root/drivers/net/ethernet/qlogic/qede/qede_fp.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. qede_alloc_rx_buffer
  2. qede_free_tx_pkt
  3. qede_free_failed_tx_pkt
  4. qede_xmit_type
  5. qede_set_params_for_ipv6_ext
  6. map_frag_to_bd
  7. qede_get_skb_hlen
  8. qede_pkt_req_lin
  9. qede_update_tx_producer
  10. qede_xdp_xmit
  11. qede_txq_has_work
  12. qede_xdp_tx_int
  13. qede_tx_int
  14. qede_has_rx_work
  15. qede_rx_bd_ring_consume
  16. qede_reuse_page
  17. qede_recycle_rx_bd_ring
  18. qede_realloc_rx_buffer
  19. qede_update_rx_prod
  20. qede_get_rxhash
  21. qede_set_skb_csum
  22. qede_skb_receive
  23. qede_set_gro_params
  24. qede_fill_frag_skb
  25. qede_tunn_exist
  26. qede_check_tunn_csum
  27. qede_build_skb
  28. qede_tpa_rx_build_skb
  29. qede_rx_build_skb
  30. qede_tpa_start
  31. qede_gro_ip_csum
  32. qede_gro_ipv6_csum
  33. qede_gro_receive
  34. qede_tpa_cont
  35. qede_tpa_end
  36. qede_check_notunn_csum
  37. qede_check_csum
  38. qede_pkt_is_ip_fragmented
  39. qede_rx_xdp
  40. qede_rx_build_jumbo
  41. qede_rx_process_tpa_cqe
  42. qede_rx_process_cqe
  43. qede_rx_int
  44. qede_poll_is_more_work
  45. qede_poll
  46. qede_msix_fp_int
  47. qede_start_xmit
  48. qede_select_queue
  49. qede_features_check

   1 /* QLogic qede NIC Driver
   2  * Copyright (c) 2015-2017  QLogic Corporation
   3  *
   4  * This software is available to you under a choice of one of two
   5  * licenses.  You may choose to be licensed under the terms of the GNU
   6  * General Public License (GPL) Version 2, available from the file
   7  * COPYING in the main directory of this source tree, or the
   8  * OpenIB.org BSD license below:
   9  *
  10  *     Redistribution and use in source and binary forms, with or
  11  *     without modification, are permitted provided that the following
  12  *     conditions are met:
  13  *
  14  *      - Redistributions of source code must retain the above
  15  *        copyright notice, this list of conditions and the following
  16  *        disclaimer.
  17  *
  18  *      - Redistributions in binary form must reproduce the above
  19  *        copyright notice, this list of conditions and the following
  20  *        disclaimer in the documentation and /or other materials
  21  *        provided with the distribution.
  22  *
  23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30  * SOFTWARE.
  31  */
  32 #include <linux/netdevice.h>
  33 #include <linux/etherdevice.h>
  34 #include <linux/skbuff.h>
  35 #include <linux/bpf_trace.h>
  36 #include <net/udp_tunnel.h>
  37 #include <linux/ip.h>
  38 #include <net/ipv6.h>
  39 #include <net/tcp.h>
  40 #include <linux/if_ether.h>
  41 #include <linux/if_vlan.h>
  42 #include <net/ip6_checksum.h>
  43 #include "qede_ptp.h"
  44 
  45 #include <linux/qed/qed_if.h>
  46 #include "qede.h"
  47 /*********************************
  48  * Content also used by slowpath *
  49  *********************************/
  50 
  51 int qede_alloc_rx_buffer(struct qede_rx_queue *rxq, bool allow_lazy)
  52 {
  53         struct sw_rx_data *sw_rx_data;
  54         struct eth_rx_bd *rx_bd;
  55         dma_addr_t mapping;
  56         struct page *data;
  57 
  58         /* In case lazy-allocation is allowed, postpone allocation until the
  59          * end of the NAPI run. We'd still need to make sure the Rx ring has
  60          * sufficient buffers to guarantee an additional Rx interrupt.
  61          */
  62         if (allow_lazy && likely(rxq->filled_buffers > 12)) {
  63                 rxq->filled_buffers--;
  64                 return 0;
  65         }
  66 
  67         data = alloc_pages(GFP_ATOMIC, 0);
  68         if (unlikely(!data))
  69                 return -ENOMEM;
  70 
  71         /* Map the entire page as it would be used
  72          * for multiple RX buffer segment size mapping.
  73          */
  74         mapping = dma_map_page(rxq->dev, data, 0,
  75                                PAGE_SIZE, rxq->data_direction);
  76         if (unlikely(dma_mapping_error(rxq->dev, mapping))) {
  77                 __free_page(data);
  78                 return -ENOMEM;
  79         }
  80 
  81         sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
  82         sw_rx_data->page_offset = 0;
  83         sw_rx_data->data = data;
  84         sw_rx_data->mapping = mapping;
  85 
  86         /* Advance PROD and get BD pointer */
  87         rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
  88         WARN_ON(!rx_bd);
  89         rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
  90         rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping) +
  91                                      rxq->rx_headroom);
  92 
  93         rxq->sw_rx_prod++;
  94         rxq->filled_buffers++;
  95 
  96         return 0;
  97 }
  98 
  99 /* Unmap the data and free skb */
 100 int qede_free_tx_pkt(struct qede_dev *edev, struct qede_tx_queue *txq, int *len)
 101 {
 102         u16 idx = txq->sw_tx_cons;
 103         struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
 104         struct eth_tx_1st_bd *first_bd;
 105         struct eth_tx_bd *tx_data_bd;
 106         int bds_consumed = 0;
 107         int nbds;
 108         bool data_split = txq->sw_tx_ring.skbs[idx].flags & QEDE_TSO_SPLIT_BD;
 109         int i, split_bd_len = 0;
 110 
 111         if (unlikely(!skb)) {
 112                 DP_ERR(edev,
 113                        "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
 114                        idx, txq->sw_tx_cons, txq->sw_tx_prod);
 115                 return -1;
 116         }
 117 
 118         *len = skb->len;
 119 
 120         first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
 121 
 122         bds_consumed++;
 123 
 124         nbds = first_bd->data.nbds;
 125 
 126         if (data_split) {
 127                 struct eth_tx_bd *split = (struct eth_tx_bd *)
 128                         qed_chain_consume(&txq->tx_pbl);
 129                 split_bd_len = BD_UNMAP_LEN(split);
 130                 bds_consumed++;
 131         }
 132         dma_unmap_single(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
 133                          BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
 134 
 135         /* Unmap the data of the skb frags */
 136         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
 137                 tx_data_bd = (struct eth_tx_bd *)
 138                         qed_chain_consume(&txq->tx_pbl);
 139                 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
 140                                BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
 141         }
 142 
 143         while (bds_consumed++ < nbds)
 144                 qed_chain_consume(&txq->tx_pbl);
 145 
 146         /* Free skb */
 147         dev_kfree_skb_any(skb);
 148         txq->sw_tx_ring.skbs[idx].skb = NULL;
 149         txq->sw_tx_ring.skbs[idx].flags = 0;
 150 
 151         return 0;
 152 }
 153 
 154 /* Unmap the data and free skb when mapping failed during start_xmit */
 155 static void qede_free_failed_tx_pkt(struct qede_tx_queue *txq,
 156                                     struct eth_tx_1st_bd *first_bd,
 157                                     int nbd, bool data_split)
 158 {
 159         u16 idx = txq->sw_tx_prod;
 160         struct sk_buff *skb = txq->sw_tx_ring.skbs[idx].skb;
 161         struct eth_tx_bd *tx_data_bd;
 162         int i, split_bd_len = 0;
 163 
 164         /* Return prod to its position before this skb was handled */
 165         qed_chain_set_prod(&txq->tx_pbl,
 166                            le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
 167 
 168         first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
 169 
 170         if (data_split) {
 171                 struct eth_tx_bd *split = (struct eth_tx_bd *)
 172                                           qed_chain_produce(&txq->tx_pbl);
 173                 split_bd_len = BD_UNMAP_LEN(split);
 174                 nbd--;
 175         }
 176 
 177         dma_unmap_single(txq->dev, BD_UNMAP_ADDR(first_bd),
 178                          BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
 179 
 180         /* Unmap the data of the skb frags */
 181         for (i = 0; i < nbd; i++) {
 182                 tx_data_bd = (struct eth_tx_bd *)
 183                         qed_chain_produce(&txq->tx_pbl);
 184                 if (tx_data_bd->nbytes)
 185                         dma_unmap_page(txq->dev,
 186                                        BD_UNMAP_ADDR(tx_data_bd),
 187                                        BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
 188         }
 189 
 190         /* Return again prod to its position before this skb was handled */
 191         qed_chain_set_prod(&txq->tx_pbl,
 192                            le16_to_cpu(txq->tx_db.data.bd_prod), first_bd);
 193 
 194         /* Free skb */
 195         dev_kfree_skb_any(skb);
 196         txq->sw_tx_ring.skbs[idx].skb = NULL;
 197         txq->sw_tx_ring.skbs[idx].flags = 0;
 198 }
 199 
 200 static u32 qede_xmit_type(struct sk_buff *skb, int *ipv6_ext)
 201 {
 202         u32 rc = XMIT_L4_CSUM;
 203         __be16 l3_proto;
 204 
 205         if (skb->ip_summed != CHECKSUM_PARTIAL)
 206                 return XMIT_PLAIN;
 207 
 208         l3_proto = vlan_get_protocol(skb);
