root/drivers/nvme/host/pci.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. io_queue_depth_set
  2. sq_idx
  3. cq_idx
  4. to_nvme_dev
  5. max_io_queues
  6. max_queue_count
  7. nvme_dbbuf_size
  8. nvme_dbbuf_dma_alloc
  9. nvme_dbbuf_dma_free
  10. nvme_dbbuf_init
  11. nvme_dbbuf_set
  12. nvme_dbbuf_need_event
  13. nvme_dbbuf_update_and_check_event
  14. nvme_npages
  15. nvme_pci_npages_sgl
  16. nvme_pci_iod_alloc_size
  17. nvme_admin_init_hctx
  18. nvme_init_hctx
  19. nvme_init_request
  20. queue_irq_offset
  21. nvme_pci_map_queues
  22. nvme_write_sq_db
  23. nvme_submit_cmd
  24. nvme_commit_rqs
  25. nvme_pci_iod_list
  26. nvme_pci_use_sgls
  27. nvme_unmap_data
  28. nvme_print_sgl
  29. nvme_pci_setup_prps
  30. nvme_pci_sgl_set_data
  31. nvme_pci_sgl_set_seg
  32. nvme_pci_setup_sgls
  33. nvme_setup_prp_simple
  34. nvme_setup_sgl_simple
  35. nvme_map_data
  36. nvme_map_metadata
  37. nvme_queue_rq
  38. nvme_pci_complete_rq
  39. nvme_cqe_pending
  40. nvme_ring_cq_doorbell
  41. nvme_queue_tagset
  42. nvme_handle_cqe
  43. nvme_complete_cqes
  44. nvme_update_cq_head
  45. nvme_process_cq
  46. nvme_irq
  47. nvme_irq_check
  48. nvme_poll_irqdisable
  49. nvme_poll
  50. nvme_pci_submit_async_event
  51. adapter_delete_queue
  52. adapter_alloc_cq
  53. adapter_alloc_sq
  54. adapter_delete_cq
  55. adapter_delete_sq
  56. abort_endio
  57. nvme_should_reset
  58. nvme_warn_reset
  59. nvme_timeout
  60. nvme_free_queue
  61. nvme_free_queues
  62. nvme_suspend_queue
  63. nvme_suspend_io_queues
  64. nvme_disable_admin_queue
  65. nvme_reap_pending_cqes
  66. nvme_cmb_qdepth
  67. nvme_alloc_sq_cmds
  68. nvme_alloc_queue
  69. queue_request_irq
  70. nvme_init_queue
  71. nvme_create_queue
  72. nvme_dev_remove_admin
  73. nvme_alloc_admin_tags
  74. db_bar_size
  75. nvme_remap_bar
  76. nvme_pci_configure_admin_queue
  77. nvme_create_io_queues
  78. nvme_cmb_show
  79. nvme_cmb_size_unit
  80. nvme_cmb_size
  81. nvme_map_cmb
  82. nvme_release_cmb
  83. nvme_set_host_mem
  84. nvme_free_host_mem
  85. __nvme_alloc_host_mem
  86. nvme_alloc_host_mem
  87. nvme_setup_host_mem
  88. nvme_calc_irq_sets
  89. nvme_setup_irqs
  90. nvme_disable_io_queues
  91. nvme_setup_io_queues
  92. nvme_del_queue_end
  93. nvme_del_cq_end
  94. nvme_delete_queue
  95. __nvme_disable_io_queues
  96. nvme_dev_add
  97. nvme_pci_enable
  98. nvme_dev_unmap
  99. nvme_pci_disable
  100. nvme_dev_disable
  101. nvme_disable_prepare_reset
  102. nvme_setup_prp_pools
  103. nvme_release_prp_pools
  104. nvme_free_tagset
  105. nvme_pci_free_ctrl
  106. nvme_remove_dead_ctrl
  107. nvme_reset_work
  108. nvme_remove_dead_ctrl_work
  109. nvme_pci_reg_read32
  110. nvme_pci_reg_write32
  111. nvme_pci_reg_read64
  112. nvme_pci_get_address
  113. nvme_dev_map
  114. check_vendor_combination_bug
  115. nvme_async_probe
  116. nvme_probe
  117. nvme_reset_prepare
  118. nvme_reset_done
  119. nvme_shutdown
  120. nvme_remove
  121. nvme_get_power_state
  122. nvme_set_power_state
  123. nvme_resume
  124. nvme_suspend
  125. nvme_simple_suspend
  126. nvme_simple_resume
  127. nvme_error_detected
  128. nvme_slot_reset
  129. nvme_error_resume
  130. nvme_init
  131. nvme_exit

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * NVM Express device driver
   4  * Copyright (c) 2011-2014, Intel Corporation.
   5  */
   6 
   7 #include <linux/aer.h>
   8 #include <linux/async.h>
   9 #include <linux/blkdev.h>
  10 #include <linux/blk-mq.h>
  11 #include <linux/blk-mq-pci.h>
  12 #include <linux/dmi.h>
  13 #include <linux/init.h>
  14 #include <linux/interrupt.h>
  15 #include <linux/io.h>
  16 #include <linux/mm.h>
  17 #include <linux/module.h>
  18 #include <linux/mutex.h>
  19 #include <linux/once.h>
  20 #include <linux/pci.h>
  21 #include <linux/suspend.h>
  22 #include <linux/t10-pi.h>
  23 #include <linux/types.h>
  24 #include <linux/io-64-nonatomic-lo-hi.h>
  25 #include <linux/sed-opal.h>
  26 #include <linux/pci-p2pdma.h>
  27 
  28 #include "trace.h"
  29 #include "nvme.h"
  30 
  31 #define SQ_SIZE(q)      ((q)->q_depth << (q)->sqes)
  32 #define CQ_SIZE(q)      ((q)->q_depth * sizeof(struct nvme_completion))
  33 
  34 #define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
  35 
  36 /*
  37  * These can be higher, but we need to ensure that any command doesn't
  38  * require an sg allocation that needs more than a page of data.
  39  */
  40 #define NVME_MAX_KB_SZ  4096
  41 #define NVME_MAX_SEGS   127
  42 
  43 static int use_threaded_interrupts;
  44 module_param(use_threaded_interrupts, int, 0);
  45 
  46 static bool use_cmb_sqes = true;
  47 module_param(use_cmb_sqes, bool, 0444);
  48 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
  49 
  50 static unsigned int max_host_mem_size_mb = 128;
  51 module_param(max_host_mem_size_mb, uint, 0444);
  52 MODULE_PARM_DESC(max_host_mem_size_mb,
  53         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
  54 
  55 static unsigned int sgl_threshold = SZ_32K;
  56 module_param(sgl_threshold, uint, 0644);
  57 MODULE_PARM_DESC(sgl_threshold,
  58                 "Use SGLs when average request segment size is larger or equal to "
  59                 "this size. Use 0 to disable SGLs.");
  60 
  61 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
  62 static const struct kernel_param_ops io_queue_depth_ops = {
  63         .set = io_queue_depth_set,
  64         .get = param_get_int,
  65 };
  66 
  67 static int io_queue_depth = 1024;
  68 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
  69 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
  70 
  71 static unsigned int write_queues;
  72 module_param(write_queues, uint, 0644);
  73 MODULE_PARM_DESC(write_queues,
  74         "Number of queues to use for writes. If not set, reads and writes "
  75         "will share a queue set.");
  76 
  77 static unsigned int poll_queues;
  78 module_param(poll_queues, uint, 0644);
  79 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
  80 
  81 struct nvme_dev;
  82 struct nvme_queue;
  83 
  84 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
  85 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
  86 
  87 /*
  88  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
  89  */
  90 struct nvme_dev {
  91         struct nvme_queue *queues;
  92         struct blk_mq_tag_set tagset;
  93         struct blk_mq_tag_set admin_tagset;
  94         u32 __iomem *dbs;
  95         struct device *dev;
  96         struct dma_pool *prp_page_pool;
  97         struct dma_pool *prp_small_pool;
  98         unsigned online_queues;
  99         unsigned max_qid;
 100         unsigned io_queues[HCTX_MAX_TYPES];
 101         unsigned int num_vecs;
 102         int q_depth;
 103         int io_sqes;
 104         u32 db_stride;
 105         void __iomem *bar;
 106         unsigned long bar_mapped_size;
 107         struct work_struct remove_work;
 108         struct mutex shutdown_lock;
 109         bool subsystem;
 110         u64 cmb_size;
 111         bool cmb_use_sqes;
 112         u32 cmbsz;
 113         u32 cmbloc;
 114         struct nvme_ctrl ctrl;
 115         u32 last_ps;
 116 
 117         mempool_t *iod_mempool;
 118 
 119         /* shadow doorbell buffer support: */
 120         u32 *dbbuf_dbs;
 121         dma_addr_t dbbuf_dbs_dma_addr;
 122         u32 *dbbuf_eis;
 123         dma_addr_t dbbuf_eis_dma_addr;
 124 
 125         /* host memory buffer support: */
 126         u64 host_mem_size;
 127         u32 nr_host_mem_descs;
 128         dma_addr_t host_mem_descs_dma;
 129         struct nvme_host_mem_buf_desc *host_mem_descs;
 130         void **host_mem_desc_bufs;
 131 };
 132 
 133 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
 134 {
 135         int n = 0, ret;
 136 
 137         ret = kstrtoint(val, 10, &n);
 138         if (ret != 0 || n < 2)
 139                 return -EINVAL;
 140 
 141         return param_set_int(val, kp);
 142 }
 143 
 144 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
 145 {
 146         return qid * 2 * stride;
 147 }
 148 
 149 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
 150 {
 151         return (qid * 2 + 1) * stride;
 152 }
 153 
 154 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
 155 {
 156         return container_of(ctrl, struct nvme_dev, ctrl);
 157 }
 158 
 159 /*
 160  * An NVM Express queue.  Each device has at least two (one for admin
 161  * commands and one for I/O commands).
 162  */
 163 struct nvme_queue {
 164         struct nvme_dev *dev;
 165         spinlock_t sq_lock;
 166         void *sq_cmds;
 167          /* only used for poll queues: */
 168         spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
 169         volatile struct nvme_completion *cqes;
 170         dma_addr_t sq_dma_addr;
 171         dma_addr_t cq_dma_addr;
 172         u32 __iomem *q_db;
 173         u16 q_depth;
 174         u16 cq_vector;
 175         u16 sq_tail;
 176         u16 last_sq_tail;
 177         u16 cq_head;
 178         u16 last_cq_head;
 179         u16 qid;
 180         u8 cq_phase;
 181         u8 sqes;
 182         unsigned long flags;
 183 #define NVMEQ_ENABLED           0
 184 #define NVMEQ_SQ_CMB            1
 185 #define NVMEQ_DELETE_ERROR      2
 186 #define NVMEQ_POLLED            3
 187         u32 *dbbuf_sq_db;
 188         u32 *dbbuf_cq_db;
 189         u32 *dbbuf_sq_ei;
 190         u32 *dbbuf_cq_ei;
 191         struct completion delete_done;
 192 };
 193 
 194 /*
 195  * The nvme_iod describes the data in an I/O.
 196  *
 197  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
 198  * to the actual struct scatterlist.
