root/drivers/net/ethernet/qlogic/qede/qede_main.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. qede_set_vf_vlan
  2. qede_set_vf_mac
  3. qede_sriov_configure
  4. qede_netdev_event
  5. qede_init
  6. qede_cleanup
  7. qede_fill_by_demand_stats
  8. qede_get_stats64
  9. qede_get_vf_config
  10. qede_set_vf_rate
  11. qede_set_vf_spoofchk
  12. qede_set_vf_link_state
  13. qede_set_vf_trust
  14. qede_ioctl
  15. qede_setup_tc
  16. qede_set_flower
  17. qede_setup_tc_block_cb
  18. qede_setup_tc_offload
  19. qede_alloc_etherdev
  20. qede_init_ndev
  21. qede_config_debug
  22. qede_free_fp_array
  23. qede_alloc_fp_array
  24. __qede_lock
  25. __qede_unlock
  26. qede_lock
  27. qede_unlock
  28. qede_sp_task
  29. qede_update_pf_params
  30. qede_log_probe
  31. __qede_probe
  32. qede_probe
  33. __qede_remove
  34. qede_remove
  35. qede_shutdown
  36. qede_set_num_queues
  37. qede_free_mem_sb
  38. qede_alloc_mem_sb
  39. qede_free_rx_buffers
  40. qede_free_mem_rxq
  41. qede_set_tpa_param
  42. qede_alloc_mem_rxq
  43. qede_free_mem_txq
  44. qede_alloc_mem_txq
  45. qede_free_mem_fp
  46. qede_alloc_mem_fp
  47. qede_free_mem_load
  48. qede_alloc_mem_load
  49. qede_empty_tx_queue
  50. qede_empty_tx_queues
  51. qede_init_fp
  52. qede_set_real_num_queues
  53. qede_napi_disable_remove
  54. qede_napi_add_enable
  55. qede_sync_free_irqs
  56. qede_req_msix_irqs
  57. qede_simd_fp_handler
  58. qede_setup_irqs
  59. qede_drain_txq
  60. qede_stop_txq
  61. qede_stop_queues
  62. qede_start_txq
  63. qede_start_queues
  64. qede_unload
  65. qede_load
  66. qede_reload
  67. qede_open
  68. qede_close
  69. qede_link_update
  70. qede_schedule_recovery_handler
  71. qede_recovery_failed
  72. qede_recovery_handler
  73. qede_is_txq_full
  74. qede_get_generic_tlv_data
  75. qede_get_eth_tlv_data

   1 /* QLogic qede NIC Driver
   2  * Copyright (c) 2015-2017  QLogic Corporation
   3  *
   4  * This software is available to you under a choice of one of two
   5  * licenses.  You may choose to be licensed under the terms of the GNU
   6  * General Public License (GPL) Version 2, available from the file
   7  * COPYING in the main directory of this source tree, or the
   8  * OpenIB.org BSD license below:
   9  *
  10  *     Redistribution and use in source and binary forms, with or
  11  *     without modification, are permitted provided that the following
  12  *     conditions are met:
  13  *
  14  *      - Redistributions of source code must retain the above
  15  *        copyright notice, this list of conditions and the following
  16  *        disclaimer.
  17  *
  18  *      - Redistributions in binary form must reproduce the above
  19  *        copyright notice, this list of conditions and the following
  20  *        disclaimer in the documentation and /or other materials
  21  *        provided with the distribution.
  22  *
  23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30  * SOFTWARE.
  31  */
  32 #include <linux/module.h>
  33 #include <linux/pci.h>
  34 #include <linux/version.h>
  35 #include <linux/device.h>
  36 #include <linux/netdevice.h>
  37 #include <linux/etherdevice.h>
  38 #include <linux/skbuff.h>
  39 #include <linux/errno.h>
  40 #include <linux/list.h>
  41 #include <linux/string.h>
  42 #include <linux/dma-mapping.h>
  43 #include <linux/interrupt.h>
  44 #include <asm/byteorder.h>
  45 #include <asm/param.h>
  46 #include <linux/io.h>
  47 #include <linux/netdev_features.h>
  48 #include <linux/udp.h>
  49 #include <linux/tcp.h>
  50 #include <net/udp_tunnel.h>
  51 #include <linux/ip.h>
  52 #include <net/ipv6.h>
  53 #include <net/tcp.h>
  54 #include <linux/if_ether.h>
  55 #include <linux/if_vlan.h>
  56 #include <linux/pkt_sched.h>
  57 #include <linux/ethtool.h>
  58 #include <linux/in.h>
  59 #include <linux/random.h>
  60 #include <net/ip6_checksum.h>
  61 #include <linux/bitops.h>
  62 #include <linux/vmalloc.h>
  63 #include "qede.h"
  64 #include "qede_ptp.h"
  65 
  66 static char version[] =
  67         "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
  68 
  69 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
  70 MODULE_LICENSE("GPL");
  71 MODULE_VERSION(DRV_MODULE_VERSION);
  72 
  73 static uint debug;
  74 module_param(debug, uint, 0);
  75 MODULE_PARM_DESC(debug, " Default debug msglevel");
  76 
  77 static const struct qed_eth_ops *qed_ops;
  78 
  79 #define CHIP_NUM_57980S_40              0x1634
  80 #define CHIP_NUM_57980S_10              0x1666
  81 #define CHIP_NUM_57980S_MF              0x1636
  82 #define CHIP_NUM_57980S_100             0x1644
  83 #define CHIP_NUM_57980S_50              0x1654
  84 #define CHIP_NUM_57980S_25              0x1656
  85 #define CHIP_NUM_57980S_IOV             0x1664
  86 #define CHIP_NUM_AH                     0x8070
  87 #define CHIP_NUM_AH_IOV                 0x8090
  88 
  89 #ifndef PCI_DEVICE_ID_NX2_57980E
  90 #define PCI_DEVICE_ID_57980S_40         CHIP_NUM_57980S_40
  91 #define PCI_DEVICE_ID_57980S_10         CHIP_NUM_57980S_10
  92 #define PCI_DEVICE_ID_57980S_MF         CHIP_NUM_57980S_MF
  93 #define PCI_DEVICE_ID_57980S_100        CHIP_NUM_57980S_100
  94 #define PCI_DEVICE_ID_57980S_50         CHIP_NUM_57980S_50
  95 #define PCI_DEVICE_ID_57980S_25         CHIP_NUM_57980S_25
  96 #define PCI_DEVICE_ID_57980S_IOV        CHIP_NUM_57980S_IOV
  97 #define PCI_DEVICE_ID_AH                CHIP_NUM_AH
  98 #define PCI_DEVICE_ID_AH_IOV            CHIP_NUM_AH_IOV
  99 
 100 #endif
 101 
 102 enum qede_pci_private {
 103         QEDE_PRIVATE_PF,
 104         QEDE_PRIVATE_VF
 105 };
 106 
 107 static const struct pci_device_id qede_pci_tbl[] = {
 108         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
 109         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
 110         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
 111         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
 112         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
 113         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
 114 #ifdef CONFIG_QED_SRIOV
 115         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
 116 #endif
 117         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
 118 #ifdef CONFIG_QED_SRIOV
 119         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
 120 #endif
 121         { 0 }
 122 };
 123 
 124 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
 125 
 126 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
 127 
 128 #define TX_TIMEOUT              (5 * HZ)
 129 
 130 /* Utilize last protocol index for XDP */
 131 #define XDP_PI  11
 132 
 133 static void qede_remove(struct pci_dev *pdev);
 134 static void qede_shutdown(struct pci_dev *pdev);
 135 static void qede_link_update(void *dev, struct qed_link_output *link);
 136 static void qede_schedule_recovery_handler(void *dev);
 137 static void qede_recovery_handler(struct qede_dev *edev);
 138 static void qede_get_eth_tlv_data(void *edev, void *data);
 139 static void qede_get_generic_tlv_data(void *edev,
 140                                       struct qed_generic_tlvs *data);
 141 
 142 #ifdef CONFIG_QED_SRIOV
 143 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
 144                             __be16 vlan_proto)
 145 {
 146         struct qede_dev *edev = netdev_priv(ndev);
 147 
 148         if (vlan > 4095) {
 149                 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
 150                 return -EINVAL;
 151         }
 152 
 153         if (vlan_proto != htons(ETH_P_8021Q))
 154                 return -EPROTONOSUPPORT;
 155 
 156         DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
 157                    vlan, vf);
 158 
 159         return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
 160 }
 161 
 162 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
 163 {
 164         struct qede_dev *edev = netdev_priv(ndev);
 165 
 166         DP_VERBOSE(edev, QED_MSG_IOV,
 167                    "Setting MAC %02x:%02x:%02x:%02x:%02x:%02x to VF [%d]\n",
 168                    mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], vfidx);
 169 
 170         if (!is_valid_ether_addr(mac)) {
 171                 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
 172                 return -EINVAL;
 173         }
 174 
 175         return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
 176 }
 177 
 178 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
 179 {
 180         struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
 181         struct qed_dev_info *qed_info = &edev->dev_info.common;
 182         struct qed_update_vport_params *vport_params;
 183         int rc;
 184 
 185         vport_params = vzalloc(sizeof(*vport_params));
 186         if (!vport_params)
 187                 return -ENOMEM;
 188         DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
 189 
 190         rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
 191 
 192         /* Enable/Disable Tx switching for PF */
 193         if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
 194             !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
 195                 vport_params->vport_id = 0;
 196                 vport_params->update_tx_switching_flg = 1;
 197                 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
 198                 edev->ops->vport_update(edev->cdev, vport_params);
 199         }
 200 
 201         vfree(vport_params);
 202         return rc;
 203 }
 204 #endif
 205 
 206 static struct pci_driver qede_pci_driver = {
 207         .name = "qede",
 208         .id_table = qede_pci_tbl,
 209         .probe = qede_probe,
 210         .remove = qede_remove,
 211         .shutdown = qede_shutdown,
 212 #ifdef CONFIG_QED_SRIOV
 213         .sriov_configure = qede_sriov_configure,
 214 #endif
 215 };
 216 
 217 static struct qed_eth_cb_ops qede_ll_ops = {
 218         {
 219 #ifdef CONFIG_RFS_ACCEL
 220                 .arfs_filter_op = qede_arfs_filter_op,
 221 #endif
 222                 .link_update = qede_link_update,
 223                 .schedule_recovery_handler = qede_schedule_recovery_handler,
 224                 .get_generic_tlv_data = qede_get_generic_tlv_data,
 225                 .get_protocol_tlv_data = qede_get_eth_tlv_data,
 226         },
 227         .force_mac = qede_force_mac,
 228         .ports_update = qede_udp_ports_update,
 229 };
 230 
 231 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
 232                              void *ptr)
 233 {
 234         struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
 235         struct ethtool_drvinfo drvinfo;
 236         struct qede_dev *edev;
 237 
 238         if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
 239                 goto done;
 240 
 241         /* Check whether this is a qede device */
 242         if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
 243                 goto done;
 244 
 245         memset(&drvinfo, 0, sizeof(drvinfo));
 246         ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
 247         if (strcmp(drvinfo.driver, "qede"))
 248                 goto done;
 249         edev = netdev_priv(ndev);
 250 
 251         switch (event) {
 252         case NETDEV_CHANGENAME:
 253                 /* Notify qed of the name change */
 254                 if (!edev->ops || !edev->ops->common)
 255                         goto done;
 256                 edev->ops->common->set_name(edev->cdev, edev->ndev->name);
 257                 break;
 258         case NETDEV_CHANGEADDR:
 259                 edev = netdev_priv(ndev);
 260                 qede_rdma_event_changeaddr(edev);
 261                 break;
 262         }
 263 
 264 done:
 265         return NOTIFY_DONE;
 266 }
 267 
 268 static struct notifier_block qede_netdev_notifier = {
 269         .notifier_call = qede_netdev_event,
 270 };
 271 
 272 static
 273 int __init qede_init(void)
 274 {
 275         int ret;
 276 
 277         pr_info("qede_init: %s\n", version);
 278 
 279         qed_ops = qed_get_eth_ops();
 280         if (!qed_ops) {
 281                 pr_notice("Failed to get qed ethtool operations\n");
 282                 return -EINVAL;
 283         }
 284 
 285         /* Must register notifier before pci ops, since we might miss
 286          * interface rename after pci probe and netdev registration.
