root/drivers/net/ethernet/chelsio/cxgb4vf/sge.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. get_buf_addr
  2. is_buf_mapped
  3. need_skb_unmap
  4. txq_avail
  5. fl_cap
  6. fl_starving
  7. map_skb
  8. unmap_sgl
  9. free_tx_desc
  10. reclaimable
  11. reclaim_completed_tx
  12. get_buf_size
  13. free_rx_bufs
  14. unmap_rx_buf
  15. ring_fl_db
  16. set_rx_sw_desc
  17. poison_buf
  18. refill_fl
  19. __refill_fl
  20. alloc_ring
  21. sgl_len
  22. flits_to_desc
  23. is_eth_imm
  24. calc_tx_flits
  25. write_sgl
  26. ring_tx_db
  27. inline_tx_skb
  28. hwcsum
  29. txq_stop
  30. txq_advance
  31. t4vf_eth_xmit
  32. copy_frags
  33. t4vf_pktgl_to_skb
  34. t4vf_pktgl_free
  35. do_gro
  36. t4vf_ethrx_handler
  37. is_new_response
  38. restore_rx_bufs
  39. rspq_next
  40. process_responses
  41. napi_rx_handler
  42. t4vf_sge_intr_msix
  43. process_intrq
  44. t4vf_intr_msi
  45. t4vf_intr_handler
  46. sge_rx_timer_cb
  47. sge_tx_timer_cb
  48. bar2_address
  49. t4vf_sge_alloc_rxq
  50. t4vf_sge_alloc_eth_txq
  51. free_txq
  52. free_rspq_fl
  53. t4vf_free_sge_resources
  54. t4vf_sge_start
  55. t4vf_sge_stop
  56. t4vf_sge_init

   1 /*
   2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
   3  * driver for Linux.
   4  *
   5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
   6  *
   7  * This software is available to you under a choice of one of two
   8  * licenses.  You may choose to be licensed under the terms of the GNU
   9  * General Public License (GPL) Version 2, available from the file
  10  * COPYING in the main directory of this source tree, or the
  11  * OpenIB.org BSD license below:
  12  *
  13  *     Redistribution and use in source and binary forms, with or
  14  *     without modification, are permitted provided that the following
  15  *     conditions are met:
  16  *
  17  *      - Redistributions of source code must retain the above
  18  *        copyright notice, this list of conditions and the following
  19  *        disclaimer.
  20  *
  21  *      - Redistributions in binary form must reproduce the above
  22  *        copyright notice, this list of conditions and the following
  23  *        disclaimer in the documentation and/or other materials
  24  *        provided with the distribution.
  25  *
  26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  33  * SOFTWARE.
  34  */
  35 
  36 #include <linux/skbuff.h>
  37 #include <linux/netdevice.h>
  38 #include <linux/etherdevice.h>
  39 #include <linux/if_vlan.h>
  40 #include <linux/ip.h>
  41 #include <net/ipv6.h>
  42 #include <net/tcp.h>
  43 #include <linux/dma-mapping.h>
  44 #include <linux/prefetch.h>
  45 
  46 #include "t4vf_common.h"
  47 #include "t4vf_defs.h"
  48 
  49 #include "../cxgb4/t4_regs.h"
  50 #include "../cxgb4/t4_values.h"
  51 #include "../cxgb4/t4fw_api.h"
  52 #include "../cxgb4/t4_msg.h"
  53 
  54 /*
  55  * Constants ...
  56  */
  57 enum {
  58         /*
  59          * Egress Queue sizes, producer and consumer indices are all in units
  60          * of Egress Context Units bytes.  Note that as far as the hardware is
  61          * concerned, the free list is an Egress Queue (the host produces free
  62          * buffers which the hardware consumes) and free list entries are
  63          * 64-bit PCI DMA addresses.
  64          */
  65         EQ_UNIT = SGE_EQ_IDXSIZE,
  66         FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
  67         TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
  68 
  69         /*
  70          * Max number of TX descriptors we clean up at a time.  Should be
  71          * modest as freeing skbs isn't cheap and it happens while holding
  72          * locks.  We just need to free packets faster than they arrive, we
  73          * eventually catch up and keep the amortized cost reasonable.
  74          */
  75         MAX_TX_RECLAIM = 16,
  76 
  77         /*
  78          * Max number of Rx buffers we replenish at a time.  Again keep this
  79          * modest, allocating buffers isn't cheap either.