 209         if (l3_proto == htons(ETH_P_IPV6) &&
 210             (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
 211                 *ipv6_ext = 1;
 212 
 213         if (skb->encapsulation) {
 214                 rc |= XMIT_ENC;
 215                 if (skb_is_gso(skb)) {
 216                         unsigned short gso_type = skb_shinfo(skb)->gso_type;
 217 
 218                         if ((gso_type & SKB_GSO_UDP_TUNNEL_CSUM) ||
 219                             (gso_type & SKB_GSO_GRE_CSUM))
 220                                 rc |= XMIT_ENC_GSO_L4_CSUM;
 221 
 222                         rc |= XMIT_LSO;
 223                         return rc;
 224                 }
 225         }
 226 
 227         if (skb_is_gso(skb))
 228                 rc |= XMIT_LSO;
 229 
 230         return rc;
 231 }
 232 
 233 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
 234                                          struct eth_tx_2nd_bd *second_bd,
 235                                          struct eth_tx_3rd_bd *third_bd)
 236 {
 237         u8 l4_proto;
 238         u16 bd2_bits1 = 0, bd2_bits2 = 0;
 239 
 240         bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
 241 
 242         bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
 243                      ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
 244                     << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
 245 
 246         bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
 247                       ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
 248 
 249         if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
 250                 l4_proto = ipv6_hdr(skb)->nexthdr;
 251         else
 252                 l4_proto = ip_hdr(skb)->protocol;
 253 
 254         if (l4_proto == IPPROTO_UDP)
 255                 bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
 256 
 257         if (third_bd)
 258                 third_bd->data.bitfields |=
 259                         cpu_to_le16(((tcp_hdrlen(skb) / 4) &
 260                                 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
 261                                 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
 262 
 263         second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
 264         second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
 265 }
 266 
 267 static int map_frag_to_bd(struct qede_tx_queue *txq,
 268                           skb_frag_t *frag, struct eth_tx_bd *bd)
 269 {
 270         dma_addr_t mapping;
 271 
 272         /* Map skb non-linear frag data for DMA */
 273         mapping = skb_frag_dma_map(txq->dev, frag, 0,
 274                                    skb_frag_size(frag), DMA_TO_DEVICE);
 275         if (unlikely(dma_mapping_error(txq->dev, mapping)))
 276                 return -ENOMEM;
 277 
 278         /* Setup the data pointer of the frag data */
 279         BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
 280 
 281         return 0;
 282 }
 283 
 284 static u16 qede_get_skb_hlen(struct sk_buff *skb, bool is_encap_pkt)
 285 {
 286         if (is_encap_pkt)
 287                 return (skb_inner_transport_header(skb) +
 288                         inner_tcp_hdrlen(skb) - skb->data);
 289         else
 290                 return (skb_transport_header(skb) +
 291                         tcp_hdrlen(skb) - skb->data);
 292 }
 293 
 294 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
 295 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
 296 static bool qede_pkt_req_lin(struct sk_buff *skb, u8 xmit_type)
 297 {
 298         int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
 299 
 300         if (xmit_type & XMIT_LSO) {
 301                 int hlen;
 302 
 303                 hlen = qede_get_skb_hlen(skb, xmit_type & XMIT_ENC);
 304 
 305                 /* linear payload would require its own BD */
 306                 if (skb_headlen(skb) > hlen)
 307                         allowed_frags--;
 308         }
 309 
 310         return (skb_shinfo(skb)->nr_frags > allowed_frags);
 311 }
 312 #endif
 313 
 314 static inline void qede_update_tx_producer(struct qede_tx_queue *txq)
 315 {
 316         /* wmb makes sure that the BDs data is updated before updating the
 317          * producer, otherwise FW may read old data from the BDs.
 318          */
 319         wmb();
 320         barrier();
 321         writel(txq->tx_db.raw, txq->doorbell_addr);
 322 
 323         /* Fence required to flush the write combined buffer, since another
 324          * CPU may write to the same doorbell address and data may be lost
 325          * due to relaxed order nature of write combined bar.
 326          */
 327         wmb();
 328 }
 329 
 330 static int qede_xdp_xmit(struct qede_dev *edev, struct qede_fastpath *fp,
 331                          struct sw_rx_data *metadata, u16 padding, u16 length)
 332 {
 333         struct qede_tx_queue *txq = fp->xdp_tx;
 334         struct eth_tx_1st_bd *first_bd;
 335         u16 idx = txq->sw_tx_prod;
 336         u16 val;
 337 
 338         if (!qed_chain_get_elem_left(&txq->tx_pbl)) {
 339                 txq->stopped_cnt++;
 340                 return -ENOMEM;
 341         }
 342 
 343         first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
 344 
 345         memset(first_bd, 0, sizeof(*first_bd));
 346         first_bd->data.bd_flags.bitfields =
 347             BIT(ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT);
 348 
 349         val = (length & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
 350                ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
 351 
 352         first_bd->data.bitfields |= cpu_to_le16(val);
 353         first_bd->data.nbds = 1;
 354 
 355         /* We can safely ignore the offset, as it's 0 for XDP */
 356         BD_SET_UNMAP_ADDR_LEN(first_bd, metadata->mapping + padding, length);
 357 
 358         /* Synchronize the buffer back to device, as program [probably]
 359          * has changed it.
 360          */
 361         dma_sync_single_for_device(&edev->pdev->dev,
 362                                    metadata->mapping + padding,
 363                                    length, PCI_DMA_TODEVICE);
 364 
 365         txq->sw_tx_ring.xdp[idx].page = metadata->data;
 366         txq->sw_tx_ring.xdp[idx].mapping = metadata->mapping;
 367         txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers;
 368 
 369         /* Mark the fastpath for future XDP doorbell */
 370         fp->xdp_xmit = 1;
 371 
 372         return 0;
 373 }
 374 
 375 int qede_txq_has_work(struct qede_tx_queue *txq)
 376 {
 377         u16 hw_bd_cons;
 378 
 379         /* Tell compiler that consumer and producer can change */
 380         barrier();
 381         hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
 382         if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
 383                 return 0;
 384 
 385         return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
 386 }
 387 
 388 static void qede_xdp_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
 389 {
 390         u16 hw_bd_cons, idx;
 391 
 392         hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
 393         barrier();
 394 
 395         while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
 396                 qed_chain_consume(&txq->tx_pbl);
 397                 idx = txq->sw_tx_cons;
 398 
 399                 dma_unmap_page(&edev->pdev->dev,
 400                                txq->sw_tx_ring.xdp[idx].mapping,
 401                                PAGE_SIZE, DMA_BIDIRECTIONAL);
 402                 __free_page(txq->sw_tx_ring.xdp[idx].page);
 403 
 404                 txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers;
 405                 txq->xmit_pkts++;
 406         }
 407 }
 408 
 409 static int qede_tx_int(struct qede_dev *edev, struct qede_tx_queue *txq)
 410 {
 411         unsigned int pkts_compl = 0, bytes_compl = 0;
 412         struct netdev_queue *netdev_txq;
 413         u16 hw_bd_cons;
 414         int rc;
 415 
 416         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
 417 
 418         hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
 419         barrier();
 420 
 421         while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
 422                 int len = 0;
 423 
 424                 rc = qede_free_tx_pkt(edev, txq, &len);
 425                 if (rc) {
 426                         DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
 427                                   hw_bd_cons,
 428                                   qed_chain_get_cons_idx(&txq->tx_pbl));
 429                         break;
 430                 }
 431 
 432                 bytes_compl += len;
 433                 pkts_compl++;
 434                 txq->sw_tx_cons = (txq->sw_tx_cons + 1) % txq->num_tx_buffers;
 435                 txq->xmit_pkts++;
 436         }
 437 
 438         netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
 439 
 440         /* Need to make the tx_bd_cons update visible to start_xmit()
 441          * before checking for netif_tx_queue_stopped().  Without the
 442          * memory barrier, there is a small possibility that
 443          * start_xmit() will miss it and cause the queue to be stopped
 444          * forever.
