root/drivers/net/ethernet/neterion/vxge/vxge-traffic.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. vxge_hw_vpath_intr_enable
  2. vxge_hw_vpath_intr_disable
  3. vxge_hw_vpath_tti_ci_set
  4. vxge_hw_vpath_dynamic_rti_ci_set
  5. vxge_hw_vpath_dynamic_tti_rtimer_set
  6. vxge_hw_vpath_dynamic_rti_rtimer_set
  7. vxge_hw_channel_msix_mask
  8. vxge_hw_channel_msix_unmask
  9. vxge_hw_channel_msix_clear
  10. vxge_hw_device_set_intr_type
  11. vxge_hw_device_intr_enable
  12. vxge_hw_device_intr_disable
  13. vxge_hw_device_mask_all
  14. vxge_hw_device_unmask_all
  15. vxge_hw_device_flush_io
  16. __vxge_hw_device_handle_error
  17. __vxge_hw_device_handle_link_down_ind
  18. __vxge_hw_device_handle_link_up_ind
  19. __vxge_hw_vpath_alarm_process
  20. vxge_hw_device_begin_irq
  21. vxge_hw_device_clear_tx_rx
  22. vxge_hw_channel_dtr_alloc
  23. vxge_hw_channel_dtr_post
  24. vxge_hw_channel_dtr_try_complete
  25. vxge_hw_channel_dtr_complete
  26. vxge_hw_channel_dtr_free
  27. vxge_hw_channel_dtr_count
  28. vxge_hw_ring_rxd_reserve
  29. vxge_hw_ring_rxd_free
  30. vxge_hw_ring_rxd_pre_post
  31. vxge_hw_ring_rxd_post_post
  32. vxge_hw_ring_rxd_post
  33. vxge_hw_ring_rxd_post_post_wmb
  34. vxge_hw_ring_rxd_next_completed
  35. vxge_hw_ring_handle_tcode
  36. __vxge_hw_non_offload_db_post
  37. vxge_hw_fifo_free_txdl_count_get
  38. vxge_hw_fifo_txdl_reserve
  39. vxge_hw_fifo_txdl_buffer_set
  40. vxge_hw_fifo_txdl_post
  41. vxge_hw_fifo_txdl_next_completed
  42. vxge_hw_fifo_handle_tcode
  43. vxge_hw_fifo_txdl_free
  44. vxge_hw_vpath_mac_addr_add
  45. vxge_hw_vpath_mac_addr_get
  46. vxge_hw_vpath_mac_addr_get_next
  47. vxge_hw_vpath_mac_addr_delete
  48. vxge_hw_vpath_vid_add
  49. vxge_hw_vpath_vid_delete
  50. vxge_hw_vpath_promisc_enable
  51. vxge_hw_vpath_promisc_disable
  52. vxge_hw_vpath_bcast_enable
  53. vxge_hw_vpath_mcast_enable
  54. vxge_hw_vpath_mcast_disable
  55. vxge_hw_vpath_alarm_process
  56. vxge_hw_vpath_msix_set
  57. vxge_hw_vpath_msix_mask
  58. vxge_hw_vpath_msix_clear
  59. vxge_hw_vpath_msix_unmask
  60. vxge_hw_vpath_inta_mask_tx_rx
  61. vxge_hw_vpath_inta_unmask_tx_rx
  62. vxge_hw_vpath_poll_rx
  63. vxge_hw_vpath_poll_tx

   1 /******************************************************************************
   2  * This software may be used and distributed according to the terms of
   3  * the GNU General Public License (GPL), incorporated herein by reference.
   4  * Drivers based on or derived from this code fall under the GPL and must
   5  * retain the authorship, copyright and license notice.  This file is not
   6  * a complete program and may only be used when the entire operating
   7  * system is licensed under the GPL.
   8  * See the file COPYING in this distribution for more information.
   9  *
  10  * vxge-traffic.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
  11  *                 Virtualized Server Adapter.
  12  * Copyright(c) 2002-2010 Exar Corp.
  13  ******************************************************************************/
  14 #include <linux/etherdevice.h>
  15 #include <linux/io-64-nonatomic-lo-hi.h>
  16 #include <linux/prefetch.h>
  17 
  18 #include "vxge-traffic.h"
  19 #include "vxge-config.h"
  20 #include "vxge-main.h"
  21 
  22 /*
  23  * vxge_hw_vpath_intr_enable - Enable vpath interrupts.
  24  * @vp: Virtual Path handle.
  25  *
  26  * Enable vpath interrupts. The function is to be executed the last in
  27  * vpath initialization sequence.
  28  *
  29  * See also: vxge_hw_vpath_intr_disable()
  30  */
  31 enum vxge_hw_status vxge_hw_vpath_intr_enable(struct __vxge_hw_vpath_handle *vp)
  32 {
  33         u64 val64;
  34 
  35         struct __vxge_hw_virtualpath *vpath;
  36         struct vxge_hw_vpath_reg __iomem *vp_reg;
  37         enum vxge_hw_status status = VXGE_HW_OK;
  38         if (vp == NULL) {
  39                 status = VXGE_HW_ERR_INVALID_HANDLE;
  40                 goto exit;
  41         }
  42 
  43         vpath = vp->vpath;
  44 
  45         if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
  46                 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
  47                 goto exit;
  48         }
  49 
  50         vp_reg = vpath->vp_reg;
  51 
  52         writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_reg);
  53 
  54         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  55                         &vp_reg->general_errors_reg);
  56 
  57         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  58                         &vp_reg->pci_config_errors_reg);
  59 
  60         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  61                         &vp_reg->mrpcim_to_vpath_alarm_reg);
  62 
  63         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  64                         &vp_reg->srpcim_to_vpath_alarm_reg);
  65 
  66         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  67                         &vp_reg->vpath_ppif_int_status);
  68 
  69         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  70                         &vp_reg->srpcim_msg_to_vpath_reg);
  71 
  72         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  73                         &vp_reg->vpath_pcipif_int_status);
  74 
  75         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  76                         &vp_reg->prc_alarm_reg);
  77 
  78         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  79                         &vp_reg->wrdma_alarm_status);
  80 
  81         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  82                         &vp_reg->asic_ntwk_vp_err_reg);
  83 
  84         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  85                         &vp_reg->xgmac_vp_int_status);
  86 
  87         val64 = readq(&vp_reg->vpath_general_int_status);
  88 
  89         /* Mask unwanted interrupts */
  90 
  91         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  92                         &vp_reg->vpath_pcipif_int_mask);
  93 
  94         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  95                         &vp_reg->srpcim_msg_to_vpath_mask);
  96 
  97         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  98                         &vp_reg->srpcim_to_vpath_alarm_mask);
  99 
 100         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 101                         &vp_reg->mrpcim_to_vpath_alarm_mask);
 102 
 103         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 104                         &vp_reg->pci_config_errors_mask);
 105 
 106         /* Unmask the individual interrupts */
 107 
 108         writeq((u32)vxge_bVALn((VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO1_OVRFLOW|
 109                 VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO2_OVRFLOW|
 110                 VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ|
 111                 VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR), 0, 32),
 112                 &vp_reg->general_errors_mask);
 113 
 114         __vxge_hw_pio_mem_write32_upper(
 115                 (u32)vxge_bVALn((VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_OVRWR|
 116                 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_OVRWR|
 117                 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_POISON|
 118                 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_POISON|
 119                 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_DMA_ERR|
 120                 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_DMA_ERR), 0, 32),
 121                 &vp_reg->kdfcctl_errors_mask);
 122 
 123         __vxge_hw_pio_mem_write32_upper(0, &vp_reg->vpath_ppif_int_mask);
 124 
 125         __vxge_hw_pio_mem_write32_upper(
 126                 (u32)vxge_bVALn(VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP, 0, 32),
 127                 &vp_reg->prc_alarm_mask);
 128 
 129         __vxge_hw_pio_mem_write32_upper(0, &vp_reg->wrdma_alarm_mask);
 130         __vxge_hw_pio_mem_write32_upper(0, &vp_reg->xgmac_vp_int_mask);
 131 
 132         if (vpath->hldev->first_vp_id != vpath->vp_id)
 133                 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 134                         &vp_reg->asic_ntwk_vp_err_mask);
 135         else
 136                 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn((
 137                 VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_FAULT |
 138                 VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_OK), 0, 32),
 139                 &vp_reg->asic_ntwk_vp_err_mask);
 140 
 141         __vxge_hw_pio_mem_write32_upper(0,
 142                 &vp_reg->vpath_general_int_mask);
 143 exit:
 144         return status;
 145 
 146 }
 147 
 148 /*
 149  * vxge_hw_vpath_intr_disable - Disable vpath interrupts.
 150  * @vp: Virtual Path handle.
 151  *
 152  * Disable vpath interrupts. The function is to be executed the last in
 153  * vpath initialization sequence.
 154  *
 155  * See also: vxge_hw_vpath_intr_enable()
 156  */
 157 enum vxge_hw_status vxge_hw_vpath_intr_disable(
 158                         struct __vxge_hw_vpath_handle *vp)
 159 {
 160         u64 val64;
 161 
 162         struct __vxge_hw_virtualpath *vpath;
 163         enum vxge_hw_status status = VXGE_HW_OK;
 164         struct vxge_hw_vpath_reg __iomem *vp_reg;
 165         if (vp == NULL) {
 166                 status = VXGE_HW_ERR_INVALID_HANDLE;
 167                 goto exit;
 168         }
 169 
 170         vpath = vp->vpath;
 171 
 172         if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
 173                 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
 174                 goto exit;
 175         }
 176         vp_reg = vpath->vp_reg;
 177 
 178         __vxge_hw_pio_mem_write32_upper(
 179                 (u32)VXGE_HW_INTR_MASK_ALL,
 180                 &vp_reg->vpath_general_int_mask);
 181 
 182         val64 = VXGE_HW_TIM_CLR_INT_EN_VP(1 << (16 - vpath->vp_id));
 183 
 184         writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_mask);
 185 
 186         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 187                         &vp_reg->general_errors_mask);
 188 
 189         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 190                         &vp_reg->pci_config_errors_mask);
 191 
 192         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 193                         &vp_reg->mrpcim_to_vpath_alarm_mask);
 194 
 195         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 196                         &vp_reg->srpcim_to_vpath_alarm_mask);
 197 
 198         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 199                         &vp_reg->vpath_ppif_int_mask);
 200 
 201         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 202                         &vp_reg->srpcim_msg_to_vpath_mask);
 203 
 204         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 205                         &vp_reg->vpath_pcipif_int_mask);
 206 
 207         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 208                         &vp_reg->wrdma_alarm_mask);
 209 
 210         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 211                         &vp_reg->prc_alarm_mask);
 212 
 213         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 214                         &vp_reg->xgmac_vp_int_mask);
 215 
 216         __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
 217                         &vp_reg->asic_ntwk_vp_err_mask);
 218 
 219 exit:
 220         return status;
 221 }
 222 
 223 void vxge_hw_vpath_tti_ci_set(struct __vxge_hw_fifo *fifo)
 224 {
 225         struct vxge_hw_vpath_reg __iomem *vp_reg;
 226         struct vxge_hw_vp_config *config;
 227         u64 val64;
 228 
 229         if (fifo->config->enable != VXGE_HW_FIFO_ENABLE)
 230                 return;
 231 
 232         vp_reg = fifo->vp_reg;
 233         config = container_of(fifo->config, struct vxge_hw_vp_config, fifo);
 234 
 235         if (config->tti.timer_ci_en != VXGE_HW_TIM_TIMER_CI_ENABLE) {
 236                 config->tti.timer_ci_en = VXGE_HW_TIM_TIMER_CI_ENABLE;
 237                 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
 238                 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
 239                 fifo->tim_tti_cfg1_saved = val64;
 240                 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
 241         }
 242 }
 243 
 244 void vxge_hw_vpath_dynamic_rti_ci_set(struct __vxge_hw_ring *ring)
 245 {
 246         u64 val64 = ring->tim_rti_cfg1_saved;
 247 
 248         val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
 249         ring->tim_rti_cfg1_saved = val64;
 250         writeq(val64, &ring->vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
 251 }
 252 
 253 void vxge_hw_vpath_dynamic_tti_rtimer_set(struct __vxge_hw_fifo *fifo)
 254 {
 255         u64 val64 = fifo->tim_tti_cfg3_saved;
 256         u64 timer = (fifo->rtimer * 1000) / 272;
 257 
 258         val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff);
 259         if (timer)
 260                 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer) |
 261                         VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(5);
 262 
 263         writeq(val64, &fifo->vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
 264         /* tti_cfg3_saved is not updated again because it is
 265          * initialized at one place only - init time.