 199  */
 200 struct nvme_iod {
 201         struct nvme_request req;
 202         struct nvme_queue *nvmeq;
 203         bool use_sgl;
 204         int aborted;
 205         int npages;             /* In the PRP list. 0 means small pool in use */
 206         int nents;              /* Used in scatterlist */
 207         dma_addr_t first_dma;
 208         unsigned int dma_len;   /* length of single DMA segment mapping */
 209         dma_addr_t meta_dma;
 210         struct scatterlist *sg;
 211 };
 212 
 213 static unsigned int max_io_queues(void)
 214 {
 215         return num_possible_cpus() + write_queues + poll_queues;
 216 }
 217 
 218 static unsigned int max_queue_count(void)
 219 {
 220         /* IO queues + admin queue */
 221         return 1 + max_io_queues();
 222 }
 223 
 224 static inline unsigned int nvme_dbbuf_size(u32 stride)
 225 {
 226         return (max_queue_count() * 8 * stride);
 227 }
 228 
 229 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
 230 {
 231         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
 232 
 233         if (dev->dbbuf_dbs)
 234                 return 0;
 235 
 236         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
 237                                             &dev->dbbuf_dbs_dma_addr,
 238                                             GFP_KERNEL);
 239         if (!dev->dbbuf_dbs)
 240                 return -ENOMEM;
 241         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
 242                                             &dev->dbbuf_eis_dma_addr,
 243                                             GFP_KERNEL);
 244         if (!dev->dbbuf_eis) {
 245                 dma_free_coherent(dev->dev, mem_size,
 246                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
 247                 dev->dbbuf_dbs = NULL;
 248                 return -ENOMEM;
 249         }
 250 
 251         return 0;
 252 }
 253 
 254 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
 255 {
 256         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
 257 
 258         if (dev->dbbuf_dbs) {
 259                 dma_free_coherent(dev->dev, mem_size,
 260                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
 261                 dev->dbbuf_dbs = NULL;
 262         }
 263         if (dev->dbbuf_eis) {
 264                 dma_free_coherent(dev->dev, mem_size,
 265                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
 266                 dev->dbbuf_eis = NULL;
 267         }
 268 }
 269 
 270 static void nvme_dbbuf_init(struct nvme_dev *dev,
 271                             struct nvme_queue *nvmeq, int qid)
 272 {
 273         if (!dev->dbbuf_dbs || !qid)
 274                 return;
 275 
 276         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
 277         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
 278         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
 279         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
 280 }
 281 
 282 static void nvme_dbbuf_set(struct nvme_dev *dev)
 283 {
 284         struct nvme_command c;
 285 
 286         if (!dev->dbbuf_dbs)
 287                 return;
 288 
 289         memset(&c, 0, sizeof(c));
 290         c.dbbuf.opcode = nvme_admin_dbbuf;
 291         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
 292         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
 293 
 294         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
 295                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
 296                 /* Free memory and continue on */
 297                 nvme_dbbuf_dma_free(dev);
 298         }
 299 }
 300 
 301 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
 302 {
 303         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
 304 }
 305 
 306 /* Update dbbuf and return true if an MMIO is required */
 307 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
 308                                               volatile u32 *dbbuf_ei)
 309 {
 310         if (dbbuf_db) {
 311                 u16 old_value;
 312 
 313                 /*
 314                  * Ensure that the queue is written before updating
 315                  * the doorbell in memory
 316                  */
 317                 wmb();
 318 
 319                 old_value = *dbbuf_db;
 320                 *dbbuf_db = value;
 321 
 322                 /*
 323                  * Ensure that the doorbell is updated before reading the event
 324                  * index from memory.  The controller needs to provide similar
 325                  * ordering to ensure the envent index is updated before reading
 326                  * the doorbell.
 327                  */
 328                 mb();
 329 
 330                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
 331                         return false;
 332         }
 333 
 334         return true;
 335 }
 336 
 337 /*
 338  * Will slightly overestimate the number of pages needed.  This is OK
 339  * as it only leads to a small amount of wasted memory for the lifetime of
 340  * the I/O.
 341  */
 342 static int nvme_npages(unsigned size, struct nvme_dev *dev)
 343 {
 344         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
 345                                       dev->ctrl.page_size);
 346         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
 347 }
 348 
 349 /*
 350  * Calculates the number of pages needed for the SGL segments. For example a 4k
 351  * page can accommodate 256 SGL descriptors.
 352  */
 353 static int nvme_pci_npages_sgl(unsigned int num_seg)
 354 {
 355         return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
 356 }
 357 
 358 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
 359                 unsigned int size, unsigned int nseg, bool use_sgl)
 360 {
 361         size_t alloc_size;
 362 
 363         if (use_sgl)
 364                 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
 365         else
 366                 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
 367 
 368         return alloc_size + sizeof(struct scatterlist) * nseg;
 369 }
 370 
 371 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 372                                 unsigned int hctx_idx)
 373 {
 374         struct nvme_dev *dev = data;
 375         struct nvme_queue *nvmeq = &dev->queues[0];
 376 
 377         WARN_ON(hctx_idx != 0);
 378         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
 379 
 380         hctx->driver_data = nvmeq;
 381         return 0;
 382 }
 383 
 384 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 385                           unsigned int hctx_idx)
 386 {
 387         struct nvme_dev *dev = data;
 388         struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
 389 
 390         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
 391         hctx->driver_data = nvmeq;
 392         return 0;
 393 }
 394 
 395 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
 396                 unsigned int hctx_idx, unsigned int numa_node)
 397 {
 398         struct nvme_dev *dev = set->driver_data;
 399         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 400         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
 401         struct nvme_queue *nvmeq = &dev->queues[queue_idx];
 402 
 403         BUG_ON(!nvmeq);
 404         iod->nvmeq = nvmeq;
 405 
 406         nvme_req(req)->ctrl = &dev->ctrl;
 407         return 0;
 408 }
 409 
 410 static int queue_irq_offset(struct nvme_dev *dev)
 411 {
 412         /* if we have more than 1 vec, admin queue offsets us by 1 */
 413         if (dev->num_vecs > 1)
 414                 return 1;
 415 
 416         return 0;
 417 }
 418 
 419 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
 420 {
 421         struct nvme_dev *dev = set->driver_data;
 422         int i, qoff, offset;
 423 
 424         offset = queue_irq_offset(dev);
 425         for (i = 0, qoff = 0; i < set->nr_maps; i++) {
 426                 struct blk_mq_queue_map *map = &set->map[i];
 427 
 428                 map->nr_queues = dev->io_queues[i];
 429                 if (!map->nr_queues) {
 430                         BUG_ON(i == HCTX_TYPE_DEFAULT);
 431                         continue;
 432                 }
 433 
 434                 /*
 435                  * The poll queue(s) doesn't have an IRQ (and hence IRQ
 436                  * affinity), so use the regular blk-mq cpu mapping
 437                  */
 438                 map->queue_offset = qoff;
 439                 if (i != HCTX_TYPE_POLL && offset)
 440                         blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
 441                 else
 442                         blk_mq_map_queues(map);
 443                 qoff += map->nr_queues;
 444                 offset += map->nr_queues;
 445         }
 446 
 447         return 0;
 448 }
 449 
 450 /*
 451  * Write sq tail if we are asked to, or if the next command would wrap.
 452  */
 453 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
 454 {
 455         if (!write_sq) {
 456                 u16 next_tail = nvmeq->sq_tail + 1;
 457 
 458                 if (next_tail == nvmeq->q_depth)
 459                         next_tail = 0;
 460                 if (next_tail != nvmeq->last_sq_tail)
 461                         return;
 462         }
 463 
 464         if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
 465                         nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
 466                 writel(nvmeq->sq_tail, nvmeq->q_db);
 467         nvmeq->last_sq_tail = nvmeq->sq_tail;
 468 }
 469 
 470 /**
 471  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
 472  * @nvmeq: The queue to use
 473  * @cmd: The command to send
 474  * @write_sq: whether to write to the SQ doorbell
 475  */
 476 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
 477                             bool write_sq)
 478 {
 479         spin_lock(&nvmeq->sq_lock);
 480         memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
 481                cmd, sizeof(*cmd));
 482         if (++nvmeq->sq_tail == nvmeq->q_depth)
 483                 nvmeq->sq_tail = 0;
 484         nvme_write_sq_db(nvmeq, write_sq);
 485         spin_unlock(&nvmeq->sq_lock);
 486 }
 487 
 488 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
 489 {
 490         struct nvme_queue *nvmeq = hctx->driver_data;
 491 
 492         spin_lock(&nvmeq->sq_lock);
 493         if (nvmeq->sq_tail != nvmeq->last_sq_tail)
 494                 nvme_write_sq_db(nvmeq, true);
 495         spin_unlock(&nvmeq->sq_lock);
 496 }
 497 
 498 static void **nvme_pci_iod_list(struct request *req)
 499 {
 500         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 501         return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
 502 }
 503 
 504 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
 505 {
 506         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 507         int nseg = blk_rq_nr_phys_segments(req);
 508         unsigned int avg_seg_size;
 509 
 510         if (nseg == 0)
 511                 return false;
 512 
 513         avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
 514 
 515         if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
 516                 return false;
 517         if (!iod->nvmeq->qid)
 518                 return false;
 519         if (!sgl_threshold || avg_seg_size < sgl_threshold)
 520                 return false;
 521         return true;
 522 }
 523 
 524 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
 525 {
 526         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 527         const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
 528         dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
 529         int i;
 530 
 531         if (iod->dma_len) {
 532                 dma_unmap_page(dev->dev, dma_addr, iod->dma_len,
 533                                rq_dma_dir(req));
 534                 return;
 535         }
 536 
 537         WARN_ON_ONCE(!iod->nents);
 538 
 539         if (is_pci_p2pdma_page(sg_page(iod->sg)))
 540                 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
 541                                     rq_dma_dir(req));
 542         else
 543                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
 544 
 545 
 546         if (iod->npages == 0)
 547                 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
 548                         dma_addr);
 549 
 550         for (i = 0; i < iod->npages; i++) {
 551                 void *addr = nvme_pci_iod_list(req)[i];
 552 
 553                 if (iod->use_sgl) {
 554                         struct nvme_sgl_desc *sg_list = addr;
 555 
 556                         next_dma_addr =
 557                             le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
 558                 } else {
 559                         __le64 *prp_list = addr;
 560 
 561                         next_dma_addr = le64_to_cpu(prp_list[last_prp]);
 562                 }
 563 
 564                 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
 565                 dma_addr = next_dma_addr;
 566         }
 567 
 568         mempool_free(iod->sg, dev->iod_mempool);
 569 }
 570 
 571 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
 572 {
 573         int i;
 574         struct scatterlist *sg;
 575 
 576         for_each_sg(sgl, sg, nents, i) {
 577                 dma_addr_t phys = sg_phys(sg);
 578                 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
 579                         "dma_address:%pad dma_length:%d\n",
 580                         i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
 581                         sg_dma_len(sg));
 582         }
 583 }
 584 
 585 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
 586                 struct request *req, struct nvme_rw_command *cmnd)
 587 {
 588         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 589         struct dma_pool *pool;
 590         int length = blk_rq_payload_bytes(req);
 591         struct scatterlist *sg = iod->sg;
 592         int dma_len = sg_dma_len(sg);
 593         u64 dma_addr = sg_dma_address(sg);
 594         u32 page_size = dev->ctrl.page_size;
 595         int offset = dma_addr & (page_size - 1);
 596         __le64 *prp_list;
 597         void **list = nvme_pci_iod_list(req);
 598         dma_addr_t prp_dma;
 599         int nprps, i;
 600 
 601         length -= (page_size - offset);
 602         if (length <= 0) {
 603                 iod->first_dma = 0;
 604                 goto done;
 605         }
 606 
 607         dma_len -= (page_size - offset);
 608         if (dma_len) {
 609                 dma_addr += (page_size - offset);
 610         } else {
 611                 sg = sg_next(sg);
 612                 dma_addr = sg_dma_address(sg);
 613                 dma_len = sg_dma_len(sg);
 614         }
 615 
 616         if (length <= page_size) {
 617                 iod->first_dma = dma_addr;
 618                 goto done;
 619         }
 620 
 621         nprps = DIV_ROUND_UP(length, page_size);
 622         if (nprps <= (256 / 8)) {
 623                 pool = dev->prp_small_pool;
 624                 iod->npages = 0;
 625         } else {
 626                 pool = dev->prp_page_pool;
 627                 iod->npages = 1;
 628         }
 629 
 630         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
 631         if (!prp_list) {
 632                 iod->first_dma = dma_addr;
 633                 iod->npages = -1;
 634                 return BLK_STS_RESOURCE;
 635         }
 636         list[0] = prp_list;
 637         iod->first_dma = prp_dma;
 638         i = 0;
 639         for (;;) {
 640                 if (i == page_size >> 3) {
 641                         __le64 *old_prp_list = prp_list;
 642                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
 643                         if (!prp_list)