 445          * On the other hand we need an rmb() here to ensure the proper
 446          * ordering of bit testing in the following
 447          * netif_tx_queue_stopped(txq) call.
 448          */
 449         smp_mb();
 450 
 451         if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
 452                 /* Taking tx_lock is needed to prevent reenabling the queue
 453                  * while it's empty. This could have happen if rx_action() gets
 454                  * suspended in qede_tx_int() after the condition before
 455                  * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
 456                  *
 457                  * stops the queue->sees fresh tx_bd_cons->releases the queue->
 458                  * sends some packets consuming the whole queue again->
 459                  * stops the queue
 460                  */
 461 
 462                 __netif_tx_lock(netdev_txq, smp_processor_id());
 463 
 464                 if ((netif_tx_queue_stopped(netdev_txq)) &&
 465                     (edev->state == QEDE_STATE_OPEN) &&
 466                     (qed_chain_get_elem_left(&txq->tx_pbl)
 467                       >= (MAX_SKB_FRAGS + 1))) {
 468                         netif_tx_wake_queue(netdev_txq);
 469                         DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
 470                                    "Wake queue was called\n");
 471                 }
 472 
 473                 __netif_tx_unlock(netdev_txq);
 474         }
 475 
 476         return 0;
 477 }
 478 
 479 bool qede_has_rx_work(struct qede_rx_queue *rxq)
 480 {
 481         u16 hw_comp_cons, sw_comp_cons;
 482 
 483         /* Tell compiler that status block fields can change */
 484         barrier();
 485 
 486         hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
 487         sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
 488 
 489         return hw_comp_cons != sw_comp_cons;
 490 }
 491 
 492 static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
 493 {
 494         qed_chain_consume(&rxq->rx_bd_ring);
 495         rxq->sw_rx_cons++;
 496 }
 497 
 498 /* This function reuses the buffer(from an offset) from
 499  * consumer index to producer index in the bd ring
 500  */
 501 static inline void qede_reuse_page(struct qede_rx_queue *rxq,
 502                                    struct sw_rx_data *curr_cons)
 503 {
 504         struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
 505         struct sw_rx_data *curr_prod;
 506         dma_addr_t new_mapping;
 507 
 508         curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
 509         *curr_prod = *curr_cons;
 510 
 511         new_mapping = curr_prod->mapping + curr_prod->page_offset;
 512 
 513         rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
 514         rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping) +
 515                                           rxq->rx_headroom);
 516 
 517         rxq->sw_rx_prod++;
 518         curr_cons->data = NULL;
 519 }
 520 
 521 /* In case of allocation failures reuse buffers
 522  * from consumer index to produce buffers for firmware
 523  */
 524 void qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq, u8 count)
 525 {
 526         struct sw_rx_data *curr_cons;
 527 
 528         for (; count > 0; count--) {
 529                 curr_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
 530                 qede_reuse_page(rxq, curr_cons);
 531                 qede_rx_bd_ring_consume(rxq);
 532         }
 533 }
 534 
 535 static inline int qede_realloc_rx_buffer(struct qede_rx_queue *rxq,
 536                                          struct sw_rx_data *curr_cons)
 537 {
 538         /* Move to the next segment in the page */
 539         curr_cons->page_offset += rxq->rx_buf_seg_size;
 540 
 541         if (curr_cons->page_offset == PAGE_SIZE) {
 542                 if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
 543                         /* Since we failed to allocate new buffer
 544                          * current buffer can be used again.
 545                          */
 546                         curr_cons->page_offset -= rxq->rx_buf_seg_size;
 547 
 548                         return -ENOMEM;
 549                 }
 550 
 551                 dma_unmap_page(rxq->dev, curr_cons->mapping,
 552                                PAGE_SIZE, rxq->data_direction);
 553         } else {
 554                 /* Increment refcount of the page as we don't want
 555                  * network stack to take the ownership of the page
 556                  * which can be recycled multiple times by the driver.
 557                  */
 558                 page_ref_inc(curr_cons->data);
 559                 qede_reuse_page(rxq, curr_cons);
 560         }
 561 
 562         return 0;
 563 }
 564 
 565 void qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq)
 566 {
 567         u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
 568         u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
 569         struct eth_rx_prod_data rx_prods = {0};
 570 
 571         /* Update producers */
 572         rx_prods.bd_prod = cpu_to_le16(bd_prod);
 573         rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
 574 
 575         /* Make sure that the BD and SGE data is updated before updating the
 576          * producers since FW might read the BD/SGE right after the producer
 577          * is updated.
 578          */
 579         wmb();
 580 
 581         internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
 582                         (u32 *)&rx_prods);
 583 }
 584 
 585 static void qede_get_rxhash(struct sk_buff *skb, u8 bitfields, __le32 rss_hash)
 586 {
 587         enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE;
 588         enum rss_hash_type htype;
 589         u32 hash = 0;
 590 
 591         htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
 592         if (htype) {
 593                 hash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
 594                              (htype == RSS_HASH_TYPE_IPV6)) ?
 595                             PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
 596                 hash = le32_to_cpu(rss_hash);
 597         }
 598         skb_set_hash(skb, hash, hash_type);
 599 }
 600 
 601 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
 602 {
 603         skb_checksum_none_assert(skb);
 604 
 605         if (csum_flag & QEDE_CSUM_UNNECESSARY)
 606                 skb->ip_summed = CHECKSUM_UNNECESSARY;
 607 
 608         if (csum_flag & QEDE_TUNN_CSUM_UNNECESSARY) {
 609                 skb->csum_level = 1;
 610                 skb->encapsulation = 1;
 611         }
 612 }
 613 
 614 static inline void qede_skb_receive(struct qede_dev *edev,
 615                                     struct qede_fastpath *fp,
 616                                     struct qede_rx_queue *rxq,
 617                                     struct sk_buff *skb, u16 vlan_tag)
 618 {
 619         if (vlan_tag)
 620                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
 621 
 622         napi_gro_receive(&fp->napi, skb);
 623 }
 624 
 625 static void qede_set_gro_params(struct qede_dev *edev,
 626                                 struct sk_buff *skb,
 627                                 struct eth_fast_path_rx_tpa_start_cqe *cqe)
 628 {
 629         u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
 630 
 631         if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
 632             PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
 633                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
 634         else
 635                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
 636 
 637         skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
 638                                     cqe->header_len;
 639 }
 640 
 641 static int qede_fill_frag_skb(struct qede_dev *edev,
 642                               struct qede_rx_queue *rxq,
 643                               u8 tpa_agg_index, u16 len_on_bd)
 644 {
 645         struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
 646                                                          NUM_RX_BDS_MAX];
 647         struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
 648         struct sk_buff *skb = tpa_info->skb;
 649 
 650         if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
 651                 goto out;
 652 
 653         /* Add one frag and update the appropriate fields in the skb */
 654         skb_fill_page_desc(skb, tpa_info->frag_id++,
 655                            current_bd->data,
 656                            current_bd->page_offset + rxq->rx_headroom,
 657                            len_on_bd);
 658 
 659         if (unlikely(qede_realloc_rx_buffer(rxq, current_bd))) {
 660                 /* Incr page ref count to reuse on allocation failure
 661                  * so that it doesn't get freed while freeing SKB.