 287          */
 288         ret = register_netdevice_notifier(&qede_netdev_notifier);
 289         if (ret) {
 290                 pr_notice("Failed to register netdevice_notifier\n");
 291                 qed_put_eth_ops();
 292                 return -EINVAL;
 293         }
 294 
 295         ret = pci_register_driver(&qede_pci_driver);
 296         if (ret) {
 297                 pr_notice("Failed to register driver\n");
 298                 unregister_netdevice_notifier(&qede_netdev_notifier);
 299                 qed_put_eth_ops();
 300                 return -EINVAL;
 301         }
 302 
 303         return 0;
 304 }
 305 
 306 static void __exit qede_cleanup(void)
 307 {
 308         if (debug & QED_LOG_INFO_MASK)
 309                 pr_info("qede_cleanup called\n");
 310 
 311         unregister_netdevice_notifier(&qede_netdev_notifier);
 312         pci_unregister_driver(&qede_pci_driver);
 313         qed_put_eth_ops();
 314 }
 315 
 316 module_init(qede_init);
 317 module_exit(qede_cleanup);
 318 
 319 static int qede_open(struct net_device *ndev);
 320 static int qede_close(struct net_device *ndev);
 321 
 322 void qede_fill_by_demand_stats(struct qede_dev *edev)
 323 {
 324         struct qede_stats_common *p_common = &edev->stats.common;
 325         struct qed_eth_stats stats;
 326 
 327         edev->ops->get_vport_stats(edev->cdev, &stats);
 328 
 329         p_common->no_buff_discards = stats.common.no_buff_discards;
 330         p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
 331         p_common->ttl0_discard = stats.common.ttl0_discard;
 332         p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
 333         p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
 334         p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
 335         p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
 336         p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
 337         p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
 338         p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
 339         p_common->mac_filter_discards = stats.common.mac_filter_discards;
 340         p_common->gft_filter_drop = stats.common.gft_filter_drop;
 341 
 342         p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
 343         p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
 344         p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
 345         p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
 346         p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
 347         p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
 348         p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
 349         p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
 350         p_common->coalesced_events = stats.common.tpa_coalesced_events;
 351         p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
 352         p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
 353         p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
 354 
 355         p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
 356         p_common->rx_65_to_127_byte_packets =
 357             stats.common.rx_65_to_127_byte_packets;
 358         p_common->rx_128_to_255_byte_packets =
 359             stats.common.rx_128_to_255_byte_packets;
 360         p_common->rx_256_to_511_byte_packets =
 361             stats.common.rx_256_to_511_byte_packets;
 362         p_common->rx_512_to_1023_byte_packets =
 363             stats.common.rx_512_to_1023_byte_packets;
 364         p_common->rx_1024_to_1518_byte_packets =
 365             stats.common.rx_1024_to_1518_byte_packets;
 366         p_common->rx_crc_errors = stats.common.rx_crc_errors;
 367         p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
 368         p_common->rx_pause_frames = stats.common.rx_pause_frames;
 369         p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
 370         p_common->rx_align_errors = stats.common.rx_align_errors;
 371         p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
 372         p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
 373         p_common->rx_jabbers = stats.common.rx_jabbers;
 374         p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
 375         p_common->rx_fragments = stats.common.rx_fragments;
 376         p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
 377         p_common->tx_65_to_127_byte_packets =
 378             stats.common.tx_65_to_127_byte_packets;
 379         p_common->tx_128_to_255_byte_packets =
 380             stats.common.tx_128_to_255_byte_packets;
 381         p_common->tx_256_to_511_byte_packets =
 382             stats.common.tx_256_to_511_byte_packets;
 383         p_common->tx_512_to_1023_byte_packets =
 384             stats.common.tx_512_to_1023_byte_packets;
 385         p_common->tx_1024_to_1518_byte_packets =
 386             stats.common.tx_1024_to_1518_byte_packets;
 387         p_common->tx_pause_frames = stats.common.tx_pause_frames;
 388         p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
 389         p_common->brb_truncates = stats.common.brb_truncates;
 390         p_common->brb_discards = stats.common.brb_discards;
 391         p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
 392         p_common->link_change_count = stats.common.link_change_count;
 393         p_common->ptp_skip_txts = edev->ptp_skip_txts;
 394 
 395         if (QEDE_IS_BB(edev)) {
 396                 struct qede_stats_bb *p_bb = &edev->stats.bb;
 397 
 398                 p_bb->rx_1519_to_1522_byte_packets =
 399                     stats.bb.rx_1519_to_1522_byte_packets;
 400                 p_bb->rx_1519_to_2047_byte_packets =
 401                     stats.bb.rx_1519_to_2047_byte_packets;
 402                 p_bb->rx_2048_to_4095_byte_packets =
 403                     stats.bb.rx_2048_to_4095_byte_packets;
 404                 p_bb->rx_4096_to_9216_byte_packets =
 405                     stats.bb.rx_4096_to_9216_byte_packets;
 406                 p_bb->rx_9217_to_16383_byte_packets =
 407                     stats.bb.rx_9217_to_16383_byte_packets;
 408                 p_bb->tx_1519_to_2047_byte_packets =
 409                     stats.bb.tx_1519_to_2047_byte_packets;
 410                 p_bb->tx_2048_to_4095_byte_packets =
 411                     stats.bb.tx_2048_to_4095_byte_packets;
 412                 p_bb->tx_4096_to_9216_byte_packets =
 413                     stats.bb.tx_4096_to_9216_byte_packets;
 414                 p_bb->tx_9217_to_16383_byte_packets =
 415                     stats.bb.tx_9217_to_16383_byte_packets;
 416                 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
 417                 p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
 418         } else {
 419                 struct qede_stats_ah *p_ah = &edev->stats.ah;
 420 
 421                 p_ah->rx_1519_to_max_byte_packets =
 422                     stats.ah.rx_1519_to_max_byte_packets;
 423                 p_ah->tx_1519_to_max_byte_packets =
 424                     stats.ah.tx_1519_to_max_byte_packets;
 425         }
 426 }
 427 
 428 static void qede_get_stats64(struct net_device *dev,
 429                              struct rtnl_link_stats64 *stats)
 430 {
 431         struct qede_dev *edev = netdev_priv(dev);
 432         struct qede_stats_common *p_common;
 433 
 434         qede_fill_by_demand_stats(edev);
 435         p_common = &edev->stats.common;
 436 
 437         stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
 438                             p_common->rx_bcast_pkts;
 439         stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
 440                             p_common->tx_bcast_pkts;
 441 
 442         stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
 443                           p_common->rx_bcast_bytes;
 444         stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
 445                           p_common->tx_bcast_bytes;
 446 
 447         stats->tx_errors = p_common->tx_err_drop_pkts;
 448         stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
 449 
 450         stats->rx_fifo_errors = p_common->no_buff_discards;
 451 
 452         if (QEDE_IS_BB(edev))
 453                 stats->collisions = edev->stats.bb.tx_total_collisions;
 454         stats->rx_crc_errors = p_common->rx_crc_errors;
 455         stats->rx_frame_errors = p_common->rx_align_errors;
 456 }
 457 
 458 #ifdef CONFIG_QED_SRIOV
 459 static int qede_get_vf_config(struct net_device *dev, int vfidx,
 460                               struct ifla_vf_info *ivi)
 461 {
 462         struct qede_dev *edev = netdev_priv(dev);
 463 
 464         if (!edev->ops)
 465                 return -EINVAL;
 466 
 467         return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
 468 }
 469 
 470 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
 471                             int min_tx_rate, int max_tx_rate)
 472 {
 473         struct qede_dev *edev = netdev_priv(dev);
 474 
 475         return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
 476                                         max_tx_rate);
 477 }
 478 
 479 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
 480 {
 481         struct qede_dev *edev = netdev_priv(dev);
 482 
 483         if (!edev->ops)
 484                 return -EINVAL;
 485 
 486         return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
 487 }
 488 
 489 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
 490                                   int link_state)
 491 {
 492         struct qede_dev *edev = netdev_priv(dev);
 493 
 494         if (!edev->ops)
 495                 return -EINVAL;
 496 
 497         return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
 498 }
 499 
 500 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
 501 {
 502         struct qede_dev *edev = netdev_priv(dev);
 503 
 504         if (!edev->ops)
 505                 return -EINVAL;
 506 
 507         return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
 508 }
 509 #endif
 510 
 511 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
 512 {
 513         struct qede_dev *edev = netdev_priv(dev);
 514 
 515         if (!netif_running(dev))
 516                 return -EAGAIN;
 517 
 518         switch (cmd) {
 519         case SIOCSHWTSTAMP:
 520                 return qede_ptp_hw_ts(edev, ifr);
 521         default:
 522                 DP_VERBOSE(edev, QED_MSG_DEBUG,
 523                            "default IOCTL cmd 0x%x\n", cmd);
 524                 return -EOPNOTSUPP;
 525         }
 526 
 527         return 0;
 528 }
 529 
 530 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
 531 {
 532         struct qede_dev *edev = netdev_priv(ndev);
 533         int cos, count, offset;
 534 
 535         if (num_tc > edev->dev_info.num_tc)
 536                 return -EINVAL;
 537 
 538         netdev_reset_tc(ndev);
 539         netdev_set_num_tc(ndev, num_tc);
 540 
 541         for_each_cos_in_txq(edev, cos) {
 542                 count = QEDE_TSS_COUNT(edev);
 543                 offset = cos * QEDE_TSS_COUNT(edev);
 544                 netdev_set_tc_queue(ndev, cos, count, offset);
 545         }
 546 
 547         return 0;
 548 }
 549 
 550 static int
 551 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
 552                 __be16 proto)
 553 {
 554         switch (f->command) {
 555         case FLOW_CLS_REPLACE:
 556                 return qede_add_tc_flower_fltr(edev, proto, f);
 557         case FLOW_CLS_DESTROY:
 558                 return qede_delete_flow_filter(edev, f->cookie);
 559         default:
 560                 return -EOPNOTSUPP;
 561         }
 562 }
 563 
 564 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
 565                                   void *cb_priv)
 566 {
