root/drivers/net/vrf.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. vrf_rx_stats
  2. vrf_tx_error
  3. vrf_get_stats64
  4. qdisc_tx_is_default
  5. vrf_local_xmit
  6. vrf_ip6_local_out
  7. vrf_process_v6_outbound
  8. vrf_process_v6_outbound
  9. vrf_ip_local_out
  10. vrf_process_v4_outbound
  11. is_ip_tx_frame
  12. vrf_xmit
  13. vrf_finish_direct
  14. vrf_finish_output6
  15. vrf_output6
  16. vrf_ip6_out_redirect
  17. vrf_output6_direct
  18. vrf_ip6_out_direct
  19. vrf_ip6_out
  20. vrf_rt6_release
  21. vrf_rt6_create
  22. vrf_ip6_out
  23. vrf_rt6_release
  24. vrf_rt6_create
  25. vrf_finish_output
  26. vrf_output
  27. vrf_ip_out_redirect
  28. vrf_output_direct
  29. vrf_ip_out_direct
  30. vrf_ip_out
  31. vrf_l3_out
  32. vrf_rtable_release
  33. vrf_rtable_create
  34. cycle_netdev
  35. do_vrf_add_slave
  36. vrf_add_slave
  37. do_vrf_del_slave
  38. vrf_del_slave
  39. vrf_dev_uninit
  40. vrf_dev_init
  41. vrf_fib_table
  42. vrf_rcv_finish
  43. vrf_rcv_nfhook
  44. ipv6_ndisc_frame
  45. vrf_ip6_route_lookup
  46. vrf_ip6_input_dst
  47. vrf_ip6_rcv
  48. vrf_ip6_rcv
  49. vrf_ip_rcv
  50. vrf_l3_rcv
  51. vrf_link_scope_lookup
  52. vrf_get_drvinfo
  53. vrf_fib_rule_nl_size
  54. vrf_fib_rule
  55. vrf_add_fib_rules
  56. vrf_setup
  57. vrf_validate
  58. vrf_dellink
  59. vrf_newlink
  60. vrf_nl_getsize
  61. vrf_fillinfo
  62. vrf_get_slave_size
  63. vrf_fill_slave_info
  64. vrf_device_event
  65. vrf_netns_init
  66. vrf_init_module

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * vrf.c: device driver to encapsulate a VRF space
   4  *
   5  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
   6  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
   7  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
   8  *
   9  * Based on dummy, team and ipvlan drivers
  10  */
  11 
  12 #include <linux/module.h>
  13 #include <linux/kernel.h>
  14 #include <linux/netdevice.h>
  15 #include <linux/etherdevice.h>
  16 #include <linux/ip.h>
  17 #include <linux/init.h>
  18 #include <linux/moduleparam.h>
  19 #include <linux/netfilter.h>
  20 #include <linux/rtnetlink.h>
  21 #include <net/rtnetlink.h>
  22 #include <linux/u64_stats_sync.h>
  23 #include <linux/hashtable.h>
  24 
  25 #include <linux/inetdevice.h>
  26 #include <net/arp.h>
  27 #include <net/ip.h>
  28 #include <net/ip_fib.h>
  29 #include <net/ip6_fib.h>
  30 #include <net/ip6_route.h>
  31 #include <net/route.h>
  32 #include <net/addrconf.h>
  33 #include <net/l3mdev.h>
  34 #include <net/fib_rules.h>
  35 #include <net/netns/generic.h>
  36 
  37 #define DRV_NAME        "vrf"
  38 #define DRV_VERSION     "1.0"
  39 
  40 #define FIB_RULE_PREF  1000       /* default preference for FIB rules */
  41 
  42 static unsigned int vrf_net_id;
  43 
  44 struct net_vrf {
  45         struct rtable __rcu     *rth;
  46         struct rt6_info __rcu   *rt6;
  47 #if IS_ENABLED(CONFIG_IPV6)
  48         struct fib6_table       *fib6_table;
  49 #endif
  50         u32                     tb_id;
  51 };
  52 
  53 struct pcpu_dstats {
  54         u64                     tx_pkts;
  55         u64                     tx_bytes;
  56         u64                     tx_drps;
  57         u64                     rx_pkts;
  58         u64                     rx_bytes;
  59         u64                     rx_drps;
  60         struct u64_stats_sync   syncp;
  61 };
  62 
  63 static void vrf_rx_stats(struct net_device *dev, int len)
  64 {
  65         struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
  66 
  67         u64_stats_update_begin(&dstats->syncp);
  68         dstats->rx_pkts++;
  69         dstats->rx_bytes += len;
  70         u64_stats_update_end(&dstats->syncp);
  71 }
  72 
  73 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
  74 {
  75         vrf_dev->stats.tx_errors++;
  76         kfree_skb(skb);
  77 }
  78 
  79 static void vrf_get_stats64(struct net_device *dev,
  80                             struct rtnl_link_stats64 *stats)
  81 {
  82         int i;
  83 
  84         for_each_possible_cpu(i) {
  85                 const struct pcpu_dstats *dstats;
  86                 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
  87                 unsigned int start;
  88 
  89                 dstats = per_cpu_ptr(dev->dstats, i);
  90                 do {
  91                         start = u64_stats_fetch_begin_irq(&dstats->syncp);
  92                         tbytes = dstats->tx_bytes;
  93                         tpkts = dstats->tx_pkts;
  94                         tdrops = dstats->tx_drps;
  95                         rbytes = dstats->rx_bytes;
  96                         rpkts = dstats->rx_pkts;
  97                 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
  98                 stats->tx_bytes += tbytes;
  99                 stats->tx_packets += tpkts;
 100                 stats->tx_dropped += tdrops;
 101                 stats->rx_bytes += rbytes;
 102                 stats->rx_packets += rpkts;
 103         }
 104 }
 105 
 106 /* by default VRF devices do not have a qdisc and are expected
 107  * to be created with only a single queue.
