctrl, err_work);
1072 
1073         nvme_stop_keep_alive(&ctrl->ctrl);
1074         nvme_rdma_teardown_io_queues(ctrl, false);
1075         nvme_start_queues(&ctrl->ctrl);
1076         nvme_rdma_teardown_admin_queue(ctrl, false);
1077         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1078 
1079         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1080                 /* state change failure is ok if we're in DELETING state */
1081                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1082                 return;
1083         }
1084 
1085         nvme_rdma_reconnect_or_remove(ctrl);
1086 }
1087 
1088 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1089 {
1090         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1091                 return;
1092 
1093         queue_work(nvme_reset_wq, &ctrl->err_work);
1094 }
1095 
1096 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1097                 const char *op)
1098 {
1099         struct nvme_rdma_queue *queue = cq->cq_context;
1100         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1101 
1102         if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1103                 dev_info(ctrl->ctrl.device,
1104                              "%s for CQE 0x%p failed with status %s (%d)\n",
1105                              op, wc->wr_cqe,
1106                              ib_wc_status_msg(wc->status), wc->status);
1107         nvme_rdma_error_recovery(ctrl);
1108 }
1109 
1110 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1111 {
1112         if (unlikely(wc->status != IB_WC_SUCCESS))
1113                 nvme_rdma_wr_error(cq, wc, "MEMREG");
1114 }
1115 
1116 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1117 {
1118         struct nvme_rdma_request *req =
1119                 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1120         struct request *rq = blk_mq_rq_from_pdu(req);
1121 
1122         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1123                 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1124                 return;
1125         }
1126 
1127         if (refcount_dec_and_test(&req->ref))
1128                 nvme_end_request(rq, req->status, req->result);
1129 
1130 }
1131 
1132 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1133                 struct nvme_rdma_request *req)
1134 {
1135         struct ib_send_wr wr = {
1136                 .opcode             = IB_WR_LOCAL_INV,
1137                 .next               = NULL,
1138                 .num_sge            = 0,
1139                 .send_flags         = IB_SEND_SIGNALED,
1140                 .ex.invalidate_rkey = req->mr->rkey,
1141         };
1142 
1143         req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1144         wr.wr_cqe = &req->reg_cqe;
1145 
1146         return ib_post_send(queue->qp, &wr, NULL);
1147 }
1148 
1149 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1150                 struct request *rq)
1151 {
1152         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1153         struct nvme_rdma_device *dev = queue->device;
1154         struct ib_device *ibdev = dev->dev;
1155 
1156         if (!blk_rq_nr_phys_segments(rq))
1157                 return;
1158 
1159         if (req->mr) {
1160                 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1161                 req->mr = NULL;
1162         }
1163 
1164         ib_dma_unmap_sg(ibdev, req->sg_table.sgl, req->nents, rq_dma_dir(rq));
1165 
1166         nvme_cleanup_cmd(rq);
1167         sg_free_table_chained(&req->sg_table, SG_CHUNK_SIZE);
1168 }
1169 
1170 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1171 {
1172         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1173 
1174         sg->addr = 0;
1175         put_unaligned_le24(0, sg->length);
1176         put_unaligned_le32(0, sg->key);
1177         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1178         return 0;
1179 }
1180 
1181 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1182                 struct nvme_rdma_request *req, struct nvme_command *c,
1183                 int count)
1184 {
1185         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1186         struct scatterlist *sgl = req->sg_table.sgl;
1187         struct ib_sge *sge = &req->sge[1];
1188         u32 len = 0;
1189         int i;
1190 
1191         for (i = 0; i < count; i++, sgl++, sge++) {
1192                 sge->addr = sg_dma_address(sgl);
1193                 sge->length = sg_dma_len(sgl);
1194                 sge->lkey = queue->device->pd->local_dma_lkey;
1195                 len += sge->length;
1196         }
1197 
1198         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1199         sg->length = cpu_to_le32(len);
1200         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1201 
1202         req->num_sge += count;
1203         return 0;
1204 }
1205 
1206 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1207                 struct nvme_rdma_request *req, struct nvme_command *c)
1208 {
1209         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1210 
1211         sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1212         put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1213         put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1214         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1215         return 0;
1216 }
1217 
1218 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1219                 struct nvme_rdma_request *req, struct nvme_command *c,
1220                 int count)
1221 {
1222         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1223         int nr;
1224 
1225         req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1226         if (WARN_ON_ONCE(!req->mr))
1227                 return -EAGAIN;
1228 
1229         /*
1230          * Align the MR to a 4K page size to match the ctrl page size and
1231          * the block virtual boundary.