 662                  */
 663                 page_ref_inc(current_bd->data);
 664                 goto out;
 665         }
 666 
 667         qede_rx_bd_ring_consume(rxq);
 668 
 669         skb->data_len += len_on_bd;
 670         skb->truesize += rxq->rx_buf_seg_size;
 671         skb->len += len_on_bd;
 672 
 673         return 0;
 674 
 675 out:
 676         tpa_info->state = QEDE_AGG_STATE_ERROR;
 677         qede_recycle_rx_bd_ring(rxq, 1);
 678 
 679         return -ENOMEM;
 680 }
 681 
 682 static bool qede_tunn_exist(u16 flag)
 683 {
 684         return !!(flag & (PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
 685                           PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT));
 686 }
 687 
 688 static u8 qede_check_tunn_csum(u16 flag)
 689 {
 690         u16 csum_flag = 0;
 691         u8 tcsum = 0;
 692 
 693         if (flag & (PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
 694                     PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT))
 695                 csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
 696                              PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT;
 697 
 698         if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
 699                     PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
 700                 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
 701                              PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
 702                 tcsum = QEDE_TUNN_CSUM_UNNECESSARY;
 703         }
 704 
 705         csum_flag |= PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
 706                      PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT |
 707                      PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
 708                      PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
 709 
 710         if (csum_flag & flag)
 711                 return QEDE_CSUM_ERROR;
 712 
 713         return QEDE_CSUM_UNNECESSARY | tcsum;
 714 }
 715 
 716 static inline struct sk_buff *
 717 qede_build_skb(struct qede_rx_queue *rxq,
 718                struct sw_rx_data *bd, u16 len, u16 pad)
 719 {
 720         struct sk_buff *skb;
 721         void *buf;
 722 
 723         buf = page_address(bd->data) + bd->page_offset;
 724         skb = build_skb(buf, rxq->rx_buf_seg_size);
 725 
 726         skb_reserve(skb, pad);
 727         skb_put(skb, len);
 728 
 729         return skb;
 730 }
 731 
 732 static struct sk_buff *
 733 qede_tpa_rx_build_skb(struct qede_dev *edev,
 734                       struct qede_rx_queue *rxq,
 735                       struct sw_rx_data *bd, u16 len, u16 pad,
 736                       bool alloc_skb)
 737 {
 738         struct sk_buff *skb;
 739 
 740         skb = qede_build_skb(rxq, bd, len, pad);
 741         bd->page_offset += rxq->rx_buf_seg_size;
 742 
 743         if (bd->page_offset == PAGE_SIZE) {
 744                 if (unlikely(qede_alloc_rx_buffer(rxq, true))) {
 745                         DP_NOTICE(edev,
 746                                   "Failed to allocate RX buffer for tpa start\n");
 747                         bd->page_offset -= rxq->rx_buf_seg_size;
 748                         page_ref_inc(bd->data);
 749                         dev_kfree_skb_any(skb);
 750                         return NULL;
 751                 }
 752         } else {
 753                 page_ref_inc(bd->data);
 754                 qede_reuse_page(rxq, bd);
 755         }
 756 
 757         /* We've consumed the first BD and prepared an SKB */
 758         qede_rx_bd_ring_consume(rxq);
 759 
 760         return skb;
 761 }
 762 
 763 static struct sk_buff *
 764 qede_rx_build_skb(struct qede_dev *edev,
 765                   struct qede_rx_queue *rxq,
 766                   struct sw_rx_data *bd, u16 len, u16 pad)
 767 {
 768         struct sk_buff *skb = NULL;
 769 
 770         /* For smaller frames still need to allocate skb, memcpy
 771          * data and benefit in reusing the page segment instead of
 772          * un-mapping it.
 773          */
 774         if ((len + pad <= edev->rx_copybreak)) {
 775                 unsigned int offset = bd->page_offset + pad;
 776 
 777                 skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
 778                 if (unlikely(!skb))
 779                         return NULL;
 780 
 781                 skb_reserve(skb, pad);
 782                 skb_put_data(skb, page_address(bd->data) + offset, len);
 783                 qede_reuse_page(rxq, bd);
 784                 goto out;
 785         }
 786 
 787         skb = qede_build_skb(rxq, bd, len, pad);
 788 
 789         if (unlikely(qede_realloc_rx_buffer(rxq, bd))) {
 790                 /* Incr page ref count to reuse on allocation failure so
 791                  * that it doesn't get freed while freeing SKB [as its
 792                  * already mapped there].
 793                  */
 794                 page_ref_inc(bd->data);
 795                 dev_kfree_skb_any(skb);
 796                 return NULL;
 797         }
 798 out:
 799         /* We've consumed the first BD and prepared an SKB */
 800         qede_rx_bd_ring_consume(rxq);
 801 
 802         return skb;
 803 }
 804 
 805 static void qede_tpa_start(struct qede_dev *edev,
 806                            struct qede_rx_queue *rxq,
 807                            struct eth_fast_path_rx_tpa_start_cqe *cqe)
 808 {
 809         struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
 810         struct sw_rx_data *sw_rx_data_cons;
 811         u16 pad;
 812 
 813         sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
 814         pad = cqe->placement_offset + rxq->rx_headroom;
 815 
 816         tpa_info->skb = qede_tpa_rx_build_skb(edev, rxq, sw_rx_data_cons,
 817                                               le16_to_cpu(cqe->len_on_first_bd),
 818                                               pad, false);
 819         tpa_info->buffer.page_offset = sw_rx_data_cons->page_offset;
 820         tpa_info->buffer.mapping = sw_rx_data_cons->mapping;
 821 
 822         if (unlikely(!tpa_info->skb)) {
 823                 DP_NOTICE(edev, "Failed to allocate SKB for gro\n");
 824 
 825                 /* Consume from ring but do not produce since
 826                  * this might be used by FW still, it will be re-used
 827                  * at TPA end.
 828                  */
 829                 tpa_info->tpa_start_fail = true;
 830                 qede_rx_bd_ring_consume(rxq);
 831                 tpa_info->state = QEDE_AGG_STATE_ERROR;
 832                 goto cons_buf;
 833         }
 834 
 835         tpa_info->frag_id = 0;
 836         tpa_info->state = QEDE_AGG_STATE_START;
 837 
 838         if ((le16_to_cpu(cqe->pars_flags.flags) >>
 839              PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
 840             PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
 841                 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
 842         else
 843                 tpa_info->vlan_tag = 0;
 844 
 845         qede_get_rxhash(tpa_info->skb, cqe->bitfields, cqe->rss_hash);
 846 
 847         /* This is needed in order to enable forwarding support */
 848         qede_set_gro_params(edev, tpa_info->skb, cqe);
 849 
 850 cons_buf: /* We still need to handle bd_len_list to consume buffers */
 851         if (likely(cqe->ext_bd_len_list[0]))
 852                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
 853                                    le16_to_cpu(cqe->ext_bd_len_list[0]));
 854 
 855         if (unlikely(cqe->ext_bd_len_list[1])) {
 856                 DP_ERR(edev,
 857                        "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
 858                 tpa_info->state = QEDE_AGG_STATE_ERROR;
 859         }
 860 }
 861 
 862 #ifdef CONFIG_INET
 863 static void qede_gro_ip_csum(struct sk_buff *skb)
 864 {
 865         const struct iphdr *iph = ip_hdr(skb);
 866         struct tcphdr *th;
 867 
 868         skb_set_transport_header(skb, sizeof(struct iphdr));
 869         th = tcp_hdr(skb);
 870 
 871         th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
 872                                   iph->saddr, iph->daddr, 0);
 873 
 874         tcp_gro_complete(skb);
 875 }
 876 
 877 static void qede_gro_ipv6_csum(struct sk_buff *skb)
 878 {
 879         struct ipv6hdr *iph = ipv6_hdr(skb);
 880         struct tcphdr *th;
 881 
 882         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
 883         th = tcp_hdr(skb);
 884 
 885         th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
 886                                   &iph->saddr, &iph->daddr, 0);
 887         tcp_gro_complete(skb);
 888 }
 889 #endif
 890 
 891 static void qede_gro_receive(struct qede_dev *edev,
 892                              struct qede_fastpath *fp,
 893                              struct sk_buff *skb,
 894                              u16 vlan_tag)
 895 {
 896         /* FW can send a single MTU sized packet from gro flow
 897          * due to aggregation timeout/last segment etc. which
 898          * is not expected to be a gro packet. If a skb has zero
 899          * frags then simply push it in the stack as non gso skb.