  80          */
  81         MAX_RX_REFILL = 16,
  82 
  83         /*
  84          * Period of the Rx queue check timer.  This timer is infrequent as it
  85          * has something to do only when the system experiences severe memory
  86          * shortage.
  87          */
  88         RX_QCHECK_PERIOD = (HZ / 2),
  89 
  90         /*
  91          * Period of the TX queue check timer and the maximum number of TX
  92          * descriptors to be reclaimed by the TX timer.
  93          */
  94         TX_QCHECK_PERIOD = (HZ / 2),
  95         MAX_TIMER_TX_RECLAIM = 100,
  96 
  97         /*
  98          * Suspend an Ethernet TX queue with fewer available descriptors than
  99          * this.  We always want to have room for a maximum sized packet:
 100          * inline immediate data + MAX_SKB_FRAGS. This is the same as
 101          * calc_tx_flits() for a TSO packet with nr_frags == MAX_SKB_FRAGS
 102          * (see that function and its helpers for a description of the
 103          * calculation).
 104          */
 105         ETHTXQ_MAX_FRAGS = MAX_SKB_FRAGS + 1,
 106         ETHTXQ_MAX_SGL_LEN = ((3 * (ETHTXQ_MAX_FRAGS-1))/2 +
 107                                    ((ETHTXQ_MAX_FRAGS-1) & 1) +
 108                                    2),
 109         ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
 110                           sizeof(struct cpl_tx_pkt_lso_core) +
 111                           sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
 112         ETHTXQ_MAX_FLITS = ETHTXQ_MAX_SGL_LEN + ETHTXQ_MAX_HDR,
 113 
 114         ETHTXQ_STOP_THRES = 1 + DIV_ROUND_UP(ETHTXQ_MAX_FLITS, TXD_PER_EQ_UNIT),
 115 
 116         /*
 117          * Max TX descriptor space we allow for an Ethernet packet to be
 118          * inlined into a WR.  This is limited by the maximum value which
 119          * we can specify for immediate data in the firmware Ethernet TX
 120          * Work Request.
 121          */
 122         MAX_IMM_TX_PKT_LEN = FW_WR_IMMDLEN_M,
 123 
 124         /*
 125          * Max size of a WR sent through a control TX queue.
 126          */
 127         MAX_CTRL_WR_LEN = 256,
 128 
 129         /*
 130          * Maximum amount of data which we'll ever need to inline into a
 131          * TX ring: max(MAX_IMM_TX_PKT_LEN, MAX_CTRL_WR_LEN).
 132          */
 133         MAX_IMM_TX_LEN = (MAX_IMM_TX_PKT_LEN > MAX_CTRL_WR_LEN
 134                           ? MAX_IMM_TX_PKT_LEN
 135                           : MAX_CTRL_WR_LEN),
 136 
 137         /*
 138          * For incoming packets less than RX_COPY_THRES, we copy the data into
 139          * an skb rather than referencing the data.  We allocate enough
 140          * in-line room in skb's to accommodate pulling in RX_PULL_LEN bytes
 141          * of the data (header).
 142          */
 143         RX_COPY_THRES = 256,
 144         RX_PULL_LEN = 128,
 145 
 146         /*
 147          * Main body length for sk_buffs used for RX Ethernet packets with
 148          * fragments.  Should be >= RX_PULL_LEN but possibly bigger to give
 149          * pskb_may_pull() some room.
 150          */
 151         RX_SKB_LEN = 512,
 152 };
 153 
 154 /*
 155  * Software state per TX descriptor.
 156  */
 157 struct tx_sw_desc {
 158         struct sk_buff *skb;            /* socket buffer of TX data source */
 159         struct ulptx_sgl *sgl;          /* scatter/gather list in TX Queue */
 160 };
 161 
 162 /*
 163  * Software state per RX Free List descriptor.  We keep track of the allocated
 164  * FL page, its size, and its PCI DMA address (if the page is mapped).  The FL
 165  * page size and its PCI DMA mapped state are stored in the low bits of the
 166  * PCI DMA address as per below.