 266          */
 267 }
 268 
 269 void vxge_hw_vpath_dynamic_rti_rtimer_set(struct __vxge_hw_ring *ring)
 270 {
 271         u64 val64 = ring->tim_rti_cfg3_saved;
 272         u64 timer = (ring->rtimer * 1000) / 272;
 273 
 274         val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff);
 275         if (timer)
 276                 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer) |
 277                         VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(4);
 278 
 279         writeq(val64, &ring->vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
 280         /* rti_cfg3_saved is not updated again because it is
 281          * initialized at one place only - init time.
 282          */
 283 }
 284 
 285 /**
 286  * vxge_hw_channel_msix_mask - Mask MSIX Vector.
 287  * @channeh: Channel for rx or tx handle
 288  * @msix_id:  MSIX ID
 289  *
 290  * The function masks the msix interrupt for the given msix_id
 291  *
 292  * Returns: 0
 293  */
 294 void vxge_hw_channel_msix_mask(struct __vxge_hw_channel *channel, int msix_id)
 295 {
 296 
 297         __vxge_hw_pio_mem_write32_upper(
 298                 (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
 299                 &channel->common_reg->set_msix_mask_vect[msix_id%4]);
 300 }
 301 
 302 /**
 303  * vxge_hw_channel_msix_unmask - Unmask the MSIX Vector.
 304  * @channeh: Channel for rx or tx handle
 305  * @msix_id:  MSI ID
 306  *
 307  * The function unmasks the msix interrupt for the given msix_id
 308  *
 309  * Returns: 0
 310  */
 311 void
 312 vxge_hw_channel_msix_unmask(struct __vxge_hw_channel *channel, int msix_id)
 313 {
 314 
 315         __vxge_hw_pio_mem_write32_upper(
 316                 (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
 317                 &channel->common_reg->clear_msix_mask_vect[msix_id%4]);
 318 }
 319 
 320 /**
 321  * vxge_hw_channel_msix_clear - Unmask the MSIX Vector.
 322  * @channel: Channel for rx or tx handle
 323  * @msix_id:  MSI ID
 324  *
 325  * The function unmasks the msix interrupt for the given msix_id
 326  * if configured in MSIX oneshot mode
 327  *
 328  * Returns: 0
 329  */
 330 void vxge_hw_channel_msix_clear(struct __vxge_hw_channel *channel, int msix_id)
 331 {
 332         __vxge_hw_pio_mem_write32_upper(
 333                 (u32) vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
 334                 &channel->common_reg->clr_msix_one_shot_vec[msix_id % 4]);
 335 }
 336 
 337 /**
 338  * vxge_hw_device_set_intr_type - Updates the configuration
 339  *              with new interrupt type.
 340  * @hldev: HW device handle.
 341  * @intr_mode: New interrupt type
 342  */
 343 u32 vxge_hw_device_set_intr_type(struct __vxge_hw_device *hldev, u32 intr_mode)
 344 {
 345 
 346         if ((intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
 347            (intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
 348            (intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
 349            (intr_mode != VXGE_HW_INTR_MODE_DEF))
 350                 intr_mode = VXGE_HW_INTR_MODE_IRQLINE;
 351 
 352         hldev->config.intr_mode = intr_mode;
 353         return intr_mode;
 354 }
 355 
 356 /**
 357  * vxge_hw_device_intr_enable - Enable interrupts.
 358  * @hldev: HW device handle.
 359  * @op: One of the enum vxge_hw_device_intr enumerated values specifying
 360  *      the type(s) of interrupts to enable.
 361  *
 362  * Enable Titan interrupts. The function is to be executed the last in
 363  * Titan initialization sequence.
 364  *
 365  * See also: vxge_hw_device_intr_disable()
 366  */
 367 void vxge_hw_device_intr_enable(struct __vxge_hw_device *hldev)
 368 {
 369         u32 i;
 370         u64 val64;
 371         u32 val32;
 372 
 373         vxge_hw_device_mask_all(hldev);
 374 
 375         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
 376 
 377                 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
 378                         continue;
 379 
 380                 vxge_hw_vpath_intr_enable(
 381                         VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
 382         }
 383 
 384         if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE) {
 385                 val64 = hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
 386                         hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX];
 387 
 388                 if (val64 != 0) {
 389                         writeq(val64, &hldev->common_reg->tim_int_status0);
 390 
 391                         writeq(~val64, &hldev->common_reg->tim_int_mask0);
 392                 }
 393 
 394                 val32 = hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
 395                         hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX];
 396 
 397                 if (val32 != 0) {
 398                         __vxge_hw_pio_mem_write32_upper(val32,
 399                                         &hldev->common_reg->tim_int_status1);
 400 
 401                         __vxge_hw_pio_mem_write32_upper(~val32,
 402                                         &hldev->common_reg->tim_int_mask1);
 403                 }
 404         }
 405 
 406         val64 = readq(&hldev->common_reg->titan_general_int_status);
 407 
 408         vxge_hw_device_unmask_all(hldev);
 409 }
 410 
 411 /**
 412  * vxge_hw_device_intr_disable - Disable Titan interrupts.
 413  * @hldev: HW device handle.
 414  * @op: One of the enum vxge_hw_device_intr enumerated values specifying
 415  *      the type(s) of interrupts to disable.
 416  *
 417  * Disable Titan interrupts.
 418  *
 419  * See also: vxge_hw_device_intr_enable()
 420  */
 421 void vxge_hw_device_intr_disable(struct __vxge_hw_device *hldev)
 422 {
 423         u32 i;
 424 
 425         vxge_hw_device_mask_all(hldev);
 426 
 427         /* mask all the tim interrupts */
 428         writeq(VXGE_HW_INTR_MASK_ALL, &hldev->common_reg->tim_int_mask0);
 429         __vxge_hw_pio_mem_write32_upper(VXGE_HW_DEFAULT_32,
 430                 &hldev->common_reg->tim_int_mask1);
 431 
 432         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
 433 
 434                 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
 435                         continue;
 436 
 437                 vxge_hw_vpath_intr_disable(
 438                         VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
 439         }
 440 }
 441 
 442 /**
 443  * vxge_hw_device_mask_all - Mask all device interrupts.
 444  * @hldev: HW device handle.
 445  *
 446  * Mask all device interrupts.
 447  *
 448  * See also: vxge_hw_device_unmask_all()
 449  */
 450 void vxge_hw_device_mask_all(struct __vxge_hw_device *hldev)
 451 {
 452         u64 val64;
 453 
 454         val64 = VXGE_HW_TITAN_MASK_ALL_INT_ALARM |
 455                 VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
 456 
 457         __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
 458                                 &hldev->common_reg->titan_mask_all_int);
 459 }
 460 
 461 /**
 462  * vxge_hw_device_unmask_all - Unmask all device interrupts.
 463  * @hldev: HW device handle.
 464  *
 465  * Unmask all device interrupts.
 466  *
 467  * See also: vxge_hw_device_mask_all()
 468  */
 469 void vxge_hw_device_unmask_all(struct __vxge_hw_device *hldev)
 470 {
 471         u64 val64 = 0;
 472 
 473         if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE)
 474                 val64 =  VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
 475 
 476         __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
 477                         &hldev->common_reg->titan_mask_all_int);
 478 }
 479 
 480 /**
 481  * vxge_hw_device_flush_io - Flush io writes.
 482  * @hldev: HW device handle.
 483  *
 484  * The function performs a read operation to flush io writes.
 485  *
 486  * Returns: void
 487  */
 488 void vxge_hw_device_flush_io(struct __vxge_hw_device *hldev)
 489 {
 490         u32 val32;
 491 
 492         val32 = readl(&hldev->common_reg->titan_general_int_status);
 493 }
 494 
 495 /**
 496  * __vxge_hw_device_handle_error - Handle error
 497  * @hldev: HW device
 498  * @vp_id: Vpath Id
 499  * @type: Error type. Please see enum vxge_hw_event{}
 500  *
 501  * Handle error.
 502  */
 503 static enum vxge_hw_status
 504 __vxge_hw_device_handle_error(struct __vxge_hw_device *hldev, u32 vp_id,
 505                               enum vxge_hw_event type)
 506 {
 507         switch (type) {
 508         case VXGE_HW_EVENT_UNKNOWN:
 509                 break;
 510         case VXGE_HW_EVENT_RESET_START:
 511         case VXGE_HW_EVENT_RESET_COMPLETE:
 512         case VXGE_HW_EVENT_LINK_DOWN:
 513         case VXGE_HW_EVENT_LINK_UP:
 514                 goto out;
 515         case VXGE_HW_EVENT_ALARM_CLEARED:
 516                 goto out;
 517         case VXGE_HW_EVENT_ECCERR:
 518         case VXGE_HW_EVENT_MRPCIM_ECCERR:
 519                 goto out;
 520         case VXGE_HW_EVENT_FIFO_ERR:
 521         case VXGE_HW_EVENT_VPATH_ERR:
 522         case VXGE_HW_EVENT_CRITICAL_ERR:
 523         case VXGE_HW_EVENT_SERR:
 524                 break;
 525         case VXGE_HW_EVENT_SRPCIM_SERR:
 526         case VXGE_HW_EVENT_MRPCIM_SERR:
 527                 goto out;
 528         case VXGE_HW_EVENT_SLOT_FREEZE:
 529                 break;
 530         default:
 531                 vxge_assert(0);
 532                 goto out;
 533         }
 534 
 535         /* notify driver */
 536         if (hldev->uld_callbacks->crit_err)
 537                 hldev->uld_callbacks->crit_err(hldev,
 538                         type, vp_id);
 539 out:
 540 
 541         return VXGE_HW_OK;
 542 }
 543 
 544 /*
 545  * __vxge_hw_device_handle_link_down_ind
 546  * @hldev: HW device handle.
 547  *
 548  * Link down indication handler. The function is invoked by HW when
 549  * Titan indicates that the link is down.
 550  */
 551 static enum vxge_hw_status
 552 __vxge_hw_device_handle_link_down_ind(struct __vxge_hw_device *hldev)
 553 {
 554         /*
 555          * If the previous link state is not down, return.
 556          */
 557         if (hldev->link_state == VXGE_HW_LINK_DOWN)
 558                 goto exit;
 559 
 560         hldev->link_state = VXGE_HW_LINK_DOWN;
 561 
 562         /* notify driver */
 563         if (hldev->uld_callbacks->link_down)
 564                 hldev->uld_callbacks->link_down(hldev);
 565 exit:
 566         return VXGE_HW_OK;
 567 }
 568 
 569 /*
 570  * __vxge_hw_device_handle_link_up_ind
 571  * @hldev: HW device handle.
 572  *
 573  * Link up indication handler. The function is invoked by HW when
 574  * Titan indicates that the link is up for programmable amount of time.
 575  */
 576 static enum vxge_hw_status
 577 __vxge_hw_device_handle_link_up_ind(struct __vxge_hw_device *hldev)
 578 {
 579         /*
 580          * If the previous link state is not down, return.