 108  */
 109 static bool qdisc_tx_is_default(const struct net_device *dev)
 110 {
 111         struct netdev_queue *txq;
 112         struct Qdisc *qdisc;
 113 
 114         if (dev->num_tx_queues > 1)
 115                 return false;
 116 
 117         txq = netdev_get_tx_queue(dev, 0);
 118         qdisc = rcu_access_pointer(txq->qdisc);
 119 
 120         return !qdisc->enqueue;
 121 }
 122 
 123 /* Local traffic destined to local address. Reinsert the packet to rx
 124  * path, similar to loopback handling.
 125  */
 126 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
 127                           struct dst_entry *dst)
 128 {
 129         int len = skb->len;
 130 
 131         skb_orphan(skb);
 132 
 133         skb_dst_set(skb, dst);
 134 
 135         /* set pkt_type to avoid skb hitting packet taps twice -
 136          * once on Tx and again in Rx processing
 137          */
 138         skb->pkt_type = PACKET_LOOPBACK;
 139 
 140         skb->protocol = eth_type_trans(skb, dev);
 141 
 142         if (likely(netif_rx(skb) == NET_RX_SUCCESS))
 143                 vrf_rx_stats(dev, len);
 144         else
 145                 this_cpu_inc(dev->dstats->rx_drps);
 146 
 147         return NETDEV_TX_OK;
 148 }
 149 
 150 #if IS_ENABLED(CONFIG_IPV6)
 151 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
 152                              struct sk_buff *skb)
 153 {
 154         int err;
 155 
 156         err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
 157                       sk, skb, NULL, skb_dst(skb)->dev, dst_output);
 158 
 159         if (likely(err == 1))
 160                 err = dst_output(net, sk, skb);
 161 
 162         return err;
 163 }
 164 
 165 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
 166                                            struct net_device *dev)
 167 {
 168         const struct ipv6hdr *iph;
 169         struct net *net = dev_net(skb->dev);
 170         struct flowi6 fl6;
 171         int ret = NET_XMIT_DROP;
 172         struct dst_entry *dst;
 173         struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
 174 
 175         if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
 176                 goto err;
 177 
 178         iph = ipv6_hdr(skb);
 179 
 180         memset(&fl6, 0, sizeof(fl6));
 181         /* needed to match OIF rule */
 182         fl6.flowi6_oif = dev->ifindex;
 183         fl6.flowi6_iif = LOOPBACK_IFINDEX;
 184         fl6.daddr = iph->daddr;
 185         fl6.saddr = iph->saddr;
 186         fl6.flowlabel = ip6_flowinfo(iph);
 187         fl6.flowi6_mark = skb->mark;
 188         fl6.flowi6_proto = iph->nexthdr;
 189         fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
 190 
 191         dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
 192         if (IS_ERR(dst) || dst == dst_null)
 193                 goto err;
 194 
 195         skb_dst_drop(skb);
 196 
 197         /* if dst.dev is loopback or the VRF device again this is locally
 198          * originated traffic destined to a local address. Short circuit
 199          * to Rx path
 200          */
 201         if (dst->dev == dev)
 202                 return vrf_local_xmit(skb, dev, dst);
 203 
 204         skb_dst_set(skb, dst);
 205 
 206         /* strip the ethernet header added for pass through VRF device */
 207         __skb_pull(skb, skb_network_offset(skb));
 208 
 209         ret = vrf_ip6_local_out(net, skb->sk, skb);
 210         if (unlikely(net_xmit_eval(ret)))
 211                 dev->stats.tx_errors++;
 212         else
 213                 ret = NET_XMIT_SUCCESS;
 214 
 215         return ret;
 216 err:
 217         vrf_tx_error(dev, skb);
 218         return NET_XMIT_DROP;
 219 }
 220 #else
 221 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
 222                                            struct net_device *dev)
 223 {
 224         vrf_tx_error(dev, skb);
 225         return NET_XMIT_DROP;
 226 }
 227 #endif
 228 
 229 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
 230 static int vrf_ip_local_out(struct net *net, struct sock *sk,
 231                             struct sk_buff *skb)
 232 {
 233         int err;
 234 
 235         err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
 236                       skb, NULL, skb_dst(skb)->dev, dst_output);
 237         if (likely(err == 1))
 238                 err = dst_output(net, sk, skb);
 239 
 240         return err;
 241 }
 242 
 243 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
 244                                            struct net_device *vrf_dev)
 245 {
 246         struct iphdr *ip4h;
 247         int ret = NET_XMIT_DROP;
 248         struct flowi4 fl4;
 249         struct net *net = dev_net(vrf_dev);
 250         struct rtable *rt;
 251 
 252         if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
 253                 goto err;
 254 
 255         ip4h = ip_hdr(skb);
 256 
 257         memset(&fl4, 0, sizeof(fl4));
 258         /* needed to match OIF rule */
 259         fl4.flowi4_oif = vrf_dev->ifindex;
 260         fl4.flowi4_iif = LOOPBACK_IFINDEX;
 261         fl4.flowi4_tos = RT_TOS(ip4h->tos);
 262         fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
 263         fl4.flowi4_proto = ip4h->protocol;
 264         fl4.daddr = ip4h->daddr;
 265         fl4.saddr = ip4h->saddr;
 266 
 267         rt = ip_route_output_flow(net, &fl4, NULL);
 268         if (IS_ERR(rt))
 269                 goto err;
 270 
 271         skb_dst_drop(skb);
 272 
 273         /* if dst.dev is loopback or the VRF device again this is locally
 274          * originated traffic destined to a local address. Short circuit
 275          * to Rx path
 276          */
 277         if (rt->dst.dev == vrf_dev)
 278                 return vrf_local_xmit(skb, vrf_dev, &rt->dst);
 279 
 280         skb_dst_set(skb, &rt->dst);
 281 
 282         /* strip the ethernet header added for pass through VRF device */
 283         __skb_pull(skb, skb_network_offset(skb));
 284 
 285         if (!ip4h->saddr) {
 286                 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
 287                                                RT_SCOPE_LINK);
 288         }
 289 
 290         ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
 291         if (unlikely(net_xmit_eval(ret)))
 292                 vrf_dev->stats.tx_errors++;
 293         else
 294                 ret = NET_XMIT_SUCCESS;
 295 
 296 out:
 297         return ret;
 298 err:
 299         vrf_tx_error(vrf_dev, skb);
 300         goto out;
 301 }
 302 
 303 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
 304 {
 305         switch (skb->protocol) {
 306         case htons(ETH_P_IP):
 307                 return vrf_process_v4_outbound(skb, dev);
 308         case htons(ETH_P_IPV6):
 309                 return vrf_process_v6_outbound(skb, dev);