 644                                 return BLK_STS_RESOURCE;
 645                         list[iod->npages++] = prp_list;
 646                         prp_list[0] = old_prp_list[i - 1];
 647                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
 648                         i = 1;
 649                 }
 650                 prp_list[i++] = cpu_to_le64(dma_addr);
 651                 dma_len -= page_size;
 652                 dma_addr += page_size;
 653                 length -= page_size;
 654                 if (length <= 0)
 655                         break;
 656                 if (dma_len > 0)
 657                         continue;
 658                 if (unlikely(dma_len < 0))
 659                         goto bad_sgl;
 660                 sg = sg_next(sg);
 661                 dma_addr = sg_dma_address(sg);
 662                 dma_len = sg_dma_len(sg);
 663         }
 664 
 665 done:
 666         cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
 667         cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
 668 
 669         return BLK_STS_OK;
 670 
 671  bad_sgl:
 672         WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
 673                         "Invalid SGL for payload:%d nents:%d\n",
 674                         blk_rq_payload_bytes(req), iod->nents);
 675         return BLK_STS_IOERR;
 676 }
 677 
 678 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
 679                 struct scatterlist *sg)
 680 {
 681         sge->addr = cpu_to_le64(sg_dma_address(sg));
 682         sge->length = cpu_to_le32(sg_dma_len(sg));
 683         sge->type = NVME_SGL_FMT_DATA_DESC << 4;
 684 }
 685 
 686 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
 687                 dma_addr_t dma_addr, int entries)
 688 {
 689         sge->addr = cpu_to_le64(dma_addr);
 690         if (entries < SGES_PER_PAGE) {
 691                 sge->length = cpu_to_le32(entries * sizeof(*sge));
 692                 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
 693         } else {
 694                 sge->length = cpu_to_le32(PAGE_SIZE);
 695                 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
 696         }
 697 }
 698 
 699 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
 700                 struct request *req, struct nvme_rw_command *cmd, int entries)
 701 {
 702         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 703         struct dma_pool *pool;
 704         struct nvme_sgl_desc *sg_list;
 705         struct scatterlist *sg = iod->sg;
 706         dma_addr_t sgl_dma;
 707         int i = 0;
 708 
 709         /* setting the transfer type as SGL */
 710         cmd->flags = NVME_CMD_SGL_METABUF;
 711 
 712         if (entries == 1) {
 713                 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
 714                 return BLK_STS_OK;
 715         }
 716 
 717         if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
 718                 pool = dev->prp_small_pool;
 719                 iod->npages = 0;
 720         } else {
 721                 pool = dev->prp_page_pool;
 722                 iod->npages = 1;
 723         }
 724 
 725         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
 726         if (!sg_list) {
 727                 iod->npages = -1;
 728                 return BLK_STS_RESOURCE;
 729         }
 730 
 731         nvme_pci_iod_list(req)[0] = sg_list;
 732         iod->first_dma = sgl_dma;
 733 
 734         nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
 735 
 736         do {
 737                 if (i == SGES_PER_PAGE) {
 738                         struct nvme_sgl_desc *old_sg_desc = sg_list;
 739                         struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
 740 
 741                         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
 742                         if (!sg_list)
 743                                 return BLK_STS_RESOURCE;
 744 
 745                         i = 0;
 746                         nvme_pci_iod_list(req)[iod->npages++] = sg_list;
 747                         sg_list[i++] = *link;
 748                         nvme_pci_sgl_set_seg(link, sgl_dma, entries);
 749                 }
 750 
 751                 nvme_pci_sgl_set_data(&sg_list[i++], sg);
 752                 sg = sg_next(sg);
 753         } while (--entries > 0);
 754 
 755         return BLK_STS_OK;
 756 }
 757 
 758 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
 759                 struct request *req, struct nvme_rw_command *cmnd,
 760                 struct bio_vec *bv)
 761 {
 762         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 763         unsigned int offset = bv->bv_offset & (dev->ctrl.page_size - 1);
 764         unsigned int first_prp_len = dev->ctrl.page_size - offset;
 765 
 766         iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
 767         if (dma_mapping_error(dev->dev, iod->first_dma))
 768                 return BLK_STS_RESOURCE;
 769         iod->dma_len = bv->bv_len;
 770 
 771         cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
 772         if (bv->bv_len > first_prp_len)
 773                 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
 774         return 0;
 775 }
 776 
 777 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
 778                 struct request *req, struct nvme_rw_command *cmnd,
 779                 struct bio_vec *bv)
 780 {
 781         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 782 
 783         iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
 784         if (dma_mapping_error(dev->dev, iod->first_dma))
 785                 return BLK_STS_RESOURCE;
 786         iod->dma_len = bv->bv_len;
 787 
 788         cmnd->flags = NVME_CMD_SGL_METABUF;
 789         cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
 790         cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
 791         cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
 792         return 0;
 793 }
 794 
 795 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
 796                 struct nvme_command *cmnd)
 797 {
 798         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 799         blk_status_t ret = BLK_STS_RESOURCE;
 800         int nr_mapped;
 801 
 802         if (blk_rq_nr_phys_segments(req) == 1) {
 803                 struct bio_vec bv = req_bvec(req);
 804 
 805                 if (!is_pci_p2pdma_page(bv.bv_page)) {
 806                         if (bv.bv_offset + bv.bv_len <= dev->ctrl.page_size * 2)
 807                                 return nvme_setup_prp_simple(dev, req,
 808                                                              &cmnd->rw, &bv);
 809 
 810                         if (iod->nvmeq->qid &&
 811                             dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
 812                                 return nvme_setup_sgl_simple(dev, req,
 813                                                              &cmnd->rw, &bv);
 814                 }
 815         }
 816 
 817         iod->dma_len = 0;
 818         iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
 819         if (!iod->sg)
 820                 return BLK_STS_RESOURCE;
 821         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
 822         iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
 823         if (!iod->nents)
 824                 goto out;
 825 
 826         if (is_pci_p2pdma_page(sg_page(iod->sg)))
 827                 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
 828                                 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
 829         else
 830                 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
 831                                              rq_dma_dir(req), DMA_ATTR_NO_WARN);
 832         if (!nr_mapped)
 833                 goto out;
 834 
 835         iod->use_sgl = nvme_pci_use_sgls(dev, req);
 836         if (iod->use_sgl)
 837                 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
 838         else
 839                 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
 840 out:
 841         if (ret != BLK_STS_OK)
 842                 nvme_unmap_data(dev, req);
 843         return ret;
 844 }
 845 
 846 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
 847                 struct nvme_command *cmnd)
 848 {
 849         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 850 
 851         iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
 852                         rq_dma_dir(req), 0);
 853         if (dma_mapping_error(dev->dev, iod->meta_dma))
 854                 return BLK_STS_IOERR;
 855         cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
 856         return 0;
 857 }
 858 
 859 /*
 860  * NOTE: ns is NULL when called on the admin queue.
 861  */
 862 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
 863                          const struct blk_mq_queue_data *bd)
 864 {
 865         struct nvme_ns *ns = hctx->queue->queuedata;
 866         struct nvme_queue *nvmeq = hctx->driver_data;
 867         struct nvme_dev *dev = nvmeq->dev;
 868         struct request *req = bd->rq;
 869         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 870         struct nvme_command cmnd;
 871         blk_status_t ret;
 872 
 873         iod->aborted = 0;
 874         iod->npages = -1;
 875         iod->nents = 0;
 876 
 877         /*
 878          * We should not need to do this, but we're still using this to
 879          * ensure we can drain requests on a dying queue.
 880          */
 881         if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
 882                 return BLK_STS_IOERR;
 883 
 884         ret = nvme_setup_cmd(ns, req, &cmnd);
 885         if (ret)
 886                 return ret;
 887 
 888         if (blk_rq_nr_phys_segments(req)) {
 889                 ret = nvme_map_data(dev, req, &cmnd);
 890                 if (ret)
 891                         goto out_free_cmd;
 892         }
 893 
 894         if (blk_integrity_rq(req)) {
 895                 ret = nvme_map_metadata(dev, req, &cmnd);
 896                 if (ret)
 897                         goto out_unmap_data;
 898         }
 899 
 900         blk_mq_start_request(req);
 901         nvme_submit_cmd(nvmeq, &cmnd, bd->last);
 902         return BLK_STS_OK;
 903 out_unmap_data:
 904         nvme_unmap_data(dev, req);
 905 out_free_cmd:
 906         nvme_cleanup_cmd(req);
 907         return ret;
 908 }
 909 
 910 static void nvme_pci_complete_rq(struct request *req)
 911 {
 912         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 913         struct nvme_dev *dev = iod->nvmeq->dev;
 914 
 915         nvme_cleanup_cmd(req);
 916         if (blk_integrity_rq(req))
 917                 dma_unmap_page(dev->dev, iod->meta_dma,
 918                                rq_integrity_vec(req)->bv_len, rq_data_dir(req));
 919         if (blk_rq_nr_phys_segments(req))
 920                 nvme_unmap_data(dev, req);
 921         nvme_complete_rq(req);
 922 }
 923 
 924 /* We read the CQE phase first to check if the rest of the entry is valid */
 925 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
 926 {
 927         return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
 928                         nvmeq->cq_phase;
 929 }
 930 
 931 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
 932 {
 933         u16 head = nvmeq->cq_head;
 934 
 935         if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
 936                                               nvmeq->dbbuf_cq_ei))
 937                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
 938 }
 939 
 940 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
 941 {
 942         if (!nvmeq->qid)
 943                 return nvmeq->dev->admin_tagset.tags[0];
 944         return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
 945 }
 946 
 947 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
 948 {
 949         volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
 950         struct request *req;
 951 
 952         if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
 953                 dev_warn(nvmeq->dev->ctrl.device,
 954                         "invalid id %d completed on queue %d\n",
 955                         cqe->command_id, le16_to_cpu(cqe->sq_id));
 956                 return;
 957         }
 958 
 959         /*
 960          * AEN requests are special as they don't time out and can
 961          * survive any kind of queue freeze and often don't respond to
 962          * aborts.  We don't even bother to allocate a struct request
 963          * for them but rather special case them here.
 964          */
 965         if (unlikely(nvmeq->qid == 0 &&
 966                         cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
 967                 nvme_complete_async_event(&nvmeq->dev->ctrl,
 968                                 cqe->status, &cqe->result);
 969                 return;
 970         }
 971 
 972         req = blk_mq_tag_to_rq(nvme_queue_tagset(nvmeq), cqe->command_id);
 973         trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
 974         nvme_end_request(req, cqe->status, cqe->result);
 975 }
 976 
 977 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
 978 {
 979         while (start != end) {
 980                 nvme_handle_cqe(nvmeq, start);
 981                 if (++start == nvmeq->q_depth)
 982                         start = 0;
 983         }
 984 }
 985 
 986 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
 987 {
 988         if (nvmeq->cq_head == nvmeq->q_depth - 1) {
 989                 nvmeq->cq_head = 0;
 990                 nvmeq->cq_phase = !nvmeq->cq_phase;
 991         } else {
 992                 nvmeq->cq_head++;
 993         }
 994 }
 995 
 996 static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
 997                                   u16 *end, unsigned int tag)
 998 {
 999         int found = 0;
1000 
1001         *start = nvmeq->cq_head;
1002         while (nvme_cqe_pending(nvmeq)) {
1003                 if (tag == -1U || nvmeq->cqes[nvmeq->cq_head].command_id == tag)
1004                         found++;
1005                 nvme_update_cq_head(nvmeq);
1006         }
1007         *end = nvmeq->cq_head;
1008 
1009         if (*start != *end)
1010                 nvme_ring_cq_doorbell(nvmeq);
1011         return found;
1012 }
1013 
1014 static irqreturn_t nvme_irq(int irq, void *data)
1015 {
1016         struct nvme_queue *nvmeq = data;
1017         irqreturn_t ret = IRQ_NONE;
1018         u16 start, end;
1019 
1020         /*
1021          * The rmb/wmb pair ensures we see all updates from a previous run of
1022          * the irq handler, even if that was on another CPU.
1023          */
1024         rmb();
1025         if (nvmeq->cq_head != nvmeq->last_cq_head)
1026                 ret = IRQ_HANDLED;
1027         nvme_process_cq(nvmeq, &start, &end, -1);
1028         nvmeq->last_cq_head = nvmeq->cq_head;
1029         wmb();
1030 
1031         if (start != end) {
1032                 nvme_complete_cqes(nvmeq, start, end);
1033                 return IRQ_HANDLED;
1034         }
1035 
1036         return ret;
1037 }
1038 
1039 static irqreturn_t nvme_irq_check(int irq, void *data)
1040 {
1041         struct nvme_queue *nvmeq = data;
1042         if (nvme_cqe_pending(nvmeq))
1043                 return IRQ_WAKE_THREAD;
1044         return IRQ_NONE;
1045 }
1046 
1047 /*
1048  * Poll for completions any queue, including those not dedicated to polling.
1049  * Can be called from any context.
1050  */
1051 static int nvme_poll_irqdisable(struct nvme_queue *nvmeq, unsigned int tag)
1052 {
1053         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1054         u16 start, end;
1055         int found;
1056 
1057         /*
1058          * For a poll queue we need to protect against the polling thread
1059          * using the CQ lock.  For normal interrupt driven threads we have
1060          * to disable the interrupt to avoid racing with it.