 581          */
 582         if (hldev->link_state == VXGE_HW_LINK_UP)
 583                 goto exit;
 584 
 585         hldev->link_state = VXGE_HW_LINK_UP;
 586 
 587         /* notify driver */
 588         if (hldev->uld_callbacks->link_up)
 589                 hldev->uld_callbacks->link_up(hldev);
 590 exit:
 591         return VXGE_HW_OK;
 592 }
 593 
 594 /*
 595  * __vxge_hw_vpath_alarm_process - Process Alarms.
 596  * @vpath: Virtual Path.
 597  * @skip_alarms: Do not clear the alarms
 598  *
 599  * Process vpath alarms.
 600  *
 601  */
 602 static enum vxge_hw_status
 603 __vxge_hw_vpath_alarm_process(struct __vxge_hw_virtualpath *vpath,
 604                               u32 skip_alarms)
 605 {
 606         u64 val64;
 607         u64 alarm_status;
 608         u64 pic_status;
 609         struct __vxge_hw_device *hldev = NULL;
 610         enum vxge_hw_event alarm_event = VXGE_HW_EVENT_UNKNOWN;
 611         u64 mask64;
 612         struct vxge_hw_vpath_stats_sw_info *sw_stats;
 613         struct vxge_hw_vpath_reg __iomem *vp_reg;
 614 
 615         if (vpath == NULL) {
 616                 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
 617                         alarm_event);
 618                 goto out2;
 619         }
 620 
 621         hldev = vpath->hldev;
 622         vp_reg = vpath->vp_reg;
 623         alarm_status = readq(&vp_reg->vpath_general_int_status);
 624 
 625         if (alarm_status == VXGE_HW_ALL_FOXES) {
 626                 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_SLOT_FREEZE,
 627                         alarm_event);
 628                 goto out;
 629         }
 630 
 631         sw_stats = vpath->sw_stats;
 632 
 633         if (alarm_status & ~(
 634                 VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT |
 635                 VXGE_HW_VPATH_GENERAL_INT_STATUS_PCI_INT |
 636                 VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT |
 637                 VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT)) {
 638                 sw_stats->error_stats.unknown_alarms++;
 639 
 640                 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
 641                         alarm_event);
 642                 goto out;
 643         }
 644 
 645         if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT) {
 646 
 647                 val64 = readq(&vp_reg->xgmac_vp_int_status);
 648 
 649                 if (val64 &
 650                 VXGE_HW_XGMAC_VP_INT_STATUS_ASIC_NTWK_VP_ERR_ASIC_NTWK_VP_INT) {
 651 
 652                         val64 = readq(&vp_reg->asic_ntwk_vp_err_reg);
 653 
 654                         if (((val64 &
 655                               VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT) &&
 656                              (!(val64 &
 657                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK))) ||
 658                             ((val64 &
 659                              VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR) &&
 660                              (!(val64 &
 661                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR)
 662                                      ))) {
 663                                 sw_stats->error_stats.network_sustained_fault++;
 664 
 665                                 writeq(
 666                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT,
 667                                         &vp_reg->asic_ntwk_vp_err_mask);
 668 
 669                                 __vxge_hw_device_handle_link_down_ind(hldev);
 670                                 alarm_event = VXGE_HW_SET_LEVEL(
 671                                         VXGE_HW_EVENT_LINK_DOWN, alarm_event);
 672                         }
 673 
 674                         if (((val64 &
 675                               VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK) &&
 676                              (!(val64 &
 677                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT))) ||
 678                             ((val64 &
 679                               VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR) &&
 680                              (!(val64 &
 681                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR)
 682                                      ))) {
 683 
 684                                 sw_stats->error_stats.network_sustained_ok++;
 685 
 686                                 writeq(
 687                                 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK,
 688                                         &vp_reg->asic_ntwk_vp_err_mask);
 689 
 690                                 __vxge_hw_device_handle_link_up_ind(hldev);
 691                                 alarm_event = VXGE_HW_SET_LEVEL(
 692                                         VXGE_HW_EVENT_LINK_UP, alarm_event);
 693                         }
 694 
 695                         writeq(VXGE_HW_INTR_MASK_ALL,
 696                                 &vp_reg->asic_ntwk_vp_err_reg);
 697 
 698                         alarm_event = VXGE_HW_SET_LEVEL(
 699                                 VXGE_HW_EVENT_ALARM_CLEARED, alarm_event);
 700 
 701                         if (skip_alarms)
 702                                 return VXGE_HW_OK;
 703                 }
 704         }
 705 
 706         if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT) {
 707 
 708                 pic_status = readq(&vp_reg->vpath_ppif_int_status);
 709 
 710                 if (pic_status &
 711                     VXGE_HW_VPATH_PPIF_INT_STATUS_GENERAL_ERRORS_GENERAL_INT) {
 712 
 713                         val64 = readq(&vp_reg->general_errors_reg);
 714                         mask64 = readq(&vp_reg->general_errors_mask);
 715 
 716                         if ((val64 &
 717                                 VXGE_HW_GENERAL_ERRORS_REG_INI_SERR_DET) &
 718                                 ~mask64) {
 719                                 sw_stats->error_stats.ini_serr_det++;
 720 
 721                                 alarm_event = VXGE_HW_SET_LEVEL(
 722                                         VXGE_HW_EVENT_SERR, alarm_event);
 723                         }
 724 
 725                         if ((val64 &
 726                             VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO0_OVRFLOW) &
 727                                 ~mask64) {
 728                                 sw_stats->error_stats.dblgen_fifo0_overflow++;
 729 
 730                                 alarm_event = VXGE_HW_SET_LEVEL(
 731                                         VXGE_HW_EVENT_FIFO_ERR, alarm_event);
 732                         }
 733 
 734                         if ((val64 &
 735                             VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR) &
 736                                 ~mask64)
 737                                 sw_stats->error_stats.statsb_pif_chain_error++;
 738 
 739                         if ((val64 &
 740                            VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ) &
 741                                 ~mask64)
 742                                 sw_stats->error_stats.statsb_drop_timeout++;
 743 
 744                         if ((val64 &
 745                                 VXGE_HW_GENERAL_ERRORS_REG_TGT_ILLEGAL_ACCESS) &
 746                                 ~mask64)
 747                                 sw_stats->error_stats.target_illegal_access++;
 748 
 749                         if (!skip_alarms) {
 750                                 writeq(VXGE_HW_INTR_MASK_ALL,
 751                                         &vp_reg->general_errors_reg);
 752                                 alarm_event = VXGE_HW_SET_LEVEL(
 753                                         VXGE_HW_EVENT_ALARM_CLEARED,
 754                                         alarm_event);
 755                         }
 756                 }
 757 
 758                 if (pic_status &
 759                     VXGE_HW_VPATH_PPIF_INT_STATUS_KDFCCTL_ERRORS_KDFCCTL_INT) {
 760 
 761                         val64 = readq(&vp_reg->kdfcctl_errors_reg);
 762                         mask64 = readq(&vp_reg->kdfcctl_errors_mask);
 763 
 764                         if ((val64 &
 765                             VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_OVRWR) &
 766                                 ~mask64) {
 767                                 sw_stats->error_stats.kdfcctl_fifo0_overwrite++;
 768 
 769                                 alarm_event = VXGE_HW_SET_LEVEL(
 770                                         VXGE_HW_EVENT_FIFO_ERR,
 771                                         alarm_event);
 772                         }
 773 
 774                         if ((val64 &
 775                             VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_POISON) &
 776                                 ~mask64) {
 777                                 sw_stats->error_stats.kdfcctl_fifo0_poison++;
 778 
 779                                 alarm_event = VXGE_HW_SET_LEVEL(
 780                                         VXGE_HW_EVENT_FIFO_ERR,
 781                                         alarm_event);
 782                         }
 783 
 784                         if ((val64 &
 785                             VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_DMA_ERR) &
 786                                 ~mask64) {
 787                                 sw_stats->error_stats.kdfcctl_fifo0_dma_error++;
 788 
 789                                 alarm_event = VXGE_HW_SET_LEVEL(
 790                                         VXGE_HW_EVENT_FIFO_ERR,
 791                                         alarm_event);
 792                         }
 793 
 794                         if (!skip_alarms) {
 795                                 writeq(VXGE_HW_INTR_MASK_ALL,
 796                                         &vp_reg->kdfcctl_errors_reg);
 797                                 alarm_event = VXGE_HW_SET_LEVEL(
 798                                         VXGE_HW_EVENT_ALARM_CLEARED,
 799                                         alarm_event);
 800                         }
 801                 }
 802 
 803         }
 804 
 805         if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT) {
 806 
 807                 val64 = readq(&vp_reg->wrdma_alarm_status);
 808 
 809                 if (val64 & VXGE_HW_WRDMA_ALARM_STATUS_PRC_ALARM_PRC_INT) {
 810 
 811                         val64 = readq(&vp_reg->prc_alarm_reg);
 812                         mask64 = readq(&vp_reg->prc_alarm_mask);
 813 
 814                         if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP)&
 815                                 ~mask64)
 816                                 sw_stats->error_stats.prc_ring_bumps++;
 817 
 818                         if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ERR) &
 819                                 ~mask64) {
 820                                 sw_stats->error_stats.prc_rxdcm_sc_err++;
 821 
 822                                 alarm_event = VXGE_HW_SET_LEVEL(
 823                                         VXGE_HW_EVENT_VPATH_ERR,
 824                                         alarm_event);
 825                         }
 826 
 827                         if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ABORT)
 828                                 & ~mask64) {
 829                                 sw_stats->error_stats.prc_rxdcm_sc_abort++;
 830 
 831                                 alarm_event = VXGE_HW_SET_LEVEL(
 832                                                 VXGE_HW_EVENT_VPATH_ERR,
 833                                                 alarm_event);
 834                         }
 835 
 836                         if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_QUANTA_SIZE_ERR)
 837                                  & ~mask64) {
 838                                 sw_stats->error_stats.prc_quanta_size_err++;
 839 
 840                                 alarm_event = VXGE_HW_SET_LEVEL(
 841                                         VXGE_HW_EVENT_VPATH_ERR,
 842                                         alarm_event);
 843                         }
 844 
 845                         if (!skip_alarms) {
 846                                 writeq(VXGE_HW_INTR_MASK_ALL,
 847                                         &vp_reg->prc_alarm_reg);
 848                                 alarm_event = VXGE_HW_SET_LEVEL(
 849                                                 VXGE_HW_EVENT_ALARM_CLEARED,
 850                                                 alarm_event);
 851                         }
 852                 }
 853         }
 854 out:
 855         hldev->stats.sw_dev_err_stats.vpath_alarms++;
 856 out2:
 857         if ((alarm_event == VXGE_HW_EVENT_ALARM_CLEARED) ||
 858                 (alarm_event == VXGE_HW_EVENT_UNKNOWN))
 859                 return VXGE_HW_OK;
 860 
 861         __vxge_hw_device_handle_error(hldev, vpath->vp_id, alarm_event);
 862 
 863         if (alarm_event == VXGE_HW_EVENT_SERR)
 864                 return VXGE_HW_ERR_CRITICAL;
 865 
 866         return (alarm_event == VXGE_HW_EVENT_SLOT_FREEZE) ?
 867                 VXGE_HW_ERR_SLOT_FREEZE :
 868                 (alarm_event == VXGE_HW_EVENT_FIFO_ERR) ? VXGE_HW_ERR_FIFO :
 869                 VXGE_HW_ERR_VPATH;
 870 }
 871 
 872 /**
 873  * vxge_hw_device_begin_irq - Begin IRQ processing.
 874  * @hldev: HW device handle.
 875  * @skip_alarms: Do not clear the alarms
 876  * @reason: "Reason" for the interrupt, the value of Titan's
 877  *      general_int_status register.
 878  *
 879  * The function performs two actions, It first checks whether (shared IRQ) the
 880  * interrupt was raised by the device. Next, it masks the device interrupts.
 881  *
 882  * Note:
 883  * vxge_hw_device_begin_irq() does not flush MMIO writes through the
 884  * bridge. Therefore, two back-to-back interrupts are potentially possible.