1232          */
1233         nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1234         if (unlikely(nr < count)) {
1235                 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1236                 req->mr = NULL;
1237                 if (nr < 0)
1238                         return nr;
1239                 return -EINVAL;
1240         }
1241 
1242         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1243 
1244         req->reg_cqe.done = nvme_rdma_memreg_done;
1245         memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1246         req->reg_wr.wr.opcode = IB_WR_REG_MR;
1247         req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1248         req->reg_wr.wr.num_sge = 0;
1249         req->reg_wr.mr = req->mr;
1250         req->reg_wr.key = req->mr->rkey;
1251         req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1252                              IB_ACCESS_REMOTE_READ |
1253                              IB_ACCESS_REMOTE_WRITE;
1254 
1255         sg->addr = cpu_to_le64(req->mr->iova);
1256         put_unaligned_le24(req->mr->length, sg->length);
1257         put_unaligned_le32(req->mr->rkey, sg->key);
1258         sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1259                         NVME_SGL_FMT_INVALIDATE;
1260 
1261         return 0;
1262 }
1263 
1264 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1265                 struct request *rq, struct nvme_command *c)
1266 {
1267         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1268         struct nvme_rdma_device *dev = queue->device;
1269         struct ib_device *ibdev = dev->dev;
1270         int count, ret;
1271 
1272         req->num_sge = 1;
1273         refcount_set(&req->ref, 2); /* send and recv completions */
1274 
1275         c->common.flags |= NVME_CMD_SGL_METABUF;
1276 
1277         if (!blk_rq_nr_phys_segments(rq))
1278                 return nvme_rdma_set_sg_null(c);
1279 
1280         req->sg_table.sgl = req->first_sgl;
1281         ret = sg_alloc_table_chained(&req->sg_table,
1282                         blk_rq_nr_phys_segments(rq), req->sg_table.sgl,
1283                         SG_CHUNK_SIZE);
1284         if (ret)
1285                 return -ENOMEM;
1286 
1287         req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1288 
1289         count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1290                               rq_dma_dir(rq));
1291         if (unlikely(count <= 0)) {
1292                 ret = -EIO;
1293                 goto out_free_table;
1294         }
1295 
1296         if (count <= dev->num_inline_segments) {
1297                 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1298                     queue->ctrl->use_inline_data &&
1299                     blk_rq_payload_bytes(rq) <=
1300                                 nvme_rdma_inline_data_size(queue)) {
1301                         ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1302                         goto out;
1303                 }
1304 
1305                 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1306                         ret = nvme_rdma_map_sg_single(queue, req, c);
1307                         goto out;
1308                 }
1309         }
1310 
1311         ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1312 out:
1313         if (unlikely(ret))
1314                 goto out_unmap_sg;
1315 
1316         return 0;
1317 
1318 out_unmap_sg:
1319         ib_dma_unmap_sg(ibdev, req->sg_table.sgl, req->nents, rq_dma_dir(rq));
1320 out_free_table:
1321         sg_free_table_chained(&req->sg_table, SG_CHUNK_SIZE);
1322         return ret;
1323 }
1324 
1325 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1326 {
1327         struct nvme_rdma_qe *qe =
1328                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1329         struct nvme_rdma_request *req =
1330                 container_of(qe, struct nvme_rdma_request, sqe);
1331         struct request *rq = blk_mq_rq_from_pdu(req);
1332 
1333         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1334                 nvme_rdma_wr_error(cq, wc, "SEND");
1335                 return;
1336         }
1337 
1338         if (refcount_dec_and_test(&req->ref))
1339                 nvme_end_request(rq, req->status, req->result);
1340 }
1341 
1342 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1343                 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1344                 struct ib_send_wr *first)
1345 {
1346         struct ib_send_wr wr;
1347         int ret;
1348 
1349         sge->addr   = qe->dma;
1350         sge->length = sizeof(struct nvme_command),
1351         sge->lkey   = queue->device->pd->local_dma_lkey;
1352 
1353         wr.next       = NULL;
1354         wr.wr_cqe     = &qe->cqe;
1355         wr.sg_list    = sge;
1356         wr.num_sge    = num_sge;
1357         wr.opcode     = IB_WR_SEND;
1358         wr.send_flags = IB_SEND_SIGNALED;
1359 
1360         if (first)
1361                 first->next = &wr;
1362         else
1363                 first = &wr;
1364 
1365         ret = ib_post_send(queue->qp, first, NULL);
1366         if (unlikely(ret)) {
1367                 dev_err(queue->ctrl->ctrl.device,
1368                              "%s failed with error code %d\n", __func__, ret);