1061          */
1062         if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) {
1063                 spin_lock(&nvmeq->cq_poll_lock);
1064                 found = nvme_process_cq(nvmeq, &start, &end, tag);
1065                 spin_unlock(&nvmeq->cq_poll_lock);
1066         } else {
1067                 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1068                 found = nvme_process_cq(nvmeq, &start, &end, tag);
1069                 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1070         }
1071 
1072         nvme_complete_cqes(nvmeq, start, end);
1073         return found;
1074 }
1075 
1076 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1077 {
1078         struct nvme_queue *nvmeq = hctx->driver_data;
1079         u16 start, end;
1080         bool found;
1081 
1082         if (!nvme_cqe_pending(nvmeq))
1083                 return 0;
1084 
1085         spin_lock(&nvmeq->cq_poll_lock);
1086         found = nvme_process_cq(nvmeq, &start, &end, -1);
1087         nvme_complete_cqes(nvmeq, start, end);
1088         spin_unlock(&nvmeq->cq_poll_lock);
1089 
1090         return found;
1091 }
1092 
1093 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1094 {
1095         struct nvme_dev *dev = to_nvme_dev(ctrl);
1096         struct nvme_queue *nvmeq = &dev->queues[0];
1097         struct nvme_command c;
1098 
1099         memset(&c, 0, sizeof(c));
1100         c.common.opcode = nvme_admin_async_event;
1101         c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1102         nvme_submit_cmd(nvmeq, &c, true);
1103 }
1104 
1105 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1106 {
1107         struct nvme_command c;
1108 
1109         memset(&c, 0, sizeof(c));
1110         c.delete_queue.opcode = opcode;
1111         c.delete_queue.qid = cpu_to_le16(id);
1112 
1113         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1114 }
1115 
1116 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1117                 struct nvme_queue *nvmeq, s16 vector)
1118 {
1119         struct nvme_command c;
1120         int flags = NVME_QUEUE_PHYS_CONTIG;
1121 
1122         if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1123                 flags |= NVME_CQ_IRQ_ENABLED;
1124 
1125         /*
1126          * Note: we (ab)use the fact that the prp fields survive if no data
1127          * is attached to the request.
1128          */
1129         memset(&c, 0, sizeof(c));
1130         c.create_cq.opcode = nvme_admin_create_cq;
1131         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1132         c.create_cq.cqid = cpu_to_le16(qid);
1133         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1134         c.create_cq.cq_flags = cpu_to_le16(flags);
1135         c.create_cq.irq_vector = cpu_to_le16(vector);
1136 
1137         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1138 }
1139 
1140 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1141                                                 struct nvme_queue *nvmeq)
1142 {
1143         struct nvme_ctrl *ctrl = &dev->ctrl;
1144         struct nvme_command c;
1145         int flags = NVME_QUEUE_PHYS_CONTIG;
1146 
1147         /*
1148          * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1149          * set. Since URGENT priority is zeroes, it makes all queues
1150          * URGENT.
1151          */
1152         if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1153                 flags |= NVME_SQ_PRIO_MEDIUM;
1154 
1155         /*
1156          * Note: we (ab)use the fact that the prp fields survive if no data
1157          * is attached to the request.
1158          */
1159         memset(&c, 0, sizeof(c));
1160         c.create_sq.opcode = nvme_admin_create_sq;
1161         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1162         c.create_sq.sqid = cpu_to_le16(qid);
1163         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1164         c.create_sq.sq_flags = cpu_to_le16(flags);
1165         c.create_sq.cqid = cpu_to_le16(qid);
1166 
1167         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1168 }
1169 
1170 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1171 {
1172         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1173 }
1174 
1175 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1176 {
1177         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1178 }
1179 
1180 static void abort_endio(struct request *req, blk_status_t error)
1181 {
1182         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1183         struct nvme_queue *nvmeq = iod->nvmeq;
1184 
1185         dev_warn(nvmeq->dev->ctrl.device,
1186                  "Abort status: 0x%x", nvme_req(req)->status);
1187         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1188         blk_mq_free_request(req);
1189 }
1190 
1191 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1192 {
1193 
1194         /* If true, indicates loss of adapter communication, possibly by a
1195          * NVMe Subsystem reset.
1196          */
1197         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1198 
1199         /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1200         switch (dev->ctrl.state) {
1201         case NVME_CTRL_RESETTING:
1202         case NVME_CTRL_CONNECTING:
1203                 return false;
1204         default:
1205                 break;
1206         }
1207 
1208         /* We shouldn't reset unless the controller is on fatal error state
1209          * _or_ if we lost the communication with it.
1210          */
1211         if (!(csts & NVME_CSTS_CFS) && !nssro)
1212                 return false;
1213 
1214         return true;
1215 }
1216 
1217 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1218 {
1219         /* Read a config register to help see what died. */
1220         u16 pci_status;
1221         int result;
1222 
1223         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1224                                       &pci_status);
1225         if (result == PCIBIOS_SUCCESSFUL)
1226                 dev_warn(dev->ctrl.device,
1227                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1228                          csts, pci_status);
1229         else
1230                 dev_warn(dev->ctrl.device,
1231                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1232                          csts, result);
1233 }
1234 
1235 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1236 {
1237         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1238         struct nvme_queue *nvmeq = iod->nvmeq;
1239         struct nvme_dev *dev = nvmeq->dev;
1240         struct request *abort_req;
1241         struct nvme_command cmd;
1242         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1243 
1244         /* If PCI error recovery process is happening, we cannot reset or
1245          * the recovery mechanism will surely fail.
1246          */
1247         mb();
1248         if (pci_channel_offline(to_pci_dev(dev->dev)))
1249                 return BLK_EH_RESET_TIMER;
1250 
1251         /*
1252          * Reset immediately if the controller is failed
1253          */
1254         if (nvme_should_reset(dev, csts)) {
1255                 nvme_warn_reset(dev, csts);
1256                 nvme_dev_disable(dev, false);
1257                 nvme_reset_ctrl(&dev->ctrl);
1258                 return BLK_EH_DONE;
1259         }
1260 
1261         /*
1262          * Did we miss an interrupt?
1263          */
1264         if (nvme_poll_irqdisable(nvmeq, req->tag)) {
1265                 dev_warn(dev->ctrl.device,
1266                          "I/O %d QID %d timeout, completion polled\n",
1267                          req->tag, nvmeq->qid);
1268                 return BLK_EH_DONE;
1269         }
1270 
1271         /*
1272          * Shutdown immediately if controller times out while starting. The
1273          * reset work will see the pci device disabled when it gets the forced
1274          * cancellation error. All outstanding requests are completed on
1275          * shutdown, so we return BLK_EH_DONE.
1276          */
1277         switch (dev->ctrl.state) {
1278         case NVME_CTRL_CONNECTING:
1279                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1280                 /* fall through */
1281         case NVME_CTRL_DELETING:
1282                 dev_warn_ratelimited(dev->ctrl.device,
1283                          "I/O %d QID %d timeout, disable controller\n",
1284                          req->tag, nvmeq->qid);
1285                 nvme_dev_disable(dev, true);
1286                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1287                 return BLK_EH_DONE;
1288         case NVME_CTRL_RESETTING:
1289                 return BLK_EH_RESET_TIMER;
1290         default:
1291                 break;
1292         }
1293 
1294         /*
1295          * Shutdown the controller immediately and schedule a reset if the
1296          * command was already aborted once before and still hasn't been
1297          * returned to the driver, or if this is the admin queue.
1298          */
1299         if (!nvmeq->qid || iod->aborted) {
1300                 dev_warn(dev->ctrl.device,
1301                          "I/O %d QID %d timeout, reset controller\n",
1302                          req->tag, nvmeq->qid);
1303                 nvme_dev_disable(dev, false);
1304                 nvme_reset_ctrl(&dev->ctrl);
1305 
1306                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1307                 return BLK_EH_DONE;
1308         }
1309 
1310         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1311                 atomic_inc(&dev->ctrl.abort_limit);
1312                 return BLK_EH_RESET_TIMER;
1313         }
1314         iod->aborted = 1;
1315 
1316         memset(&cmd, 0, sizeof(cmd));
1317         cmd.abort.opcode = nvme_admin_abort_cmd;
1318         cmd.abort.cid = req->tag;
1319         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1320 
1321         dev_warn(nvmeq->dev->ctrl.device,
1322                 "I/O %d QID %d timeout, aborting\n",
1323                  req->tag, nvmeq->qid);
1324 
1325         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1326                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1327         if (IS_ERR(abort_req)) {
1328                 atomic_inc(&dev->ctrl.abort_limit);
1329                 return BLK_EH_RESET_TIMER;
1330         }
1331 
1332         abort_req->timeout = ADMIN_TIMEOUT;
1333         abort_req->end_io_data = NULL;
1334         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1335 
1336         /*
1337          * The aborted req will be completed on receiving the abort req.
1338          * We enable the timer again. If hit twice, it'll cause a device reset,
1339          * as the device then is in a faulty state.
1340          */
1341         return BLK_EH_RESET_TIMER;
1342 }
1343 
1344 static void nvme_free_queue(struct nvme_queue *nvmeq)
1345 {
1346         dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1347                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1348         if (!nvmeq->sq_cmds)
1349                 return;
1350 
1351         if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1352                 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1353                                 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1354         } else {
1355                 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1356                                 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1357         }
1358 }
1359 
1360 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1361 {
1362         int i;
1363 
1364         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1365                 dev->ctrl.queue_count--;
1366                 nvme_free_queue(&dev->queues[i]);
1367         }
1368 }
1369 
1370 /**
1371  * nvme_suspend_queue - put queue into suspended state
1372  * @nvmeq: queue to suspend
1373  */
1374 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1375 {
1376         if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1377                 return 1;
1378 
1379         /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1380         mb();
1381 
1382         nvmeq->dev->online_queues--;
1383         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1384                 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1385         if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1386                 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1387         return 0;
1388 }
1389 
1390 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1391 {
1392         int i;
1393 
1394         for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1395                 nvme_suspend_queue(&dev->queues[i]);
1396 }
1397 
1398 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1399 {
1400         struct nvme_queue *nvmeq = &dev->queues[0];
1401 
1402         if (shutdown)
1403                 nvme_shutdown_ctrl(&dev->ctrl);
1404         else
1405                 nvme_disable_ctrl(&dev->ctrl);
1406 
1407         nvme_poll_irqdisable(nvmeq, -1);
1408 }
1409 
1410 /*
1411  * Called only on a device that has been disabled and after all other threads
1412  * that can check this device's completion queues have synced. This is the
1413  * last chance for the driver to see a natural completion before
1414  * nvme_cancel_request() terminates all incomplete requests.
1415  */
1416 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1417 {
1418         u16 start, end;
1419         int i;
1420 
1421         for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1422                 nvme_process_cq(&dev->queues[i], &start, &end, -1);
1423                 nvme_complete_cqes(&dev->queues[i], start, end);
1424         }
1425 }
1426 
1427 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1428                                 int entry_size)
1429 {
1430         int q_depth = dev->q_depth;
1431         unsigned q_size_aligned = roundup(q_depth * entry_size,
1432                                           dev->ctrl.page_size);
1433 
1434         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1435                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1436                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1437                 q_depth = div_u64(mem_per_q, entry_size);
1438 
1439                 /*
1440                  * Ensure the reduced q_depth is above some threshold where it
1441                  * would be better to map queues in system memory with the
1442                  * original depth
1443                  */
1444                 if (q_depth < 64)
1445                         return -ENOMEM;
1446         }
1447 
1448         return q_depth;
1449 }
1450 
1451 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1452                                 int qid)
1453 {
1454         struct pci_dev *pdev = to_pci_dev(dev->dev);
1455 
1456         if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1457                 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1458                 if (nvmeq->sq_cmds) {
1459                         nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1460                                                         nvmeq->sq_cmds);
1461                         if (nvmeq->sq_dma_addr) {
1462                                 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1463                                 return 0;
1464                         }
1465 
1466                         pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1467                 }
1468         }
1469 
1470         nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1471                                 &nvmeq->sq_dma_addr, GFP_KERNEL);
1472         if (!nvmeq->sq_cmds)
1473                 return -ENOMEM;
1474         return 0;
1475 }
1476 
1477 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1478 {
1479         struct nvme_queue *nvmeq = &dev->queues[qid];
1480 
1481         if (dev->ctrl.queue_count > qid)
1482                 return 0;
1483 
1484         nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1485         nvmeq->q_depth = depth;
1486         nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1487                                          &nvmeq->cq_dma_addr, GFP_KERNEL);
1488         if (!nvmeq->cqes)
1489                 goto free_nvmeq;
1490 
1491         if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1492                 goto free_cqdma;
1493 
1494         nvmeq->dev = dev;
1495         spin_lock_init(&nvmeq->sq_lock);
1496         spin_lock_init(&nvmeq->cq_poll_lock);
1497         nvmeq->cq_head = 0;
1498         nvmeq->cq_phase = 1;
1499         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1500         nvmeq->qid = qid;
1501         dev->ctrl.queue_count++;
1502 
1503         return 0;
1504 
1505  free_cqdma:
1506         dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1507                           nvmeq->cq_dma_addr);
1508  free_nvmeq:
1509         return -ENOMEM;
1510 }
1511 
1512 static int queue_request_irq(struct nvme_queue *nvmeq)
1513 {
1514         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1515         int nr = nvmeq->dev->ctrl.instance;
1516 
1517         if (use_threaded_interrupts) {
1518                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1519                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1520         } else {
1521                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1522                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1523         }
1524 }
1525 
1526 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1527 {
1528         struct nvme_dev *dev = nvmeq->dev;
1529 
1530         nvmeq->sq_tail = 0;
1531         nvmeq->last_sq_tail = 0;
1532         nvmeq->cq_head = 0;
1533         nvmeq->cq_phase = 1;
1534         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1535         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1536         nvme_dbbuf_init(dev, nvmeq, qid);
1537         dev->online_queues++;
1538         wmb(); /* ensure the first interrupt sees the initialization */
1539 }
1540 
1541 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1542 {
1543         struct nvme_dev *dev = nvmeq->dev;
1544         int result;
1545         u16 vector = 0;
1546 
1547         clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1548 
1549         /*
1550          * A queue's vector matches the queue identifier unless the controller
1551          * has only one vector available.