 885  *
 886  * Returns: 0, if the interrupt is not "ours" (note that in this case the
 887  * device remain enabled).
 888  * Otherwise, vxge_hw_device_begin_irq() returns 64bit general adapter
 889  * status.
 890  */
 891 enum vxge_hw_status vxge_hw_device_begin_irq(struct __vxge_hw_device *hldev,
 892                                              u32 skip_alarms, u64 *reason)
 893 {
 894         u32 i;
 895         u64 val64;
 896         u64 adapter_status;
 897         u64 vpath_mask;
 898         enum vxge_hw_status ret = VXGE_HW_OK;
 899 
 900         val64 = readq(&hldev->common_reg->titan_general_int_status);
 901 
 902         if (unlikely(!val64)) {
 903                 /* not Titan interrupt  */
 904                 *reason = 0;
 905                 ret = VXGE_HW_ERR_WRONG_IRQ;
 906                 goto exit;
 907         }
 908 
 909         if (unlikely(val64 == VXGE_HW_ALL_FOXES)) {
 910 
 911                 adapter_status = readq(&hldev->common_reg->adapter_status);
 912 
 913                 if (adapter_status == VXGE_HW_ALL_FOXES) {
 914 
 915                         __vxge_hw_device_handle_error(hldev,
 916                                 NULL_VPID, VXGE_HW_EVENT_SLOT_FREEZE);
 917                         *reason = 0;
 918                         ret = VXGE_HW_ERR_SLOT_FREEZE;
 919                         goto exit;
 920                 }
 921         }
 922 
 923         hldev->stats.sw_dev_info_stats.total_intr_cnt++;
 924 
 925         *reason = val64;
 926 
 927         vpath_mask = hldev->vpaths_deployed >>
 928                                 (64 - VXGE_HW_MAX_VIRTUAL_PATHS);
 929 
 930         if (val64 &
 931             VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(vpath_mask)) {
 932                 hldev->stats.sw_dev_info_stats.traffic_intr_cnt++;
 933 
 934                 return VXGE_HW_OK;
 935         }
 936 
 937         hldev->stats.sw_dev_info_stats.not_traffic_intr_cnt++;
 938 
 939         if (unlikely(val64 &
 940                         VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_ALARM_INT)) {
 941 
 942                 enum vxge_hw_status error_level = VXGE_HW_OK;
 943 
 944                 hldev->stats.sw_dev_err_stats.vpath_alarms++;
 945 
 946                 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
 947 
 948                         if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
 949                                 continue;
 950 
 951                         ret = __vxge_hw_vpath_alarm_process(
 952                                 &hldev->virtual_paths[i], skip_alarms);
 953 
 954                         error_level = VXGE_HW_SET_LEVEL(ret, error_level);
 955 
 956                         if (unlikely((ret == VXGE_HW_ERR_CRITICAL) ||
 957                                 (ret == VXGE_HW_ERR_SLOT_FREEZE)))
 958                                 break;
 959                 }
 960 
 961                 ret = error_level;
 962         }
 963 exit:
 964         return ret;
 965 }
 966 
 967 /**
 968  * vxge_hw_device_clear_tx_rx - Acknowledge (that is, clear) the
 969  * condition that has caused the Tx and RX interrupt.
 970  * @hldev: HW device.
 971  *
 972  * Acknowledge (that is, clear) the condition that has caused
 973  * the Tx and Rx interrupt.
 974  * See also: vxge_hw_device_begin_irq(),
 975  * vxge_hw_device_mask_tx_rx(), vxge_hw_device_unmask_tx_rx().
 976  */
 977 void vxge_hw_device_clear_tx_rx(struct __vxge_hw_device *hldev)
 978 {
 979 
 980         if ((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
 981            (hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
 982                 writeq((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
 983                                  hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX]),
 984                                 &hldev->common_reg->tim_int_status0);
 985         }
 986 
 987         if ((hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
 988            (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
 989                 __vxge_hw_pio_mem_write32_upper(
 990                                 (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
 991                                  hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX]),
 992                                 &hldev->common_reg->tim_int_status1);
 993         }
 994 }
 995 
 996 /*
 997  * vxge_hw_channel_dtr_alloc - Allocate a dtr from the channel
 998  * @channel: Channel
 999  * @dtrh: Buffer to return the DTR pointer
1000  *
1001  * Allocates a dtr from the reserve array. If the reserve array is empty,
1002  * it swaps the reserve and free arrays.
1003  *
1004  */
1005 static enum vxge_hw_status
1006 vxge_hw_channel_dtr_alloc(struct __vxge_hw_channel *channel, void **dtrh)
1007 {
1008         if (channel->reserve_ptr - channel->reserve_top > 0) {
1009 _alloc_after_swap:
1010                 *dtrh = channel->reserve_arr[--channel->reserve_ptr];
1011 
1012                 return VXGE_HW_OK;
1013         }
1014 
1015         /* switch between empty and full arrays */
1016 
1017         /* the idea behind such a design is that by having free and reserved
1018          * arrays separated we basically separated irq and non-irq parts.
1019          * i.e. no additional lock need to be done when we free a resource */
1020 
1021         if (channel->length - channel->free_ptr > 0) {
1022                 swap(channel->reserve_arr, channel->free_arr);
1023                 channel->reserve_ptr = channel->length;
1024                 channel->reserve_top = channel->free_ptr;
1025                 channel->free_ptr = channel->length;
1026 
1027                 channel->stats->reserve_free_swaps_cnt++;
1028 
1029                 goto _alloc_after_swap;
1030         }
1031 
1032         channel->stats->full_cnt++;
1033 
1034         *dtrh = NULL;
1035         return VXGE_HW_INF_OUT_OF_DESCRIPTORS;
1036 }
1037 
1038 /*
1039  * vxge_hw_channel_dtr_post - Post a dtr to the channel
1040  * @channelh: Channel
1041  * @dtrh: DTR pointer
1042  *
1043  * Posts a dtr to work array.
1044  *
1045  */
1046 static void
1047 vxge_hw_channel_dtr_post(struct __vxge_hw_channel *channel, void *dtrh)
1048 {
1049         vxge_assert(channel->work_arr[channel->post_index] == NULL);
1050 
1051         channel->work_arr[channel->post_index++] = dtrh;
1052 
1053         /* wrap-around */
1054         if (channel->post_index == channel->length)
1055                 channel->post_index = 0;
1056 }
1057 
1058 /*
1059  * vxge_hw_channel_dtr_try_complete - Returns next completed dtr
1060  * @channel: Channel
1061  * @dtr: Buffer to return the next completed DTR pointer
1062  *
1063  * Returns the next completed dtr with out removing it from work array
1064  *
1065  */
1066 void
1067 vxge_hw_channel_dtr_try_complete(struct __vxge_hw_channel *channel, void **dtrh)
1068 {
1069         vxge_assert(channel->compl_index < channel->length);
1070 
1071         *dtrh = channel->work_arr[channel->compl_index];
1072         prefetch(*dtrh);
1073 }
1074 
1075 /*
1076  * vxge_hw_channel_dtr_complete - Removes next completed dtr from the work array
1077  * @channel: Channel handle
1078  *
1079  * Removes the next completed dtr from work array
1080  *
1081  */
1082 void vxge_hw_channel_dtr_complete(struct __vxge_hw_channel *channel)
1083 {
1084         channel->work_arr[channel->compl_index] = NULL;
1085 
1086         /* wrap-around */
1087         if (++channel->compl_index == channel->length)
1088                 channel->compl_index = 0;
1089 
1090         channel->stats->total_compl_cnt++;
1091 }
1092 
1093 /*
1094  * vxge_hw_channel_dtr_free - Frees a dtr
1095  * @channel: Channel handle
1096  * @dtr:  DTR pointer
1097  *
1098  * Returns the dtr to free array
1099  *
1100  */
1101 void vxge_hw_channel_dtr_free(struct __vxge_hw_channel *channel, void *dtrh)
1102 {
1103         channel->free_arr[--channel->free_ptr] = dtrh;
1104 }
1105 
1106 /*
1107  * vxge_hw_channel_dtr_count
1108  * @channel: Channel handle. Obtained via vxge_hw_channel_open().
1109  *
1110  * Retrieve number of DTRs available. This function can not be called
1111  * from data path. ring_initial_replenishi() is the only user.
1112  */
1113 int vxge_hw_channel_dtr_count(struct __vxge_hw_channel *channel)
1114 {
1115         return (channel->reserve_ptr - channel->reserve_top) +
1116                 (channel->length - channel->free_ptr);
1117 }
1118 
1119 /**
1120  * vxge_hw_ring_rxd_reserve     - Reserve ring descriptor.
1121  * @ring: Handle to the ring object used for receive
1122  * @rxdh: Reserved descriptor. On success HW fills this "out" parameter
1123  * with a valid handle.
1124  *
1125  * Reserve Rx descriptor for the subsequent filling-in driver
1126  * and posting on the corresponding channel (@channelh)
1127  * via vxge_hw_ring_rxd_post().
1128  *
1129  * Returns: VXGE_HW_OK - success.
1130  * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available.
1131  *
1132  */
1133 enum vxge_hw_status vxge_hw_ring_rxd_reserve(struct __vxge_hw_ring *ring,
1134         void **rxdh)
1135 {
1136         enum vxge_hw_status status;
1137         struct __vxge_hw_channel *channel;
1138 
1139         channel = &ring->channel;
1140 
1141         status = vxge_hw_channel_dtr_alloc(channel, rxdh);
1142 
1143         if (status == VXGE_HW_OK) {
1144                 struct vxge_hw_ring_rxd_1 *rxdp =
1145                         (struct vxge_hw_ring_rxd_1 *)*rxdh;
1146 
1147                 rxdp->control_0 = rxdp->control_1 = 0;
1148         }
1149 
1150         return status;
1151 }
1152 
1153 /**
1154  * vxge_hw_ring_rxd_free - Free descriptor.
1155  * @ring: Handle to the ring object used for receive
1156  * @rxdh: Descriptor handle.
1157  *
1158  * Free the reserved descriptor. This operation is "symmetrical" to
1159  * vxge_hw_ring_rxd_reserve. The "free-ing" completes the descriptor's
1160  * lifecycle.
1161  *
1162  * After free-ing (see vxge_hw_ring_rxd_free()) the descriptor again can
1163  * be:
1164  *
1165  * - reserved (vxge_hw_ring_rxd_reserve);
1166  *
1167  * - posted     (vxge_hw_ring_rxd_post);
1168  *
1169  * - completed (vxge_hw_ring_rxd_next_completed);
1170  *
1171  * - and recycled again (vxge_hw_ring_rxd_free).
1172  *
1173  * For alternative state transitions and more details please refer to
1174  * the design doc.
1175  *
1176  */
1177 void vxge_hw_ring_rxd_free(struct __vxge_hw_ring *ring, void *rxdh)
1178 {
1179         struct __vxge_hw_channel *channel;
1180 
1181         channel = &ring->channel;
1182 
1183         vxge_hw_channel_dtr_free(channel, rxdh);
1184 
1185 }
1186 
1187 /**
1188  * vxge_hw_ring_rxd_pre_post - Prepare rxd and post
1189  * @ring: Handle to the ring object used for receive
1190  * @rxdh: Descriptor handle.
1191  *
1192  * This routine prepares a rxd and posts
1193  */
1194 void vxge_hw_ring_rxd_pre_post(struct __vxge_hw_ring *ring, void *rxdh)
1195 {
1196         struct __vxge_hw_channel *channel;
1197 
1198         channel = &ring->channel;
1199 
1200         vxge_hw_channel_dtr_post(channel, rxdh);
1201 }
1202 
1203 /**
1204  * vxge_hw_ring_rxd_post_post - Process rxd after post.
1205  * @ring: Handle to the ring object used for receive
1206  * @rxdh: Descriptor handle.