 310         default:
 311                 vrf_tx_error(dev, skb);
 312                 return NET_XMIT_DROP;
 313         }
 314 }
 315 
 316 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
 317 {
 318         int len = skb->len;
 319         netdev_tx_t ret = is_ip_tx_frame(skb, dev);
 320 
 321         if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
 322                 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
 323 
 324                 u64_stats_update_begin(&dstats->syncp);
 325                 dstats->tx_pkts++;
 326                 dstats->tx_bytes += len;
 327                 u64_stats_update_end(&dstats->syncp);
 328         } else {
 329                 this_cpu_inc(dev->dstats->tx_drps);
 330         }
 331 
 332         return ret;
 333 }
 334 
 335 static int vrf_finish_direct(struct net *net, struct sock *sk,
 336                              struct sk_buff *skb)
 337 {
 338         struct net_device *vrf_dev = skb->dev;
 339 
 340         if (!list_empty(&vrf_dev->ptype_all) &&
 341             likely(skb_headroom(skb) >= ETH_HLEN)) {
 342                 struct ethhdr *eth = skb_push(skb, ETH_HLEN);
 343 
 344                 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
 345                 eth_zero_addr(eth->h_dest);
 346                 eth->h_proto = skb->protocol;
 347 
 348                 rcu_read_lock_bh();
 349                 dev_queue_xmit_nit(skb, vrf_dev);
 350                 rcu_read_unlock_bh();
 351 
 352                 skb_pull(skb, ETH_HLEN);
 353         }
 354 
 355         return 1;
 356 }
 357 
 358 #if IS_ENABLED(CONFIG_IPV6)
 359 /* modelled after ip6_finish_output2 */
 360 static int vrf_finish_output6(struct net *net, struct sock *sk,
 361                               struct sk_buff *skb)
 362 {
 363         struct dst_entry *dst = skb_dst(skb);
 364         struct net_device *dev = dst->dev;
 365         const struct in6_addr *nexthop;
 366         struct neighbour *neigh;
 367         int ret;
 368 
 369         nf_reset_ct(skb);
 370 
 371         skb->protocol = htons(ETH_P_IPV6);
 372         skb->dev = dev;
 373 
 374         rcu_read_lock_bh();
 375         nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
 376         neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
 377         if (unlikely(!neigh))
 378                 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
 379         if (!IS_ERR(neigh)) {
 380                 sock_confirm_neigh(skb, neigh);
 381                 ret = neigh_output(neigh, skb, false);
 382                 rcu_read_unlock_bh();
 383                 return ret;
 384         }
 385         rcu_read_unlock_bh();
 386 
 387         IP6_INC_STATS(dev_net(dst->dev),
 388                       ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
 389         kfree_skb(skb);
 390         return -EINVAL;
 391 }
 392 
 393 /* modelled after ip6_output */
 394 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
 395 {
 396         return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
 397                             net, sk, skb, NULL, skb_dst(skb)->dev,
 398                             vrf_finish_output6,
 399                             !(IP6CB(skb)->flags & IP6SKB_REROUTED));
 400 }
 401 
 402 /* set dst on skb to send packet to us via dev_xmit path. Allows
 403  * packet to go through device based features such as qdisc, netfilter
 404  * hooks and packet sockets with skb->dev set to vrf device.
 405  */
 406 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
 407                                             struct sk_buff *skb)
 408 {
 409         struct net_vrf *vrf = netdev_priv(vrf_dev);
 410         struct dst_entry *dst = NULL;
 411         struct rt6_info *rt6;
 412 
 413         rcu_read_lock();
 414 
 415         rt6 = rcu_dereference(vrf->rt6);
 416         if (likely(rt6)) {
 417                 dst = &rt6->dst;
 418                 dst_hold(dst);
 419         }
 420 
 421         rcu_read_unlock();
 422 
 423         if (unlikely(!dst)) {
 424                 vrf_tx_error(vrf_dev, skb);
 425                 return NULL;
 426         }
 427 
 428         skb_dst_drop(skb);
 429         skb_dst_set(skb, dst);
 430 
 431         return skb;
 432 }
 433 
 434 static int vrf_output6_direct(struct net *net, struct sock *sk,
 435                               struct sk_buff *skb)
 436 {
 437         skb->protocol = htons(ETH_P_IPV6);
 438 
 439         return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
 440                             net, sk, skb, NULL, skb->dev,
 441                             vrf_finish_direct,
 442                             !(IPCB(skb)->flags & IPSKB_REROUTED));
 443 }
 444 
 445 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
 446                                           struct sock *sk,
 447                                           struct sk_buff *skb)
 448 {
 449         struct net *net = dev_net(vrf_dev);
 450         int err;
 451 
 452         skb->dev = vrf_dev;
 453 
 454         err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
 455                       skb, NULL, vrf_dev, vrf_output6_direct);
 456 
 457         if (likely(err == 1))
 458                 err = vrf_output6_direct(net, sk, skb);
 459 
 460         /* reset skb device */
 461         if (likely(err == 1))
 462                 nf_reset_ct(skb);
 463         else
 464                 skb = NULL;
 465 
 466         return skb;
 467 }
 468 
 469 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
 470                                    struct sock *sk,
 471                                    struct sk_buff *skb)
 472 {
 473         /* don't divert link scope packets */
 474         if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
 475                 return skb;
 476 
 477         if (qdisc_tx_is_default(vrf_dev) ||
 478             IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
 479                 return vrf_ip6_out_direct(vrf_dev, sk, skb);
 480 
 481         return vrf_ip6_out_redirect(vrf_dev, skb);
 482 }
 483 
 484 /* holding rtnl */
 485 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
 486 {
 487         struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
 488         struct net *net = dev_net(dev);
 489         struct dst_entry *dst;
 490 
 491         RCU_INIT_POINTER(vrf->rt6, NULL);
 492         synchronize_rcu();
 493 
 494         /* move dev in dst's to loopback so this VRF device can be deleted
 495          * - based on dst_ifdown
 496          */
 497         if (rt6) {
 498                 dst = &rt6->dst;
 499                 dev_put(dst->dev);
 500                 dst->dev = net->loopback_dev;
 501                 dev_hold(dst->dev);
 502                 dst_release(dst);
 503         }
 504 }
 505 