 567         struct flow_cls_offload *f;
 568         struct qede_dev *edev = cb_priv;
 569 
 570         if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
 571                 return -EOPNOTSUPP;
 572 
 573         switch (type) {
 574         case TC_SETUP_CLSFLOWER:
 575                 f = type_data;
 576                 return qede_set_flower(edev, f, f->common.protocol);
 577         default:
 578                 return -EOPNOTSUPP;
 579         }
 580 }
 581 
 582 static LIST_HEAD(qede_block_cb_list);
 583 
 584 static int
 585 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
 586                       void *type_data)
 587 {
 588         struct qede_dev *edev = netdev_priv(dev);
 589         struct tc_mqprio_qopt *mqprio;
 590 
 591         switch (type) {
 592         case TC_SETUP_BLOCK:
 593                 return flow_block_cb_setup_simple(type_data,
 594                                                   &qede_block_cb_list,
 595                                                   qede_setup_tc_block_cb,
 596                                                   edev, edev, true);
 597         case TC_SETUP_QDISC_MQPRIO:
 598                 mqprio = type_data;
 599 
 600                 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
 601                 return qede_setup_tc(dev, mqprio->num_tc);
 602         default:
 603                 return -EOPNOTSUPP;
 604         }
 605 }
 606 
 607 static const struct net_device_ops qede_netdev_ops = {
 608         .ndo_open = qede_open,
 609         .ndo_stop = qede_close,
 610         .ndo_start_xmit = qede_start_xmit,
 611         .ndo_select_queue = qede_select_queue,
 612         .ndo_set_rx_mode = qede_set_rx_mode,
 613         .ndo_set_mac_address = qede_set_mac_addr,
 614         .ndo_validate_addr = eth_validate_addr,
 615         .ndo_change_mtu = qede_change_mtu,
 616         .ndo_do_ioctl = qede_ioctl,
 617 #ifdef CONFIG_QED_SRIOV
 618         .ndo_set_vf_mac = qede_set_vf_mac,
 619         .ndo_set_vf_vlan = qede_set_vf_vlan,
 620         .ndo_set_vf_trust = qede_set_vf_trust,
 621 #endif
 622         .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
 623         .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
 624         .ndo_fix_features = qede_fix_features,
 625         .ndo_set_features = qede_set_features,
 626         .ndo_get_stats64 = qede_get_stats64,
 627 #ifdef CONFIG_QED_SRIOV
 628         .ndo_set_vf_link_state = qede_set_vf_link_state,
 629         .ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
 630         .ndo_get_vf_config = qede_get_vf_config,
 631         .ndo_set_vf_rate = qede_set_vf_rate,
 632 #endif
 633         .ndo_udp_tunnel_add = qede_udp_tunnel_add,
 634         .ndo_udp_tunnel_del = qede_udp_tunnel_del,
 635         .ndo_features_check = qede_features_check,
 636         .ndo_bpf = qede_xdp,
 637 #ifdef CONFIG_RFS_ACCEL
 638         .ndo_rx_flow_steer = qede_rx_flow_steer,
 639 #endif
 640         .ndo_setup_tc = qede_setup_tc_offload,
 641 };
 642 
 643 static const struct net_device_ops qede_netdev_vf_ops = {
 644         .ndo_open = qede_open,
 645         .ndo_stop = qede_close,
 646         .ndo_start_xmit = qede_start_xmit,
 647         .ndo_select_queue = qede_select_queue,
 648         .ndo_set_rx_mode = qede_set_rx_mode,
 649         .ndo_set_mac_address = qede_set_mac_addr,
 650         .ndo_validate_addr = eth_validate_addr,
 651         .ndo_change_mtu = qede_change_mtu,
 652         .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
 653         .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
 654         .ndo_fix_features = qede_fix_features,
 655         .ndo_set_features = qede_set_features,
 656         .ndo_get_stats64 = qede_get_stats64,
 657         .ndo_udp_tunnel_add = qede_udp_tunnel_add,
 658         .ndo_udp_tunnel_del = qede_udp_tunnel_del,
 659         .ndo_features_check = qede_features_check,
 660 };
 661 
 662 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
 663         .ndo_open = qede_open,
 664         .ndo_stop = qede_close,
 665         .ndo_start_xmit = qede_start_xmit,
 666         .ndo_select_queue = qede_select_queue,
 667         .ndo_set_rx_mode = qede_set_rx_mode,
 668         .ndo_set_mac_address = qede_set_mac_addr,
 669         .ndo_validate_addr = eth_validate_addr,
 670         .ndo_change_mtu = qede_change_mtu,
 671         .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
 672         .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
 673         .ndo_fix_features = qede_fix_features,
 674         .ndo_set_features = qede_set_features,
 675         .ndo_get_stats64 = qede_get_stats64,
 676         .ndo_udp_tunnel_add = qede_udp_tunnel_add,
 677         .ndo_udp_tunnel_del = qede_udp_tunnel_del,
 678         .ndo_features_check = qede_features_check,
 679         .ndo_bpf = qede_xdp,
 680 };
 681 
 682 /* -------------------------------------------------------------------------
 683  * START OF PROBE / REMOVE
 684  * -------------------------------------------------------------------------
 685  */
 686 
 687 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
 688                                             struct pci_dev *pdev,
 689                                             struct qed_dev_eth_info *info,
 690                                             u32 dp_module, u8 dp_level)
 691 {
 692         struct net_device *ndev;
 693         struct qede_dev *edev;
 694 
 695         ndev = alloc_etherdev_mqs(sizeof(*edev),
 696                                   info->num_queues * info->num_tc,
 697                                   info->num_queues);
 698         if (!ndev) {
 699                 pr_err("etherdev allocation failed\n");
 700                 return NULL;
 701         }
 702 
 703         edev = netdev_priv(ndev);
 704         edev->ndev = ndev;
 705         edev->cdev = cdev;
 706         edev->pdev = pdev;
 707         edev->dp_module = dp_module;
 708         edev->dp_level = dp_level;
 709         edev->ops = qed_ops;
 710         edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
 711         edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
 712 
 713         DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
 714                 info->num_queues, info->num_queues);
 715 
 716         SET_NETDEV_DEV(ndev, &pdev->dev);
 717 
 718         memset(&edev->stats, 0, sizeof(edev->stats));
 719         memcpy(&edev->dev_info, info, sizeof(*info));
 720 
 721         /* As ethtool doesn't have the ability to show WoL behavior as
 722          * 'default', if device supports it declare it's enabled.
 723          */
 724         if (edev->dev_info.common.wol_support)
 725                 edev->wol_enabled = true;
 726 
 727         INIT_LIST_HEAD(&edev->vlan_list);
 728 
 729         return edev;
 730 }
 731 
 732 static void qede_init_ndev(struct qede_dev *edev)
 733 {
 734         struct net_device *ndev = edev->ndev;
 735         struct pci_dev *pdev = edev->pdev;
 736         bool udp_tunnel_enable = false;
 737         netdev_features_t hw_features;
 738 
 739         pci_set_drvdata(pdev, ndev);
 740 
 741         ndev->mem_start = edev->dev_info.common.pci_mem_start;
 742         ndev->base_addr = ndev->mem_start;
 743         ndev->mem_end = edev->dev_info.common.pci_mem_end;
 744         ndev->irq = edev->dev_info.common.pci_irq;
 745 
 746         ndev->watchdog_timeo = TX_TIMEOUT;
 747 
 748         if (IS_VF(edev)) {
 749                 if (edev->dev_info.xdp_supported)
 750                         ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
 751                 else
 752                         ndev->netdev_ops = &qede_netdev_vf_ops;
 753         } else {
 754                 ndev->netdev_ops = &qede_netdev_ops;
 755         }
 756 
 757         qede_set_ethtool_ops(ndev);
 758 
 759         ndev->priv_flags |= IFF_UNICAST_FLT;
 760 
 761         /* user-changeble features */
 762         hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
 763                       NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
 764                       NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
 765 
 766         if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1)
 767                 hw_features |= NETIF_F_NTUPLE;
 768 
 769         if (edev->dev_info.common.vxlan_enable ||
 770             edev->dev_info.common.geneve_enable)
 771                 udp_tunnel_enable = true;
 772 
 773         if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
 774                 hw_features |= NETIF_F_TSO_ECN;
 775                 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
 776                                         NETIF_F_SG | NETIF_F_TSO |
 777                                         NETIF_F_TSO_ECN | NETIF_F_TSO6 |
 778                                         NETIF_F_RXCSUM;
 779         }
 780 
 781         if (udp_tunnel_enable) {
 782                 hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
 783                                 NETIF_F_GSO_UDP_TUNNEL_CSUM);
 784                 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
 785                                           NETIF_F_GSO_UDP_TUNNEL_CSUM);
 786         }
 787 
 788         if (edev->dev_info.common.gre_enable) {
 789                 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
 790                 ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
 791                                           NETIF_F_GSO_GRE_CSUM);
 792         }
 793 
 794         ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
 795                               NETIF_F_HIGHDMA;
 796         ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
 797                          NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
 798                          NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
 799 
 800         ndev->hw_features = hw_features;
 801 
 802         /* MTU range: 46 - 9600 */
 803         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
 804         ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
 805 
 806         /* Set network device HW mac */
 807         ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
 808 
 809         ndev->mtu = edev->dev_info.common.mtu;
 810 }
 811 
 812 /* This function converts from 32b param to two params of level and module
 813  * Input 32b decoding:
 814  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
 815  * 'happy' flow, e.g. memory allocation failed.
 816  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
 817  * and provide important parameters.
 818  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
 819  * module. VERBOSE prints are for tracking the specific flow in low level.
 820  *
 821  * Notice that the level should be that of the lowest required logs.
 822  */
 823 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
 824 {
 825         *p_dp_level = QED_LEVEL_NOTICE;
 826         *p_dp_module = 0;
 827 
 828         if (debug & QED_LOG_VERBOSE_MASK) {
 829                 *p_dp_level = QED_LEVEL_VERBOSE;
 830                 *p_dp_module = (debug & 0x3FFFFFFF);
 831         } else if (debug & QED_LOG_INFO_MASK) {
 832                 *p_dp_level = QED_LEVEL_INFO;
 833         } else if (debug & QED_LOG_NOTICE_MASK) {
 834                 *p_dp_level = QED_LEVEL_NOTICE;
 835         }
 836 }
 837 
 838 static void qede_free_fp_array(struct qede_dev *edev)
 839 {
 840         if (edev->fp_array) {
 841                 struct qede_fastpath *fp;
 842                 int i;
 843 
 844                 for_each_queue(i) {
 845                         fp = &edev->fp_array[i];
 846 
 847                         kfree(fp->sb_info);
 848                         /* Handle mem alloc failure case where qede_init_fp
 849                          * didn't register xdp_rxq_info yet.