1207  *
1208  * Processes rxd after post
1209  */
1210 void vxge_hw_ring_rxd_post_post(struct __vxge_hw_ring *ring, void *rxdh)
1211 {
1212         struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
1213 
1214         rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1215 
1216         if (ring->stats->common_stats.usage_cnt > 0)
1217                 ring->stats->common_stats.usage_cnt--;
1218 }
1219 
1220 /**
1221  * vxge_hw_ring_rxd_post - Post descriptor on the ring.
1222  * @ring: Handle to the ring object used for receive
1223  * @rxdh: Descriptor obtained via vxge_hw_ring_rxd_reserve().
1224  *
1225  * Post descriptor on the ring.
1226  * Prior to posting the descriptor should be filled in accordance with
1227  * Host/Titan interface specification for a given service (LL, etc.).
1228  *
1229  */
1230 void vxge_hw_ring_rxd_post(struct __vxge_hw_ring *ring, void *rxdh)
1231 {
1232         struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
1233         struct __vxge_hw_channel *channel;
1234 
1235         channel = &ring->channel;
1236 
1237         wmb();
1238         rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1239 
1240         vxge_hw_channel_dtr_post(channel, rxdh);
1241 
1242         if (ring->stats->common_stats.usage_cnt > 0)
1243                 ring->stats->common_stats.usage_cnt--;
1244 }
1245 
1246 /**
1247  * vxge_hw_ring_rxd_post_post_wmb - Process rxd after post with memory barrier.
1248  * @ring: Handle to the ring object used for receive
1249  * @rxdh: Descriptor handle.
1250  *
1251  * Processes rxd after post with memory barrier.
1252  */
1253 void vxge_hw_ring_rxd_post_post_wmb(struct __vxge_hw_ring *ring, void *rxdh)
1254 {
1255         wmb();
1256         vxge_hw_ring_rxd_post_post(ring, rxdh);
1257 }
1258 
1259 /**
1260  * vxge_hw_ring_rxd_next_completed - Get the _next_ completed descriptor.
1261  * @ring: Handle to the ring object used for receive
1262  * @rxdh: Descriptor handle. Returned by HW.
1263  * @t_code:     Transfer code, as per Titan User Guide,
1264  *       Receive Descriptor Format. Returned by HW.
1265  *
1266  * Retrieve the _next_ completed descriptor.
1267  * HW uses ring callback (*vxge_hw_ring_callback_f) to notifiy
1268  * driver of new completed descriptors. After that
1269  * the driver can use vxge_hw_ring_rxd_next_completed to retrieve the rest
1270  * completions (the very first completion is passed by HW via
1271  * vxge_hw_ring_callback_f).
1272  *
1273  * Implementation-wise, the driver is free to call
1274  * vxge_hw_ring_rxd_next_completed either immediately from inside the
1275  * ring callback, or in a deferred fashion and separate (from HW)
1276  * context.
1277  *
1278  * Non-zero @t_code means failure to fill-in receive buffer(s)
1279  * of the descriptor.
1280  * For instance, parity error detected during the data transfer.
1281  * In this case Titan will complete the descriptor and indicate
1282  * for the host that the received data is not to be used.
1283  * For details please refer to Titan User Guide.
1284  *
1285  * Returns: VXGE_HW_OK - success.
1286  * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1287  * are currently available for processing.
1288  *
1289  * See also: vxge_hw_ring_callback_f{},
1290  * vxge_hw_fifo_rxd_next_completed(), enum vxge_hw_status{}.
1291  */
1292 enum vxge_hw_status vxge_hw_ring_rxd_next_completed(
1293         struct __vxge_hw_ring *ring, void **rxdh, u8 *t_code)
1294 {
1295         struct __vxge_hw_channel *channel;
1296         struct vxge_hw_ring_rxd_1 *rxdp;
1297         enum vxge_hw_status status = VXGE_HW_OK;
1298         u64 control_0, own;
1299 
1300         channel = &ring->channel;
1301 
1302         vxge_hw_channel_dtr_try_complete(channel, rxdh);
1303 
1304         rxdp = *rxdh;
1305         if (rxdp == NULL) {
1306                 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1307                 goto exit;
1308         }
1309 
1310         control_0 = rxdp->control_0;
1311         own = control_0 & VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1312         *t_code = (u8)VXGE_HW_RING_RXD_T_CODE_GET(control_0);
1313 
1314         /* check whether it is not the end */
1315         if (!own || *t_code == VXGE_HW_RING_T_CODE_FRM_DROP) {
1316 
1317                 vxge_assert((rxdp)->host_control !=
1318                                 0);
1319 
1320                 ++ring->cmpl_cnt;
1321                 vxge_hw_channel_dtr_complete(channel);
1322 
1323                 vxge_assert(*t_code != VXGE_HW_RING_RXD_T_CODE_UNUSED);
1324 
1325                 ring->stats->common_stats.usage_cnt++;
1326                 if (ring->stats->common_stats.usage_max <
1327                                 ring->stats->common_stats.usage_cnt)
1328                         ring->stats->common_stats.usage_max =
1329                                 ring->stats->common_stats.usage_cnt;
1330 
1331                 status = VXGE_HW_OK;
1332                 goto exit;
1333         }
1334 
1335         /* reset it. since we don't want to return
1336          * garbage to the driver */
1337         *rxdh = NULL;
1338         status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1339 exit:
1340         return status;
1341 }
1342 
1343 /**
1344  * vxge_hw_ring_handle_tcode - Handle transfer code.
1345  * @ring: Handle to the ring object used for receive
1346  * @rxdh: Descriptor handle.
1347  * @t_code: One of the enumerated (and documented in the Titan user guide)
1348  * "transfer codes".
1349  *
1350  * Handle descriptor's transfer code. The latter comes with each completed
1351  * descriptor.
1352  *
1353  * Returns: one of the enum vxge_hw_status{} enumerated types.
1354  * VXGE_HW_OK                   - for success.
1355  * VXGE_HW_ERR_CRITICAL         - when encounters critical error.
1356  */
1357 enum vxge_hw_status vxge_hw_ring_handle_tcode(
1358         struct __vxge_hw_ring *ring, void *rxdh, u8 t_code)
1359 {
1360         enum vxge_hw_status status = VXGE_HW_OK;
1361 
1362         /* If the t_code is not supported and if the
1363          * t_code is other than 0x5 (unparseable packet
1364          * such as unknown UPV6 header), Drop it !!!
1365          */
1366 
1367         if (t_code ==  VXGE_HW_RING_T_CODE_OK ||
1368                 t_code == VXGE_HW_RING_T_CODE_L3_PKT_ERR) {
1369                 status = VXGE_HW_OK;
1370                 goto exit;
1371         }
1372 
1373         if (t_code > VXGE_HW_RING_T_CODE_MULTI_ERR) {
1374                 status = VXGE_HW_ERR_INVALID_TCODE;
1375                 goto exit;
1376         }
1377 
1378         ring->stats->rxd_t_code_err_cnt[t_code]++;
1379 exit:
1380         return status;
1381 }
1382 
1383 /**
1384  * __vxge_hw_non_offload_db_post - Post non offload doorbell
1385  *
1386  * @fifo: fifohandle
1387  * @txdl_ptr: The starting location of the TxDL in host memory
1388  * @num_txds: The highest TxD in this TxDL (0 to 255 means 1 to 256)
1389  * @no_snoop: No snoop flags
1390  *
1391  * This function posts a non-offload doorbell to doorbell FIFO
1392  *
1393  */
1394 static void __vxge_hw_non_offload_db_post(struct __vxge_hw_fifo *fifo,
1395         u64 txdl_ptr, u32 num_txds, u32 no_snoop)
1396 {
1397         writeq(VXGE_HW_NODBW_TYPE(VXGE_HW_NODBW_TYPE_NODBW) |
1398                 VXGE_HW_NODBW_LAST_TXD_NUMBER(num_txds) |
1399                 VXGE_HW_NODBW_GET_NO_SNOOP(no_snoop),
1400                 &fifo->nofl_db->control_0);
1401 
1402         writeq(txdl_ptr, &fifo->nofl_db->txdl_ptr);
1403 }
1404 
1405 /**
1406  * vxge_hw_fifo_free_txdl_count_get - returns the number of txdls available in
1407  * the fifo
1408  * @fifoh: Handle to the fifo object used for non offload send
1409  */
1410 u32 vxge_hw_fifo_free_txdl_count_get(struct __vxge_hw_fifo *fifoh)
1411 {
1412         return vxge_hw_channel_dtr_count(&fifoh->channel);
1413 }
1414 
1415 /**
1416  * vxge_hw_fifo_txdl_reserve - Reserve fifo descriptor.
1417  * @fifoh: Handle to the fifo object used for non offload send
1418  * @txdlh: Reserved descriptor. On success HW fills this "out" parameter
1419  *        with a valid handle.
1420  * @txdl_priv: Buffer to return the pointer to per txdl space
1421  *
1422  * Reserve a single TxDL (that is, fifo descriptor)
1423  * for the subsequent filling-in by driver)
1424  * and posting on the corresponding channel (@channelh)
1425  * via vxge_hw_fifo_txdl_post().
1426  *
1427  * Note: it is the responsibility of driver to reserve multiple descriptors
1428  * for lengthy (e.g., LSO) transmit operation. A single fifo descriptor
1429  * carries up to configured number (fifo.max_frags) of contiguous buffers.
1430  *
1431  * Returns: VXGE_HW_OK - success;
1432  * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available
1433  *
1434  */
1435 enum vxge_hw_status vxge_hw_fifo_txdl_reserve(
1436         struct __vxge_hw_fifo *fifo,
1437         void **txdlh, void **txdl_priv)
1438 {
1439         struct __vxge_hw_channel *channel;
1440         enum vxge_hw_status status;
1441         int i;
1442 
1443         channel = &fifo->channel;
1444 
1445         status = vxge_hw_channel_dtr_alloc(channel, txdlh);
1446 
1447         if (status == VXGE_HW_OK) {
1448                 struct vxge_hw_fifo_txd *txdp =
1449                         (struct vxge_hw_fifo_txd *)*txdlh;
1450                 struct __vxge_hw_fifo_txdl_priv *priv;
1451 
1452                 priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
1453 
1454                 /* reset the TxDL's private */
1455                 priv->align_dma_offset = 0;
1456                 priv->align_vaddr_start = priv->align_vaddr;
1457                 priv->align_used_frags = 0;
1458                 priv->frags = 0;
1459                 priv->alloc_frags = fifo->config->max_frags;
1460                 priv->next_txdl_priv = NULL;
1461 
1462                 *txdl_priv = (void *)(size_t)txdp->host_control;
1463 
1464                 for (i = 0; i < fifo->config->max_frags; i++) {
1465                         txdp = ((struct vxge_hw_fifo_txd *)*txdlh) + i;
1466                         txdp->control_0 = txdp->control_1 = 0;
1467                 }
1468         }
1469 
1470         return status;
1471 }
1472 
1473 /**
1474  * vxge_hw_fifo_txdl_buffer_set - Set transmit buffer pointer in the
1475  * descriptor.
1476  * @fifo: Handle to the fifo object used for non offload send
1477  * @txdlh: Descriptor handle.
1478  * @frag_idx: Index of the data buffer in the caller's scatter-gather list
1479  *            (of buffers).
1480  * @dma_pointer: DMA address of the data buffer referenced by @frag_idx.
1481  * @size: Size of the data buffer (in bytes).
1482  *
1483  * This API is part of the preparation of the transmit descriptor for posting
1484  * (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include
1485  * vxge_hw_fifo_txdl_mss_set() and vxge_hw_fifo_txdl_cksum_set_bits().
1486  * All three APIs fill in the fields of the fifo descriptor,
1487  * in accordance with the Titan specification.