 506 static int vrf_rt6_create(struct net_device *dev)
 507 {
 508         int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM;
 509         struct net_vrf *vrf = netdev_priv(dev);
 510         struct net *net = dev_net(dev);
 511         struct rt6_info *rt6;
 512         int rc = -ENOMEM;
 513 
 514         /* IPv6 can be CONFIG enabled and then disabled runtime */
 515         if (!ipv6_mod_enabled())
 516                 return 0;
 517 
 518         vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
 519         if (!vrf->fib6_table)
 520                 goto out;
 521 
 522         /* create a dst for routing packets out a VRF device */
 523         rt6 = ip6_dst_alloc(net, dev, flags);
 524         if (!rt6)
 525                 goto out;
 526 
 527         rt6->dst.output = vrf_output6;
 528 
 529         rcu_assign_pointer(vrf->rt6, rt6);
 530 
 531         rc = 0;
 532 out:
 533         return rc;
 534 }
 535 #else
 536 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
 537                                    struct sock *sk,
 538                                    struct sk_buff *skb)
 539 {
 540         return skb;
 541 }
 542 
 543 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
 544 {
 545 }
 546 
 547 static int vrf_rt6_create(struct net_device *dev)
 548 {
 549         return 0;
 550 }
 551 #endif
 552 
 553 /* modelled after ip_finish_output2 */
 554 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 555 {
 556         struct dst_entry *dst = skb_dst(skb);
 557         struct rtable *rt = (struct rtable *)dst;
 558         struct net_device *dev = dst->dev;
 559         unsigned int hh_len = LL_RESERVED_SPACE(dev);
 560         struct neighbour *neigh;
 561         bool is_v6gw = false;
 562         int ret = -EINVAL;
 563 
 564         nf_reset_ct(skb);
 565 
 566         /* Be paranoid, rather than too clever. */
 567         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
 568                 struct sk_buff *skb2;
 569 
 570                 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
 571                 if (!skb2) {
 572                         ret = -ENOMEM;
 573                         goto err;
 574                 }
 575                 if (skb->sk)
 576                         skb_set_owner_w(skb2, skb->sk);
 577 
 578                 consume_skb(skb);
 579                 skb = skb2;
 580         }
 581 
 582         rcu_read_lock_bh();
 583 
 584         neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
 585         if (!IS_ERR(neigh)) {
 586                 sock_confirm_neigh(skb, neigh);
 587                 /* if crossing protocols, can not use the cached header */
 588                 ret = neigh_output(neigh, skb, is_v6gw);
 589                 rcu_read_unlock_bh();
 590                 return ret;
 591         }
 592 
 593         rcu_read_unlock_bh();
 594 err:
 595         vrf_tx_error(skb->dev, skb);
 596         return ret;
 597 }
 598 
 599 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 600 {
 601         struct net_device *dev = skb_dst(skb)->dev;
 602 
 603         IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
 604 
 605         skb->dev = dev;
 606         skb->protocol = htons(ETH_P_IP);
 607 
 608         return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 609                             net, sk, skb, NULL, dev,
 610                             vrf_finish_output,
 611                             !(IPCB(skb)->flags & IPSKB_REROUTED));
 612 }
 613 
 614 /* set dst on skb to send packet to us via dev_xmit path. Allows
 615  * packet to go through device based features such as qdisc, netfilter
 616  * hooks and packet sockets with skb->dev set to vrf device.
 617  */
 618 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
 619                                            struct sk_buff *skb)
 620 {
 621         struct net_vrf *vrf = netdev_priv(vrf_dev);
 622         struct dst_entry *dst = NULL;
 623         struct rtable *rth;
 624 
 625         rcu_read_lock();
 626 
 627         rth = rcu_dereference(vrf->rth);
 628         if (likely(rth)) {
 629                 dst = &rth->dst;
 630                 dst_hold(dst);
 631         }
 632 
 633         rcu_read_unlock();
 634 
 635         if (unlikely(!dst)) {
 636                 vrf_tx_error(vrf_dev, skb);
 637                 return NULL;
 638         }
 639 
 640         skb_dst_drop(skb);
 641         skb_dst_set(skb, dst);
 642 
 643         return skb;
 644 }
 645 
 646 static int vrf_output_direct(struct net *net, struct sock *sk,
 647                              struct sk_buff *skb)
 648 {
 649         skb->protocol = htons(ETH_P_IP);
 650 
 651         return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
 652                             net, sk, skb, NULL, skb->dev,
 653                             vrf_finish_direct,
 654                             !(IPCB(skb)->flags & IPSKB_REROUTED));
 655 }
 656 
 657 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
 658                                          struct sock *sk,
 659                                          struct sk_buff *skb)
 660 {
 661         struct net *net = dev_net(vrf_dev);
 662         int err;
 663 
 664         skb->dev = vrf_dev;
 665 
 666         err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
 667                       skb, NULL, vrf_dev, vrf_output_direct);
 668 
 669         if (likely(err == 1))
 670                 err = vrf_output_direct(net, sk, skb);
 671 
 672         /* reset skb device */
 673         if (likely(err == 1))
 674                 nf_reset_ct(skb);
 675         else
 676                 skb = NULL;
 677 
 678         return skb;
 679 }
 680 
 681 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
 682                                   struct sock *sk,
 683                                   struct sk_buff *skb)
 684 {
 685         /* don't divert multicast or local broadcast */
 686         if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
 687             ipv4_is_lbcast(ip_hdr(skb)->daddr))
 688                 return skb;
 689 
 690         if (qdisc_tx_is_default(vrf_dev) ||
 691             IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
 692                 return vrf_ip_out_direct(vrf_dev, sk, skb);
 693 
 694         return vrf_ip_out_redirect(vrf_dev, skb);
 695 }
 696 
 697 /* called with rcu lock held */
 698 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
 699                                   struct sock *sk,
 700                                   struct sk_buff *skb,
 701                                   u16 proto)
 702 {
 703         switch (proto) {
 704         case AF_INET:
 705                 return vrf_ip_out(vrf_dev, sk, skb);
 706         case AF_INET6:
 707                 return vrf_ip6_out(vrf_dev, sk, skb);
 708         }
 709 