1552          */
1553         if (!polled)
1554                 vector = dev->num_vecs == 1 ? 0 : qid;
1555         else
1556                 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1557 
1558         result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1559         if (result)
1560                 return result;
1561 
1562         result = adapter_alloc_sq(dev, qid, nvmeq);
1563         if (result < 0)
1564                 return result;
1565         else if (result)
1566                 goto release_cq;
1567 
1568         nvmeq->cq_vector = vector;
1569         nvme_init_queue(nvmeq, qid);
1570 
1571         if (!polled) {
1572                 result = queue_request_irq(nvmeq);
1573                 if (result < 0)
1574                         goto release_sq;
1575         }
1576 
1577         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1578         return result;
1579 
1580 release_sq:
1581         dev->online_queues--;
1582         adapter_delete_sq(dev, qid);
1583 release_cq:
1584         adapter_delete_cq(dev, qid);
1585         return result;
1586 }
1587 
1588 static const struct blk_mq_ops nvme_mq_admin_ops = {
1589         .queue_rq       = nvme_queue_rq,
1590         .complete       = nvme_pci_complete_rq,
1591         .init_hctx      = nvme_admin_init_hctx,
1592         .init_request   = nvme_init_request,
1593         .timeout        = nvme_timeout,
1594 };
1595 
1596 static const struct blk_mq_ops nvme_mq_ops = {
1597         .queue_rq       = nvme_queue_rq,
1598         .complete       = nvme_pci_complete_rq,
1599         .commit_rqs     = nvme_commit_rqs,
1600         .init_hctx      = nvme_init_hctx,
1601         .init_request   = nvme_init_request,
1602         .map_queues     = nvme_pci_map_queues,
1603         .timeout        = nvme_timeout,
1604         .poll           = nvme_poll,
1605 };
1606 
1607 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1608 {
1609         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1610                 /*
1611                  * If the controller was reset during removal, it's possible
1612                  * user requests may be waiting on a stopped queue. Start the
1613                  * queue to flush these to completion.
1614                  */
1615                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1616                 blk_cleanup_queue(dev->ctrl.admin_q);
1617                 blk_mq_free_tag_set(&dev->admin_tagset);
1618         }
1619 }
1620 
1621 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1622 {
1623         if (!dev->ctrl.admin_q) {
1624                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1625                 dev->admin_tagset.nr_hw_queues = 1;
1626 
1627                 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1628                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1629                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1630                 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1631                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1632                 dev->admin_tagset.driver_data = dev;
1633 
1634                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1635                         return -ENOMEM;
1636                 dev->ctrl.admin_tagset = &dev->admin_tagset;
1637 
1638                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1639                 if (IS_ERR(dev->ctrl.admin_q)) {
1640                         blk_mq_free_tag_set(&dev->admin_tagset);
1641                         return -ENOMEM;
1642                 }
1643                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1644                         nvme_dev_remove_admin(dev);
1645                         dev->ctrl.admin_q = NULL;
1646                         return -ENODEV;
1647                 }
1648         } else
1649                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1650 
1651         return 0;
1652 }
1653 
1654 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1655 {
1656         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1657 }
1658 
1659 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1660 {
1661         struct pci_dev *pdev = to_pci_dev(dev->dev);
1662 
1663         if (size <= dev->bar_mapped_size)
1664                 return 0;
1665         if (size > pci_resource_len(pdev, 0))
1666                 return -ENOMEM;
1667         if (dev->bar)
1668                 iounmap(dev->bar);
1669         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1670         if (!dev->bar) {
1671                 dev->bar_mapped_size = 0;
1672                 return -ENOMEM;
1673         }
1674         dev->bar_mapped_size = size;
1675         dev->dbs = dev->bar + NVME_REG_DBS;
1676 
1677         return 0;
1678 }
1679 
1680 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1681 {
1682         int result;
1683         u32 aqa;
1684         struct nvme_queue *nvmeq;
1685 
1686         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1687         if (result < 0)
1688                 return result;
1689 
1690         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1691                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1692 
1693         if (dev->subsystem &&
1694             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1695                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1696 
1697         result = nvme_disable_ctrl(&dev->ctrl);
1698         if (result < 0)
1699                 return result;
1700 
1701         result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1702         if (result)
1703                 return result;
1704 
1705         nvmeq = &dev->queues[0];
1706         aqa = nvmeq->q_depth - 1;
1707         aqa |= aqa << 16;
1708 
1709         writel(aqa, dev->bar + NVME_REG_AQA);
1710         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1711         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1712 
1713         result = nvme_enable_ctrl(&dev->ctrl);
1714         if (result)
1715                 return result;
1716 
1717         nvmeq->cq_vector = 0;
1718         nvme_init_queue(nvmeq, 0);
1719         result = queue_request_irq(nvmeq);
1720         if (result) {
1721                 dev->online_queues--;
1722                 return result;
1723         }
1724 
1725         set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1726         return result;
1727 }
1728 
1729 static int nvme_create_io_queues(struct nvme_dev *dev)
1730 {
1731         unsigned i, max, rw_queues;
1732         int ret = 0;
1733 
1734         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1735                 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1736                         ret = -ENOMEM;
1737                         break;
1738                 }
1739         }
1740 
1741         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1742         if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1743                 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1744                                 dev->io_queues[HCTX_TYPE_READ];
1745         } else {
1746                 rw_queues = max;
1747         }
1748 
1749         for (i = dev->online_queues; i <= max; i++) {
1750                 bool polled = i > rw_queues;
1751 
1752                 ret = nvme_create_queue(&dev->queues[i], i, polled);
1753                 if (ret)
1754                         break;
1755         }
1756 
1757         /*
1758          * Ignore failing Create SQ/CQ commands, we can continue with less
1759          * than the desired amount of queues, and even a controller without
1760          * I/O queues can still be used to issue admin commands.  This might
1761          * be useful to upgrade a buggy firmware for example.
1762          */
1763         return ret >= 0 ? 0 : ret;
1764 }
1765 
1766 static ssize_t nvme_cmb_show(struct device *dev,
1767                              struct device_attribute *attr,
1768                              char *buf)
1769 {
1770         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1771 
1772         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1773                        ndev->cmbloc, ndev->cmbsz);
1774 }
1775 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1776 
1777 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1778 {
1779         u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1780 
1781         return 1ULL << (12 + 4 * szu);
1782 }
1783 
1784 static u32 nvme_cmb_size(struct nvme_dev *dev)
1785 {
1786         return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1787 }
1788 
1789 static void nvme_map_cmb(struct nvme_dev *dev)
1790 {
1791         u64 size, offset;
1792         resource_size_t bar_size;
1793         struct pci_dev *pdev = to_pci_dev(dev->dev);
1794         int bar;
1795 
1796         if (dev->cmb_size)
1797                 return;
1798 
1799         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1800         if (!dev->cmbsz)
1801                 return;
1802         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1803 
1804         size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1805         offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1806         bar = NVME_CMB_BIR(dev->cmbloc);
1807         bar_size = pci_resource_len(pdev, bar);
1808 
1809         if (offset > bar_size)
1810                 return;
1811 
1812         /*
1813          * Controllers may support a CMB size larger than their BAR,
1814          * for example, due to being behind a bridge. Reduce the CMB to
1815          * the reported size of the BAR
1816          */
1817         if (size > bar_size - offset)
1818                 size = bar_size - offset;
1819 
1820         if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1821                 dev_warn(dev->ctrl.device,
1822                          "failed to register the CMB\n");
1823                 return;
1824         }
1825 
1826         dev->cmb_size = size;
1827         dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1828 
1829         if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1830                         (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1831                 pci_p2pmem_publish(pdev, true);
1832 
1833         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1834                                     &dev_attr_cmb.attr, NULL))
1835                 dev_warn(dev->ctrl.device,
1836                          "failed to add sysfs attribute for CMB\n");
1837 }
1838 
1839 static inline void nvme_release_cmb(struct nvme_dev *dev)
1840 {
1841         if (dev->cmb_size) {
1842                 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1843                                              &dev_attr_cmb.attr, NULL);
1844                 dev->cmb_size = 0;
1845         }
1846 }
1847 
1848 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1849 {
1850         u64 dma_addr = dev->host_mem_descs_dma;
1851         struct nvme_command c;
1852         int ret;
1853 
1854         memset(&c, 0, sizeof(c));
1855         c.features.opcode       = nvme_admin_set_features;
1856         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1857         c.features.dword11      = cpu_to_le32(bits);
1858         c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1859                                               ilog2(dev->ctrl.page_size));
1860         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1861         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1862         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1863 
1864         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1865         if (ret) {
1866                 dev_warn(dev->ctrl.device,
1867                          "failed to set host mem (err %d, flags %#x).\n",
1868                          ret, bits);
1869         }
1870         return ret;
1871 }
1872 
1873 static void nvme_free_host_mem(struct nvme_dev *dev)
1874 {
1875         int i;
1876 
1877         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1878                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1879                 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1880 
1881                 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1882                                le64_to_cpu(desc->addr),
1883                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1884         }
1885 
1886         kfree(dev->host_mem_desc_bufs);
1887         dev->host_mem_desc_bufs = NULL;
1888         dma_free_coherent(dev->dev,
1889                         dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1890                         dev->host_mem_descs, dev->host_mem_descs_dma);
1891         dev->host_mem_descs = NULL;
1892         dev->nr_host_mem_descs = 0;
1893 }
1894 
1895 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1896                 u32 chunk_size)
1897 {
1898         struct nvme_host_mem_buf_desc *descs;
1899         u32 max_entries, len;
1900         dma_addr_t descs_dma;
1901         int i = 0;
1902         void **bufs;
1903         u64 size, tmp;
1904 
1905         tmp = (preferred + chunk_size - 1);
1906         do_div(tmp, chunk_size);
1907         max_entries = tmp;
1908 
1909         if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1910                 max_entries = dev->ctrl.hmmaxd;
1911 
1912         descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1913                                    &descs_dma, GFP_KERNEL);
1914         if (!descs)
1915                 goto out;
1916 
1917         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1918         if (!bufs)
1919                 goto out_free_descs;
1920 
1921         for (size = 0; size < preferred && i < max_entries; size += len) {
1922                 dma_addr_t dma_addr;
1923 
1924                 len = min_t(u64, chunk_size, preferred - size);
1925                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1926                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1927                 if (!bufs[i])
1928                         break;
1929 
1930                 descs[i].addr = cpu_to_le64(dma_addr);
1931                 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1932                 i++;
1933         }
1934 
1935         if (!size)
1936                 goto out_free_bufs;
1937 
1938         dev->nr_host_mem_descs = i;
1939         dev->host_mem_size = size;
1940         dev->host_mem_descs = descs;
1941         dev->host_mem_descs_dma = descs_dma;
1942         dev->host_mem_desc_bufs = bufs;
1943         return 0;
1944 
1945 out_free_bufs:
1946         while (--i >= 0) {
1947                 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1948 
1949                 dma_free_attrs(dev->dev, size, bufs[i],
1950                                le64_to_cpu(descs[i].addr),
1951                                DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1952         }
1953 
1954         kfree(bufs);
1955 out_free_descs:
1956         dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1957                         descs_dma);
1958 out:
1959         dev->host_mem_descs = NULL;
1960         return -ENOMEM;
1961 }
1962 
1963 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1964 {
1965         u32 chunk_size;
1966 
1967         /* start big and work our way down */
1968         for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1969              chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1970              chunk_size /= 2) {
1971                 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1972                         if (!min || dev->host_mem_size >= min)
1973                                 return 0;
1974                         nvme_free_host_mem(dev);
1975                 }
1976         }
1977 
1978         return -ENOMEM;
1979 }
1980 
1981 static int nvme_setup_host_mem(struct nvme_dev *dev)
1982 {
1983         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1984         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1985         u64 min = (u64)dev->ctrl.hmmin * 4096;
1986         u32 enable_bits = NVME_HOST_MEM_ENABLE;
1987         int ret;
1988 
1989         preferred = min(preferred, max);
1990         if (min > max) {
1991                 dev_warn(dev->ctrl.device,
1992                         "min host memory (%lld MiB) above limit (%d MiB).\n",
1993                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
1994                 nvme_free_host_mem(dev);
1995                 return 0;
1996         }
1997 
1998         /*
1999          * If we already have a buffer allocated check if we can reuse it.