 900          */
 901         if (unlikely(!skb->data_len)) {
 902                 skb_shinfo(skb)->gso_type = 0;
 903                 skb_shinfo(skb)->gso_size = 0;
 904                 goto send_skb;
 905         }
 906 
 907 #ifdef CONFIG_INET
 908         if (skb_shinfo(skb)->gso_size) {
 909                 skb_reset_network_header(skb);
 910 
 911                 switch (skb->protocol) {
 912                 case htons(ETH_P_IP):
 913                         qede_gro_ip_csum(skb);
 914                         break;
 915                 case htons(ETH_P_IPV6):
 916                         qede_gro_ipv6_csum(skb);
 917                         break;
 918                 default:
 919                         DP_ERR(edev,
 920                                "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
 921                                ntohs(skb->protocol));
 922                 }
 923         }
 924 #endif
 925 
 926 send_skb:
 927         skb_record_rx_queue(skb, fp->rxq->rxq_id);
 928         qede_skb_receive(edev, fp, fp->rxq, skb, vlan_tag);
 929 }
 930 
 931 static inline void qede_tpa_cont(struct qede_dev *edev,
 932                                  struct qede_rx_queue *rxq,
 933                                  struct eth_fast_path_rx_tpa_cont_cqe *cqe)
 934 {
 935         int i;
 936 
 937         for (i = 0; cqe->len_list[i]; i++)
 938                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
 939                                    le16_to_cpu(cqe->len_list[i]));
 940 
 941         if (unlikely(i > 1))
 942                 DP_ERR(edev,
 943                        "Strange - TPA cont with more than a single len_list entry\n");
 944 }
 945 
 946 static int qede_tpa_end(struct qede_dev *edev,
 947                         struct qede_fastpath *fp,
 948                         struct eth_fast_path_rx_tpa_end_cqe *cqe)
 949 {
 950         struct qede_rx_queue *rxq = fp->rxq;
 951         struct qede_agg_info *tpa_info;
 952         struct sk_buff *skb;
 953         int i;
 954 
 955         tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
 956         skb = tpa_info->skb;
 957 
 958         if (tpa_info->buffer.page_offset == PAGE_SIZE)
 959                 dma_unmap_page(rxq->dev, tpa_info->buffer.mapping,
 960                                PAGE_SIZE, rxq->data_direction);
 961 
 962         for (i = 0; cqe->len_list[i]; i++)
 963                 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
 964                                    le16_to_cpu(cqe->len_list[i]));
 965         if (unlikely(i > 1))
 966                 DP_ERR(edev,
 967                        "Strange - TPA emd with more than a single len_list entry\n");
 968 
 969         if (unlikely(tpa_info->state != QEDE_AGG_STATE_START))
 970                 goto err;
 971 
 972         /* Sanity */
 973         if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
 974                 DP_ERR(edev,
 975                        "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
 976                        cqe->num_of_bds, tpa_info->frag_id);
 977         if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
 978                 DP_ERR(edev,
 979                        "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
 980                        le16_to_cpu(cqe->total_packet_len), skb->len);
 981 
 982         /* Finalize the SKB */
 983         skb->protocol = eth_type_trans(skb, edev->ndev);
 984         skb->ip_summed = CHECKSUM_UNNECESSARY;
 985 
 986         /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
 987          * to skb_shinfo(skb)->gso_segs
 988          */
 989         NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
 990 
 991         qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
 992 
 993         tpa_info->state = QEDE_AGG_STATE_NONE;
 994 
 995         return 1;
 996 err:
 997         tpa_info->state = QEDE_AGG_STATE_NONE;
 998 
 999         if (tpa_info->tpa_start_fail) {
1000                 qede_reuse_page(rxq, &tpa_info->buffer);
1001                 tpa_info->tpa_start_fail = false;
1002         }
1003 
1004         dev_kfree_skb_any(tpa_info->skb);
1005         tpa_info->skb = NULL;
1006         return 0;
1007 }
1008 
1009 static u8 qede_check_notunn_csum(u16 flag)
1010 {
1011         u16 csum_flag = 0;
1012         u8 csum = 0;
1013 
1014         if (flag & (PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1015                     PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT)) {
1016                 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1017                              PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1018                 csum = QEDE_CSUM_UNNECESSARY;
1019         }
1020 
1021         csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1022                      PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1023 
1024         if (csum_flag & flag)
1025                 return QEDE_CSUM_ERROR;
1026 
1027         return csum;
1028 }
1029 
1030 static u8 qede_check_csum(u16 flag)
1031 {
1032         if (!qede_tunn_exist(flag))
1033                 return qede_check_notunn_csum(flag);
1034         else
1035                 return qede_check_tunn_csum(flag);
1036 }
1037 
1038 static bool qede_pkt_is_ip_fragmented(struct eth_fast_path_rx_reg_cqe *cqe,
1039                                       u16 flag)
1040 {
1041         u8 tun_pars_flg = cqe->tunnel_pars_flags.flags;
1042 
1043         if ((tun_pars_flg & (ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_MASK <<
1044                              ETH_TUNNEL_PARSING_FLAGS_IPV4_FRAGMENT_SHIFT)) ||
1045             (flag & (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1046                      PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT)))
1047                 return true;
1048 
1049         return false;
1050 }
1051 
1052 /* Return true iff packet is to be passed to stack */
1053 static bool qede_rx_xdp(struct qede_dev *edev,
1054                         struct qede_fastpath *fp,
1055                         struct qede_rx_queue *rxq,
1056                         struct bpf_prog *prog,
1057                         struct sw_rx_data *bd,
1058                         struct eth_fast_path_rx_reg_cqe *cqe,
1059                         u16 *data_offset, u16 *len)
1060 {
1061         struct xdp_buff xdp;
1062         enum xdp_action act;
1063 
1064         xdp.data_hard_start = page_address(bd->data);
1065         xdp.data = xdp.data_hard_start + *data_offset;
1066         xdp_set_data_meta_invalid(&xdp);
1067         xdp.data_end = xdp.data + *len;
1068         xdp.rxq = &rxq->xdp_rxq;
1069 
1070         /* Queues always have a full reset currently, so for the time
1071          * being until there's atomic program replace just mark read
1072          * side for map helpers.
1073          */
1074         rcu_read_lock();
1075         act = bpf_prog_run_xdp(prog, &xdp);
1076         rcu_read_unlock();
1077 
1078         /* Recalculate, as XDP might have changed the headers */
1079         *data_offset = xdp.data - xdp.data_hard_start;
1080         *len = xdp.data_end - xdp.data;
1081 
1082         if (act == XDP_PASS)
1083                 return true;
1084 
1085         /* Count number of packets not to be passed to stack */
1086         rxq->xdp_no_pass++;
1087 
1088         switch (act) {
1089         case XDP_TX:
1090                 /* We need the replacement buffer before transmit. */
1091                 if (qede_alloc_rx_buffer(rxq, true)) {
1092                         qede_recycle_rx_bd_ring(rxq, 1);
1093                         trace_xdp_exception(edev->ndev, prog, act);
1094                         return false;
1095                 }
1096 
1097                 /* Now if there's a transmission problem, we'd still have to
1098                  * throw current buffer, as replacement was already allocated.
1099                  */
1100                 if (qede_xdp_xmit(edev, fp, bd, *data_offset, *len)) {
1101                         dma_unmap_page(rxq->dev, bd->mapping,
1102                                        PAGE_SIZE, DMA_BIDIRECTIONAL);
1103                         __free_page(bd->data);
1104                         trace_xdp_exception(edev->ndev, prog, act);
1105                 }
1106 
1107                 /* Regardless, we've consumed an Rx BD */
1108                 qede_rx_bd_ring_consume(rxq);
1109                 return false;
1110 
1111         default:
1112                 bpf_warn_invalid_xdp_action(act);
1113                 /* Fall through */
1114         case XDP_ABORTED:
1115                 trace_xdp_exception(edev->ndev, prog, act);
1116                 /* Fall through */
1117         case XDP_DROP:
1118                 qede_recycle_rx_bd_ring(rxq, cqe->bd_num);
1119         }
1120 
1121         return false;
1122 }
1123 
1124 static int qede_rx_build_jumbo(struct qede_dev *edev,
1125                                struct qede_rx_queue *rxq,
1126                                struct sk_buff *skb,
1127                                struct eth_fast_path_rx_reg_cqe *cqe,
1128                                u16 first_bd_len)
1129 {
1130         u16 pkt_len = le16_to_cpu(cqe->pkt_len);
1131         struct sw_rx_data *bd;
1132         u16 bd_cons_idx;
1133         u8 num_frags;
1134 
1135         pkt_len -= first_bd_len;
1136 
1137         /* We've already used one BD for the SKB. Now take care of the rest */
1138         for (num_frags = cqe->bd_num - 1; num_frags > 0; num_frags--) {
1139                 u16 cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
1140                     pkt_len;
1141 
1142                 if (unlikely(!cur_size)) {
1143                         DP_ERR(edev,
1144                                "Still got %d BDs for mapping jumbo, but length became 0\n",
1145                                num_frags);
1146                         goto out;
1147                 }
1148 
1149                 /* We need a replacement buffer for each BD */
1150                 if (unlikely(qede_alloc_rx_buffer(rxq, true)))
1151                         goto out;
1152 
1153                 /* Now that we've allocated the replacement buffer,
1154                  * we can safely consume the next BD and map it to the SKB.