 710         return skb;
 711 }
 712 
 713 /* holding rtnl */
 714 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
 715 {
 716         struct rtable *rth = rtnl_dereference(vrf->rth);
 717         struct net *net = dev_net(dev);
 718         struct dst_entry *dst;
 719 
 720         RCU_INIT_POINTER(vrf->rth, NULL);
 721         synchronize_rcu();
 722 
 723         /* move dev in dst's to loopback so this VRF device can be deleted
 724          * - based on dst_ifdown
 725          */
 726         if (rth) {
 727                 dst = &rth->dst;
 728                 dev_put(dst->dev);
 729                 dst->dev = net->loopback_dev;
 730                 dev_hold(dst->dev);
 731                 dst_release(dst);
 732         }
 733 }
 734 
 735 static int vrf_rtable_create(struct net_device *dev)
 736 {
 737         struct net_vrf *vrf = netdev_priv(dev);
 738         struct rtable *rth;
 739 
 740         if (!fib_new_table(dev_net(dev), vrf->tb_id))
 741                 return -ENOMEM;
 742 
 743         /* create a dst for routing packets out through a VRF device */
 744         rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
 745         if (!rth)
 746                 return -ENOMEM;
 747 
 748         rth->dst.output = vrf_output;
 749 
 750         rcu_assign_pointer(vrf->rth, rth);
 751 
 752         return 0;
 753 }
 754 
 755 /**************************** device handling ********************/
 756 
 757 /* cycle interface to flush neighbor cache and move routes across tables */
 758 static void cycle_netdev(struct net_device *dev,
 759                          struct netlink_ext_ack *extack)
 760 {
 761         unsigned int flags = dev->flags;
 762         int ret;
 763 
 764         if (!netif_running(dev))
 765                 return;
 766 
 767         ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
 768         if (ret >= 0)
 769                 ret = dev_change_flags(dev, flags, extack);
 770 
 771         if (ret < 0) {
 772                 netdev_err(dev,
 773                            "Failed to cycle device %s; route tables might be wrong!\n",
 774                            dev->name);
 775         }
 776 }
 777 
 778 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
 779                             struct netlink_ext_ack *extack)
 780 {
 781         int ret;
 782 
 783         /* do not allow loopback device to be enslaved to a VRF.
 784          * The vrf device acts as the loopback for the vrf.
 785          */
 786         if (port_dev == dev_net(dev)->loopback_dev) {
 787                 NL_SET_ERR_MSG(extack,
 788                                "Can not enslave loopback device to a VRF");
 789                 return -EOPNOTSUPP;
 790         }
 791 
 792         port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
 793         ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
 794         if (ret < 0)
 795                 goto err;
 796 
 797         cycle_netdev(port_dev, extack);
 798 
 799         return 0;
 800 
 801 err:
 802         port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
 803         return ret;
 804 }
 805 
 806 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
 807                          struct netlink_ext_ack *extack)
 808 {
 809         if (netif_is_l3_master(port_dev)) {
 810                 NL_SET_ERR_MSG(extack,
 811                                "Can not enslave an L3 master device to a VRF");
 812                 return -EINVAL;
 813         }
 814 
 815         if (netif_is_l3_slave(port_dev))
 816                 return -EINVAL;
 817 
 818         return do_vrf_add_slave(dev, port_dev, extack);
 819 }
 820 
 821 /* inverse of do_vrf_add_slave */
 822 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
 823 {
 824         netdev_upper_dev_unlink(port_dev, dev);
 825         port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
 826 
 827         cycle_netdev(port_dev, NULL);
 828 
 829         return 0;
 830 }
 831 
 832 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
 833 {
 834         return do_vrf_del_slave(dev, port_dev);
 835 }
 836 
 837 static void vrf_dev_uninit(struct net_device *dev)
 838 {
 839         struct net_vrf *vrf = netdev_priv(dev);
 840 
 841         vrf_rtable_release(dev, vrf);
 842         vrf_rt6_release(dev, vrf);
 843 
 844         free_percpu(dev->dstats);
 845         dev->dstats = NULL;
 846 }
 847 
 848 static int vrf_dev_init(struct net_device *dev)
 849 {
 850         struct net_vrf *vrf = netdev_priv(dev);
 851 
 852         dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
 853         if (!dev->dstats)
 854                 goto out_nomem;
 855 
 856         /* create the default dst which points back to us */
 857         if (vrf_rtable_create(dev) != 0)
 858                 goto out_stats;
 859 
 860         if (vrf_rt6_create(dev) != 0)
 861                 goto out_rth;
 862 
 863         dev->flags = IFF_MASTER | IFF_NOARP;
 864 
 865         /* MTU is irrelevant for VRF device; set to 64k similar to lo */
 866         dev->mtu = 64 * 1024;
 867 
 868         /* similarly, oper state is irrelevant; set to up to avoid confusion */
 869         dev->operstate = IF_OPER_UP;
 870         return 0;
 871 
 872 out_rth:
 873         vrf_rtable_release(dev, vrf);
 874 out_stats:
 875         free_percpu(dev->dstats);
 876         dev->dstats = NULL;
 877 out_nomem:
 878         return -ENOMEM;
 879 }
 880 
 881 static const struct net_device_ops vrf_netdev_ops = {
 882         .ndo_init               = vrf_dev_init,
 883         .ndo_uninit             = vrf_dev_uninit,
 884         .ndo_start_xmit         = vrf_xmit,
 885         .ndo_set_mac_address    = eth_mac_addr,
 886         .ndo_get_stats64        = vrf_get_stats64,
 887         .ndo_add_slave          = vrf_add_slave,
 888         .ndo_del_slave          = vrf_del_slave,
 889 };
 890 
 891 static u32 vrf_fib_table(const struct net_device *dev)
 892 {
 893         struct net_vrf *vrf = netdev_priv(dev);
 894 
 895         return vrf->tb_id;
 896 }
 897 
 898 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
 899 {
 900         kfree_skb(skb);
 901         return 0;
 902 }
 903 
 904 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
 905                                       struct sk_buff *skb,
 906                                       struct net_device *dev)
 907 {
 908         struct net *net = dev_net(dev);
 909 
 910         if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
 911                 skb = NULL;    /* kfree_skb(skb) handled by nf code */
 912 
 913         return skb;
 914 }
 915 
 916 #if IS_ENABLED(CONFIG_IPV6)
 917 /* neighbor handling is done with actual device; do not want
 918  * to flip skb->dev for those ndisc packets. This really fails
 919  * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
 920  * a start.