1369         }
1370         return ret;
1371 }
1372 
1373 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1374                 struct nvme_rdma_qe *qe)
1375 {
1376         struct ib_recv_wr wr;
1377         struct ib_sge list;
1378         int ret;
1379 
1380         list.addr   = qe->dma;
1381         list.length = sizeof(struct nvme_completion);
1382         list.lkey   = queue->device->pd->local_dma_lkey;
1383 
1384         qe->cqe.done = nvme_rdma_recv_done;
1385 
1386         wr.next     = NULL;
1387         wr.wr_cqe   = &qe->cqe;
1388         wr.sg_list  = &list;
1389         wr.num_sge  = 1;
1390 
1391         ret = ib_post_recv(queue->qp, &wr, NULL);
1392         if (unlikely(ret)) {
1393                 dev_err(queue->ctrl->ctrl.device,
1394                         "%s failed with error code %d\n", __func__, ret);
1395         }
1396         return ret;
1397 }
1398 
1399 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1400 {
1401         u32 queue_idx = nvme_rdma_queue_idx(queue);
1402 
1403         if (queue_idx == 0)
1404                 return queue->ctrl->admin_tag_set.tags[queue_idx];
1405         return queue->ctrl->tag_set.tags[queue_idx - 1];
1406 }
1407 
1408 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1409 {
1410         if (unlikely(wc->status != IB_WC_SUCCESS))
1411                 nvme_rdma_wr_error(cq, wc, "ASYNC");
1412 }
1413 
1414 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1415 {
1416         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1417         struct nvme_rdma_queue *queue = &ctrl->queues[0];
1418         struct ib_device *dev = queue->device->dev;
1419         struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1420         struct nvme_command *cmd = sqe->data;
1421         struct ib_sge sge;
1422         int ret;
1423 
1424         ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1425 
1426         memset(cmd, 0, sizeof(*cmd));
1427         cmd->common.opcode = nvme_admin_async_event;
1428         cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1429         cmd->common.flags |= NVME_CMD_SGL_METABUF;
1430         nvme_rdma_set_sg_null(cmd);
1431 
1432         sqe->cqe.done = nvme_rdma_async_done;
1433 
1434         ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1435                         DMA_TO_DEVICE);
1436 
1437         ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1438         WARN_ON_ONCE(ret);
1439 }
1440 
1441 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1442                 struct nvme_completion *cqe, struct ib_wc *wc)
1443 {
1444         struct request *rq;
1445         struct nvme_rdma_request *req;
1446 
1447         rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1448         if (!rq) {
1449                 dev_err(queue->ctrl->ctrl.device,
1450                         "tag 0x%x on QP %#x not found\n",
1451                         cqe->command_id, queue->qp->qp_num);
1452                 nvme_rdma_error_recovery(queue->ctrl);
1453                 return;
1454         }
1455         req = blk_mq_rq_to_pdu(rq);
1456 
1457         req->status = cqe->status;
1458         req->result = cqe->result;
1459 
1460         if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1461                 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1462                         dev_err(queue->ctrl->ctrl.device,
1463                                 "Bogus remote invalidation for rkey %#x\n",
1464                                 req->mr->rkey);
1465                         nvme_rdma_error_recovery(queue->ctrl);
1466                 }
1467         } else if (req->mr) {
1468                 int ret;
1469 
1470                 ret = nvme_rdma_inv_rkey(queue, req);
1471                 if (unlikely(ret < 0)) {
1472                         dev_err(queue->ctrl->ctrl.device,
1473                                 "Queueing INV WR for rkey %#x failed (%d)\n",
1474                                 req->mr->rkey, ret);
1475                         nvme_rdma_error_recovery(queue->ctrl);
1476                 }
1477                 /* the local invalidation completion will end the request */
1478                 return;
1479         }
1480 
1481         if (refcount_dec_and_test(&req->ref))
1482                 nvme_end_request(rq, req->status, req->result);
1483 }
1484 
1485 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1486 {
1487         struct nvme_rdma_qe *qe =
1488                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1489         struct nvme_rdma_queue *queue = cq->cq_context;
1490         struct ib_device *ibdev = queue->device->dev;
1491         struct nvme_completion *cqe = qe->data;
1492         const size_t len = sizeof(struct nvme_completion);
1493 
1494         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1495                 nvme_rdma_wr_error(cq, wc, "RECV");
1496                 return;
1497         }
1498 
1499         ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1500         /*
1501          * AEN requests are special as they don't time out and can
1502          * survive any kind of queue freeze and often don't respond to
1503          * aborts.  We don't even bother to allocate a struct request
1504          * for them but rather special case them here.