1488  *
1489  */
1490 void vxge_hw_fifo_txdl_buffer_set(struct __vxge_hw_fifo *fifo,
1491                                   void *txdlh, u32 frag_idx,
1492                                   dma_addr_t dma_pointer, u32 size)
1493 {
1494         struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1495         struct vxge_hw_fifo_txd *txdp, *txdp_last;
1496 
1497         txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1498         txdp = (struct vxge_hw_fifo_txd *)txdlh  +  txdl_priv->frags;
1499 
1500         if (frag_idx != 0)
1501                 txdp->control_0 = txdp->control_1 = 0;
1502         else {
1503                 txdp->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1504                         VXGE_HW_FIFO_TXD_GATHER_CODE_FIRST);
1505                 txdp->control_1 |= fifo->interrupt_type;
1506                 txdp->control_1 |= VXGE_HW_FIFO_TXD_INT_NUMBER(
1507                         fifo->tx_intr_num);
1508                 if (txdl_priv->frags) {
1509                         txdp_last = (struct vxge_hw_fifo_txd *)txdlh  +
1510                         (txdl_priv->frags - 1);
1511                         txdp_last->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1512                                 VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1513                 }
1514         }
1515 
1516         vxge_assert(frag_idx < txdl_priv->alloc_frags);
1517 
1518         txdp->buffer_pointer = (u64)dma_pointer;
1519         txdp->control_0 |= VXGE_HW_FIFO_TXD_BUFFER_SIZE(size);
1520         fifo->stats->total_buffers++;
1521         txdl_priv->frags++;
1522 }
1523 
1524 /**
1525  * vxge_hw_fifo_txdl_post - Post descriptor on the fifo channel.
1526  * @fifo: Handle to the fifo object used for non offload send
1527  * @txdlh: Descriptor obtained via vxge_hw_fifo_txdl_reserve()
1528  * @frags: Number of contiguous buffers that are part of a single
1529  *         transmit operation.
1530  *
1531  * Post descriptor on the 'fifo' type channel for transmission.
1532  * Prior to posting the descriptor should be filled in accordance with
1533  * Host/Titan interface specification for a given service (LL, etc.).
1534  *
1535  */
1536 void vxge_hw_fifo_txdl_post(struct __vxge_hw_fifo *fifo, void *txdlh)
1537 {
1538         struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1539         struct vxge_hw_fifo_txd *txdp_last;
1540         struct vxge_hw_fifo_txd *txdp_first;
1541 
1542         txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1543         txdp_first = txdlh;
1544 
1545         txdp_last = (struct vxge_hw_fifo_txd *)txdlh  +  (txdl_priv->frags - 1);
1546         txdp_last->control_0 |=
1547               VXGE_HW_FIFO_TXD_GATHER_CODE(VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1548         txdp_first->control_0 |= VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER;
1549 
1550         vxge_hw_channel_dtr_post(&fifo->channel, txdlh);
1551 
1552         __vxge_hw_non_offload_db_post(fifo,
1553                 (u64)txdl_priv->dma_addr,
1554                 txdl_priv->frags - 1,
1555                 fifo->no_snoop_bits);
1556 
1557         fifo->stats->total_posts++;
1558         fifo->stats->common_stats.usage_cnt++;
1559         if (fifo->stats->common_stats.usage_max <
1560                 fifo->stats->common_stats.usage_cnt)
1561                 fifo->stats->common_stats.usage_max =
1562                         fifo->stats->common_stats.usage_cnt;
1563 }
1564 
1565 /**
1566  * vxge_hw_fifo_txdl_next_completed - Retrieve next completed descriptor.
1567  * @fifo: Handle to the fifo object used for non offload send
1568  * @txdlh: Descriptor handle. Returned by HW.
1569  * @t_code: Transfer code, as per Titan User Guide,
1570  *          Transmit Descriptor Format.
1571  *          Returned by HW.
1572  *
1573  * Retrieve the _next_ completed descriptor.
1574  * HW uses channel callback (*vxge_hw_channel_callback_f) to notifiy
1575  * driver of new completed descriptors. After that
1576  * the driver can use vxge_hw_fifo_txdl_next_completed to retrieve the rest
1577  * completions (the very first completion is passed by HW via
1578  * vxge_hw_channel_callback_f).
1579  *
1580  * Implementation-wise, the driver is free to call
1581  * vxge_hw_fifo_txdl_next_completed either immediately from inside the
1582  * channel callback, or in a deferred fashion and separate (from HW)
1583  * context.
1584  *
1585  * Non-zero @t_code means failure to process the descriptor.
1586  * The failure could happen, for instance, when the link is
1587  * down, in which case Titan completes the descriptor because it
1588  * is not able to send the data out.
1589  *
1590  * For details please refer to Titan User Guide.
1591  *
1592  * Returns: VXGE_HW_OK - success.
1593  * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1594  * are currently available for processing.
1595  *
1596  */
1597 enum vxge_hw_status vxge_hw_fifo_txdl_next_completed(
1598         struct __vxge_hw_fifo *fifo, void **txdlh,
1599         enum vxge_hw_fifo_tcode *t_code)
1600 {
1601         struct __vxge_hw_channel *channel;
1602         struct vxge_hw_fifo_txd *txdp;
1603         enum vxge_hw_status status = VXGE_HW_OK;
1604 
1605         channel = &fifo->channel;
1606 
1607         vxge_hw_channel_dtr_try_complete(channel, txdlh);
1608 
1609         txdp = *txdlh;
1610         if (txdp == NULL) {
1611                 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1612                 goto exit;
1613         }
1614 
1615         /* check whether host owns it */
1616         if (!(txdp->control_0 & VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER)) {
1617 
1618                 vxge_assert(txdp->host_control != 0);
1619 
1620                 vxge_hw_channel_dtr_complete(channel);
1621 
1622                 *t_code = (u8)VXGE_HW_FIFO_TXD_T_CODE_GET(txdp->control_0);
1623 
1624                 if (fifo->stats->common_stats.usage_cnt > 0)
1625                         fifo->stats->common_stats.usage_cnt--;
1626 
1627                 status = VXGE_HW_OK;
1628                 goto exit;
1629         }
1630 
1631         /* no more completions */
1632         *txdlh = NULL;
1633         status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1634 exit:
1635         return status;
1636 }
1637 
1638 /**
1639  * vxge_hw_fifo_handle_tcode - Handle transfer code.
1640  * @fifo: Handle to the fifo object used for non offload send
1641  * @txdlh: Descriptor handle.
1642  * @t_code: One of the enumerated (and documented in the Titan user guide)
1643  *          "transfer codes".
1644  *
1645  * Handle descriptor's transfer code. The latter comes with each completed
1646  * descriptor.
1647  *
1648  * Returns: one of the enum vxge_hw_status{} enumerated types.
1649  * VXGE_HW_OK - for success.
1650  * VXGE_HW_ERR_CRITICAL - when encounters critical error.
1651  */
1652 enum vxge_hw_status vxge_hw_fifo_handle_tcode(struct __vxge_hw_fifo *fifo,
1653                                               void *txdlh,
1654                                               enum vxge_hw_fifo_tcode t_code)
1655 {
1656         enum vxge_hw_status status = VXGE_HW_OK;
1657 
1658         if (((t_code & 0x7) < 0) || ((t_code & 0x7) > 0x4)) {
1659                 status = VXGE_HW_ERR_INVALID_TCODE;
1660                 goto exit;
1661         }
1662 
1663         fifo->stats->txd_t_code_err_cnt[t_code]++;
1664 exit:
1665         return status;
1666 }
1667 
1668 /**
1669  * vxge_hw_fifo_txdl_free - Free descriptor.
1670  * @fifo: Handle to the fifo object used for non offload send
1671  * @txdlh: Descriptor handle.
1672  *
1673  * Free the reserved descriptor. This operation is "symmetrical" to
1674  * vxge_hw_fifo_txdl_reserve. The "free-ing" completes the descriptor's
1675  * lifecycle.
1676  *
1677  * After free-ing (see vxge_hw_fifo_txdl_free()) the descriptor again can
1678  * be:
1679  *
1680  * - reserved (vxge_hw_fifo_txdl_reserve);
1681  *
1682  * - posted (vxge_hw_fifo_txdl_post);
1683  *
1684  * - completed (vxge_hw_fifo_txdl_next_completed);
1685  *
1686  * - and recycled again (vxge_hw_fifo_txdl_free).
1687  *
1688  * For alternative state transitions and more details please refer to
1689  * the design doc.
1690  *
1691  */
1692 void vxge_hw_fifo_txdl_free(struct __vxge_hw_fifo *fifo, void *txdlh)
1693 {
1694         struct __vxge_hw_channel *channel;
1695 
1696         channel = &fifo->channel;
1697 
1698         vxge_hw_channel_dtr_free(channel, txdlh);
1699 }
1700 
1701 /**
1702  * vxge_hw_vpath_mac_addr_add - Add the mac address entry for this vpath
1703  *               to MAC address table.
1704  * @vp: Vpath handle.
1705  * @macaddr: MAC address to be added for this vpath into the list
1706  * @macaddr_mask: MAC address mask for macaddr
1707  * @duplicate_mode: Duplicate MAC address add mode. Please see
1708  *             enum vxge_hw_vpath_mac_addr_add_mode{}
1709  *
1710  * Adds the given mac address and mac address mask into the list for this
1711  * vpath.
1712  * see also: vxge_hw_vpath_mac_addr_delete, vxge_hw_vpath_mac_addr_get and
1713  * vxge_hw_vpath_mac_addr_get_next
1714  *
1715  */
1716 enum vxge_hw_status
1717 vxge_hw_vpath_mac_addr_add(
1718         struct __vxge_hw_vpath_handle *vp,
1719         u8 (macaddr)[ETH_ALEN],
1720         u8 (macaddr_mask)[ETH_ALEN],
1721         enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode)
1722 {
1723         u32 i;
1724         u64 data1 = 0ULL;
1725         u64 data2 = 0ULL;
1726         enum vxge_hw_status status = VXGE_HW_OK;
1727 
1728         if (vp == NULL) {
1729                 status = VXGE_HW_ERR_INVALID_HANDLE;
1730                 goto exit;
1731         }
1732 
1733         for (i = 0; i < ETH_ALEN; i++) {
1734                 data1 <<= 8;
1735                 data1 |= (u8)macaddr[i];
1736 
1737                 data2 <<= 8;
1738                 data2 |= (u8)macaddr_mask[i];
1739         }
1740 
1741         switch (duplicate_mode) {
1742         case VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE:
1743                 i = 0;
1744                 break;
1745         case VXGE_HW_VPATH_MAC_ADDR_DISCARD_DUPLICATE:
1746                 i = 1;
1747                 break;
1748         case VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE:
1749                 i = 2;
1750                 break;
1751         default:
1752                 i = 0;
1753                 break;
1754         }
1755 
1756         status = __vxge_hw_vpath_rts_table_set(vp,
1757                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1758                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1759                         0,
1760                         VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1761                         VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2)|
1762                         VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MODE(i));
1763 exit:
1764         return status;
1765 }
1766 
1767 /**
1768  * vxge_hw_vpath_mac_addr_get - Get the first mac address entry for this vpath
1769  *               from MAC address table.
1770  * @vp: Vpath handle.
1771  * @macaddr: First MAC address entry for this vpath in the list
1772  * @macaddr_mask: MAC address mask for macaddr
1773  *
1774  * Returns the first mac address and mac address mask in the list for this
1775  * vpath.