 921  */
 922 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
 923 {
 924         const struct ipv6hdr *iph = ipv6_hdr(skb);
 925         bool rc = false;
 926 
 927         if (iph->nexthdr == NEXTHDR_ICMP) {
 928                 const struct icmp6hdr *icmph;
 929                 struct icmp6hdr _icmph;
 930 
 931                 icmph = skb_header_pointer(skb, sizeof(*iph),
 932                                            sizeof(_icmph), &_icmph);
 933                 if (!icmph)
 934                         goto out;
 935 
 936                 switch (icmph->icmp6_type) {
 937                 case NDISC_ROUTER_SOLICITATION:
 938                 case NDISC_ROUTER_ADVERTISEMENT:
 939                 case NDISC_NEIGHBOUR_SOLICITATION:
 940                 case NDISC_NEIGHBOUR_ADVERTISEMENT:
 941                 case NDISC_REDIRECT:
 942                         rc = true;
 943                         break;
 944                 }
 945         }
 946 
 947 out:
 948         return rc;
 949 }
 950 
 951 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
 952                                              const struct net_device *dev,
 953                                              struct flowi6 *fl6,
 954                                              int ifindex,
 955                                              const struct sk_buff *skb,
 956                                              int flags)
 957 {
 958         struct net_vrf *vrf = netdev_priv(dev);
 959 
 960         return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
 961 }
 962 
 963 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
 964                               int ifindex)
 965 {
 966         const struct ipv6hdr *iph = ipv6_hdr(skb);
 967         struct flowi6 fl6 = {
 968                 .flowi6_iif     = ifindex,
 969                 .flowi6_mark    = skb->mark,
 970                 .flowi6_proto   = iph->nexthdr,
 971                 .daddr          = iph->daddr,
 972                 .saddr          = iph->saddr,
 973                 .flowlabel      = ip6_flowinfo(iph),
 974         };
 975         struct net *net = dev_net(vrf_dev);
 976         struct rt6_info *rt6;
 977 
 978         rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
 979                                    RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
 980         if (unlikely(!rt6))
 981                 return;
 982 
 983         if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
 984                 return;
 985 
 986         skb_dst_set(skb, &rt6->dst);
 987 }
 988 
 989 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
 990                                    struct sk_buff *skb)
 991 {
 992         int orig_iif = skb->skb_iif;
 993         bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
 994         bool is_ndisc = ipv6_ndisc_frame(skb);
 995 
 996         /* loopback, multicast & non-ND link-local traffic; do not push through
 997          * packet taps again. Reset pkt_type for upper layers to process skb
 998          */
 999         if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1000                 skb->dev = vrf_dev;
1001                 skb->skb_iif = vrf_dev->ifindex;
1002                 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1003                 if (skb->pkt_type == PACKET_LOOPBACK)
1004                         skb->pkt_type = PACKET_HOST;
1005                 goto out;
1006         }
1007 
1008         /* if packet is NDISC then keep the ingress interface */
1009         if (!is_ndisc) {
1010                 vrf_rx_stats(vrf_dev, skb->len);
1011                 skb->dev = vrf_dev;
1012                 skb->skb_iif = vrf_dev->ifindex;
1013 
1014                 if (!list_empty(&vrf_dev->ptype_all)) {
1015                         skb_push(skb, skb->mac_len);
1016                         dev_queue_xmit_nit(skb, vrf_dev);
1017                         skb_pull(skb, skb->mac_len);
1018                 }
1019 
1020                 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1021         }
1022 
1023         if (need_strict)
1024                 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1025 
1026         skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1027 out:
1028         return skb;
1029 }
1030 
1031 #else
1032 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1033                                    struct sk_buff *skb)
1034 {
1035         return skb;
1036 }
1037 #endif
1038 
1039 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1040                                   struct sk_buff *skb)
1041 {
1042         skb->dev = vrf_dev;
1043         skb->skb_iif = vrf_dev->ifindex;
1044         IPCB(skb)->flags |= IPSKB_L3SLAVE;
1045 
1046         if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1047                 goto out;
1048 
1049         /* loopback traffic; do not push through packet taps again.
1050          * Reset pkt_type for upper layers to process skb
1051          */
1052         if (skb->pkt_type == PACKET_LOOPBACK) {
1053                 skb->pkt_type = PACKET_HOST;
1054                 goto out;
1055         }
1056 
1057         vrf_rx_stats(vrf_dev, skb->len);
1058 
1059         if (!list_empty(&vrf_dev->ptype_all)) {
1060                 skb_push(skb, skb->mac_len);
1061                 dev_queue_xmit_nit(skb, vrf_dev);
1062                 skb_pull(skb, skb->mac_len);
1063         }
1064 
1065         skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1066 out:
1067         return skb;
1068 }
1069 
1070 /* called with rcu lock held */
1071 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1072                                   struct sk_buff *skb,
1073                                   u16 proto)
1074 {
1075         switch (proto) {
1076         case AF_INET:
1077                 return vrf_ip_rcv(vrf_dev, skb);
1078         case AF_INET6:
1079                 return vrf_ip6_rcv(vrf_dev, skb);
1080         }
1081 
1082         return skb;
1083 }
1084 
1085 #if IS_ENABLED(CONFIG_IPV6)
1086 /* send to link-local or multicast address via interface enslaved to
1087  * VRF device. Force lookup to VRF table without changing flow struct
1088  * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1089  * is taken on the dst by this function.