1505          */
1506         if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1507                         cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1508                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1509                                 &cqe->result);
1510         else
1511                 nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1512         ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1513 
1514         nvme_rdma_post_recv(queue, qe);
1515 }
1516 
1517 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1518 {
1519         int ret, i;
1520 
1521         for (i = 0; i < queue->queue_size; i++) {
1522                 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1523                 if (ret)
1524                         goto out_destroy_queue_ib;
1525         }
1526 
1527         return 0;
1528 
1529 out_destroy_queue_ib:
1530         nvme_rdma_destroy_queue_ib(queue);
1531         return ret;
1532 }
1533 
1534 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1535                 struct rdma_cm_event *ev)
1536 {
1537         struct rdma_cm_id *cm_id = queue->cm_id;
1538         int status = ev->status;
1539         const char *rej_msg;
1540         const struct nvme_rdma_cm_rej *rej_data;
1541         u8 rej_data_len;
1542 
1543         rej_msg = rdma_reject_msg(cm_id, status);
1544         rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1545 
1546         if (rej_data && rej_data_len >= sizeof(u16)) {
1547                 u16 sts = le16_to_cpu(rej_data->sts);
1548 
1549                 dev_err(queue->ctrl->ctrl.device,
1550                       "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1551                       status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1552         } else {
1553                 dev_err(queue->ctrl->ctrl.device,
1554                         "Connect rejected: status %d (%s).\n", status, rej_msg);
1555         }
1556 
1557         return -ECONNRESET;
1558 }
1559 
1560 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1561 {
1562         struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1563         int ret;
1564 
1565         ret = nvme_rdma_create_queue_ib(queue);
1566         if (ret)
1567                 return ret;
1568 
1569         if (ctrl->opts->tos >= 0)
1570                 rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1571         ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1572         if (ret) {
1573                 dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1574                         queue->cm_error);
1575                 goto out_destroy_queue;
1576         }
1577 
1578         return 0;
1579 
1580 out_destroy_queue:
1581         nvme_rdma_destroy_queue_ib(queue);
1582         return ret;
1583 }
1584 
1585 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1586 {
1587         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1588         struct rdma_conn_param param = { };
1589         struct nvme_rdma_cm_req priv = { };
1590         int ret;
1591 
1592         param.qp_num = queue->qp->qp_num;
1593         param.flow_control = 1;
1594 
1595         param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1596         /* maximum retry count */
1597         param.retry_count = 7;
1598         param.rnr_retry_count = 7;
1599         param.private_data = &priv;
1600         param.private_data_len = sizeof(priv);
1601 
1602         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1603         priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1604         /*
1605          * set the admin queue depth to the minimum size
1606          * specified by the Fabrics standard.
1607          */
1608         if (priv.qid == 0) {
1609                 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1610                 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1611         } else {
1612                 /*
1613                  * current interpretation of the fabrics spec
1614                  * is at minimum you make hrqsize sqsize+1, or a
1615                  * 1's based representation of sqsize.