2000          */
2001         if (dev->host_mem_descs) {
2002                 if (dev->host_mem_size >= min)
2003                         enable_bits |= NVME_HOST_MEM_RETURN;
2004                 else
2005                         nvme_free_host_mem(dev);
2006         }
2007 
2008         if (!dev->host_mem_descs) {
2009                 if (nvme_alloc_host_mem(dev, min, preferred)) {
2010                         dev_warn(dev->ctrl.device,
2011                                 "failed to allocate host memory buffer.\n");
2012                         return 0; /* controller must work without HMB */
2013                 }
2014 
2015                 dev_info(dev->ctrl.device,
2016                         "allocated %lld MiB host memory buffer.\n",
2017                         dev->host_mem_size >> ilog2(SZ_1M));
2018         }
2019 
2020         ret = nvme_set_host_mem(dev, enable_bits);
2021         if (ret)
2022                 nvme_free_host_mem(dev);
2023         return ret;
2024 }
2025 
2026 /*
2027  * nirqs is the number of interrupts available for write and read
2028  * queues. The core already reserved an interrupt for the admin queue.
2029  */
2030 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2031 {
2032         struct nvme_dev *dev = affd->priv;
2033         unsigned int nr_read_queues;
2034 
2035         /*
2036          * If there is no interupt available for queues, ensure that
2037          * the default queue is set to 1. The affinity set size is
2038          * also set to one, but the irq core ignores it for this case.
2039          *
2040          * If only one interrupt is available or 'write_queue' == 0, combine
2041          * write and read queues.
2042          *
2043          * If 'write_queues' > 0, ensure it leaves room for at least one read
2044          * queue.
2045          */
2046         if (!nrirqs) {
2047                 nrirqs = 1;
2048                 nr_read_queues = 0;
2049         } else if (nrirqs == 1 || !write_queues) {
2050                 nr_read_queues = 0;
2051         } else if (write_queues >= nrirqs) {
2052                 nr_read_queues = 1;
2053         } else {
2054                 nr_read_queues = nrirqs - write_queues;
2055         }
2056 
2057         dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2058         affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2059         dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2060         affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2061         affd->nr_sets = nr_read_queues ? 2 : 1;
2062 }
2063 
2064 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2065 {
2066         struct pci_dev *pdev = to_pci_dev(dev->dev);
2067         struct irq_affinity affd = {
2068                 .pre_vectors    = 1,
2069                 .calc_sets      = nvme_calc_irq_sets,
2070                 .priv           = dev,
2071         };
2072         unsigned int irq_queues, this_p_queues;
2073 
2074         /*
2075          * Poll queues don't need interrupts, but we need at least one IO
2076          * queue left over for non-polled IO.
2077          */
2078         this_p_queues = poll_queues;
2079         if (this_p_queues >= nr_io_queues) {
2080                 this_p_queues = nr_io_queues - 1;
2081                 irq_queues = 1;
2082         } else {
2083                 irq_queues = nr_io_queues - this_p_queues + 1;
2084         }
2085         dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
2086 
2087         /* Initialize for the single interrupt case */
2088         dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2089         dev->io_queues[HCTX_TYPE_READ] = 0;
2090 
2091         /*
2092          * Some Apple controllers require all queues to use the
2093          * first vector.
2094          */
2095         if (dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR)
2096                 irq_queues = 1;
2097 
2098         return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2099                               PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2100 }
2101 
2102 static void nvme_disable_io_queues(struct nvme_dev *dev)
2103 {
2104         if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2105                 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2106 }
2107 
2108 static int nvme_setup_io_queues(struct nvme_dev *dev)
2109 {
2110         struct nvme_queue *adminq = &dev->queues[0];
2111         struct pci_dev *pdev = to_pci_dev(dev->dev);
2112         int result, nr_io_queues;
2113         unsigned long size;
2114 
2115         nr_io_queues = max_io_queues();
2116 
2117         /*
2118          * If tags are shared with admin queue (Apple bug), then
2119          * make sure we only use one IO queue.
2120          */
2121         if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2122                 nr_io_queues = 1;
2123 
2124         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2125         if (result < 0)
2126                 return result;
2127 
2128         if (nr_io_queues == 0)
2129                 return 0;
2130         
2131         clear_bit(NVMEQ_ENABLED, &adminq->flags);
2132 
2133         if (dev->cmb_use_sqes) {
2134                 result = nvme_cmb_qdepth(dev, nr_io_queues,
2135                                 sizeof(struct nvme_command));
2136                 if (result > 0)
2137                         dev->q_depth = result;
2138                 else
2139                         dev->cmb_use_sqes = false;
2140         }
2141 
2142         do {
2143                 size = db_bar_size(dev, nr_io_queues);
2144                 result = nvme_remap_bar(dev, size);
2145                 if (!result)
2146                         break;
2147                 if (!--nr_io_queues)
2148                         return -ENOMEM;
2149         } while (1);
2150         adminq->q_db = dev->dbs;
2151 
2152  retry:
2153         /* Deregister the admin queue's interrupt */
2154         pci_free_irq(pdev, 0, adminq);
2155 
2156         /*
2157          * If we enable msix early due to not intx, disable it again before
2158          * setting up the full range we need.
2159          */
2160         pci_free_irq_vectors(pdev);
2161 
2162         result = nvme_setup_irqs(dev, nr_io_queues);
2163         if (result <= 0)
2164                 return -EIO;
2165 
2166         dev->num_vecs = result;
2167         result = max(result - 1, 1);
2168         dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2169 
2170         /*
2171          * Should investigate if there's a performance win from allocating
2172          * more queues than interrupt vectors; it might allow the submission
2173          * path to scale better, even if the receive path is limited by the
2174          * number of interrupts.
2175          */
2176         result = queue_request_irq(adminq);
2177         if (result)
2178                 return result;
2179         set_bit(NVMEQ_ENABLED, &adminq->flags);
2180 
2181         result = nvme_create_io_queues(dev);
2182         if (result || dev->online_queues < 2)
2183                 return result;
2184 
2185         if (dev->online_queues - 1 < dev->max_qid) {
2186                 nr_io_queues = dev->online_queues - 1;
2187                 nvme_disable_io_queues(dev);
2188                 nvme_suspend_io_queues(dev);
2189                 goto retry;
2190         }
2191         dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2192                                         dev->io_queues[HCTX_TYPE_DEFAULT],
2193                                         dev->io_queues[HCTX_TYPE_READ],
2194                                         dev->io_queues[HCTX_TYPE_POLL]);
2195         return 0;
2196 }
2197 
2198 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2199 {
2200         struct nvme_queue *nvmeq = req->end_io_data;
2201 
2202         blk_mq_free_request(req);
2203         complete(&nvmeq->delete_done);
2204 }
2205 
2206 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2207 {
2208         struct nvme_queue *nvmeq = req->end_io_data;
2209 
2210         if (error)
2211                 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2212 
2213         nvme_del_queue_end(req, error);
2214 }
2215 
2216 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2217 {
2218         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2219         struct request *req;
2220         struct nvme_command cmd;
2221 
2222         memset(&cmd, 0, sizeof(cmd));
2223         cmd.delete_queue.opcode = opcode;
2224         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2225 
2226         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2227         if (IS_ERR(req))
2228                 return PTR_ERR(req);
2229 
2230         req->timeout = ADMIN_TIMEOUT;
2231         req->end_io_data = nvmeq;
2232 
2233         init_completion(&nvmeq->delete_done);
2234         blk_execute_rq_nowait(q, NULL, req, false,
2235                         opcode == nvme_admin_delete_cq ?
2236                                 nvme_del_cq_end : nvme_del_queue_end);
2237         return 0;
2238 }
2239 
2240 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2241 {
2242         int nr_queues = dev->online_queues - 1, sent = 0;
2243         unsigned long timeout;
2244 
2245  retry:
2246         timeout = ADMIN_TIMEOUT;
2247         while (nr_queues > 0) {
2248                 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2249                         break;
2250                 nr_queues--;
2251                 sent++;
2252         }
2253         while (sent) {
2254                 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2255 
2256                 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2257                                 timeout);
2258                 if (timeout == 0)
2259                         return false;
2260 
2261                 sent--;
2262                 if (nr_queues)
2263                         goto retry;
2264         }
2265         return true;
2266 }
2267 
2268 static void nvme_dev_add(struct nvme_dev *dev)
2269 {
2270         int ret;
2271 
2272         if (!dev->ctrl.tagset) {
2273                 dev->tagset.ops = &nvme_mq_ops;
2274                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2275                 dev->tagset.nr_maps = 2; /* default + read */
2276                 if (dev->io_queues[HCTX_TYPE_POLL])
2277                         dev->tagset.nr_maps++;
2278                 dev->tagset.timeout = NVME_IO_TIMEOUT;
2279                 dev->tagset.numa_node = dev_to_node(dev->dev);
2280                 dev->tagset.queue_depth =
2281                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2282                 dev->tagset.cmd_size = sizeof(struct nvme_iod);
2283                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2284                 dev->tagset.driver_data = dev;
2285 
2286                 /*
2287                  * Some Apple controllers requires tags to be unique
2288                  * across admin and IO queue, so reserve the first 32
2289                  * tags of the IO queue.
2290                  */
2291                 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2292                         dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2293 
2294                 ret = blk_mq_alloc_tag_set(&dev->tagset);
2295                 if (ret) {
2296                         dev_warn(dev->ctrl.device,
2297                                 "IO queues tagset allocation failed %d\n", ret);
2298                         return;
2299                 }
2300                 dev->ctrl.tagset = &dev->tagset;
2301         } else {
2302                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2303 
2304                 /* Free previously allocated queues that are no longer usable */
2305                 nvme_free_queues(dev, dev->online_queues);
2306         }
2307 
2308         nvme_dbbuf_set(dev);
2309 }
2310 
2311 static int nvme_pci_enable(struct nvme_dev *dev)
2312 {
2313         int result = -ENOMEM;
2314         struct pci_dev *pdev = to_pci_dev(dev->dev);
2315 
2316         if (pci_enable_device_mem(pdev))
2317                 return result;
2318 
2319         pci_set_master(pdev);
2320 
2321         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2322                 goto disable;
2323 
2324         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2325                 result = -ENODEV;
2326                 goto disable;
2327         }
2328 
2329         /*
2330          * Some devices and/or platforms don't advertise or work with INTx
2331          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2332          * adjust this later.
2333          */
2334         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2335         if (result < 0)
2336                 return result;
2337 
2338         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2339 
2340         dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2341                                 io_queue_depth);
2342         dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2343         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2344         dev->dbs = dev->bar + 4096;
2345 
2346         /*
2347          * Some Apple controllers require a non-standard SQE size.
2348          * Interestingly they also seem to ignore the CC:IOSQES register
2349          * so we don't bother updating it here.
2350          */
2351         if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2352                 dev->io_sqes = 7;
2353         else
2354                 dev->io_sqes = NVME_NVM_IOSQES;
2355 
2356         /*
2357          * Temporary fix for the Apple controller found in the MacBook8,1 and
2358          * some MacBook7,1 to avoid controller resets and data loss.