 850                          * Implicit only (fp->type & QEDE_FASTPATH_RX)
 851                          */
 852                         if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
 853                                 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
 854                         kfree(fp->rxq);
 855                         kfree(fp->xdp_tx);
 856                         kfree(fp->txq);
 857                 }
 858                 kfree(edev->fp_array);
 859         }
 860 
 861         edev->num_queues = 0;
 862         edev->fp_num_tx = 0;
 863         edev->fp_num_rx = 0;
 864 }
 865 
 866 static int qede_alloc_fp_array(struct qede_dev *edev)
 867 {
 868         u8 fp_combined, fp_rx = edev->fp_num_rx;
 869         struct qede_fastpath *fp;
 870         int i;
 871 
 872         edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
 873                                  sizeof(*edev->fp_array), GFP_KERNEL);
 874         if (!edev->fp_array) {
 875                 DP_NOTICE(edev, "fp array allocation failed\n");
 876                 goto err;
 877         }
 878 
 879         fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
 880 
 881         /* Allocate the FP elements for Rx queues followed by combined and then
 882          * the Tx. This ordering should be maintained so that the respective
 883          * queues (Rx or Tx) will be together in the fastpath array and the
 884          * associated ids will be sequential.
 885          */
 886         for_each_queue(i) {
 887                 fp = &edev->fp_array[i];
 888 
 889                 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
 890                 if (!fp->sb_info) {
 891                         DP_NOTICE(edev, "sb info struct allocation failed\n");
 892                         goto err;
 893                 }
 894 
 895                 if (fp_rx) {
 896                         fp->type = QEDE_FASTPATH_RX;
 897                         fp_rx--;
 898                 } else if (fp_combined) {
 899                         fp->type = QEDE_FASTPATH_COMBINED;
 900                         fp_combined--;
 901                 } else {
 902                         fp->type = QEDE_FASTPATH_TX;
 903                 }
 904 
 905                 if (fp->type & QEDE_FASTPATH_TX) {
 906                         fp->txq = kcalloc(edev->dev_info.num_tc,
 907                                           sizeof(*fp->txq), GFP_KERNEL);
 908                         if (!fp->txq)
 909                                 goto err;
 910                 }
 911 
 912                 if (fp->type & QEDE_FASTPATH_RX) {
 913                         fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
 914                         if (!fp->rxq)
 915                                 goto err;
 916 
 917                         if (edev->xdp_prog) {
 918                                 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
 919                                                      GFP_KERNEL);
 920                                 if (!fp->xdp_tx)
 921                                         goto err;
 922                                 fp->type |= QEDE_FASTPATH_XDP;
 923                         }
 924                 }
 925         }
 926 
 927         return 0;
 928 err:
 929         qede_free_fp_array(edev);
 930         return -ENOMEM;
 931 }
 932 
 933 /* The qede lock is used to protect driver state change and driver flows that
 934  * are not reentrant.
 935  */
 936 void __qede_lock(struct qede_dev *edev)
 937 {
 938         mutex_lock(&edev->qede_lock);
 939 }
 940 
 941 void __qede_unlock(struct qede_dev *edev)
 942 {
 943         mutex_unlock(&edev->qede_lock);
 944 }
 945 
 946 /* This version of the lock should be used when acquiring the RTNL lock is also
 947  * needed in addition to the internal qede lock.
 948  */
 949 static void qede_lock(struct qede_dev *edev)
 950 {
 951         rtnl_lock();
 952         __qede_lock(edev);
 953 }
 954 
 955 static void qede_unlock(struct qede_dev *edev)
 956 {
 957         __qede_unlock(edev);
 958         rtnl_unlock();
 959 }
 960 
 961 static void qede_sp_task(struct work_struct *work)
 962 {
 963         struct qede_dev *edev = container_of(work, struct qede_dev,
 964                                              sp_task.work);
 965 
 966         /* The locking scheme depends on the specific flag:
 967          * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
 968          * ensure that ongoing flows are ended and new ones are not started.
 969          * In other cases - only the internal qede lock should be acquired.
 970          */
 971 
 972         if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
 973 #ifdef CONFIG_QED_SRIOV
 974                 /* SRIOV must be disabled outside the lock to avoid a deadlock.
 975                  * The recovery of the active VFs is currently not supported.
 976                  */
 977                 qede_sriov_configure(edev->pdev, 0);
 978 #endif
 979                 qede_lock(edev);
 980                 qede_recovery_handler(edev);
 981                 qede_unlock(edev);
 982         }
 983 
 984         __qede_lock(edev);
 985 
 986         if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
 987                 if (edev->state == QEDE_STATE_OPEN)
 988                         qede_config_rx_mode(edev->ndev);
 989 
 990 #ifdef CONFIG_RFS_ACCEL
 991         if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
 992                 if (edev->state == QEDE_STATE_OPEN)
 993                         qede_process_arfs_filters(edev, false);
 994         }
 995 #endif
 996         __qede_unlock(edev);
 997 }
 998 
 999 static void qede_update_pf_params(struct qed_dev *cdev)
1000 {
1001         struct qed_pf_params pf_params;
1002         u16 num_cons;
1003 
1004         /* 64 rx + 64 tx + 64 XDP */
1005         memset(&pf_params, 0, sizeof(struct qed_pf_params));
1006 
1007         /* 1 rx + 1 xdp + max tx cos */
1008         num_cons = QED_MIN_L2_CONS;
1009 
1010         pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1011 
1012         /* Same for VFs - make sure they'll have sufficient connections
1013          * to support XDP Tx queues.
1014          */
1015         pf_params.eth_pf_params.num_vf_cons = 48;
1016 
1017         pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1018         qed_ops->common->update_pf_params(cdev, &pf_params);
1019 }
1020 
1021 #define QEDE_FW_VER_STR_SIZE    80
1022 
1023 static void qede_log_probe(struct qede_dev *edev)
1024 {
1025         struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1026         u8 buf[QEDE_FW_VER_STR_SIZE];
1027         size_t left_size;
1028 
1029         snprintf(buf, QEDE_FW_VER_STR_SIZE,
1030                  "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1031                  p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1032                  p_dev_info->fw_eng,
1033                  (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1034                  QED_MFW_VERSION_3_OFFSET,
1035                  (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1036                  QED_MFW_VERSION_2_OFFSET,
1037                  (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1038                  QED_MFW_VERSION_1_OFFSET,
1039                  (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1040                  QED_MFW_VERSION_0_OFFSET);
1041 
1042         left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1043         if (p_dev_info->mbi_version && left_size)
1044                 snprintf(buf + strlen(buf), left_size,
1045                          " [MBI %d.%d.%d]",
1046                          (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1047                          QED_MBI_VERSION_2_OFFSET,
1048                          (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1049                          QED_MBI_VERSION_1_OFFSET,
1050                          (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1051                          QED_MBI_VERSION_0_OFFSET);
1052 
1053         pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1054                 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1055                 buf, edev->ndev->name);
1056 }
1057 
1058 enum qede_probe_mode {
1059         QEDE_PROBE_NORMAL,
1060         QEDE_PROBE_RECOVERY,
1061 };
1062 
1063 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1064                         bool is_vf, enum qede_probe_mode mode)
1065 {
1066         struct qed_probe_params probe_params;
1067         struct qed_slowpath_params sp_params;
1068         struct qed_dev_eth_info dev_info;
1069         struct qede_dev *edev;
1070         struct qed_dev *cdev;
1071         int rc;
1072 
1073         if (unlikely(dp_level & QED_LEVEL_INFO))
1074                 pr_notice("Starting qede probe\n");
1075 
1076         memset(&probe_params, 0, sizeof(probe_params));
1077         probe_params.protocol = QED_PROTOCOL_ETH;
1078         probe_params.dp_module = dp_module;
1079         probe_params.dp_level = dp_level;
1080         probe_params.is_vf = is_vf;
1081         probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1082         cdev = qed_ops->common->probe(pdev, &probe_params);
1083         if (!cdev) {
1084                 rc = -ENODEV;
1085                 goto err0;
1086         }
1087 
1088         qede_update_pf_params(cdev);
1089 
1090         /* Start the Slowpath-process */
1091         memset(&sp_params, 0, sizeof(sp_params));
1092         sp_params.int_mode = QED_INT_MODE_MSIX;
1093         sp_params.drv_major = QEDE_MAJOR_VERSION;
1094         sp_params.drv_minor = QEDE_MINOR_VERSION;
1095         sp_params.drv_rev = QEDE_REVISION_VERSION;
1096         sp_params.drv_eng = QEDE_ENGINEERING_VERSION;
1097         strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1098         rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1099         if (rc) {
1100                 pr_notice("Cannot start slowpath\n");
1101                 goto err1;
1102         }
1103 
1104         /* Learn information crucial for qede to progress */
1105         rc = qed_ops->fill_dev_info(cdev, &dev_info);
1106         if (rc)
1107                 goto err2;
1108 
1109         if (mode != QEDE_PROBE_RECOVERY) {
1110                 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1111                                            dp_level);
1112                 if (!edev) {
1113                         rc = -ENOMEM;
1114                         goto err2;
1115                 }
1116         } else {
1117                 struct net_device *ndev = pci_get_drvdata(pdev);
1118 
1119                 edev = netdev_priv(ndev);
1120                 edev->cdev = cdev;
1121                 memset(&edev->stats, 0, sizeof(edev->stats));
1122                 memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1123         }
1124 
1125         if (is_vf)
1126                 set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1127 
1128         qede_init_ndev(edev);
1129 
1130         rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1131         if (rc)
1132                 goto err3;
1133 
1134         if (mode != QEDE_PROBE_RECOVERY) {
1135                 /* Prepare the lock prior to the registration of the netdev,
1136                  * as once it's registered we might reach flows requiring it
1137                  * [it's even possible to reach a flow needing it directly
1138                  * from there, although it's unlikely].