1616                  */
1617                 priv.hrqsize = cpu_to_le16(queue->queue_size);
1618                 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1619         }
1620 
1621         ret = rdma_connect(queue->cm_id, &param);
1622         if (ret) {
1623                 dev_err(ctrl->ctrl.device,
1624                         "rdma_connect failed (%d).\n", ret);
1625                 goto out_destroy_queue_ib;
1626         }
1627 
1628         return 0;
1629 
1630 out_destroy_queue_ib:
1631         nvme_rdma_destroy_queue_ib(queue);
1632         return ret;
1633 }
1634 
1635 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1636                 struct rdma_cm_event *ev)
1637 {
1638         struct nvme_rdma_queue *queue = cm_id->context;
1639         int cm_error = 0;
1640 
1641         dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1642                 rdma_event_msg(ev->event), ev->event,
1643                 ev->status, cm_id);
1644 
1645         switch (ev->event) {
1646         case RDMA_CM_EVENT_ADDR_RESOLVED:
1647                 cm_error = nvme_rdma_addr_resolved(queue);
1648                 break;
1649         case RDMA_CM_EVENT_ROUTE_RESOLVED:
1650                 cm_error = nvme_rdma_route_resolved(queue);
1651                 break;
1652         case RDMA_CM_EVENT_ESTABLISHED:
1653                 queue->cm_error = nvme_rdma_conn_established(queue);
1654                 /* complete cm_done regardless of success/failure */
1655                 complete(&queue->cm_done);
1656                 return 0;
1657         case RDMA_CM_EVENT_REJECTED:
1658                 nvme_rdma_destroy_queue_ib(queue);
1659                 cm_error = nvme_rdma_conn_rejected(queue, ev);
1660                 break;
1661         case RDMA_CM_EVENT_ROUTE_ERROR:
1662         case RDMA_CM_EVENT_CONNECT_ERROR:
1663         case RDMA_CM_EVENT_UNREACHABLE:
1664                 nvme_rdma_destroy_queue_ib(queue);
1665                 /* fall through */
1666         case RDMA_CM_EVENT_ADDR_ERROR:
1667                 dev_dbg(queue->ctrl->ctrl.device,
1668                         "CM error event %d\n", ev->event);
1669                 cm_error = -ECONNRESET;
1670                 break;
1671         case RDMA_CM_EVENT_DISCONNECTED:
1672         case RDMA_CM_EVENT_ADDR_CHANGE:
1673         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1674                 dev_dbg(queue->ctrl->ctrl.device,
1675                         "disconnect received - connection closed\n");
1676                 nvme_rdma_error_recovery(queue->ctrl);
1677                 break;
1678         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1679                 /* device removal is handled via the ib_client API */
1680                 break;
1681         default:
1682                 dev_err(queue->ctrl->ctrl.device,
1683                         "Unexpected RDMA CM event (%d)\n", ev->event);
1684                 nvme_rdma_error_recovery(queue->ctrl);
1685                 break;
1686         }
1687 
1688         if (cm_error) {
1689                 queue->cm_error = cm_error;
1690                 complete(&queue->cm_done);
1691         }
1692 
1693         return 0;
1694 }
1695 
1696 static enum blk_eh_timer_return
1697 nvme_rdma_timeout(struct request *rq, bool reserved)
1698 {
1699         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1700         struct nvme_rdma_queue *queue = req->queue;
1701         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1702 
1703         dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1704                  rq->tag, nvme_rdma_queue_idx(queue));
1705 
1706         /*
1707          * Restart the timer if a controller reset is already scheduled. Any
1708          * timed out commands would be handled before entering the connecting
1709          * state.
1710          */
1711         if (ctrl->ctrl.state == NVME_CTRL_RESETTING)
1712                 return BLK_EH_RESET_TIMER;
1713 
1714         if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1715                 /*
1716                  * Teardown immediately if controller times out while starting
1717                  * or we are already started error recovery. all outstanding
1718                  * requests are completed on shutdown, so we return BLK_EH_DONE.
1719                  */
1720                 flush_work(&ctrl->err_work);
1721                 nvme_rdma_teardown_io_queues(ctrl, false);
1722                 nvme_rdma_teardown_admin_queue(ctrl, false);
1723                 return BLK_EH_DONE;
1724         }
1725 
1726         dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1727         nvme_rdma_error_recovery(ctrl);
1728 
1729         return BLK_EH_RESET_TIMER;
1730 }
1731 
1732 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1733                 const struct blk_mq_queue_data *bd)
1734 {
1735         struct nvme_ns *ns = hctx->queue->queuedata;
1736         struct nvme_rdma_queue *queue = hctx->driver_data;
1737         struct request *rq = bd->rq;
1738         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1739         struct nvme_rdma_qe *sqe = &req->sqe;
1740         struct nvme_command *c = sqe->data;
1741         struct ib_device *dev;