1155                  */
1156                 bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1157                 bd = &rxq->sw_rx_ring[bd_cons_idx];
1158                 qede_rx_bd_ring_consume(rxq);
1159 
1160                 dma_unmap_page(rxq->dev, bd->mapping,
1161                                PAGE_SIZE, DMA_FROM_DEVICE);
1162 
1163                 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
1164                                    bd->data, rxq->rx_headroom, cur_size);
1165 
1166                 skb->truesize += PAGE_SIZE;
1167                 skb->data_len += cur_size;
1168                 skb->len += cur_size;
1169                 pkt_len -= cur_size;
1170         }
1171 
1172         if (unlikely(pkt_len))
1173                 DP_ERR(edev,
1174                        "Mapped all BDs of jumbo, but still have %d bytes\n",
1175                        pkt_len);
1176 
1177 out:
1178         return num_frags;
1179 }
1180 
1181 static int qede_rx_process_tpa_cqe(struct qede_dev *edev,
1182                                    struct qede_fastpath *fp,
1183                                    struct qede_rx_queue *rxq,
1184                                    union eth_rx_cqe *cqe,
1185                                    enum eth_rx_cqe_type type)
1186 {
1187         switch (type) {
1188         case ETH_RX_CQE_TYPE_TPA_START:
1189                 qede_tpa_start(edev, rxq, &cqe->fast_path_tpa_start);
1190                 return 0;
1191         case ETH_RX_CQE_TYPE_TPA_CONT:
1192                 qede_tpa_cont(edev, rxq, &cqe->fast_path_tpa_cont);
1193                 return 0;
1194         case ETH_RX_CQE_TYPE_TPA_END:
1195                 return qede_tpa_end(edev, fp, &cqe->fast_path_tpa_end);
1196         default:
1197                 return 0;
1198         }
1199 }
1200 
1201 static int qede_rx_process_cqe(struct qede_dev *edev,
1202                                struct qede_fastpath *fp,
1203                                struct qede_rx_queue *rxq)
1204 {
1205         struct bpf_prog *xdp_prog = READ_ONCE(rxq->xdp_prog);
1206         struct eth_fast_path_rx_reg_cqe *fp_cqe;
1207         u16 len, pad, bd_cons_idx, parse_flag;
1208         enum eth_rx_cqe_type cqe_type;
1209         union eth_rx_cqe *cqe;
1210         struct sw_rx_data *bd;
1211         struct sk_buff *skb;
1212         __le16 flags;
1213         u8 csum_flag;
1214 
1215         /* Get the CQE from the completion ring */
1216         cqe = (union eth_rx_cqe *)qed_chain_consume(&rxq->rx_comp_ring);
1217         cqe_type = cqe->fast_path_regular.type;
1218 
1219         /* Process an unlikely slowpath event */
1220         if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1221                 struct eth_slow_path_rx_cqe *sp_cqe;
1222 
1223                 sp_cqe = (struct eth_slow_path_rx_cqe *)cqe;
1224                 edev->ops->eth_cqe_completion(edev->cdev, fp->id, sp_cqe);
1225                 return 0;
1226         }
1227 
1228         /* Handle TPA cqes */
1229         if (cqe_type != ETH_RX_CQE_TYPE_REGULAR)
1230                 return qede_rx_process_tpa_cqe(edev, fp, rxq, cqe, cqe_type);
1231 
1232         /* Get the data from the SW ring; Consume it only after it's evident
1233          * we wouldn't recycle it.
1234          */
1235         bd_cons_idx = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1236         bd = &rxq->sw_rx_ring[bd_cons_idx];
1237 
1238         fp_cqe = &cqe->fast_path_regular;
1239         len = le16_to_cpu(fp_cqe->len_on_first_bd);
1240         pad = fp_cqe->placement_offset + rxq->rx_headroom;
1241 
1242         /* Run eBPF program if one is attached */
1243         if (xdp_prog)
1244                 if (!qede_rx_xdp(edev, fp, rxq, xdp_prog, bd, fp_cqe,
1245                                  &pad, &len))
1246                         return 0;
1247 
1248         /* If this is an error packet then drop it */
1249         flags = cqe->fast_path_regular.pars_flags.flags;
1250         parse_flag = le16_to_cpu(flags);
1251 
1252         csum_flag = qede_check_csum(parse_flag);
1253         if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1254                 if (qede_pkt_is_ip_fragmented(fp_cqe, parse_flag))
1255                         rxq->rx_ip_frags++;
1256                 else
1257                         rxq->rx_hw_errors++;
1258         }
1259 
1260         /* Basic validation passed; Need to prepare an SKB. This would also
1261          * guarantee to finally consume the first BD upon success.
1262          */
1263         skb = qede_rx_build_skb(edev, rxq, bd, len, pad);
1264         if (!skb) {
1265                 rxq->rx_alloc_errors++;
1266                 qede_recycle_rx_bd_ring(rxq, fp_cqe->bd_num);
1267                 return 0;
1268         }
1269 
1270         /* In case of Jumbo packet, several PAGE_SIZEd buffers will be pointed
1271          * by a single cqe.
1272          */
1273         if (fp_cqe->bd_num > 1) {
1274                 u16 unmapped_frags = qede_rx_build_jumbo(edev, rxq, skb,
1275                                                          fp_cqe, len);
1276 
1277                 if (unlikely(unmapped_frags > 0)) {
1278                         qede_recycle_rx_bd_ring(rxq, unmapped_frags);
1279                         dev_kfree_skb_any(skb);
1280                         return 0;
1281                 }
1282         }
1283 
1284         /* The SKB contains all the data. Now prepare meta-magic */
1285         skb->protocol = eth_type_trans(skb, edev->ndev);
1286         qede_get_rxhash(skb, fp_cqe->bitfields, fp_cqe->rss_hash);
1287         qede_set_skb_csum(skb, csum_flag);
1288         skb_record_rx_queue(skb, rxq->rxq_id);
1289         qede_ptp_record_rx_ts(edev, cqe, skb);
1290 
1291         /* SKB is prepared - pass it to stack */
1292         qede_skb_receive(edev, fp, rxq, skb, le16_to_cpu(fp_cqe->vlan_tag));
1293 
1294         return 1;
1295 }
1296 
1297 static int qede_rx_int(struct qede_fastpath *fp, int budget)
1298 {
1299         struct qede_rx_queue *rxq = fp->rxq;
1300         struct qede_dev *edev = fp->edev;
1301         int work_done = 0, rcv_pkts = 0;
1302         u16 hw_comp_cons, sw_comp_cons;
1303 
1304         hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1305         sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1306 
1307         /* Memory barrier to prevent the CPU from doing speculative reads of CQE
1308          * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1309          * read before it is written by FW, then FW writes CQE and SB, and then
1310          * the CPU reads the hw_comp_cons, it will use an old CQE.