1139                  */
1140                 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1141                 mutex_init(&edev->qede_lock);
1142 
1143                 rc = register_netdev(edev->ndev);
1144                 if (rc) {
1145                         DP_NOTICE(edev, "Cannot register net-device\n");
1146                         goto err4;
1147                 }
1148         }
1149 
1150         edev->ops->common->set_name(cdev, edev->ndev->name);
1151 
1152         /* PTP not supported on VFs */
1153         if (!is_vf)
1154                 qede_ptp_enable(edev, (mode == QEDE_PROBE_NORMAL));
1155 
1156         edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1157 
1158 #ifdef CONFIG_DCB
1159         if (!IS_VF(edev))
1160                 qede_set_dcbnl_ops(edev->ndev);
1161 #endif
1162 
1163         edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1164 
1165         qede_log_probe(edev);
1166         return 0;
1167 
1168 err4:
1169         qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1170 err3:
1171         free_netdev(edev->ndev);
1172 err2:
1173         qed_ops->common->slowpath_stop(cdev);
1174 err1:
1175         qed_ops->common->remove(cdev);
1176 err0:
1177         return rc;
1178 }
1179 
1180 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1181 {
1182         bool is_vf = false;
1183         u32 dp_module = 0;
1184         u8 dp_level = 0;
1185 
1186         switch ((enum qede_pci_private)id->driver_data) {
1187         case QEDE_PRIVATE_VF:
1188                 if (debug & QED_LOG_VERBOSE_MASK)
1189                         dev_err(&pdev->dev, "Probing a VF\n");
1190                 is_vf = true;
1191                 break;
1192         default:
1193                 if (debug & QED_LOG_VERBOSE_MASK)
1194                         dev_err(&pdev->dev, "Probing a PF\n");
1195         }
1196 
1197         qede_config_debug(debug, &dp_module, &dp_level);
1198 
1199         return __qede_probe(pdev, dp_module, dp_level, is_vf,
1200                             QEDE_PROBE_NORMAL);
1201 }
1202 
1203 enum qede_remove_mode {
1204         QEDE_REMOVE_NORMAL,
1205         QEDE_REMOVE_RECOVERY,
1206 };
1207 
1208 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1209 {
1210         struct net_device *ndev = pci_get_drvdata(pdev);
1211         struct qede_dev *edev;
1212         struct qed_dev *cdev;
1213 
1214         if (!ndev) {
1215                 dev_info(&pdev->dev, "Device has already been removed\n");
1216                 return;
1217         }
1218 
1219         edev = netdev_priv(ndev);
1220         cdev = edev->cdev;
1221 
1222         DP_INFO(edev, "Starting qede_remove\n");
1223 
1224         qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1225 
1226         if (mode != QEDE_REMOVE_RECOVERY) {
1227                 unregister_netdev(ndev);
1228 
1229                 cancel_delayed_work_sync(&edev->sp_task);
1230 
1231                 edev->ops->common->set_power_state(cdev, PCI_D0);
1232 
1233                 pci_set_drvdata(pdev, NULL);
1234         }
1235 
1236         qede_ptp_disable(edev);
1237 
1238         /* Use global ops since we've freed edev */
1239         qed_ops->common->slowpath_stop(cdev);
1240         if (system_state == SYSTEM_POWER_OFF)
1241                 return;
1242         qed_ops->common->remove(cdev);
1243 
1244         /* Since this can happen out-of-sync with other flows,
1245          * don't release the netdevice until after slowpath stop
1246          * has been called to guarantee various other contexts
1247          * [e.g., QED register callbacks] won't break anything when
1248          * accessing the netdevice.
1249          */
1250         if (mode != QEDE_REMOVE_RECOVERY)
1251                 free_netdev(ndev);
1252 
1253         dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1254 }
1255 
1256 static void qede_remove(struct pci_dev *pdev)
1257 {
1258         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1259 }
1260 
1261 static void qede_shutdown(struct pci_dev *pdev)
1262 {
1263         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1264 }
1265 
1266 /* -------------------------------------------------------------------------
1267  * START OF LOAD / UNLOAD
1268  * -------------------------------------------------------------------------
1269  */
1270 
1271 static int qede_set_num_queues(struct qede_dev *edev)
1272 {
1273         int rc;
1274         u16 rss_num;
1275 
1276         /* Setup queues according to possible resources*/
1277         if (edev->req_queues)
1278                 rss_num = edev->req_queues;
1279         else
1280                 rss_num = netif_get_num_default_rss_queues() *
1281                           edev->dev_info.common.num_hwfns;
1282 
1283         rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1284 
1285         rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1286         if (rc > 0) {
1287                 /* Managed to request interrupts for our queues */
1288                 edev->num_queues = rc;
1289                 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1290                         QEDE_QUEUE_CNT(edev), rss_num);
1291                 rc = 0;
1292         }
1293 
1294         edev->fp_num_tx = edev->req_num_tx;
1295         edev->fp_num_rx = edev->req_num_rx;
1296 
1297         return rc;
1298 }
1299 
1300 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1301                              u16 sb_id)
1302 {
1303         if (sb_info->sb_virt) {
1304                 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1305                                               QED_SB_TYPE_L2_QUEUE);
1306                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1307                                   (void *)sb_info->sb_virt, sb_info->sb_phys);
1308                 memset(sb_info, 0, sizeof(*sb_info));
1309         }
1310 }
1311 
1312 /* This function allocates fast-path status block memory */
1313 static int qede_alloc_mem_sb(struct qede_dev *edev,
1314                              struct qed_sb_info *sb_info, u16 sb_id)
1315 {
1316         struct status_block_e4 *sb_virt;
1317         dma_addr_t sb_phys;
1318         int rc;
1319 
1320         sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1321                                      sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1322         if (!sb_virt) {
1323                 DP_ERR(edev, "Status block allocation failed\n");
1324                 return -ENOMEM;
1325         }
1326 
1327         rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1328                                         sb_virt, sb_phys, sb_id,
1329                                         QED_SB_TYPE_L2_QUEUE);
1330         if (rc) {
1331                 DP_ERR(edev, "Status block initialization failed\n");
1332                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1333                                   sb_virt, sb_phys);
1334                 return rc;
1335         }
1336 
1337         return 0;
1338 }
1339 
1340 static void qede_free_rx_buffers(struct qede_dev *edev,
1341                                  struct qede_rx_queue *rxq)
1342 {
1343         u16 i;
1344 
1345         for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1346                 struct sw_rx_data *rx_buf;
1347                 struct page *data;
1348 
1349                 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1350                 data = rx_buf->data;
1351 
1352                 dma_unmap_page(&edev->pdev->dev,
1353                                rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1354 
1355                 rx_buf->data = NULL;
1356                 __free_page(data);
1357         }
1358 }
1359 
1360 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1361 {
1362         /* Free rx buffers */
1363         qede_free_rx_buffers(edev, rxq);
1364 
1365         /* Free the parallel SW ring */
1366         kfree(rxq->sw_rx_ring);
1367 
1368         /* Free the real RQ ring used by FW */
1369         edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1370         edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1371 }
1372 
1373 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1374 {
1375         int i;
1376 
1377         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1378                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1379 
1380                 tpa_info->state = QEDE_AGG_STATE_NONE;
1381         }
1382 }
1383 
1384 /* This function allocates all memory needed per Rx queue */
1385 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1386 {
1387         int i, rc, size;
1388 
1389         rxq->num_rx_buffers = edev->q_num_rx_buffers;
1390 
1391         rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1392 
1393         rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1394         size = rxq->rx_headroom +
1395                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1396 
1397         /* Make sure that the headroom and  payload fit in a single page */
1398         if (rxq->rx_buf_size + size > PAGE_SIZE)
1399                 rxq->rx_buf_size = PAGE_SIZE - size;
1400 
1401         /* Segment size to spilt a page in multiple equal parts ,
1402          * unless XDP is used in which case we'd use the entire page.
1403          */
1404         if (!edev->xdp_prog) {
1405                 size = size + rxq->rx_buf_size;
1406                 rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1407         } else {
1408                 rxq->rx_buf_seg_size = PAGE_SIZE;
1409                 edev->ndev->features &= ~NETIF_F_GRO_HW;
1410         }
1411 
1412         /* Allocate the parallel driver ring for Rx buffers */
1413         size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1414         rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1415         if (!rxq->sw_rx_ring) {
1416                 DP_ERR(edev, "Rx buffers ring allocation failed\n");
1417                 rc = -ENOMEM;
1418                 goto err;
1419         }
1420 
1421         /* Allocate FW Rx ring  */
1422         rc = edev->ops->common->chain_alloc(edev->cdev,
1423                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1424                                             QED_CHAIN_MODE_NEXT_PTR,
1425                                             QED_CHAIN_CNT_TYPE_U16,
1426                                             RX_RING_SIZE,
1427                                             sizeof(struct eth_rx_bd),
1428                                             &rxq->rx_bd_ring, NULL);
1429         if (rc)
1430                 goto err;
1431 
1432         /* Allocate FW completion ring */
1433         rc = edev->ops->common->chain_alloc(edev->cdev,
1434                                             QED_CHAIN_USE_TO_CONSUME,
1435                                             QED_CHAIN_MODE_PBL,
1436                                             QED_CHAIN_CNT_TYPE_U16,
1437                                             RX_RING_SIZE,
1438                                             sizeof(union eth_rx_cqe),
1439                                             &rxq->rx_comp_ring, NULL);
1440         if (rc)
1441                 goto err;
1442 
1443         /* Allocate buffers for the Rx ring */
1444         rxq->filled_buffers = 0;
1445         for (i = 0; i < rxq->num_rx_buffers; i++) {
1446                 rc = qede_alloc_rx_buffer(rxq, false);
1447                 if (rc) {
1448                         DP_ERR(edev,
1449                                "Rx buffers allocation failed at index %d\n", i);
1450                         goto err;
1451                 }
1452         }
1453 
1454         edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1455         if (!edev->gro_disable)
1456                 qede_set_tpa_param(rxq);
1457 err:
1458         return rc;
1459 }
1460 
1461 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1462 {
1463         /* Free the parallel SW ring */
1464         if (txq->is_xdp)
1465                 kfree(txq->sw_tx_ring.xdp);
1466         else
1467                 kfree(txq->sw_tx_ring.skbs);
1468 
1469         /* Free the real RQ ring used by FW */
1470         edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1471 }
1472 
1473 /* This function allocates all memory needed per Tx queue */
1474 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1475 {
1476         union eth_tx_bd_types *p_virt;
1477         int size, rc;
1478 
1479         txq->num_tx_buffers = edev->q_num_tx_buffers;
1480 
1481         /* Allocate the parallel driver ring for Tx buffers */
1482         if (txq->is_xdp) {
1483                 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1484                 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1485                 if (!txq->sw_tx_ring.xdp)
1486                         goto err;
1487         } else {
1488                 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1489                 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1490                 if (!txq->sw_tx_ring.skbs)
1491                         goto err;
1492         }
1493 
1494         rc = edev->ops->common->chain_alloc(edev->cdev,
1495                                             QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1496                                             QED_CHAIN_MODE_PBL,
1497                                             QED_CHAIN_CNT_TYPE_U16,
1498                                             txq->num_tx_buffers,
1499                                             sizeof(*p_virt),
1500                                             &txq->tx_pbl, NULL);
1501         if (rc)
1502                 goto err;
1503 
1504         return 0;
1505 
1506 err:
1507         qede_free_mem_txq(edev, txq);
1508         return -ENOMEM;
1509 }
1510 
1511 /* This function frees all memory of a single fp */
1512 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1513 {
1514         qede_free_mem_sb(edev, fp->sb_info, fp->id);
1515 
1516         if (fp->type & QEDE_FASTPATH_RX)
1517                 qede_free_mem_rxq(edev, fp->rxq);
1518 
1519         if (fp->type & QEDE_FASTPATH_XDP)
1520                 qede_free_mem_txq(edev, fp->xdp_tx);
1521 
1522         if (fp->type & QEDE_FASTPATH_TX) {
1523                 int cos;
1524 
1525                 for_each_cos_in_txq(edev, cos)
1526                         qede_free_mem_txq(edev, &fp->txq[cos]);
1527         }
1528 }
1529 
1530 /* This function allocates all memory needed for a single fp (i.e. an entity
1531  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1532  */
1533 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1534 {
1535         int rc = 0;
1536 
1537         rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1538         if (rc)
1539                 goto out;
1540 
1541         if (fp->type & QEDE_FASTPATH_RX) {
1542                 rc = qede_alloc_mem_rxq(edev, fp->rxq);
1543                 if (rc)
1544                         goto out;
1545         }
1546 
1547         if (fp->type & QEDE_FASTPATH_XDP) {
1548                 rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1549                 if (rc)
1550                         goto out;
1551         }
1552 
1553         if (fp->type & QEDE_FASTPATH_TX) {
1554                 int cos;
1555 
1556                 for_each_cos_in_txq(edev, cos) {
1557                         rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1558                         if (rc)
1559                                 goto out;
1560                 }
1561         }
1562 
1563 out:
1564         return rc;
1565 }
1566 
1567 static void qede_free_mem_load(struct qede_dev *edev)
1568 {
1569         int i;
1570 
1571         for_each_queue(i) {
1572                 struct qede_fastpath *fp = &edev->fp_array[i];
1573 
1574                 qede_free_mem_fp(edev, fp);
1575         }
1576 }
1577 
1578 /* This function allocates all qede memory at NIC load. */
1579 static int qede_alloc_mem_load(struct qede_dev *edev)
1580 {
1581         int rc = 0, queue_id;
1582 
1583         for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1584                 struct qede_fastpath *fp = &edev->fp_array[queue_id];
1585 