1742         bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1743         blk_status_t ret;
1744         int err;
1745 
1746         WARN_ON_ONCE(rq->tag < 0);
1747 
1748         if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1749                 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
1750 
1751         dev = queue->device->dev;
1752 
1753         req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
1754                                          sizeof(struct nvme_command),
1755                                          DMA_TO_DEVICE);
1756         err = ib_dma_mapping_error(dev, req->sqe.dma);
1757         if (unlikely(err))
1758                 return BLK_STS_RESOURCE;
1759 
1760         ib_dma_sync_single_for_cpu(dev, sqe->dma,
1761                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1762 
1763         ret = nvme_setup_cmd(ns, rq, c);
1764         if (ret)
1765                 goto unmap_qe;
1766 
1767         blk_mq_start_request(rq);
1768 
1769         err = nvme_rdma_map_data(queue, rq, c);
1770         if (unlikely(err < 0)) {
1771                 dev_err(queue->ctrl->ctrl.device,
1772                              "Failed to map data (%d)\n", err);
1773                 nvme_cleanup_cmd(rq);
1774                 goto err;
1775         }
1776 
1777         sqe->cqe.done = nvme_rdma_send_done;
1778 
1779         ib_dma_sync_single_for_device(dev, sqe->dma,
1780                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1781 
1782         err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1783                         req->mr ? &req->reg_wr.wr : NULL);
1784         if (unlikely(err)) {
1785                 nvme_rdma_unmap_data(queue, rq);
1786                 goto err;
1787         }
1788 
1789         return BLK_STS_OK;
1790 
1791 err:
1792         if (err == -ENOMEM || err == -EAGAIN)
1793                 ret = BLK_STS_RESOURCE;
1794         else
1795                 ret = BLK_STS_IOERR;
1796 unmap_qe:
1797         ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
1798                             DMA_TO_DEVICE);
1799         return ret;
1800 }
1801 
1802 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
1803 {
1804         struct nvme_rdma_queue *queue = hctx->driver_data;
1805 
1806         return ib_process_cq_direct(queue->ib_cq, -1);
1807 }
1808 
1809 static void nvme_rdma_complete_rq(struct request *rq)
1810 {
1811         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1812         struct nvme_rdma_queue *queue = req->queue;
1813         struct ib_device *ibdev = queue->device->dev;
1814 
1815         nvme_rdma_unmap_data(queue, rq);
1816         ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
1817                             DMA_TO_DEVICE);
1818         nvme_complete_rq(rq);
1819 }
1820 
1821 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1822 {
1823         struct nvme_rdma_ctrl *ctrl = set->driver_data;
1824         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
1825 
1826         if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
1827                 /* separate read/write queues */
1828                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
1829                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
1830                 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
1831                 set->map[HCTX_TYPE_READ].nr_queues =
1832                         ctrl->io_queues[HCTX_TYPE_READ];
1833                 set->map[HCTX_TYPE_READ].queue_offset =
1834                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
1835         } else {
1836                 /* shared read/write queues */
1837                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
1838                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
1839                 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
1840                 set->map[HCTX_TYPE_READ].nr_queues =
1841                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
1842                 set->map[HCTX_TYPE_READ].queue_offset = 0;
1843         }
1844         blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
1845                         ctrl->device->dev, 0);
1846         blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
1847                         ctrl->device->dev, 0);
1848 
1849         if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
1850                 /* map dedicated poll queues only if we have queues left */
1851                 set->map[HCTX_TYPE_POLL].nr_queues =
1852                                 ctrl->io_queues[HCTX_TYPE_POLL];
1853                 set->map[HCTX_TYPE_POLL].queue_offset =
1854                         ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1855                         ctrl->io_queues[HCTX_TYPE_READ];
1856                 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
1857         }
1858 
1859         dev_info(ctrl->ctrl.device,
1860                 "mapped %d/%d/%d default/read/poll queues.\n",
1861                 ctrl->io_queues[HCTX_TYPE_DEFAULT],
1862                 ctrl->io_queues[HCTX_TYPE_READ],
1863                 ctrl->io_queues[HCTX_TYPE_POLL]);
1864 
1865         return 0;
1866 }
1867 