1311          */
1312         rmb();
1313 
1314         /* Loop to complete all indicated BDs */
1315         while ((sw_comp_cons != hw_comp_cons) && (work_done < budget)) {
1316                 rcv_pkts += qede_rx_process_cqe(edev, fp, rxq);
1317                 qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1318                 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1319                 work_done++;
1320         }
1321 
1322         rxq->rcv_pkts += rcv_pkts;
1323 
1324         /* Allocate replacement buffers */
1325         while (rxq->num_rx_buffers - rxq->filled_buffers)
1326                 if (qede_alloc_rx_buffer(rxq, false))
1327                         break;
1328 
1329         /* Update producers */
1330         qede_update_rx_prod(edev, rxq);
1331 
1332         return work_done;
1333 }
1334 
1335 static bool qede_poll_is_more_work(struct qede_fastpath *fp)
1336 {
1337         qed_sb_update_sb_idx(fp->sb_info);
1338 
1339         /* *_has_*_work() reads the status block, thus we need to ensure that
1340          * status block indices have been actually read (qed_sb_update_sb_idx)
1341          * prior to this check (*_has_*_work) so that we won't write the
1342          * "newer" value of the status block to HW (if there was a DMA right
1343          * after qede_has_rx_work and if there is no rmb, the memory reading
1344          * (qed_sb_update_sb_idx) may be postponed to right before *_ack_sb).
1345          * In this case there will never be another interrupt until there is
1346          * another update of the status block, while there is still unhandled
1347          * work.
1348          */
1349         rmb();
1350 
1351         if (likely(fp->type & QEDE_FASTPATH_RX))
1352                 if (qede_has_rx_work(fp->rxq))
1353                         return true;
1354 
1355         if (fp->type & QEDE_FASTPATH_XDP)
1356                 if (qede_txq_has_work(fp->xdp_tx))
1357                         return true;
1358 
1359         if (likely(fp->type & QEDE_FASTPATH_TX)) {
1360                 int cos;
1361 
1362                 for_each_cos_in_txq(fp->edev, cos) {
1363                         if (qede_txq_has_work(&fp->txq[cos]))
1364                                 return true;
1365                 }
1366         }
1367 
1368         return false;
1369 }
1370 
1371 /*********************
1372  * NDO & API related *
1373  *********************/
1374 int qede_poll(struct napi_struct *napi, int budget)
1375 {
1376         struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1377                                                 napi);
1378         struct qede_dev *edev = fp->edev;
1379         int rx_work_done = 0;
1380 
1381         if (likely(fp->type & QEDE_FASTPATH_TX)) {
1382                 int cos;
1383 
1384                 for_each_cos_in_txq(fp->edev, cos) {
1385                         if (qede_txq_has_work(&fp->txq[cos]))
1386                                 qede_tx_int(edev, &fp->txq[cos]);
1387                 }
1388         }
1389 
1390         if ((fp->type & QEDE_FASTPATH_XDP) && qede_txq_has_work(fp->xdp_tx))
1391                 qede_xdp_tx_int(edev, fp->xdp_tx);
1392 
1393         rx_work_done = (likely(fp->type & QEDE_FASTPATH_RX) &&
1394                         qede_has_rx_work(fp->rxq)) ?
1395                         qede_rx_int(fp, budget) : 0;
1396         if (rx_work_done < budget) {
1397                 if (!qede_poll_is_more_work(fp)) {
1398                         napi_complete_done(napi, rx_work_done);
1399 
1400                         /* Update and reenable interrupts */
1401                         qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1);
1402                 } else {
1403                         rx_work_done = budget;
1404                 }
1405         }
1406 
1407         if (fp->xdp_xmit) {
1408                 u16 xdp_prod = qed_chain_get_prod_idx(&fp->xdp_tx->tx_pbl);
1409 
1410                 fp->xdp_xmit = 0;
1411                 fp->xdp_tx->tx_db.data.bd_prod = cpu_to_le16(xdp_prod);
1412                 qede_update_tx_producer(fp->xdp_tx);
1413         }
1414 
1415         return rx_work_done;
1416 }
1417 
1418 irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1419 {
1420         struct qede_fastpath *fp = fp_cookie;
1421 
1422         qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1423 
1424         napi_schedule_irqoff(&fp->napi);
1425         return IRQ_HANDLED;
1426 }
1427 
1428 /* Main transmit function */
1429 netdev_tx_t qede_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1430 {
1431         struct qede_dev *edev = netdev_priv(ndev);
1432         struct netdev_queue *netdev_txq;
1433         struct qede_tx_queue *txq;
1434         struct eth_tx_1st_bd *first_bd;
1435         struct eth_tx_2nd_bd *second_bd = NULL;
1436         struct eth_tx_3rd_bd *third_bd = NULL;
1437         struct eth_tx_bd *tx_data_bd = NULL;
1438         u16 txq_index, val = 0;
1439         u8 nbd = 0;
1440         dma_addr_t mapping;
1441         int rc, frag_idx = 0, ipv6_ext = 0;
1442         u8 xmit_type;
1443         u16 idx;
1444         u16 hlen;
1445         bool data_split = false;
1446 
1447         /* Get tx-queue context and netdev index */
1448         txq_index = skb_get_queue_mapping(skb);
1449         WARN_ON(txq_index >= QEDE_TSS_COUNT(edev) * edev->dev_info.num_tc);
1450         txq = QEDE_NDEV_TXQ_ID_TO_TXQ(edev, txq_index);
1451         netdev_txq = netdev_get_tx_queue(ndev, txq_index);
1452 
1453         WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < (MAX_SKB_FRAGS + 1));
1454 
1455         xmit_type = qede_xmit_type(skb, &ipv6_ext);
1456 
1457 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
1458         if (qede_pkt_req_lin(skb, xmit_type)) {
1459                 if (skb_linearize(skb)) {
1460                         txq->tx_mem_alloc_err++;
1461 
1462                         dev_kfree_skb_any(skb);
1463                         return NETDEV_TX_OK;
1464                 }
1465         }
1466 #endif
1467 
1468         /* Fill the entry in the SW ring and the BDs in the FW ring */
1469         idx = txq->sw_tx_prod;
1470         txq->sw_tx_ring.skbs[idx].skb = skb;
1471         first_bd = (struct eth_tx_1st_bd *)
1472                    qed_chain_produce(&txq->tx_pbl);
1473         memset(first_bd, 0, sizeof(*first_bd));
1474         first_bd->data.bd_flags.bitfields =
1475                 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
1476 
1477         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
1478                 qede_ptp_tx_ts(edev, skb);
1479 
1480         /* Map skb linear data for DMA and set in the first BD */
1481         mapping = dma_map_single(txq->dev, skb->data,
1482                                  skb_headlen(skb), DMA_TO_DEVICE);
1483         if (unlikely(dma_mapping_error(txq->dev, mapping))) {
1484                 DP_NOTICE(edev, "SKB mapping failed\n");
1485                 qede_free_failed_tx_pkt(txq, first_bd, 0, false);
1486                 qede_update_tx_producer(txq);
1487                 return NETDEV_TX_OK;
1488         }
1489         nbd++;
1490         BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
1491 
1492         /* In case there is IPv6 with extension headers or LSO we need 2nd and
1493          * 3rd BDs.
1494          */
1495         if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
1496                 second_bd = (struct eth_tx_2nd_bd *)
1497                         qed_chain_produce(&txq->tx_pbl);
1498                 memset(second_bd, 0, sizeof(*second_bd));
1499 
1500                 nbd++;
1501                 third_bd = (struct eth_tx_3rd_bd *)
1502                         qed_chain_produce(&txq->tx_pbl);
1503                 memset(third_bd, 0, sizeof(*third_bd));
1504 
1505                 nbd++;
1506                 /* We need to fill in additional data in second_bd... */
1507                 tx_data_bd = (struct eth_tx_bd *)second_bd;
1508         }
1509 
1510         if (skb_vlan_tag_present(skb)) {
1511                 first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
1512                 first_bd->data.bd_flags.bitfields |=
1513                         1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
1514         }
1515 
1516         /* Fill the parsing flags & params according to the requested offload */
1517         if (xmit_type & XMIT_L4_CSUM) {
1518                 /* We don't re-calculate IP checksum as it is already done by
1519                  * the upper stack
1520                  */
1521                 first_bd->data.bd_flags.bitfields |=
1522                         1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
1523 
1524                 if (xmit_type & XMIT_ENC) {
1525                         first_bd->data.bd_flags.bitfields |=
1526                                 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1527 
1528                         val |= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT);
1529                 }
1530 
1531                 /* Legacy FW had flipped behavior in regard to this bit -
1532                  * I.e., needed to set to prevent FW from touching encapsulated
1533                  * packets when it didn't need to.