2359          */
2360         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2361                 dev->q_depth = 2;
2362                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2363                         "set queue depth=%u to work around controller resets\n",
2364                         dev->q_depth);
2365         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2366                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2367                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2368                 dev->q_depth = 64;
2369                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2370                         "set queue depth=%u\n", dev->q_depth);
2371         }
2372 
2373         /*
2374          * Controllers with the shared tags quirk need the IO queue to be
2375          * big enough so that we get 32 tags for the admin queue
2376          */
2377         if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2378             (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2379                 dev->q_depth = NVME_AQ_DEPTH + 2;
2380                 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2381                          dev->q_depth);
2382         }
2383 
2384 
2385         nvme_map_cmb(dev);
2386 
2387         pci_enable_pcie_error_reporting(pdev);
2388         pci_save_state(pdev);
2389         return 0;
2390 
2391  disable:
2392         pci_disable_device(pdev);
2393         return result;
2394 }
2395 
2396 static void nvme_dev_unmap(struct nvme_dev *dev)
2397 {
2398         if (dev->bar)
2399                 iounmap(dev->bar);
2400         pci_release_mem_regions(to_pci_dev(dev->dev));
2401 }
2402 
2403 static void nvme_pci_disable(struct nvme_dev *dev)
2404 {
2405         struct pci_dev *pdev = to_pci_dev(dev->dev);
2406 
2407         pci_free_irq_vectors(pdev);
2408 
2409         if (pci_is_enabled(pdev)) {
2410                 pci_disable_pcie_error_reporting(pdev);
2411                 pci_disable_device(pdev);
2412         }
2413 }
2414 
2415 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2416 {
2417         bool dead = true, freeze = false;
2418         struct pci_dev *pdev = to_pci_dev(dev->dev);
2419 
2420         mutex_lock(&dev->shutdown_lock);
2421         if (pci_is_enabled(pdev)) {
2422                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2423 
2424                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2425                     dev->ctrl.state == NVME_CTRL_RESETTING) {
2426                         freeze = true;
2427                         nvme_start_freeze(&dev->ctrl);
2428                 }
2429                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2430                         pdev->error_state  != pci_channel_io_normal);
2431         }
2432 
2433         /*
2434          * Give the controller a chance to complete all entered requests if
2435          * doing a safe shutdown.
2436          */
2437         if (!dead && shutdown && freeze)
2438                 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2439 
2440         nvme_stop_queues(&dev->ctrl);
2441 
2442         if (!dead && dev->ctrl.queue_count > 0) {
2443                 nvme_disable_io_queues(dev);
2444                 nvme_disable_admin_queue(dev, shutdown);
2445         }
2446         nvme_suspend_io_queues(dev);
2447         nvme_suspend_queue(&dev->queues[0]);
2448         nvme_pci_disable(dev);
2449         nvme_reap_pending_cqes(dev);
2450 
2451         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2452         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2453         blk_mq_tagset_wait_completed_request(&dev->tagset);
2454         blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2455 
2456         /*
2457          * The driver will not be starting up queues again if shutting down so
2458          * must flush all entered requests to their failed completion to avoid
2459          * deadlocking blk-mq hot-cpu notifier.
2460          */
2461         if (shutdown) {
2462                 nvme_start_queues(&dev->ctrl);
2463                 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2464                         blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2465         }
2466         mutex_unlock(&dev->shutdown_lock);
2467 }
2468 
2469 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2470 {
2471         if (!nvme_wait_reset(&dev->ctrl))
2472                 return -EBUSY;
2473         nvme_dev_disable(dev, shutdown);
2474         return 0;
2475 }
2476 
2477 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2478 {
2479         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2480                                                 PAGE_SIZE, PAGE_SIZE, 0);
2481         if (!dev->prp_page_pool)
2482                 return -ENOMEM;
2483 
2484         /* Optimisation for I/Os between 4k and 128k */
2485         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2486                                                 256, 256, 0);
2487         if (!dev->prp_small_pool) {
2488                 dma_pool_destroy(dev->prp_page_pool);
2489                 return -ENOMEM;
2490         }
2491         return 0;
2492 }
2493 
2494 static void nvme_release_prp_pools(struct nvme_dev *dev)
2495 {
2496         dma_pool_destroy(dev->prp_page_pool);
2497         dma_pool_destroy(dev->prp_small_pool);
2498 }
2499 
2500 static void nvme_free_tagset(struct nvme_dev *dev)
2501 {
2502         if (dev->tagset.tags)
2503                 blk_mq_free_tag_set(&dev->tagset);
2504         dev->ctrl.tagset = NULL;
2505 }
2506 
2507 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2508 {
2509         struct nvme_dev *dev = to_nvme_dev(ctrl);
2510 
2511         nvme_dbbuf_dma_free(dev);
2512         put_device(dev->dev);
2513         nvme_free_tagset(dev);
2514         if (dev->ctrl.admin_q)
2515                 blk_put_queue(dev->ctrl.admin_q);
2516         kfree(dev->queues);
2517         free_opal_dev(dev->ctrl.opal_dev);
2518         mempool_destroy(dev->iod_mempool);
2519         kfree(dev);
2520 }
2521 
2522 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2523 {
2524         /*
2525          * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2526          * may be holding this pci_dev's device lock.
2527          */
2528         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2529         nvme_get_ctrl(&dev->ctrl);
2530         nvme_dev_disable(dev, false);
2531         nvme_kill_queues(&dev->ctrl);
2532         if (!queue_work(nvme_wq, &dev->remove_work))
2533                 nvme_put_ctrl(&dev->ctrl);
2534 }
2535 
2536 static void nvme_reset_work(struct work_struct *work)
2537 {
2538         struct nvme_dev *dev =
2539                 container_of(work, struct nvme_dev, ctrl.reset_work);
2540         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2541         int result;
2542 
2543         if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) {
2544                 result = -ENODEV;
2545                 goto out;
2546         }
2547 
2548         /*
2549          * If we're called to reset a live controller first shut it down before
2550          * moving on.
2551          */
2552         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2553                 nvme_dev_disable(dev, false);
2554         nvme_sync_queues(&dev->ctrl);
2555 
2556         mutex_lock(&dev->shutdown_lock);
2557         result = nvme_pci_enable(dev);
2558         if (result)
2559                 goto out_unlock;
2560 
2561         result = nvme_pci_configure_admin_queue(dev);
2562         if (result)
2563                 goto out_unlock;
2564 
2565         result = nvme_alloc_admin_tags(dev);
2566         if (result)
2567                 goto out_unlock;
2568 
2569         /*
2570          * Limit the max command size to prevent iod->sg allocations going
2571          * over a single page.
2572          */
2573         dev->ctrl.max_hw_sectors = min_t(u32,
2574                 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2575         dev->ctrl.max_segments = NVME_MAX_SEGS;
2576 
2577         /*
2578          * Don't limit the IOMMU merged segment size.
2579          */
2580         dma_set_max_seg_size(dev->dev, 0xffffffff);
2581 
2582         mutex_unlock(&dev->shutdown_lock);
2583 
2584         /*
2585          * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2586          * initializing procedure here.
2587          */
2588         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2589                 dev_warn(dev->ctrl.device,
2590                         "failed to mark controller CONNECTING\n");
2591                 result = -EBUSY;
2592                 goto out;
2593         }
2594 
2595         result = nvme_init_identify(&dev->ctrl);
2596         if (result)
2597                 goto out;
2598 
2599         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2600                 if (!dev->ctrl.opal_dev)
2601                         dev->ctrl.opal_dev =
2602                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2603                 else if (was_suspend)
2604                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2605         } else {
2606                 free_opal_dev(dev->ctrl.opal_dev);
2607                 dev->ctrl.opal_dev = NULL;
2608         }
2609 
2610         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2611                 result = nvme_dbbuf_dma_alloc(dev);
2612                 if (result)
2613                         dev_warn(dev->dev,
2614                                  "unable to allocate dma for dbbuf\n");
2615         }
2616 
2617         if (dev->ctrl.hmpre) {
2618                 result = nvme_setup_host_mem(dev);
2619                 if (result < 0)
2620                         goto out;
2621         }
2622 
2623         result = nvme_setup_io_queues(dev);
2624         if (result)
2625                 goto out;
2626 
2627         /*
2628          * Keep the controller around but remove all namespaces if we don't have
2629          * any working I/O queue.
2630          */
2631         if (dev->online_queues < 2) {
2632                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2633                 nvme_kill_queues(&dev->ctrl);
2634                 nvme_remove_namespaces(&dev->ctrl);
2635                 nvme_free_tagset(dev);
2636         } else {
2637                 nvme_start_queues(&dev->ctrl);
2638                 nvme_wait_freeze(&dev->ctrl);
2639                 nvme_dev_add(dev);
2640                 nvme_unfreeze(&dev->ctrl);
2641         }
2642 
2643         /*
2644          * If only admin queue live, keep it to do further investigation or
2645          * recovery.
2646          */
2647         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2648                 dev_warn(dev->ctrl.device,
2649                         "failed to mark controller live state\n");
2650                 result = -ENODEV;
2651                 goto out;
2652         }
2653 
2654         nvme_start_ctrl(&dev->ctrl);
2655         return;
2656 
2657  out_unlock:
2658         mutex_unlock(&dev->shutdown_lock);
2659  out:
2660         if (result)
2661                 dev_warn(dev->ctrl.device,
2662                          "Removing after probe failure status: %d\n", result);
2663         nvme_remove_dead_ctrl(dev);
2664 }
2665 
2666 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2667 {
2668         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2669         struct pci_dev *pdev = to_pci_dev(dev->dev);
2670 
2671         if (pci_get_drvdata(pdev))
2672                 device_release_driver(&pdev->dev);
2673         nvme_put_ctrl(&dev->ctrl);
2674 }
2675 
2676 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2677 {
2678         *val = readl(to_nvme_dev(ctrl)->bar + off);
2679         return 0;
2680 }
2681 
2682 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2683 {
2684         writel(val, to_nvme_dev(ctrl)->bar + off);
2685         return 0;
2686 }
2687 
2688 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2689 {
2690         *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2691         return 0;
2692 }
2693 
2694 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2695 {
2696         struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2697 
2698         return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2699 }
2700 
2701 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2702         .name                   = "pcie",
2703         .module                 = THIS_MODULE,
2704         .flags                  = NVME_F_METADATA_SUPPORTED |
2705                                   NVME_F_PCI_P2PDMA,
2706         .reg_read32             = nvme_pci_reg_read32,
2707         .reg_write32            = nvme_pci_reg_write32,
2708         .reg_read64             = nvme_pci_reg_read64,
2709         .free_ctrl              = nvme_pci_free_ctrl,
2710         .submit_async_event     = nvme_pci_submit_async_event,
2711         .get_address            = nvme_pci_get_address,
2712 };
2713 
2714 static int nvme_dev_map(struct nvme_dev *dev)
2715 {
2716         struct pci_dev *pdev = to_pci_dev(dev->dev);
2717 
2718         if (pci_request_mem_regions(pdev, "nvme"))
2719                 return -ENODEV;
2720 
2721         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2722                 goto release;
2723 
2724         return 0;
2725   release:
2726         pci_release_mem_regions(pdev);
2727         return -ENODEV;
2728 }
2729 
2730 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2731 {
2732         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2733                 /*
2734                  * Several Samsung devices seem to drop off the PCIe bus
2735                  * randomly when APST is on and uses the deepest sleep state.
2736                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2737                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2738                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2739                  * laptops.
2740                  */
2741                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2742                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2743                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2744                         return NVME_QUIRK_NO_DEEPEST_PS;
2745         } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2746                 /*
2747                  * Samsung SSD 960 EVO drops off the PCIe bus after system
2748                  * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2749                  * within few minutes after bootup on a Coffee Lake board -
2750                  * ASUS PRIME Z370-A
2751                  */
2752                 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2753                     (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2754                      dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2755                         return NVME_QUIRK_NO_APST;
2756         } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2757                     pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2758                    (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2759                 /*
2760                  * Forcing to use host managed nvme power settings for
2761                  * lowest idle power with quick resume latency on
2762                  * Samsung and Toshiba SSDs based on suspend behavior
2763                  * on Coffee Lake board for LENOVO C640
2764                  */
2765                 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2766                      dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2767                         return NVME_QUIRK_SIMPLE_SUSPEND;
2768         }
2769 
2770         return 0;
2771 }
2772 
2773 static void nvme_async_probe(void *data, async_cookie_t cookie)
2774 {
2775         struct nvme_dev *dev = data;
2776 
2777         flush_work(&dev->ctrl.reset_work);
2778         flush_work(&dev->ctrl.scan_work);
2779         nvme_put_ctrl(&dev->ctrl);
2780 }
2781 
2782 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2783 {
2784         int node, result = -ENOMEM;
2785         struct nvme_dev *dev;
2786         unsigned long quirks = id->driver_data;
2787         size_t alloc_size;
2788 
2789         node = dev_to_node(&pdev->dev);
2790         if (node == NUMA_NO_NODE)
2791                 set_dev_node(&pdev->dev, first_memory_node);
2792 
2793         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2794         if (!dev)
2795                 return -ENOMEM;
2796 
2797         dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue),
2798                                         GFP_KERNEL, node);
2799         if (!dev->queues)
2800                 goto free;
2801 
2802         dev->dev = get_device(&pdev->dev);
2803         pci_set_drvdata(pdev, dev);
2804 
2805         result = nvme_dev_map(dev);
2806         if (result)
2807                 goto put_pci;
2808 
2809         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2810         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2811         mutex_init(&dev->shutdown_lock);
2812 
2813         result = nvme_setup_prp_pools(dev);
2814         if (result)
2815                 goto unmap;
2816 
2817         quirks |= check_vendor_combination_bug(pdev);
2818 
2819         /*
2820          * Double check that our mempool alloc size will cover the biggest
2821          * command we support.