1090  */
1091 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1092                                               struct flowi6 *fl6)
1093 {
1094         struct net *net = dev_net(dev);
1095         int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1096         struct dst_entry *dst = NULL;
1097         struct rt6_info *rt;
1098 
1099         /* VRF device does not have a link-local address and
1100          * sending packets to link-local or mcast addresses over
1101          * a VRF device does not make sense
1102          */
1103         if (fl6->flowi6_oif == dev->ifindex) {
1104                 dst = &net->ipv6.ip6_null_entry->dst;
1105                 return dst;
1106         }
1107 
1108         if (!ipv6_addr_any(&fl6->saddr))
1109                 flags |= RT6_LOOKUP_F_HAS_SADDR;
1110 
1111         rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1112         if (rt)
1113                 dst = &rt->dst;
1114 
1115         return dst;
1116 }
1117 #endif
1118 
1119 static const struct l3mdev_ops vrf_l3mdev_ops = {
1120         .l3mdev_fib_table       = vrf_fib_table,
1121         .l3mdev_l3_rcv          = vrf_l3_rcv,
1122         .l3mdev_l3_out          = vrf_l3_out,
1123 #if IS_ENABLED(CONFIG_IPV6)
1124         .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1125 #endif
1126 };
1127 
1128 static void vrf_get_drvinfo(struct net_device *dev,
1129                             struct ethtool_drvinfo *info)
1130 {
1131         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1132         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1133 }
1134 
1135 static const struct ethtool_ops vrf_ethtool_ops = {
1136         .get_drvinfo    = vrf_get_drvinfo,
1137 };
1138 
1139 static inline size_t vrf_fib_rule_nl_size(void)
1140 {
1141         size_t sz;
1142 
1143         sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1144         sz += nla_total_size(sizeof(u8));       /* FRA_L3MDEV */
1145         sz += nla_total_size(sizeof(u32));      /* FRA_PRIORITY */
1146         sz += nla_total_size(sizeof(u8));       /* FRA_PROTOCOL */
1147 
1148         return sz;
1149 }
1150 
1151 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1152 {
1153         struct fib_rule_hdr *frh;
1154         struct nlmsghdr *nlh;
1155         struct sk_buff *skb;
1156         int err;
1157 
1158         if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1159             !ipv6_mod_enabled())
1160                 return 0;
1161 
1162         skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1163         if (!skb)
1164                 return -ENOMEM;
1165 
1166         nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1167         if (!nlh)
1168                 goto nla_put_failure;
1169 
1170         /* rule only needs to appear once */
1171         nlh->nlmsg_flags |= NLM_F_EXCL;
1172 
1173         frh = nlmsg_data(nlh);
1174         memset(frh, 0, sizeof(*frh));
1175         frh->family = family;
1176         frh->action = FR_ACT_TO_TBL;
1177 
1178         if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1179                 goto nla_put_failure;
1180 
1181         if (nla_put_u8(skb, FRA_L3MDEV, 1))
1182                 goto nla_put_failure;
1183 
1184         if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1185                 goto nla_put_failure;
1186 
1187         nlmsg_end(skb, nlh);
1188 
1189         /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1190         skb->sk = dev_net(dev)->rtnl;
1191         if (add_it) {
1192                 err = fib_nl_newrule(skb, nlh, NULL);
1193                 if (err == -EEXIST)
1194                         err = 0;
1195         } else {
1196                 err = fib_nl_delrule(skb, nlh, NULL);
1197                 if (err == -ENOENT)
1198                         err = 0;
1199         }
1200         nlmsg_free(skb);
1201 
1202         return err;
1203 
1204 nla_put_failure:
1205         nlmsg_free(skb);
1206 
1207         return -EMSGSIZE;
1208 }
1209 
1210 static int vrf_add_fib_rules(const struct net_device *dev)
1211 {
1212         int err;
1213 
1214         err = vrf_fib_rule(dev, AF_INET,  true);
1215         if (err < 0)
1216                 goto out_err;
1217 
1218         err = vrf_fib_rule(dev, AF_INET6, true);
1219         if (err < 0)
1220                 goto ipv6_err;
1221 
1222 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1223         err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1224         if (err < 0)
1225                 goto ipmr_err;
1226 #endif
1227 
1228 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1229         err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1230         if (err < 0)
1231                 goto ip6mr_err;
1232 #endif
1233 
1234         return 0;
1235 
1236 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1237 ip6mr_err:
1238         vrf_fib_rule(dev, RTNL_FAMILY_IPMR,  false);
1239 #endif
1240 
1241 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1242 ipmr_err:
1243         vrf_fib_rule(dev, AF_INET6,  false);
1244 #endif
1245 
1246 ipv6_err:
1247         vrf_fib_rule(dev, AF_INET,  false);
1248 
1249 out_err:
1250         netdev_err(dev, "Failed to add FIB rules.\n");
1251         return err;
1252 }
1253 
1254 static void vrf_setup(struct net_device *dev)
1255 {
1256         ether_setup(dev);
1257 
1258         /* Initialize the device structure. */
1259         dev->netdev_ops = &vrf_netdev_ops;
1260         dev->l3mdev_ops = &vrf_l3mdev_ops;
1261         dev->ethtool_ops = &vrf_ethtool_ops;
1262         dev->needs_free_netdev = true;
1263 
1264         /* Fill in device structure with ethernet-generic values. */
1265         eth_hw_addr_random(dev);
1266 
1267         /* don't acquire vrf device's netif_tx_lock when transmitting */
1268         dev->features |= NETIF_F_LLTX;
1269 
1270         /* don't allow vrf devices to change network namespaces. */
1271         dev->features |= NETIF_F_NETNS_LOCAL;
1272 
1273         /* does not make sense for a VLAN to be added to a vrf device */
1274         dev->features   |= NETIF_F_VLAN_CHALLENGED;
1275 
1276         /* enable offload features */
1277         dev->features   |= NETIF_F_GSO_SOFTWARE;
1278         dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1279         dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1280 
1281         dev->hw_features = dev->features;
1282         dev->hw_enc_features = dev->features;
1283 
1284         /* default to no qdisc; user can add if desired */
1285         dev->priv_flags |= IFF_NO_QUEUE;
1286         dev->priv_flags |= IFF_NO_RX_HANDLER;
1287         dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1288 
1289         /* VRF devices do not care about MTU, but if the MTU is set
1290          * too low then the ipv4 and ipv6 protocols are disabled
1291          * which breaks networking.