1868 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1869         .queue_rq       = nvme_rdma_queue_rq,
1870         .complete       = nvme_rdma_complete_rq,
1871         .init_request   = nvme_rdma_init_request,
1872         .exit_request   = nvme_rdma_exit_request,
1873         .init_hctx      = nvme_rdma_init_hctx,
1874         .timeout        = nvme_rdma_timeout,
1875         .map_queues     = nvme_rdma_map_queues,
1876         .poll           = nvme_rdma_poll,
1877 };
1878 
1879 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1880         .queue_rq       = nvme_rdma_queue_rq,
1881         .complete       = nvme_rdma_complete_rq,
1882         .init_request   = nvme_rdma_init_request,
1883         .exit_request   = nvme_rdma_exit_request,
1884         .init_hctx      = nvme_rdma_init_admin_hctx,
1885         .timeout        = nvme_rdma_timeout,
1886 };
1887 
1888 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1889 {
1890         cancel_work_sync(&ctrl->err_work);
1891         cancel_delayed_work_sync(&ctrl->reconnect_work);
1892 
1893         nvme_rdma_teardown_io_queues(ctrl, shutdown);
1894         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1895         if (shutdown)
1896                 nvme_shutdown_ctrl(&ctrl->ctrl);
1897         else
1898                 nvme_disable_ctrl(&ctrl->ctrl);
1899         nvme_rdma_teardown_admin_queue(ctrl, shutdown);
1900 }
1901 
1902 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1903 {
1904         nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1905 }
1906 
1907 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1908 {
1909         struct nvme_rdma_ctrl *ctrl =
1910                 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1911 
1912         nvme_stop_ctrl(&ctrl->ctrl);
1913         nvme_rdma_shutdown_ctrl(ctrl, false);
1914 
1915         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1916                 /* state change failure should never happen */
1917                 WARN_ON_ONCE(1);
1918                 return;
1919         }
1920 
1921         if (nvme_rdma_setup_ctrl(ctrl, false))
1922                 goto out_fail;
1923 
1924         return;
1925 
1926 out_fail:
1927         ++ctrl->ctrl.nr_reconnects;
1928         nvme_rdma_reconnect_or_remove(ctrl);
1929 }
1930 
1931 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1932         .name                   = "rdma",
1933         .module                 = THIS_MODULE,
1934         .flags                  = NVME_F_FABRICS,
1935         .reg_read32             = nvmf_reg_read32,
1936         .reg_read64             = nvmf_reg_read64,
1937         .reg_write32            = nvmf_reg_write32,
1938         .free_ctrl              = nvme_rdma_free_ctrl,
1939         .submit_async_event     = nvme_rdma_submit_async_event,
1940         .delete_ctrl            = nvme_rdma_delete_ctrl,
1941         .get_address            = nvmf_get_address,
1942 };
1943 
1944 /*
1945  * Fails a connection request if it matches an existing controller
1946  * (association) with the same tuple:
1947  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1948  *
1949  * if local address is not specified in the request, it will match an
1950  * existing controller with all the other parameters the same and no
1951  * local port address specified as well.
1952  *
1953  * The ports don't need to be compared as they are intrinsically
1954  * already matched by the port pointers supplied.
1955  */
1956 static bool
1957 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1958 {
1959         struct nvme_rdma_ctrl *ctrl;
1960         bool found = false;
1961 
1962         mutex_lock(&nvme_rdma_ctrl_mutex);
1963         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1964                 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
1965                 if (found)
1966                         break;
1967         }
1968         mutex_unlock(&nvme_rdma_ctrl_mutex);
1969 
1970         return found;
1971 }
1972 
1973 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1974                 struct nvmf_ctrl_options *opts)
1975 {
1976         struct nvme_rdma_ctrl *ctrl;
1977         int ret;
1978         bool changed;
1979 
1980         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1981         if (!ctrl)
1982                 return ERR_PTR(-ENOMEM);
1983         ctrl->ctrl.opts = opts;
1984         INIT_LIST_HEAD(&ctrl->list);
1985 
1986         if (!(opts->mask & NVMF_OPT_TRSVCID)) {
1987                 opts->trsvcid =
1988                         kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
1989                 if (!opts->trsvcid) {
1990                         ret = -ENOMEM;
1991                         goto out_free_ctrl;
1992                 }
1993                 opts->mask |= NVMF_OPT_TRSVCID;
1994         }
1995 
1996         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1997                         opts->traddr, opts->trsvcid, &ctrl->addr);
1998         if (ret) {
1999                 pr_err("malformed address passed: %s:%s\n",
2000                         opts->traddr, opts->trsvcid);
2001                 goto out_free_ctrl;
2002         }
2003 
2004         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2005                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2006                         opts->host_traddr, NULL, &ctrl->src_addr);