2822          */
2823         alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2824                                                 NVME_MAX_SEGS, true);
2825         WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2826 
2827         dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2828                                                 mempool_kfree,
2829                                                 (void *) alloc_size,
2830                                                 GFP_KERNEL, node);
2831         if (!dev->iod_mempool) {
2832                 result = -ENOMEM;
2833                 goto release_pools;
2834         }
2835 
2836         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2837                         quirks);
2838         if (result)
2839                 goto release_mempool;
2840 
2841         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2842 
2843         nvme_reset_ctrl(&dev->ctrl);
2844         nvme_get_ctrl(&dev->ctrl);
2845         async_schedule(nvme_async_probe, dev);
2846 
2847         return 0;
2848 
2849  release_mempool:
2850         mempool_destroy(dev->iod_mempool);
2851  release_pools:
2852         nvme_release_prp_pools(dev);
2853  unmap:
2854         nvme_dev_unmap(dev);
2855  put_pci:
2856         put_device(dev->dev);
2857  free:
2858         kfree(dev->queues);
2859         kfree(dev);
2860         return result;
2861 }
2862 
2863 static void nvme_reset_prepare(struct pci_dev *pdev)
2864 {
2865         struct nvme_dev *dev = pci_get_drvdata(pdev);
2866 
2867         /*
2868          * We don't need to check the return value from waiting for the reset
2869          * state as pci_dev device lock is held, making it impossible to race
2870          * with ->remove().
2871          */
2872         nvme_disable_prepare_reset(dev, false);
2873         nvme_sync_queues(&dev->ctrl);
2874 }
2875 
2876 static void nvme_reset_done(struct pci_dev *pdev)
2877 {
2878         struct nvme_dev *dev = pci_get_drvdata(pdev);
2879 
2880         if (!nvme_try_sched_reset(&dev->ctrl))
2881                 flush_work(&dev->ctrl.reset_work);
2882 }
2883 
2884 static void nvme_shutdown(struct pci_dev *pdev)
2885 {
2886         struct nvme_dev *dev = pci_get_drvdata(pdev);
2887         nvme_disable_prepare_reset(dev, true);
2888 }
2889 
2890 /*
2891  * The driver's remove may be called on a device in a partially initialized
2892  * state. This function must not have any dependencies on the device state in
2893  * order to proceed.
2894  */
2895 static void nvme_remove(struct pci_dev *pdev)
2896 {
2897         struct nvme_dev *dev = pci_get_drvdata(pdev);
2898 
2899         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2900         pci_set_drvdata(pdev, NULL);
2901 
2902         if (!pci_device_is_present(pdev)) {
2903                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2904                 nvme_dev_disable(dev, true);
2905                 nvme_dev_remove_admin(dev);
2906         }
2907 
2908         flush_work(&dev->ctrl.reset_work);
2909         nvme_stop_ctrl(&dev->ctrl);
2910         nvme_remove_namespaces(&dev->ctrl);
2911         nvme_dev_disable(dev, true);
2912         nvme_release_cmb(dev);
2913         nvme_free_host_mem(dev);
2914         nvme_dev_remove_admin(dev);
2915         nvme_free_queues(dev, 0);
2916         nvme_uninit_ctrl(&dev->ctrl);
2917         nvme_release_prp_pools(dev);
2918         nvme_dev_unmap(dev);
2919         nvme_put_ctrl(&dev->ctrl);
2920 }
2921 
2922 #ifdef CONFIG_PM_SLEEP
2923 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
2924 {
2925         return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
2926 }
2927 
2928 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
2929 {
2930         return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
2931 }
2932 
2933 static int nvme_resume(struct device *dev)
2934 {
2935         struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2936         struct nvme_ctrl *ctrl = &ndev->ctrl;
2937 
2938         if (ndev->last_ps == U32_MAX ||
2939             nvme_set_power_state(ctrl, ndev->last_ps) != 0)
2940                 return nvme_try_sched_reset(&ndev->ctrl);
2941         return 0;
2942 }
2943 
2944 static int nvme_suspend(struct device *dev)
2945 {
2946         struct pci_dev *pdev = to_pci_dev(dev);
2947         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2948         struct nvme_ctrl *ctrl = &ndev->ctrl;
2949         int ret = -EBUSY;
2950 
2951         ndev->last_ps = U32_MAX;
2952 
2953         /*
2954          * The platform does not remove power for a kernel managed suspend so
2955          * use host managed nvme power settings for lowest idle power if
2956          * possible. This should have quicker resume latency than a full device
2957          * shutdown.  But if the firmware is involved after the suspend or the
2958          * device does not support any non-default power states, shut down the
2959          * device fully.
2960          *
2961          * If ASPM is not enabled for the device, shut down the device and allow
2962          * the PCI bus layer to put it into D3 in order to take the PCIe link
2963          * down, so as to allow the platform to achieve its minimum low-power
2964          * state (which may not be possible if the link is up).
2965          */
2966         if (pm_suspend_via_firmware() || !ctrl->npss ||
2967             !pcie_aspm_enabled(pdev) ||
2968             (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
2969                 return nvme_disable_prepare_reset(ndev, true);
2970 
2971         nvme_start_freeze(ctrl);
2972         nvme_wait_freeze(ctrl);
2973         nvme_sync_queues(ctrl);
2974 
2975         if (ctrl->state != NVME_CTRL_LIVE)
2976                 goto unfreeze;
2977 
2978         ret = nvme_get_power_state(ctrl, &ndev->last_ps);
2979         if (ret < 0)
2980                 goto unfreeze;
2981 
2982         /*
2983          * A saved state prevents pci pm from generically controlling the
2984          * device's power. If we're using protocol specific settings, we don't
2985          * want pci interfering.
2986          */
2987         pci_save_state(pdev);
2988 
2989         ret = nvme_set_power_state(ctrl, ctrl->npss);
2990         if (ret < 0)
2991                 goto unfreeze;
2992 
2993         if (ret) {
2994                 /* discard the saved state */
2995                 pci_load_saved_state(pdev, NULL);
2996 
2997                 /*
2998                  * Clearing npss forces a controller reset on resume. The
2999                  * correct value will be resdicovered then.
3000                  */
3001                 ret = nvme_disable_prepare_reset(ndev, true);
3002                 ctrl->npss = 0;
3003         }
3004 unfreeze:
3005         nvme_unfreeze(ctrl);
3006         return ret;
3007 }
3008 
3009 static int nvme_simple_suspend(struct device *dev)
3010 {
3011         struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3012         return nvme_disable_prepare_reset(ndev, true);
3013 }
3014 
3015 static int nvme_simple_resume(struct device *dev)
3016 {
3017         struct pci_dev *pdev = to_pci_dev(dev);
3018         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3019 
3020         return nvme_try_sched_reset(&ndev->ctrl);
3021 }
3022 
3023 static const struct dev_pm_ops nvme_dev_pm_ops = {
3024         .suspend        = nvme_suspend,
3025         .resume         = nvme_resume,
3026         .freeze         = nvme_simple_suspend,
3027         .thaw           = nvme_simple_resume,
3028         .poweroff       = nvme_simple_suspend,
3029         .restore        = nvme_simple_resume,
3030 };
3031 #endif /* CONFIG_PM_SLEEP */
3032 
3033 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3034                                                 pci_channel_state_t state)
3035 {
3036         struct nvme_dev *dev = pci_get_drvdata(pdev);
3037 
3038         /*
3039          * A frozen channel requires a reset. When detected, this method will
3040          * shutdown the controller to quiesce. The controller will be restarted
3041          * after the slot reset through driver's slot_reset callback.
3042          */
3043         switch (state) {
3044         case pci_channel_io_normal:
3045                 return PCI_ERS_RESULT_CAN_RECOVER;
3046         case pci_channel_io_frozen:
3047                 dev_warn(dev->ctrl.device,
3048                         "frozen state error detected, reset controller\n");
3049                 nvme_dev_disable(dev, false);
3050                 return PCI_ERS_RESULT_NEED_RESET;
3051         case pci_channel_io_perm_failure:
3052                 dev_warn(dev->ctrl.device,
3053                         "failure state error detected, request disconnect\n");
3054                 return PCI_ERS_RESULT_DISCONNECT;
3055         }
3056         return PCI_ERS_RESULT_NEED_RESET;
3057 }
3058 
3059 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3060 {
3061         struct nvme_dev *dev = pci_get_drvdata(pdev);
3062 
3063         dev_info(dev->ctrl.device, "restart after slot reset\n");
3064         pci_restore_state(pdev);
3065         nvme_reset_ctrl(&dev->ctrl);
3066         return PCI_ERS_RESULT_RECOVERED;
3067 }
3068 
3069 static void nvme_error_resume(struct pci_dev *pdev)
3070 {
3071         struct nvme_dev *dev = pci_get_drvdata(pdev);
3072 
3073         flush_work(&dev->ctrl.reset_work);
3074 }
3075 
3076 static const struct pci_error_handlers nvme_err_handler = {
3077         .error_detected = nvme_error_detected,
3078         .slot_reset     = nvme_slot_reset,
3079         .resume         = nvme_error_resume,
3080         .reset_prepare  = nvme_reset_prepare,
3081         .reset_done     = nvme_reset_done,
3082 };
3083 
3084 static const struct pci_device_id nvme_id_table[] = {
3085         { PCI_VDEVICE(INTEL, 0x0953),
3086                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3087                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3088         { PCI_VDEVICE(INTEL, 0x0a53),
3089                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3090                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3091         { PCI_VDEVICE(INTEL, 0x0a54),
3092                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3093                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3094         { PCI_VDEVICE(INTEL, 0x0a55),
3095                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3096                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
3097         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
3098                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3099                                 NVME_QUIRK_MEDIUM_PRIO_SQ },
3100         { PCI_VDEVICE(INTEL, 0xf1a6),   /* Intel 760p/Pro 7600p */
3101                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3102         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
3103                 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3104                                 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3105         { PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3106                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3107         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
3108                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3109         { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
3110                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3111         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
3112                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3113         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3114                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3115         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3116                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3117         { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
3118                 .driver_data = NVME_QUIRK_LIGHTNVM, },
3119         { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
3120                 .driver_data = NVME_QUIRK_LIGHTNVM, },
3121         { PCI_DEVICE(0x1d1d, 0x2601),   /* CNEX Granby */
3122                 .driver_data = NVME_QUIRK_LIGHTNVM, },
3123         { PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3124                 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3125         { PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3126                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3127                                 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3128         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3129         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3130                 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3131         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3132         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3133                 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3134                                 NVME_QUIRK_128_BYTES_SQES |
3135                                 NVME_QUIRK_SHARED_TAGS },
3136         { 0, }
3137 };
3138 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3139 
3140 static struct pci_driver nvme_driver = {
3141         .name           = "nvme",
3142         .id_table       = nvme_id_table,
3143         .probe          = nvme_probe,
3144         .remove         = nvme_remove,
3145         .shutdown       = nvme_shutdown,
3146 #ifdef CONFIG_PM_SLEEP
3147         .driver         = {
3148                 .pm     = &nvme_dev_pm_ops,
3149         },
3150 #endif
3151         .sriov_configure = pci_sriov_configure_simple,
3152         .err_handler    = &nvme_err_handler,
3153 };
3154 
3155 static int __init nvme_init(void)
3156 {
3157         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3158         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3159         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3160         BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3161         return pci_register_driver(&nvme_driver);
3162 }
3163 
3164 static void __exit nvme_exit(void)
3165 {
3166         pci_unregister_driver(&nvme_driver);
3167         flush_workqueue(nvme_wq);
3168 }
3169 
3170 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3171 MODULE_LICENSE("GPL");
3172 MODULE_VERSION("1.0");
3173 module_init(nvme_init);
3174 module_exit(nvme_exit);

/* [<][>][^][v][top][bottom][index][help] */