1776  * see also: vxge_hw_vpath_mac_addr_get_next
1777  *
1778  */
1779 enum vxge_hw_status
1780 vxge_hw_vpath_mac_addr_get(
1781         struct __vxge_hw_vpath_handle *vp,
1782         u8 (macaddr)[ETH_ALEN],
1783         u8 (macaddr_mask)[ETH_ALEN])
1784 {
1785         u32 i;
1786         u64 data1 = 0ULL;
1787         u64 data2 = 0ULL;
1788         enum vxge_hw_status status = VXGE_HW_OK;
1789 
1790         if (vp == NULL) {
1791                 status = VXGE_HW_ERR_INVALID_HANDLE;
1792                 goto exit;
1793         }
1794 
1795         status = __vxge_hw_vpath_rts_table_get(vp,
1796                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
1797                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1798                         0, &data1, &data2);
1799 
1800         if (status != VXGE_HW_OK)
1801                 goto exit;
1802 
1803         data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1804 
1805         data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1806 
1807         for (i = ETH_ALEN; i > 0; i--) {
1808                 macaddr[i-1] = (u8)(data1 & 0xFF);
1809                 data1 >>= 8;
1810 
1811                 macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1812                 data2 >>= 8;
1813         }
1814 exit:
1815         return status;
1816 }
1817 
1818 /**
1819  * vxge_hw_vpath_mac_addr_get_next - Get the next mac address entry for this
1820  * vpath
1821  *               from MAC address table.
1822  * @vp: Vpath handle.
1823  * @macaddr: Next MAC address entry for this vpath in the list
1824  * @macaddr_mask: MAC address mask for macaddr
1825  *
1826  * Returns the next mac address and mac address mask in the list for this
1827  * vpath.
1828  * see also: vxge_hw_vpath_mac_addr_get
1829  *
1830  */
1831 enum vxge_hw_status
1832 vxge_hw_vpath_mac_addr_get_next(
1833         struct __vxge_hw_vpath_handle *vp,
1834         u8 (macaddr)[ETH_ALEN],
1835         u8 (macaddr_mask)[ETH_ALEN])
1836 {
1837         u32 i;
1838         u64 data1 = 0ULL;
1839         u64 data2 = 0ULL;
1840         enum vxge_hw_status status = VXGE_HW_OK;
1841 
1842         if (vp == NULL) {
1843                 status = VXGE_HW_ERR_INVALID_HANDLE;
1844                 goto exit;
1845         }
1846 
1847         status = __vxge_hw_vpath_rts_table_get(vp,
1848                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY,
1849                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1850                         0, &data1, &data2);
1851 
1852         if (status != VXGE_HW_OK)
1853                 goto exit;
1854 
1855         data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1856 
1857         data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1858 
1859         for (i = ETH_ALEN; i > 0; i--) {
1860                 macaddr[i-1] = (u8)(data1 & 0xFF);
1861                 data1 >>= 8;
1862 
1863                 macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1864                 data2 >>= 8;
1865         }
1866 
1867 exit:
1868         return status;
1869 }
1870 
1871 /**
1872  * vxge_hw_vpath_mac_addr_delete - Delete the mac address entry for this vpath
1873  *               to MAC address table.
1874  * @vp: Vpath handle.
1875  * @macaddr: MAC address to be added for this vpath into the list
1876  * @macaddr_mask: MAC address mask for macaddr
1877  *
1878  * Delete the given mac address and mac address mask into the list for this
1879  * vpath.
1880  * see also: vxge_hw_vpath_mac_addr_add, vxge_hw_vpath_mac_addr_get and
1881  * vxge_hw_vpath_mac_addr_get_next
1882  *
1883  */
1884 enum vxge_hw_status
1885 vxge_hw_vpath_mac_addr_delete(
1886         struct __vxge_hw_vpath_handle *vp,
1887         u8 (macaddr)[ETH_ALEN],
1888         u8 (macaddr_mask)[ETH_ALEN])
1889 {
1890         u32 i;
1891         u64 data1 = 0ULL;
1892         u64 data2 = 0ULL;
1893         enum vxge_hw_status status = VXGE_HW_OK;
1894 
1895         if (vp == NULL) {
1896                 status = VXGE_HW_ERR_INVALID_HANDLE;
1897                 goto exit;
1898         }
1899 
1900         for (i = 0; i < ETH_ALEN; i++) {
1901                 data1 <<= 8;
1902                 data1 |= (u8)macaddr[i];
1903 
1904                 data2 <<= 8;
1905                 data2 |= (u8)macaddr_mask[i];
1906         }
1907 
1908         status = __vxge_hw_vpath_rts_table_set(vp,
1909                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
1910                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1911                         0,
1912                         VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1913                         VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2));
1914 exit:
1915         return status;
1916 }
1917 
1918 /**
1919  * vxge_hw_vpath_vid_add - Add the vlan id entry for this vpath
1920  *               to vlan id table.
1921  * @vp: Vpath handle.
1922  * @vid: vlan id to be added for this vpath into the list
1923  *
1924  * Adds the given vlan id into the list for this  vpath.
1925  * see also: vxge_hw_vpath_vid_delete
1926  *
1927  */
1928 enum vxge_hw_status
1929 vxge_hw_vpath_vid_add(struct __vxge_hw_vpath_handle *vp, u64 vid)
1930 {
1931         enum vxge_hw_status status = VXGE_HW_OK;
1932 
1933         if (vp == NULL) {
1934                 status = VXGE_HW_ERR_INVALID_HANDLE;
1935                 goto exit;
1936         }
1937 
1938         status = __vxge_hw_vpath_rts_table_set(vp,
1939                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1940                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1941                         0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
1942 exit:
1943         return status;
1944 }
1945 
1946 /**
1947  * vxge_hw_vpath_vid_delete - Delete the vlan id entry for this vpath
1948  *               to vlan id table.
1949  * @vp: Vpath handle.
1950  * @vid: vlan id to be added for this vpath into the list
1951  *
1952  * Adds the given vlan id into the list for this  vpath.
1953  * see also: vxge_hw_vpath_vid_add
1954  *
1955  */
1956 enum vxge_hw_status
1957 vxge_hw_vpath_vid_delete(struct __vxge_hw_vpath_handle *vp, u64 vid)
1958 {
1959         enum vxge_hw_status status = VXGE_HW_OK;
1960 
1961         if (vp == NULL) {
1962                 status = VXGE_HW_ERR_INVALID_HANDLE;
1963                 goto exit;
1964         }
1965 
1966         status = __vxge_hw_vpath_rts_table_set(vp,
1967                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
1968                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1969                         0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
1970 exit:
1971         return status;
1972 }
1973 
1974 /**
1975  * vxge_hw_vpath_promisc_enable - Enable promiscuous mode.
1976  * @vp: Vpath handle.
1977  *
1978  * Enable promiscuous mode of Titan-e operation.
1979  *
1980  * See also: vxge_hw_vpath_promisc_disable().
1981  */
1982 enum vxge_hw_status vxge_hw_vpath_promisc_enable(
1983                         struct __vxge_hw_vpath_handle *vp)
1984 {
1985         u64 val64;
1986         struct __vxge_hw_virtualpath *vpath;
1987         enum vxge_hw_status status = VXGE_HW_OK;
1988 
1989         if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
1990                 status = VXGE_HW_ERR_INVALID_HANDLE;
1991                 goto exit;
1992         }
1993 
1994         vpath = vp->vpath;
1995 
1996         /* Enable promiscuous mode for function 0 only */
1997         if (!(vpath->hldev->access_rights &
1998                 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM))
1999                 return VXGE_HW_OK;
2000 
2001         val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2002 
2003         if (!(val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN)) {
2004 
2005                 val64 |= VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
2006                          VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
2007                          VXGE_HW_RXMAC_VCFG0_BCAST_EN |
2008                          VXGE_HW_RXMAC_VCFG0_ALL_VID_EN;
2009 
2010                 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2011         }
2012 exit:
2013         return status;
2014 }
2015 
2016 /**
2017  * vxge_hw_vpath_promisc_disable - Disable promiscuous mode.
2018  * @vp: Vpath handle.
2019  *
2020  * Disable promiscuous mode of Titan-e operation.
2021  *
2022  * See also: vxge_hw_vpath_promisc_enable().
2023  */
2024 enum vxge_hw_status vxge_hw_vpath_promisc_disable(
2025                         struct __vxge_hw_vpath_handle *vp)
2026 {
2027         u64 val64;
2028         struct __vxge_hw_virtualpath *vpath;
2029         enum vxge_hw_status status = VXGE_HW_OK;
2030 
2031         if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2032                 status = VXGE_HW_ERR_INVALID_HANDLE;
2033                 goto exit;
2034         }
2035 
2036         vpath = vp->vpath;
2037 
2038         val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2039 
2040         if (val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN) {
2041 
2042                 val64 &= ~(VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
2043                            VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
2044                            VXGE_HW_RXMAC_VCFG0_ALL_VID_EN);
2045 
2046                 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2047         }
2048 exit:
2049         return status;
2050 }
2051 
2052 /*
2053  * vxge_hw_vpath_bcast_enable - Enable broadcast
2054  * @vp: Vpath handle.
2055  *
2056  * Enable receiving broadcasts.
2057  */
2058 enum vxge_hw_status vxge_hw_vpath_bcast_enable(
2059                         struct __vxge_hw_vpath_handle *vp)
2060 {
2061         u64 val64;
2062         struct __vxge_hw_virtualpath *vpath;
2063         enum vxge_hw_status status = VXGE_HW_OK;
2064 
2065         if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2066                 status = VXGE_HW_ERR_INVALID_HANDLE;
2067                 goto exit;
2068         }
2069 
2070         vpath = vp->vpath;
2071 
2072         val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2073 
2074         if (!(val64 & VXGE_HW_RXMAC_VCFG0_BCAST_EN)) {
2075                 val64 |= VXGE_HW_RXMAC_VCFG0_BCAST_EN;
2076                 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2077         }
2078 exit:
2079         return status;
2080 }
2081 
2082 /**
2083  * vxge_hw_vpath_mcast_enable - Enable multicast addresses.
2084  * @vp: Vpath handle.
2085  *
2086  * Enable Titan-e multicast addresses.
2087  * Returns: VXGE_HW_OK on success.
2088  *
2089  */
2090 enum vxge_hw_status vxge_hw_vpath_mcast_enable(
2091                         struct __vxge_hw_vpath_handle *vp)
2092 {
2093         u64 val64;
2094         struct __vxge_hw_virtualpath *vpath;
2095         enum vxge_hw_status status = VXGE_HW_OK;
2096 
2097         if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2098                 status = VXGE_HW_ERR_INVALID_HANDLE;
2099                 goto exit;
2100         }
2101 
2102         vpath = vp->vpath;
2103 
2104         val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2105 
2106         if (!(val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN)) {
2107                 val64 |= VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
2108                 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2109         }
2110 exit:
2111         return status;
2112 }
2113 
2114 /**
2115  * vxge_hw_vpath_mcast_disable - Disable  multicast addresses.
2116  * @vp: Vpath handle.
2117  *
2118  * Disable Titan-e multicast addresses.
2119  * Returns: VXGE_HW_OK - success.
2120  * VXGE_HW_ERR_INVALID_HANDLE - Invalid handle
2121  *
2122  */
2123 enum vxge_hw_status
2124 vxge_hw_vpath_mcast_disable(struct __vxge_hw_vpath_handle *vp)
2125 {
2126         u64 val64;
2127         struct __vxge_hw_virtualpath *vpath;
2128         enum vxge_hw_status status = VXGE_HW_OK;
2129 
2130         if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2131                 status = VXGE_HW_ERR_INVALID_HANDLE;
2132                 goto exit;
2133         }
2134 
2135         vpath = vp->vpath;
2136 
2137         val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2138 
2139         if (val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN) {
2140                 val64 &= ~VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
2141                 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2142         }
2143 exit:
2144         return status;
2145 }
2146 
2147 /*
2148  * vxge_hw_vpath_alarm_process - Process Alarms.
2149  * @vpath: Virtual Path.
2150  * @skip_alarms: Do not clear the alarms
2151  *
2152  * Process vpath alarms.