1586                 rc = qede_alloc_mem_fp(edev, fp);
1587                 if (rc) {
1588                         DP_ERR(edev,
1589                                "Failed to allocate memory for fastpath - rss id = %d\n",
1590                                queue_id);
1591                         qede_free_mem_load(edev);
1592                         return rc;
1593                 }
1594         }
1595 
1596         return 0;
1597 }
1598 
1599 static void qede_empty_tx_queue(struct qede_dev *edev,
1600                                 struct qede_tx_queue *txq)
1601 {
1602         unsigned int pkts_compl = 0, bytes_compl = 0;
1603         struct netdev_queue *netdev_txq;
1604         int rc, len = 0;
1605 
1606         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1607 
1608         while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1609                qed_chain_get_prod_idx(&txq->tx_pbl)) {
1610                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1611                            "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1612                            txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1613                            qed_chain_get_prod_idx(&txq->tx_pbl));
1614 
1615                 rc = qede_free_tx_pkt(edev, txq, &len);
1616                 if (rc) {
1617                         DP_NOTICE(edev,
1618                                   "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1619                                   txq->index,
1620                                   qed_chain_get_cons_idx(&txq->tx_pbl),
1621                                   qed_chain_get_prod_idx(&txq->tx_pbl));
1622                         break;
1623                 }
1624 
1625                 bytes_compl += len;
1626                 pkts_compl++;
1627                 txq->sw_tx_cons++;
1628         }
1629 
1630         netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1631 }
1632 
1633 static void qede_empty_tx_queues(struct qede_dev *edev)
1634 {
1635         int i;
1636 
1637         for_each_queue(i)
1638                 if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1639                         int cos;
1640 
1641                         for_each_cos_in_txq(edev, cos) {
1642                                 struct qede_fastpath *fp;
1643 
1644                                 fp = &edev->fp_array[i];
1645                                 qede_empty_tx_queue(edev,
1646                                                     &fp->txq[cos]);
1647                         }
1648                 }
1649 }
1650 
1651 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1652 static void qede_init_fp(struct qede_dev *edev)
1653 {
1654         int queue_id, rxq_index = 0, txq_index = 0;
1655         struct qede_fastpath *fp;
1656 
1657         for_each_queue(queue_id) {
1658                 fp = &edev->fp_array[queue_id];
1659 
1660                 fp->edev = edev;
1661                 fp->id = queue_id;
1662 
1663                 if (fp->type & QEDE_FASTPATH_XDP) {
1664                         fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1665                                                                 rxq_index);
1666                         fp->xdp_tx->is_xdp = 1;
1667                 }
1668 
1669                 if (fp->type & QEDE_FASTPATH_RX) {
1670                         fp->rxq->rxq_id = rxq_index++;
1671 
1672                         /* Determine how to map buffers for this queue */
1673                         if (fp->type & QEDE_FASTPATH_XDP)
1674                                 fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1675                         else
1676                                 fp->rxq->data_direction = DMA_FROM_DEVICE;
1677                         fp->rxq->dev = &edev->pdev->dev;
1678 
1679                         /* Driver have no error path from here */
1680                         WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1681                                                  fp->rxq->rxq_id) < 0);
1682                 }
1683 
1684                 if (fp->type & QEDE_FASTPATH_TX) {
1685                         int cos;
1686 
1687                         for_each_cos_in_txq(edev, cos) {
1688                                 struct qede_tx_queue *txq = &fp->txq[cos];
1689                                 u16 ndev_tx_id;
1690 
1691                                 txq->cos = cos;
1692                                 txq->index = txq_index;
1693                                 ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1694                                 txq->ndev_txq_id = ndev_tx_id;
1695 
1696                                 if (edev->dev_info.is_legacy)
1697                                         txq->is_legacy = 1;
1698                                 txq->dev = &edev->pdev->dev;
1699                         }
1700 
1701                         txq_index++;
1702                 }
1703 
1704                 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1705                          edev->ndev->name, queue_id);
1706         }
1707 }
1708 
1709 static int qede_set_real_num_queues(struct qede_dev *edev)
1710 {
1711         int rc = 0;
1712 
1713         rc = netif_set_real_num_tx_queues(edev->ndev,
1714                                           QEDE_TSS_COUNT(edev) *
1715                                           edev->dev_info.num_tc);
1716         if (rc) {
1717                 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1718                 return rc;
1719         }
1720 
1721         rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1722         if (rc) {
1723                 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1724                 return rc;
1725         }
1726 
1727         return 0;
1728 }
1729 
1730 static void qede_napi_disable_remove(struct qede_dev *edev)
1731 {
1732         int i;
1733 
1734         for_each_queue(i) {
1735                 napi_disable(&edev->fp_array[i].napi);
1736 
1737                 netif_napi_del(&edev->fp_array[i].napi);
1738         }
1739 }
1740 
1741 static void qede_napi_add_enable(struct qede_dev *edev)
1742 {
1743         int i;
1744 
1745         /* Add NAPI objects */
1746         for_each_queue(i) {
1747                 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1748                                qede_poll, NAPI_POLL_WEIGHT);
1749                 napi_enable(&edev->fp_array[i].napi);
1750         }
1751 }
1752 
1753 static void qede_sync_free_irqs(struct qede_dev *edev)
1754 {
1755         int i;
1756 
1757         for (i = 0; i < edev->int_info.used_cnt; i++) {
1758                 if (edev->int_info.msix_cnt) {
1759                         synchronize_irq(edev->int_info.msix[i].vector);
1760                         free_irq(edev->int_info.msix[i].vector,
1761                                  &edev->fp_array[i]);
1762                 } else {
1763                         edev->ops->common->simd_handler_clean(edev->cdev, i);
1764                 }
1765         }
1766 
1767         edev->int_info.used_cnt = 0;
1768 }
1769 
1770 static int qede_req_msix_irqs(struct qede_dev *edev)
1771 {
1772         int i, rc;
1773 
1774         /* Sanitize number of interrupts == number of prepared RSS queues */
1775         if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1776                 DP_ERR(edev,
1777                        "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1778                        QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1779                 return -EINVAL;
1780         }
1781 
1782         for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1783 #ifdef CONFIG_RFS_ACCEL
1784                 struct qede_fastpath *fp = &edev->fp_array[i];
1785 
1786                 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1787                         rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1788                                               edev->int_info.msix[i].vector);
1789                         if (rc) {
1790                                 DP_ERR(edev, "Failed to add CPU rmap\n");
1791                                 qede_free_arfs(edev);
1792                         }
1793                 }
1794 #endif
1795                 rc = request_irq(edev->int_info.msix[i].vector,
1796                                  qede_msix_fp_int, 0, edev->fp_array[i].name,
1797                                  &edev->fp_array[i]);
1798                 if (rc) {
1799                         DP_ERR(edev, "Request fp %d irq failed\n", i);
1800                         qede_sync_free_irqs(edev);
1801                         return rc;
1802                 }
1803                 DP_VERBOSE(edev, NETIF_MSG_INTR,
1804                            "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1805                            edev->fp_array[i].name, i,
1806                            &edev->fp_array[i]);
1807                 edev->int_info.used_cnt++;
1808         }
1809 
1810         return 0;
1811 }
1812 
1813 static void qede_simd_fp_handler(void *cookie)
1814 {
1815         struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1816 
1817         napi_schedule_irqoff(&fp->napi);
1818 }
1819 
1820 static int qede_setup_irqs(struct qede_dev *edev)
1821 {
1822         int i, rc = 0;
1823 
1824         /* Learn Interrupt configuration */
1825         rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1826         if (rc)
1827                 return rc;
1828 
1829         if (edev->int_info.msix_cnt) {
1830                 rc = qede_req_msix_irqs(edev);
1831                 if (rc)
1832                         return rc;
1833                 edev->ndev->irq = edev->int_info.msix[0].vector;
1834         } else {
1835                 const struct qed_common_ops *ops;
1836 
1837                 /* qed should learn receive the RSS ids and callbacks */
1838                 ops = edev->ops->common;
1839                 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
1840                         ops->simd_handler_config(edev->cdev,
1841                                                  &edev->fp_array[i], i,
1842                                                  qede_simd_fp_handler);
1843                 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
1844         }
1845         return 0;
1846 }
1847 
1848 static int qede_drain_txq(struct qede_dev *edev,
1849                           struct qede_tx_queue *txq, bool allow_drain)
1850 {
1851         int rc, cnt = 1000;
1852 
1853         while (txq->sw_tx_cons != txq->sw_tx_prod) {
1854                 if (!cnt) {
1855                         if (allow_drain) {
1856                                 DP_NOTICE(edev,
1857                                           "Tx queue[%d] is stuck, requesting MCP to drain\n",
1858                                           txq->index);
1859                                 rc = edev->ops->common->drain(edev->cdev);
1860                                 if (rc)
1861                                         return rc;
1862                                 return qede_drain_txq(edev, txq, false);
1863                         }
1864                         DP_NOTICE(edev,
1865                                   "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
1866                                   txq->index, txq->sw_tx_prod,
1867                                   txq->sw_tx_cons);
1868                         return -ENODEV;
1869                 }
1870                 cnt--;
1871                 usleep_range(1000, 2000);
1872                 barrier();
1873         }
1874 
1875         /* FW finished processing, wait for HW to transmit all tx packets */
1876         usleep_range(1000, 2000);
1877 
1878         return 0;
1879 }
1880 
1881 static int qede_stop_txq(struct qede_dev *edev,
1882                          struct qede_tx_queue *txq, int rss_id)
1883 {
1884         /* delete doorbell from doorbell recovery mechanism */
1885         edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
1886                                            &txq->tx_db);
1887 
1888         return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
1889 }
1890 
1891 static int qede_stop_queues(struct qede_dev *edev)
1892 {
1893         struct qed_update_vport_params *vport_update_params;
1894         struct qed_dev *cdev = edev->cdev;
1895         struct qede_fastpath *fp;
1896         int rc, i;
1897 
1898         /* Disable the vport */
1899         vport_update_params = vzalloc(sizeof(*vport_update_params));
1900         if (!vport_update_params)
1901                 return -ENOMEM;
1902 
1903         vport_update_params->vport_id = 0;
1904         vport_update_params->update_vport_active_flg = 1;
1905         vport_update_params->vport_active_flg = 0;
1906         vport_update_params->update_rss_flg = 0;
1907 
1908         rc = edev->ops->vport_update(cdev, vport_update_params);
1909         vfree(vport_update_params);
1910 
1911         if (rc) {
1912                 DP_ERR(edev, "Failed to update vport\n");
1913                 return rc;
1914         }
1915 
1916         /* Flush Tx queues. If needed, request drain from MCP */
1917         for_each_queue(i) {
1918                 fp = &edev->fp_array[i];
1919 
1920                 if (fp->type & QEDE_FASTPATH_TX) {
1921                         int cos;
1922 
1923                         for_each_cos_in_txq(edev, cos) {
1924                                 rc = qede_drain_txq(edev, &fp->txq[cos], true);
1925                                 if (rc)
1926                                         return rc;
1927                         }
1928                 }
1929 
1930                 if (fp->type & QEDE_FASTPATH_XDP) {
1931                         rc = qede_drain_txq(edev, fp->xdp_tx, true);
1932                         if (rc)
1933                                 return rc;
1934                 }
1935         }
1936 
1937         /* Stop all Queues in reverse order */
1938         for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
1939                 fp = &edev->fp_array[i];
1940 
1941                 /* Stop the Tx Queue(s) */
1942                 if (fp->type & QEDE_FASTPATH_TX) {
1943                         int cos;
1944 
1945                         for_each_cos_in_txq(edev, cos) {
1946                                 rc = qede_stop_txq(edev, &fp->txq[cos], i);
1947                                 if (rc)
1948                                         return rc;
1949                         }
1950                 }
1951 
1952                 /* Stop the Rx Queue */
1953                 if (fp->type & QEDE_FASTPATH_RX) {
1954                         rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
1955                         if (rc) {
1956                                 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
1957                                 return rc;
1958                         }
1959                 }
1960 
1961                 /* Stop the XDP forwarding queue */
1962                 if (fp->type & QEDE_FASTPATH_XDP) {
1963                         rc = qede_stop_txq(edev, fp->xdp_tx, i);
1964                         if (rc)
1965                                 return rc;
1966 
1967                         bpf_prog_put(fp->rxq->xdp_prog);
1968                 }
1969         }
1970 
1971         /* Stop the vport */
1972         rc = edev->ops->vport_stop(cdev, 0);
1973         if (rc)
1974                 DP_ERR(edev, "Failed to stop VPORT\n");
1975 
1976         return rc;
1977 }
1978 
1979 static int qede_start_txq(struct qede_dev *edev,
1980                           struct qede_fastpath *fp,
1981                           struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
1982 {
1983         dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
1984         u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
1985         struct qed_queue_start_common_params params;
1986         struct qed_txq_start_ret_params ret_params;
1987         int rc;
1988 
1989         memset(&params, 0, sizeof(params));
1990         memset(&ret_params, 0, sizeof(ret_params));
1991 
1992         /* Let the XDP queue share the queue-zone with one of the regular txq.