2007                 if (ret) {
2008                         pr_err("malformed src address passed: %s\n",
2009                                opts->host_traddr);
2010                         goto out_free_ctrl;
2011                 }
2012         }
2013 
2014         if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2015                 ret = -EALREADY;
2016                 goto out_free_ctrl;
2017         }
2018 
2019         INIT_DELAYED_WORK(&ctrl->reconnect_work,
2020                         nvme_rdma_reconnect_ctrl_work);
2021         INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2022         INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2023 
2024         ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2025                                 opts->nr_poll_queues + 1;
2026         ctrl->ctrl.sqsize = opts->queue_size - 1;
2027         ctrl->ctrl.kato = opts->kato;
2028 
2029         ret = -ENOMEM;
2030         ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2031                                 GFP_KERNEL);
2032         if (!ctrl->queues)
2033                 goto out_free_ctrl;
2034 
2035         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2036                                 0 /* no quirks, we're perfect! */);
2037         if (ret)
2038                 goto out_kfree_queues;
2039 
2040         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2041         WARN_ON_ONCE(!changed);
2042 
2043         ret = nvme_rdma_setup_ctrl(ctrl, true);
2044         if (ret)
2045                 goto out_uninit_ctrl;
2046 
2047         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2048                 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2049 
2050         nvme_get_ctrl(&ctrl->ctrl);
2051 
2052         mutex_lock(&nvme_rdma_ctrl_mutex);
2053         list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2054         mutex_unlock(&nvme_rdma_ctrl_mutex);
2055 
2056         return &ctrl->ctrl;
2057 
2058 out_uninit_ctrl:
2059         nvme_uninit_ctrl(&ctrl->ctrl);
2060         nvme_put_ctrl(&ctrl->ctrl);
2061         if (ret > 0)
2062                 ret = -EIO;
2063         return ERR_PTR(ret);
2064 out_kfree_queues:
2065         kfree(ctrl->queues);
2066 out_free_ctrl:
2067         kfree(ctrl);
2068         return ERR_PTR(ret);
2069 }
2070 
2071 static struct nvmf_transport_ops nvme_rdma_transport = {
2072         .name           = "rdma",
2073         .module         = THIS_MODULE,
2074         .required_opts  = NVMF_OPT_TRADDR,
2075         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2076                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2077                           NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2078                           NVMF_OPT_TOS,
2079         .create_ctrl    = nvme_rdma_create_ctrl,
2080 };
2081 
2082 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2083 {
2084         struct nvme_rdma_ctrl *ctrl;
2085         struct nvme_rdma_device *ndev;
2086         bool found = false;
2087 
2088         mutex_lock(&device_list_mutex);
2089         list_for_each_entry(ndev, &device_list, entry) {
2090                 if (ndev->dev == ib_device) {
2091                         found = true;
2092                         break;
2093                 }
2094         }
2095         mutex_unlock(&device_list_mutex);
2096 
2097         if (!found)
2098                 return;
2099 
2100         /* Delete all controllers using this device */
2101         mutex_lock(&nvme_rdma_ctrl_mutex);
2102         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2103                 if (ctrl->device->dev != ib_device)
2104                         continue;
2105                 nvme_delete_ctrl(&ctrl->ctrl);
2106         }
2107         mutex_unlock(&nvme_rdma_ctrl_mutex);
2108 
2109         flush_workqueue(nvme_delete_wq);
2110 }
2111 
2112 static struct ib_client nvme_rdma_ib_client = {
2113         .name   = "nvme_rdma",
2114         .remove = nvme_rdma_remove_one
2115 };
2116 
2117 static int __init nvme_rdma_init_module(void)
2118 {
2119         int ret;
2120 
2121         ret = ib_register_client(&nvme_rdma_ib_client);
2122         if (ret)
2123                 return ret;
2124 
2125         ret = nvmf_register_transport(&nvme_rdma_transport);
2126         if (ret)
2127                 goto err_unreg_client;
2128 
2129         return 0;
2130 
2131 err_unreg_client:
2132         ib_unregister_client(&nvme_rdma_ib_client);
2133         return ret;
2134 }
2135 
2136 static void __exit nvme_rdma_cleanup_module(void)
2137 {
2138         struct nvme_rdma_ctrl *ctrl;
2139 
2140         nvmf_unregister_transport(&nvme_rdma_transport);
2141         ib_unregister_client(&nvme_rdma_ib_client);
2142 
2143         mutex_lock(&nvme_rdma_ctrl_mutex);
2144         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2145                 nvme_delete_ctrl(&ctrl->ctrl);
2146         mutex_unlock(&nvme_rdma_ctrl_mutex);
2147         flush_workqueue(nvme_delete_wq);
2148 }
2149 
2150 module_init(nvme_rdma_init_module);
2151 module_exit(nvme_rdma_cleanup_module);
2152 
2153 MODULE_LICENSE("GPL v2");

/* [<][>][^][v][top][bottom][index][help] */