1534                  */
1535                 if (unlikely(txq->is_legacy))
1536                         val ^= (1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT);
1537 
1538                 /* If the packet is IPv6 with extension header, indicate that
1539                  * to FW and pass few params, since the device cracker doesn't
1540                  * support parsing IPv6 with extension header/s.
1541                  */
1542                 if (unlikely(ipv6_ext))
1543                         qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
1544         }
1545 
1546         if (xmit_type & XMIT_LSO) {
1547                 first_bd->data.bd_flags.bitfields |=
1548                         (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
1549                 third_bd->data.lso_mss =
1550                         cpu_to_le16(skb_shinfo(skb)->gso_size);
1551 
1552                 if (unlikely(xmit_type & XMIT_ENC)) {
1553                         first_bd->data.bd_flags.bitfields |=
1554                                 1 << ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
1555 
1556                         if (xmit_type & XMIT_ENC_GSO_L4_CSUM) {
1557                                 u8 tmp = ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
1558 
1559                                 first_bd->data.bd_flags.bitfields |= 1 << tmp;
1560                         }
1561                         hlen = qede_get_skb_hlen(skb, true);
1562                 } else {
1563                         first_bd->data.bd_flags.bitfields |=
1564                                 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
1565                         hlen = qede_get_skb_hlen(skb, false);
1566                 }
1567 
1568                 /* @@@TBD - if will not be removed need to check */
1569                 third_bd->data.bitfields |=
1570                         cpu_to_le16(1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
1571 
1572                 /* Make life easier for FW guys who can't deal with header and
1573                  * data on same BD. If we need to split, use the second bd...
1574                  */
1575                 if (unlikely(skb_headlen(skb) > hlen)) {
1576                         DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1577                                    "TSO split header size is %d (%x:%x)\n",
1578                                    first_bd->nbytes, first_bd->addr.hi,
1579                                    first_bd->addr.lo);
1580 
1581                         mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
1582                                            le32_to_cpu(first_bd->addr.lo)) +
1583                                            hlen;
1584 
1585                         BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
1586                                               le16_to_cpu(first_bd->nbytes) -
1587                                               hlen);
1588 
1589                         /* this marks the BD as one that has no
1590                          * individual mapping
1591                          */
1592                         txq->sw_tx_ring.skbs[idx].flags |= QEDE_TSO_SPLIT_BD;
1593 
1594                         first_bd->nbytes = cpu_to_le16(hlen);
1595 
1596                         tx_data_bd = (struct eth_tx_bd *)third_bd;
1597                         data_split = true;
1598                 }
1599         } else {
1600                 val |= ((skb->len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK) <<
1601                          ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT);
1602         }
1603 
1604         first_bd->data.bitfields = cpu_to_le16(val);
1605 
1606         /* Handle fragmented skb */
1607         /* special handle for frags inside 2nd and 3rd bds.. */
1608         while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
1609                 rc = map_frag_to_bd(txq,
1610                                     &skb_shinfo(skb)->frags[frag_idx],
1611                                     tx_data_bd);
1612                 if (rc) {
1613                         qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
1614                         qede_update_tx_producer(txq);
1615                         return NETDEV_TX_OK;
1616                 }
1617 
1618                 if (tx_data_bd == (struct eth_tx_bd *)second_bd)
1619                         tx_data_bd = (struct eth_tx_bd *)third_bd;
1620                 else
1621                         tx_data_bd = NULL;
1622 
1623                 frag_idx++;
1624         }
1625 
1626         /* map last frags into 4th, 5th .... */
1627         for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
1628                 tx_data_bd = (struct eth_tx_bd *)
1629                              qed_chain_produce(&txq->tx_pbl);
1630 
1631                 memset(tx_data_bd, 0, sizeof(*tx_data_bd));
1632 
1633                 rc = map_frag_to_bd(txq,
1634                                     &skb_shinfo(skb)->frags[frag_idx],
1635                                     tx_data_bd);
1636                 if (rc) {
1637                         qede_free_failed_tx_pkt(txq, first_bd, nbd, data_split);
1638                         qede_update_tx_producer(txq);
1639                         return NETDEV_TX_OK;
1640                 }
1641         }
1642 
1643         /* update the first BD with the actual num BDs */
1644         first_bd->data.nbds = nbd;
1645 
1646         netdev_tx_sent_queue(netdev_txq, skb->len);
1647 
1648         skb_tx_timestamp(skb);
1649 
1650         /* Advance packet producer only before sending the packet since mapping
1651          * of pages may fail.
1652          */
1653         txq->sw_tx_prod = (txq->sw_tx_prod + 1) % txq->num_tx_buffers;
1654 
1655         /* 'next page' entries are counted in the producer value */
1656         txq->tx_db.data.bd_prod =
1657                 cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
1658 
1659         if (!netdev_xmit_more() || netif_xmit_stopped(netdev_txq))
1660                 qede_update_tx_producer(txq);
1661 
1662         if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
1663                       < (MAX_SKB_FRAGS + 1))) {
1664                 if (netdev_xmit_more())
1665                         qede_update_tx_producer(txq);
1666 
1667                 netif_tx_stop_queue(netdev_txq);
1668                 txq->stopped_cnt++;
1669                 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1670                            "Stop queue was called\n");
1671                 /* paired memory barrier is in qede_tx_int(), we have to keep
1672                  * ordering of set_bit() in netif_tx_stop_queue() and read of
1673                  * fp->bd_tx_cons
1674                  */
1675                 smp_mb();
1676 
1677                 if ((qed_chain_get_elem_left(&txq->tx_pbl) >=
1678                      (MAX_SKB_FRAGS + 1)) &&
1679                     (edev->state == QEDE_STATE_OPEN)) {
1680                         netif_tx_wake_queue(netdev_txq);
1681                         DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
1682                                    "Wake queue was called\n");
1683                 }
1684         }
1685 
1686         return NETDEV_TX_OK;
1687 }
1688 
1689 u16 qede_select_queue(struct net_device *dev, struct sk_buff *skb,
1690                       struct net_device *sb_dev)
1691 {
1692         struct qede_dev *edev = netdev_priv(dev);
1693         int total_txq;
1694 
1695         total_txq = QEDE_TSS_COUNT(edev) * edev->dev_info.num_tc;
1696 
1697         return QEDE_TSS_COUNT(edev) ?
1698                 netdev_pick_tx(dev, skb, NULL) % total_txq :  0;
1699 }
1700 
1701 /* 8B udp header + 8B base tunnel header + 32B option length */
1702 #define QEDE_MAX_TUN_HDR_LEN 48
1703 
1704 netdev_features_t qede_features_check(struct sk_buff *skb,
1705                                       struct net_device *dev,
1706                                       netdev_features_t features)
1707 {
1708         if (skb->encapsulation) {
1709                 u8 l4_proto = 0;
1710 
1711                 switch (vlan_get_protocol(skb)) {
1712                 case htons(ETH_P_IP):
1713                         l4_proto = ip_hdr(skb)->protocol;
1714                         break;
1715                 case htons(ETH_P_IPV6):
1716                         l4_proto = ipv6_hdr(skb)->nexthdr;
1717                         break;
1718                 default:
1719                         return features;
1720                 }
1721 
1722                 /* Disable offloads for geneve tunnels, as HW can't parse
1723                  * the geneve header which has option length greater than 32b
1724                  * and disable offloads for the ports which are not offloaded.
1725                  */
1726                 if (l4_proto == IPPROTO_UDP) {
1727                         struct qede_dev *edev = netdev_priv(dev);
1728                         u16 hdrlen, vxln_port, gnv_port;
1729 
1730                         hdrlen = QEDE_MAX_TUN_HDR_LEN;
1731                         vxln_port = edev->vxlan_dst_port;
1732                         gnv_port = edev->geneve_dst_port;
1733 
1734                         if ((skb_inner_mac_header(skb) -
1735                              skb_transport_header(skb)) > hdrlen ||
1736                              (ntohs(udp_hdr(skb)->dest) != vxln_port &&
1737                               ntohs(udp_hdr(skb)->dest) != gnv_port))
1738                                 return features & ~(NETIF_F_CSUM_MASK |
1739                                                     NETIF_F_GSO_MASK);
1740                 }
1741         }
1742 
1743         return features;
1744 }

/* [<][>][^][v][top][bottom][index][help] */