2153  *
2154  */
2155 enum vxge_hw_status vxge_hw_vpath_alarm_process(
2156                         struct __vxge_hw_vpath_handle *vp,
2157                         u32 skip_alarms)
2158 {
2159         enum vxge_hw_status status = VXGE_HW_OK;
2160 
2161         if (vp == NULL) {
2162                 status = VXGE_HW_ERR_INVALID_HANDLE;
2163                 goto exit;
2164         }
2165 
2166         status = __vxge_hw_vpath_alarm_process(vp->vpath, skip_alarms);
2167 exit:
2168         return status;
2169 }
2170 
2171 /**
2172  * vxge_hw_vpath_msix_set - Associate MSIX vectors with TIM interrupts and
2173  *                            alrms
2174  * @vp: Virtual Path handle.
2175  * @tim_msix_id: MSIX vectors associated with VXGE_HW_MAX_INTR_PER_VP number of
2176  *             interrupts(Can be repeated). If fifo or ring are not enabled
2177  *             the MSIX vector for that should be set to 0
2178  * @alarm_msix_id: MSIX vector for alarm.
2179  *
2180  * This API will associate a given MSIX vector numbers with the four TIM
2181  * interrupts and alarm interrupt.
2182  */
2183 void
2184 vxge_hw_vpath_msix_set(struct __vxge_hw_vpath_handle *vp, int *tim_msix_id,
2185                        int alarm_msix_id)
2186 {
2187         u64 val64;
2188         struct __vxge_hw_virtualpath *vpath = vp->vpath;
2189         struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
2190         u32 vp_id = vp->vpath->vp_id;
2191 
2192         val64 =  VXGE_HW_INTERRUPT_CFG0_GROUP0_MSIX_FOR_TXTI(
2193                   (vp_id * 4) + tim_msix_id[0]) |
2194                  VXGE_HW_INTERRUPT_CFG0_GROUP1_MSIX_FOR_TXTI(
2195                   (vp_id * 4) + tim_msix_id[1]);
2196 
2197         writeq(val64, &vp_reg->interrupt_cfg0);
2198 
2199         writeq(VXGE_HW_INTERRUPT_CFG2_ALARM_MAP_TO_MSG(
2200                         (vpath->hldev->first_vp_id * 4) + alarm_msix_id),
2201                         &vp_reg->interrupt_cfg2);
2202 
2203         if (vpath->hldev->config.intr_mode ==
2204                                         VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
2205                 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2206                                 VXGE_HW_ONE_SHOT_VECT0_EN_ONE_SHOT_VECT0_EN,
2207                                 0, 32), &vp_reg->one_shot_vect0_en);
2208                 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2209                                 VXGE_HW_ONE_SHOT_VECT1_EN_ONE_SHOT_VECT1_EN,
2210                                 0, 32), &vp_reg->one_shot_vect1_en);
2211                 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2212                                 VXGE_HW_ONE_SHOT_VECT2_EN_ONE_SHOT_VECT2_EN,
2213                                 0, 32), &vp_reg->one_shot_vect2_en);
2214         }
2215 }
2216 
2217 /**
2218  * vxge_hw_vpath_msix_mask - Mask MSIX Vector.
2219  * @vp: Virtual Path handle.
2220  * @msix_id:  MSIX ID
2221  *
2222  * The function masks the msix interrupt for the given msix_id
2223  *
2224  * Returns: 0,
2225  * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2226  * status.
2227  * See also:
2228  */
2229 void
2230 vxge_hw_vpath_msix_mask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2231 {
2232         struct __vxge_hw_device *hldev = vp->vpath->hldev;
2233         __vxge_hw_pio_mem_write32_upper(
2234                 (u32) vxge_bVALn(vxge_mBIT(msix_id  >> 2), 0, 32),
2235                 &hldev->common_reg->set_msix_mask_vect[msix_id % 4]);
2236 }
2237 
2238 /**
2239  * vxge_hw_vpath_msix_clear - Clear MSIX Vector.
2240  * @vp: Virtual Path handle.
2241  * @msix_id:  MSI ID
2242  *
2243  * The function clears the msix interrupt for the given msix_id
2244  *
2245  * Returns: 0,
2246  * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2247  * status.
2248  * See also:
2249  */
2250 void vxge_hw_vpath_msix_clear(struct __vxge_hw_vpath_handle *vp, int msix_id)
2251 {
2252         struct __vxge_hw_device *hldev = vp->vpath->hldev;
2253 
2254         if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_MSIX_ONE_SHOT)
2255                 __vxge_hw_pio_mem_write32_upper(
2256                         (u32) vxge_bVALn(vxge_mBIT((msix_id >> 2)), 0, 32),
2257                         &hldev->common_reg->clr_msix_one_shot_vec[msix_id % 4]);
2258         else
2259                 __vxge_hw_pio_mem_write32_upper(
2260                         (u32) vxge_bVALn(vxge_mBIT((msix_id >> 2)), 0, 32),
2261                         &hldev->common_reg->clear_msix_mask_vect[msix_id % 4]);
2262 }
2263 
2264 /**
2265  * vxge_hw_vpath_msix_unmask - Unmask the MSIX Vector.
2266  * @vp: Virtual Path handle.
2267  * @msix_id:  MSI ID
2268  *
2269  * The function unmasks the msix interrupt for the given msix_id
2270  *
2271  * Returns: 0,
2272  * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2273  * status.
2274  * See also:
2275  */
2276 void
2277 vxge_hw_vpath_msix_unmask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2278 {
2279         struct __vxge_hw_device *hldev = vp->vpath->hldev;
2280         __vxge_hw_pio_mem_write32_upper(
2281                         (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
2282                         &hldev->common_reg->clear_msix_mask_vect[msix_id%4]);
2283 }
2284 
2285 /**
2286  * vxge_hw_vpath_inta_mask_tx_rx - Mask Tx and Rx interrupts.
2287  * @vp: Virtual Path handle.
2288  *
2289  * Mask Tx and Rx vpath interrupts.
2290  *
2291  * See also: vxge_hw_vpath_inta_mask_tx_rx()
2292  */
2293 void vxge_hw_vpath_inta_mask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2294 {
2295         u64     tim_int_mask0[4] = {[0 ...3] = 0};
2296         u32     tim_int_mask1[4] = {[0 ...3] = 0};
2297         u64     val64;
2298         struct __vxge_hw_device *hldev = vp->vpath->hldev;
2299 
2300         VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2301                 tim_int_mask1, vp->vpath->vp_id);
2302 
2303         val64 = readq(&hldev->common_reg->tim_int_mask0);
2304 
2305         if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2306                 (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2307                 writeq((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2308                         tim_int_mask0[VXGE_HW_VPATH_INTR_RX] | val64),
2309                         &hldev->common_reg->tim_int_mask0);
2310         }
2311 
2312         val64 = readl(&hldev->common_reg->tim_int_mask1);
2313 
2314         if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2315                 (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2316                 __vxge_hw_pio_mem_write32_upper(
2317                         (tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2318                         tim_int_mask1[VXGE_HW_VPATH_INTR_RX] | val64),
2319                         &hldev->common_reg->tim_int_mask1);
2320         }
2321 }
2322 
2323 /**
2324  * vxge_hw_vpath_inta_unmask_tx_rx - Unmask Tx and Rx interrupts.
2325  * @vp: Virtual Path handle.
2326  *
2327  * Unmask Tx and Rx vpath interrupts.
2328  *
2329  * See also: vxge_hw_vpath_inta_mask_tx_rx()
2330  */
2331 void vxge_hw_vpath_inta_unmask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2332 {
2333         u64     tim_int_mask0[4] = {[0 ...3] = 0};
2334         u32     tim_int_mask1[4] = {[0 ...3] = 0};
2335         u64     val64;
2336         struct __vxge_hw_device *hldev = vp->vpath->hldev;
2337 
2338         VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2339                 tim_int_mask1, vp->vpath->vp_id);
2340 
2341         val64 = readq(&hldev->common_reg->tim_int_mask0);
2342 
2343         if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2344            (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2345                 writeq((~(tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2346                         tim_int_mask0[VXGE_HW_VPATH_INTR_RX])) & val64,
2347                         &hldev->common_reg->tim_int_mask0);
2348         }
2349 
2350         if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2351            (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2352                 __vxge_hw_pio_mem_write32_upper(
2353                         (~(tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2354                           tim_int_mask1[VXGE_HW_VPATH_INTR_RX])) & val64,
2355                         &hldev->common_reg->tim_int_mask1);
2356         }
2357 }
2358 
2359 /**
2360  * vxge_hw_vpath_poll_rx - Poll Rx Virtual Path for completed
2361  * descriptors and process the same.
2362  * @ring: Handle to the ring object used for receive
2363  *
2364  * The function polls the Rx for the completed  descriptors and calls
2365  * the driver via supplied completion   callback.
2366  *
2367  * Returns: VXGE_HW_OK, if the polling is completed successful.
2368  * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2369  * descriptors available which are yet to be processed.
2370  *
2371  * See also: vxge_hw_vpath_poll_rx()
2372  */
2373 enum vxge_hw_status vxge_hw_vpath_poll_rx(struct __vxge_hw_ring *ring)
2374 {
2375         u8 t_code;
2376         enum vxge_hw_status status = VXGE_HW_OK;
2377         void *first_rxdh;
2378         u64 val64 = 0;
2379         int new_count = 0;
2380 
2381         ring->cmpl_cnt = 0;
2382 
2383         status = vxge_hw_ring_rxd_next_completed(ring, &first_rxdh, &t_code);
2384         if (status == VXGE_HW_OK)
2385                 ring->callback(ring, first_rxdh,
2386                         t_code, ring->channel.userdata);
2387 
2388         if (ring->cmpl_cnt != 0) {
2389                 ring->doorbell_cnt += ring->cmpl_cnt;
2390                 if (ring->doorbell_cnt >= ring->rxds_limit) {
2391                         /*
2392                          * Each RxD is of 4 qwords, update the number of
2393                          * qwords replenished
2394                          */
2395                         new_count = (ring->doorbell_cnt * 4);
2396 
2397                         /* For each block add 4 more qwords */
2398                         ring->total_db_cnt += ring->doorbell_cnt;
2399                         if (ring->total_db_cnt >= ring->rxds_per_block) {
2400                                 new_count += 4;
2401                                 /* Reset total count */
2402                                 ring->total_db_cnt %= ring->rxds_per_block;
2403                         }
2404                         writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(new_count),
2405                                 &ring->vp_reg->prc_rxd_doorbell);
2406                         val64 =
2407                           readl(&ring->common_reg->titan_general_int_status);
2408                         ring->doorbell_cnt = 0;
2409                 }
2410         }
2411 
2412         return status;
2413 }
2414 
2415 /**
2416  * vxge_hw_vpath_poll_tx - Poll Tx for completed descriptors and process
2417  * the same.
2418  * @fifo: Handle to the fifo object used for non offload send
2419  *
2420  * The function polls the Tx for the completed descriptors and calls
2421  * the driver via supplied completion callback.
2422  *
2423  * Returns: VXGE_HW_OK, if the polling is completed successful.
2424  * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2425  * descriptors available which are yet to be processed.
2426  */
2427 enum vxge_hw_status vxge_hw_vpath_poll_tx(struct __vxge_hw_fifo *fifo,
2428                                         struct sk_buff ***skb_ptr, int nr_skb,
2429                                         int *more)
2430 {
2431         enum vxge_hw_fifo_tcode t_code;
2432         void *first_txdlh;
2433         enum vxge_hw_status status = VXGE_HW_OK;
2434         struct __vxge_hw_channel *channel;
2435 
2436         channel = &fifo->channel;
2437 
2438         status = vxge_hw_fifo_txdl_next_completed(fifo,
2439                                 &first_txdlh, &t_code);
2440         if (status == VXGE_HW_OK)
2441                 if (fifo->callback(fifo, first_txdlh, t_code,
2442                         channel->userdata, skb_ptr, nr_skb, more) != VXGE_HW_OK)
2443                         status = VXGE_HW_COMPLETIONS_REMAIN;
2444 
2445         return status;
2446 }

/* [<][>][^][v][top][bottom][index][help] */