1292          */
1293         dev->min_mtu = IPV6_MIN_MTU;
1294         dev->max_mtu = ETH_MAX_MTU;
1295 }
1296 
1297 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1298                         struct netlink_ext_ack *extack)
1299 {
1300         if (tb[IFLA_ADDRESS]) {
1301                 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1302                         NL_SET_ERR_MSG(extack, "Invalid hardware address");
1303                         return -EINVAL;
1304                 }
1305                 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1306                         NL_SET_ERR_MSG(extack, "Invalid hardware address");
1307                         return -EADDRNOTAVAIL;
1308                 }
1309         }
1310         return 0;
1311 }
1312 
1313 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1314 {
1315         struct net_device *port_dev;
1316         struct list_head *iter;
1317 
1318         netdev_for_each_lower_dev(dev, port_dev, iter)
1319                 vrf_del_slave(dev, port_dev);
1320 
1321         unregister_netdevice_queue(dev, head);
1322 }
1323 
1324 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1325                        struct nlattr *tb[], struct nlattr *data[],
1326                        struct netlink_ext_ack *extack)
1327 {
1328         struct net_vrf *vrf = netdev_priv(dev);
1329         bool *add_fib_rules;
1330         struct net *net;
1331         int err;
1332 
1333         if (!data || !data[IFLA_VRF_TABLE]) {
1334                 NL_SET_ERR_MSG(extack, "VRF table id is missing");
1335                 return -EINVAL;
1336         }
1337 
1338         vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1339         if (vrf->tb_id == RT_TABLE_UNSPEC) {
1340                 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1341                                     "Invalid VRF table id");
1342                 return -EINVAL;
1343         }
1344 
1345         dev->priv_flags |= IFF_L3MDEV_MASTER;
1346 
1347         err = register_netdevice(dev);
1348         if (err)
1349                 goto out;
1350 
1351         net = dev_net(dev);
1352         add_fib_rules = net_generic(net, vrf_net_id);
1353         if (*add_fib_rules) {
1354                 err = vrf_add_fib_rules(dev);
1355                 if (err) {
1356                         unregister_netdevice(dev);
1357                         goto out;
1358                 }
1359                 *add_fib_rules = false;
1360         }
1361 
1362 out:
1363         return err;
1364 }
1365 
1366 static size_t vrf_nl_getsize(const struct net_device *dev)
1367 {
1368         return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1369 }
1370 
1371 static int vrf_fillinfo(struct sk_buff *skb,
1372                         const struct net_device *dev)
1373 {
1374         struct net_vrf *vrf = netdev_priv(dev);
1375 
1376         return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1377 }
1378 
1379 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1380                                  const struct net_device *slave_dev)
1381 {
1382         return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1383 }
1384 
1385 static int vrf_fill_slave_info(struct sk_buff *skb,
1386                                const struct net_device *vrf_dev,
1387                                const struct net_device *slave_dev)
1388 {
1389         struct net_vrf *vrf = netdev_priv(vrf_dev);
1390 
1391         if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1392                 return -EMSGSIZE;
1393 
1394         return 0;
1395 }
1396 
1397 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1398         [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1399 };
1400 
1401 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1402         .kind           = DRV_NAME,
1403         .priv_size      = sizeof(struct net_vrf),
1404 
1405         .get_size       = vrf_nl_getsize,
1406         .policy         = vrf_nl_policy,
1407         .validate       = vrf_validate,
1408         .fill_info      = vrf_fillinfo,
1409 
1410         .get_slave_size  = vrf_get_slave_size,
1411         .fill_slave_info = vrf_fill_slave_info,
1412 
1413         .newlink        = vrf_newlink,
1414         .dellink        = vrf_dellink,
1415         .setup          = vrf_setup,
1416         .maxtype        = IFLA_VRF_MAX,
1417 };
1418 
1419 static int vrf_device_event(struct notifier_block *unused,
1420                             unsigned long event, void *ptr)
1421 {
1422         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1423 
1424         /* only care about unregister events to drop slave references */
1425         if (event == NETDEV_UNREGISTER) {
1426                 struct net_device *vrf_dev;
1427 
1428                 if (!netif_is_l3_slave(dev))
1429                         goto out;
1430 
1431                 vrf_dev = netdev_master_upper_dev_get(dev);
1432                 vrf_del_slave(vrf_dev, dev);
1433         }
1434 out:
1435         return NOTIFY_DONE;
1436 }
1437 
1438 static struct notifier_block vrf_notifier_block __read_mostly = {
1439         .notifier_call = vrf_device_event,
1440 };
1441 
1442 /* Initialize per network namespace state */
1443 static int __net_init vrf_netns_init(struct net *net)
1444 {
1445         bool *add_fib_rules = net_generic(net, vrf_net_id);
1446 
1447         *add_fib_rules = true;
1448 
1449         return 0;
1450 }
1451 
1452 static struct pernet_operations vrf_net_ops __net_initdata = {
1453         .init = vrf_netns_init,
1454         .id   = &vrf_net_id,
1455         .size = sizeof(bool),
1456 };
1457 
1458 static int __init vrf_init_module(void)
1459 {
1460         int rc;
1461 
1462         register_netdevice_notifier(&vrf_notifier_block);
1463 
1464         rc = register_pernet_subsys(&vrf_net_ops);
1465         if (rc < 0)
1466                 goto error;
1467 
1468         rc = rtnl_link_register(&vrf_link_ops);
1469         if (rc < 0) {
1470                 unregister_pernet_subsys(&vrf_net_ops);
1471                 goto error;
1472         }
1473 
1474         return 0;
1475 
1476 error:
1477         unregister_netdevice_notifier(&vrf_notifier_block);
1478         return rc;
1479 }
1480 
1481 module_init(vrf_init_module);
1482 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1483 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1484 MODULE_LICENSE("GPL");
1485 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1486 MODULE_VERSION(DRV_VERSION);

/* [<][>][^][v][top][bottom][index][help] */