1993          * We don't really care about its coalescing.
1994          */
1995         if (txq->is_xdp)
1996                 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
1997         else
1998                 params.queue_id = txq->index;
1999 
2000         params.p_sb = fp->sb_info;
2001         params.sb_idx = sb_idx;
2002         params.tc = txq->cos;
2003 
2004         rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
2005                                    page_cnt, &ret_params);
2006         if (rc) {
2007                 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2008                 return rc;
2009         }
2010 
2011         txq->doorbell_addr = ret_params.p_doorbell;
2012         txq->handle = ret_params.p_handle;
2013 
2014         /* Determine the FW consumer address associated */
2015         txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2016 
2017         /* Prepare the doorbell parameters */
2018         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2019         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2020         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2021                   DQ_XCM_ETH_TX_BD_PROD_CMD);
2022         txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2023 
2024         /* register doorbell with doorbell recovery mechanism */
2025         rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2026                                                 &txq->tx_db, DB_REC_WIDTH_32B,
2027                                                 DB_REC_KERNEL);
2028 
2029         return rc;
2030 }
2031 
2032 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2033 {
2034         int vlan_removal_en = 1;
2035         struct qed_dev *cdev = edev->cdev;
2036         struct qed_dev_info *qed_info = &edev->dev_info.common;
2037         struct qed_update_vport_params *vport_update_params;
2038         struct qed_queue_start_common_params q_params;
2039         struct qed_start_vport_params start = {0};
2040         int rc, i;
2041 
2042         if (!edev->num_queues) {
2043                 DP_ERR(edev,
2044                        "Cannot update V-VPORT as active as there are no Rx queues\n");
2045                 return -EINVAL;
2046         }
2047 
2048         vport_update_params = vzalloc(sizeof(*vport_update_params));
2049         if (!vport_update_params)
2050                 return -ENOMEM;
2051 
2052         start.handle_ptp_pkts = !!(edev->ptp);
2053         start.gro_enable = !edev->gro_disable;
2054         start.mtu = edev->ndev->mtu;
2055         start.vport_id = 0;
2056         start.drop_ttl0 = true;
2057         start.remove_inner_vlan = vlan_removal_en;
2058         start.clear_stats = clear_stats;
2059 
2060         rc = edev->ops->vport_start(cdev, &start);
2061 
2062         if (rc) {
2063                 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2064                 goto out;
2065         }
2066 
2067         DP_VERBOSE(edev, NETIF_MSG_IFUP,
2068                    "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2069                    start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2070 
2071         for_each_queue(i) {
2072                 struct qede_fastpath *fp = &edev->fp_array[i];
2073                 dma_addr_t p_phys_table;
2074                 u32 page_cnt;
2075 
2076                 if (fp->type & QEDE_FASTPATH_RX) {
2077                         struct qed_rxq_start_ret_params ret_params;
2078                         struct qede_rx_queue *rxq = fp->rxq;
2079                         __le16 *val;
2080 
2081                         memset(&ret_params, 0, sizeof(ret_params));
2082                         memset(&q_params, 0, sizeof(q_params));
2083                         q_params.queue_id = rxq->rxq_id;
2084                         q_params.vport_id = 0;
2085                         q_params.p_sb = fp->sb_info;
2086                         q_params.sb_idx = RX_PI;
2087 
2088                         p_phys_table =
2089                             qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2090                         page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2091 
2092                         rc = edev->ops->q_rx_start(cdev, i, &q_params,
2093                                                    rxq->rx_buf_size,
2094                                                    rxq->rx_bd_ring.p_phys_addr,
2095                                                    p_phys_table,
2096                                                    page_cnt, &ret_params);
2097                         if (rc) {
2098                                 DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2099                                        rc);
2100                                 goto out;
2101                         }
2102 
2103                         /* Use the return parameters */
2104                         rxq->hw_rxq_prod_addr = ret_params.p_prod;
2105                         rxq->handle = ret_params.p_handle;
2106 
2107                         val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2108                         rxq->hw_cons_ptr = val;
2109 
2110                         qede_update_rx_prod(edev, rxq);
2111                 }
2112 
2113                 if (fp->type & QEDE_FASTPATH_XDP) {
2114                         rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2115                         if (rc)
2116                                 goto out;
2117 
2118                         fp->rxq->xdp_prog = bpf_prog_add(edev->xdp_prog, 1);
2119                         if (IS_ERR(fp->rxq->xdp_prog)) {
2120                                 rc = PTR_ERR(fp->rxq->xdp_prog);
2121                                 fp->rxq->xdp_prog = NULL;
2122                                 goto out;
2123                         }
2124                 }
2125 
2126                 if (fp->type & QEDE_FASTPATH_TX) {
2127                         int cos;
2128 
2129                         for_each_cos_in_txq(edev, cos) {
2130                                 rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2131                                                     TX_PI(cos));
2132                                 if (rc)
2133                                         goto out;
2134                         }
2135                 }
2136         }
2137 
2138         /* Prepare and send the vport enable */
2139         vport_update_params->vport_id = start.vport_id;
2140         vport_update_params->update_vport_active_flg = 1;
2141         vport_update_params->vport_active_flg = 1;
2142 
2143         if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2144             qed_info->tx_switching) {
2145                 vport_update_params->update_tx_switching_flg = 1;
2146                 vport_update_params->tx_switching_flg = 1;
2147         }
2148 
2149         qede_fill_rss_params(edev, &vport_update_params->rss_params,
2150                              &vport_update_params->update_rss_flg);
2151 
2152         rc = edev->ops->vport_update(cdev, vport_update_params);
2153         if (rc)
2154                 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2155 
2156 out:
2157         vfree(vport_update_params);
2158         return rc;
2159 }
2160 
2161 enum qede_unload_mode {
2162         QEDE_UNLOAD_NORMAL,
2163         QEDE_UNLOAD_RECOVERY,
2164 };
2165 
2166 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2167                         bool is_locked)
2168 {
2169         struct qed_link_params link_params;
2170         int rc;
2171 
2172         DP_INFO(edev, "Starting qede unload\n");
2173 
2174         if (!is_locked)
2175                 __qede_lock(edev);
2176 
2177         clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2178 
2179         if (mode != QEDE_UNLOAD_RECOVERY)
2180                 edev->state = QEDE_STATE_CLOSED;
2181 
2182         qede_rdma_dev_event_close(edev);
2183 
2184         /* Close OS Tx */
2185         netif_tx_disable(edev->ndev);
2186         netif_carrier_off(edev->ndev);
2187 
2188         if (mode != QEDE_UNLOAD_RECOVERY) {
2189                 /* Reset the link */
2190                 memset(&link_params, 0, sizeof(link_params));
2191                 link_params.link_up = false;
2192                 edev->ops->common->set_link(edev->cdev, &link_params);
2193 
2194                 rc = qede_stop_queues(edev);
2195                 if (rc) {
2196                         qede_sync_free_irqs(edev);
2197                         goto out;
2198                 }
2199 
2200                 DP_INFO(edev, "Stopped Queues\n");
2201         }
2202 
2203         qede_vlan_mark_nonconfigured(edev);
2204         edev->ops->fastpath_stop(edev->cdev);
2205 
2206         if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2207                 qede_poll_for_freeing_arfs_filters(edev);
2208                 qede_free_arfs(edev);
2209         }
2210 
2211         /* Release the interrupts */
2212         qede_sync_free_irqs(edev);
2213         edev->ops->common->set_fp_int(edev->cdev, 0);
2214 
2215         qede_napi_disable_remove(edev);
2216 
2217         if (mode == QEDE_UNLOAD_RECOVERY)
2218                 qede_empty_tx_queues(edev);
2219 
2220         qede_free_mem_load(edev);
2221         qede_free_fp_array(edev);
2222 
2223 out:
2224         if (!is_locked)
2225                 __qede_unlock(edev);
2226 
2227         if (mode != QEDE_UNLOAD_RECOVERY)
2228                 DP_NOTICE(edev, "Link is down\n");
2229 
2230         edev->ptp_skip_txts = 0;
2231 
2232         DP_INFO(edev, "Ending qede unload\n");
2233 }
2234 
2235 enum qede_load_mode {
2236         QEDE_LOAD_NORMAL,
2237         QEDE_LOAD_RELOAD,
2238         QEDE_LOAD_RECOVERY,
2239 };
2240 
2241 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2242                      bool is_locked)
2243 {
2244         struct qed_link_params link_params;
2245         u8 num_tc;
2246         int rc;
2247 
2248         DP_INFO(edev, "Starting qede load\n");
2249 
2250         if (!is_locked)
2251                 __qede_lock(edev);
2252 
2253         rc = qede_set_num_queues(edev);
2254         if (rc)
2255                 goto out;
2256 
2257         rc = qede_alloc_fp_array(edev);
2258         if (rc)
2259                 goto out;
2260 
2261         qede_init_fp(edev);
2262 
2263         rc = qede_alloc_mem_load(edev);
2264         if (rc)
2265                 goto err1;
2266         DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2267                 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2268 
2269         rc = qede_set_real_num_queues(edev);
2270         if (rc)
2271                 goto err2;
2272 
2273         if (!IS_VF(edev) && edev->dev_info.common.num_hwfns == 1) {
2274                 rc = qede_alloc_arfs(edev);
2275                 if (rc)
2276                         DP_NOTICE(edev, "aRFS memory allocation failed\n");
2277         }
2278 
2279         qede_napi_add_enable(edev);
2280         DP_INFO(edev, "Napi added and enabled\n");
2281 
2282         rc = qede_setup_irqs(edev);
2283         if (rc)
2284                 goto err3;
2285         DP_INFO(edev, "Setup IRQs succeeded\n");
2286 
2287         rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2288         if (rc)
2289                 goto err4;
2290         DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2291 
2292         num_tc = netdev_get_num_tc(edev->ndev);
2293         num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2294         qede_setup_tc(edev->ndev, num_tc);
2295 
2296         /* Program un-configured VLANs */
2297         qede_configure_vlan_filters(edev);
2298 
2299         set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2300 
2301         /* Ask for link-up using current configuration */
2302         memset(&link_params, 0, sizeof(link_params));
2303         link_params.link_up = true;
2304         edev->ops->common->set_link(edev->cdev, &link_params);
2305 
2306         edev->state = QEDE_STATE_OPEN;
2307 
2308         DP_INFO(edev, "Ending successfully qede load\n");
2309 
2310         goto out;
2311 err4:
2312         qede_sync_free_irqs(edev);
2313         memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
2314 err3:
2315         qede_napi_disable_remove(edev);
2316 err2:
2317         qede_free_mem_load(edev);
2318 err1:
2319         edev->ops->common->set_fp_int(edev->cdev, 0);
2320         qede_free_fp_array(edev);
2321         edev->num_queues = 0;
2322         edev->fp_num_tx = 0;
2323         edev->fp_num_rx = 0;
2324 out:
2325         if (!is_locked)
2326                 __qede_unlock(edev);
2327 
2328         return rc;
2329 }
2330 
2331 /* 'func' should be able to run between unload and reload assuming interface
2332  * is actually running, or afterwards in case it's currently DOWN.
2333  */
2334 void qede_reload(struct qede_dev *edev,
2335                  struct qede_reload_args *args, bool is_locked)
2336 {
2337         if (!is_locked)
2338                 __qede_lock(edev);
2339 
2340         /* Since qede_lock is held, internal state wouldn't change even
2341          * if netdev state would start transitioning. Check whether current
2342          * internal configuration indicates device is up, then reload.
2343          */
2344         if (edev->state == QEDE_STATE_OPEN) {
2345                 qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2346                 if (args)
2347                         args->func(edev, args);
2348                 qede_load(edev, QEDE_LOAD_RELOAD, true);
2349 
2350                 /* Since no one is going to do it for us, re-configure */
2351                 qede_config_rx_mode(edev->ndev);
2352         } else if (args) {
2353                 args->func(edev, args);
2354         }
2355 
2356         if (!is_locked)
2357                 __qede_unlock(edev);
2358 }
2359 
2360 /* called with rtnl_lock */
2361 static int qede_open(struct net_device *ndev)
2362 {
2363         struct qede_dev *edev = netdev_priv(ndev);
2364         int rc;
2365 
2366         netif_carrier_off(ndev);
2367 
2368         edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2369 
2370         rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2371         if (rc)
2372                 return rc;
2373 
2374         udp_tunnel_get_rx_info(ndev);
2375 
2376         edev->ops->common->update_drv_state(edev->cdev, true);
2377 
2378         return 0;
2379 }
2380 
2381 static int qede_close(struct net_device *ndev)
2382 {
2383         struct qede_dev *edev = netdev_priv(ndev);
2384 
2385         qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2386 
2387         edev->ops->common->update_drv_state(edev->cdev, false);
2388 
2389         return 0;
2390 }
2391 
2392 static void qede_link_update(void *dev, struct qed_link_output *link)
2393 {
2394         struct qede_dev *edev = dev;
2395 
2396         if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2397                 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2398                 return;
2399         }
2400 
2401         if (link->link_up) {
2402                 if (!netif_carrier_ok(edev->ndev)) {
2403                         DP_NOTICE(edev, "Link is up\n");
2404                         netif_tx_start_all_queues(edev->ndev);
2405                         netif_carrier_on(edev->ndev);
2406                         qede_rdma_dev_event_open(edev);
2407                 }
2408         } else {
2409                 if (netif_carrier_ok(edev->ndev)) {
2410                         DP_NOTICE(edev, "Link is down\n");
2411                         netif_tx_disable(edev->ndev);
2412                         netif_carrier_off(edev->ndev);
2413                         qede_rdma_dev_event_close(edev);
2414                 }
2415         }
2416 }
2417 
2418 static void qede_schedule_recovery_handler(void *dev)
2419 {
2420         struct qede_dev *edev = dev;
2421 
2422         if (edev->state == QEDE_STATE_RECOVERY) {
2423                 DP_NOTICE(edev,
2424                           "Avoid scheduling a recovery handling since already in recovery state\n");
2425                 return;
2426         }
2427 
2428         set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2429         schedule_delayed_work(&edev->sp_task, 0);
2430 
2431         DP_INFO(edev, "Scheduled a recovery handler\n");
2432 }
2433 
2434 static void qede_recovery_failed(struct qede_dev *edev)
2435 {
2436         netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2437 
2438         netif_device_detach(edev->ndev);
2439 
2440         if (edev->cdev)
2441                 edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2442 }
2443 
2444 static void qede_recovery_handler(struct qede_dev *edev)
2445 {
2446         u32 curr_state = edev->state;
2447         int rc;
2448 
2449         DP_NOTICE(edev, "Starting a recovery process\n");
2450 
2451         /* No need to acquire first the qede_lock since is done by qede_sp_task
2452          * before calling this function.
2453          */
2454         edev->state = QEDE_STATE_RECOVERY;
2455 
2456         edev->ops->common->recovery_prolog(edev->cdev);
2457 
2458         if (curr_state == QEDE_STATE_OPEN)
2459                 qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2460 
2461         __qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2462 
2463         rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2464                           IS_VF(edev), QEDE_PROBE_RECOVERY);
2465         if (rc) {
2466                 edev->cdev = NULL;
2467                 goto err;
2468         }
2469 
2470         if (curr_state == QEDE_STATE_OPEN) {
2471                 rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2472                 if (rc)
2473                         goto err;
2474 
2475                 qede_config_rx_mode(edev->ndev);
2476                 udp_tunnel_get_rx_info(edev->ndev);
2477         }
2478 
2479         edev->state = curr_state;
2480 
2481         DP_NOTICE(edev, "Recovery handling is done\n");
2482 
2483         return;
2484 
2485 err:
2486         qede_recovery_failed(edev);
2487 }
2488 
2489 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2490 {
2491         struct netdev_queue *netdev_txq;
2492 
2493         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2494         if (netif_xmit_stopped(netdev_txq))
2495                 return true;
2496 
2497         return false;
2498 }
2499 
2500 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2501 {
2502         struct qede_dev *edev = dev;
2503         struct netdev_hw_addr *ha;
2504         int i;
2505 
2506         if (edev->ndev->features & NETIF_F_IP_CSUM)
2507                 data->feat_flags |= QED_TLV_IP_CSUM;
2508         if (edev->ndev->features & NETIF_F_TSO)
2509                 data->feat_flags |= QED_TLV_LSO;
2510 
2511         ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2512         memset(data->mac[1], 0, ETH_ALEN);
2513         memset(data->mac[2], 0, ETH_ALEN);
2514         /* Copy the first two UC macs */
2515         netif_addr_lock_bh(edev->ndev);
2516         i = 1;
2517         netdev_for_each_uc_addr(ha, edev->ndev) {
2518                 ether_addr_copy(data->mac[i++], ha->addr);
2519                 if (i == QED_TLV_MAC_COUNT)
2520                         break;
2521         }
2522 
2523         netif_addr_unlock_bh(edev->ndev);
2524 }
2525 
2526 static void qede_get_eth_tlv_data(void *dev, void *data)
2527 {
2528         struct qed_mfw_tlv_eth *etlv = data;
2529         struct qede_dev *edev = dev;
2530         struct qede_fastpath *fp;
2531         int i;
2532 
2533         etlv->lso_maxoff_size = 0XFFFF;
2534         etlv->lso_maxoff_size_set = true;
2535         etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2536         etlv->lso_minseg_size_set = true;
2537         etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2538         etlv->prom_mode_set = true;
2539         etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2540         etlv->tx_descr_size_set = true;
2541         etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2542         etlv->rx_descr_size_set = true;
2543         etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2544         etlv->iov_offload_set = true;
2545 
2546         /* Fill information regarding queues; Should be done under the qede
2547          * lock to guarantee those don't change beneath our feet.
2548          */
2549         etlv->txqs_empty = true;
2550         etlv->rxqs_empty = true;
2551         etlv->num_txqs_full = 0;
2552         etlv->num_rxqs_full = 0;
2553 
2554         __qede_lock(edev);
2555         for_each_queue(i) {
2556                 fp = &edev->fp_array[i];
2557                 if (fp->type & QEDE_FASTPATH_TX) {
2558                         struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2559 
2560                         if (txq->sw_tx_cons != txq->sw_tx_prod)
2561                                 etlv->txqs_empty = false;
2562                         if (qede_is_txq_full(edev, txq))
2563                                 etlv->num_txqs_full++;
2564                 }
2565                 if (fp->type & QEDE_FASTPATH_RX) {
2566                         if (qede_has_rx_work(fp->rxq))
2567                                 etlv->rxqs_empty = false;
2568 
2569                         /* This one is a bit tricky; Firmware might stop
2570                          * placing packets if ring is not yet full.
2571                          * Give an approximation.
2572                          */
2573                         if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2574                             qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2575                             RX_RING_SIZE - 100)
2576                                 etlv->num_rxqs_full++;
2577                 }
2578         }
2579         __qede_unlock(edev);
2580 
2581         etlv->txqs_empty_set = true;
2582         etlv->rxqs_empty_set = true;
2583         etlv->num_txqs_full_set = true;
2584         etlv->num_rxqs_full_set = true;
2585 }

/* [<][>][^][v][top][bottom][index][help] */