 167  */
 168 struct rx_sw_desc {
 169         struct page *page;              /* Free List page buffer */
 170         dma_addr_t dma_addr;            /* PCI DMA address (if mapped) */
 171                                         /*   and flags (see below) */
 172 };
 173 
 174 /*
 175  * The low bits of rx_sw_desc.dma_addr have special meaning.  Note that the
 176  * SGE also uses the low 4 bits to determine the size of the buffer.  It uses
 177  * those bits to index into the SGE_FL_BUFFER_SIZE[index] register array.
 178  * Since we only use SGE_FL_BUFFER_SIZE0 and SGE_FL_BUFFER_SIZE1, these low 4
 179  * bits can only contain a 0 or a 1 to indicate which size buffer we're giving
 180  * to the SGE.  Thus, our software state of "is the buffer mapped for DMA" is
 181  * maintained in an inverse sense so the hardware never sees that bit high.
 182  */
 183 enum {
 184         RX_LARGE_BUF    = 1 << 0,       /* buffer is SGE_FL_BUFFER_SIZE[1] */
 185         RX_UNMAPPED_BUF = 1 << 1,       /* buffer is not mapped */
 186 };
 187 
 188 /**
 189  *      get_buf_addr - return DMA buffer address of software descriptor
 190  *      @sdesc: pointer to the software buffer descriptor
 191  *
 192  *      Return the DMA buffer address of a software descriptor (stripping out
 193  *      our low-order flag bits).
 194  */
 195 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *sdesc)
 196 {
 197         return sdesc->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF);
 198 }
 199 
 200 /**
 201  *      is_buf_mapped - is buffer mapped for DMA?
 202  *      @sdesc: pointer to the software buffer descriptor
 203  *
 204  *      Determine whether the buffer associated with a software descriptor in
 205  *      mapped for DMA or not.
 206  */
 207 static inline bool is_buf_mapped(const struct rx_sw_desc *sdesc)
 208 {
 209         return !(sdesc->dma_addr & RX_UNMAPPED_BUF);
 210 }
 211 
 212 /**
 213  *      need_skb_unmap - does the platform need unmapping of sk_buffs?
 214  *
 215  *      Returns true if the platform needs sk_buff unmapping.  The compiler
 216  *      optimizes away unnecessary code if this returns true.
 217  */
 218 static inline int need_skb_unmap(void)
 219 {
 220 #ifdef CONFIG_NEED_DMA_MAP_STATE
 221         return 1;
 222 #else
 223         return 0;
 224 #endif
 225 }
 226 
 227 /**
 228  *      txq_avail - return the number of available slots in a TX queue
 229  *      @tq: the TX queue
 230  *
 231  *      Returns the number of available descriptors in a TX queue.
 232  */
 233 static inline unsigned int txq_avail(const struct sge_txq *tq)
 234 {
 235         return tq->size - 1 - tq->in_use;
 236 }
 237 
 238 /**
 239  *      fl_cap - return the capacity of a Free List
 240  *      @fl: the Free List
 241  *
 242  *      Returns the capacity of a Free List.  The capacity is less than the
 243  *      size because an Egress Queue Index Unit worth of descriptors needs to
 244  *      be left unpopulated, otherwise the Producer and Consumer indices PIDX
 245  *      and CIDX will match and the hardware will think the FL is empty.
 246  */
 247 static inline unsigned int fl_cap(const struct sge_fl *fl)
 248 {
 249         return fl->size - FL_PER_EQ_UNIT;
 250 }
 251 
 252 /**
 253  *      fl_starving - return whether a Free List is starving.
 254  *      @adapter: pointer to the adapter
 255  *      @fl: the Free List
 256  *
 257  *      Tests specified Free List to see whether the number of buffers
 258  *      available to the hardware has falled below our "starvation"
 259  *      threshold.
 260  */
 261 static inline bool fl_starving(const struct adapter *adapter,
 262                                const struct sge_fl *fl)
 263 {
 264         const struct sge *s = &adapter->sge;
 265 
 266         return fl->avail - fl->pend_cred <= s->fl_starve_thres;
 267 }
 268 
 269 /**
 270  *      map_skb -  map an skb for DMA to the device
 271  *      @dev: the egress net device
 272  *      @skb: the packet to map
 273  *      @addr: a pointer to the base of the DMA mapping array
 274  *
 275  *      Map an skb for DMA to the device and return an array of DMA addresses.
 276  */
 277 static int map_skb(struct device *dev, const struct sk_buff *skb,
 278                    dma_addr_t *addr)
 279 {
 280         const skb_frag_t *fp, *end;
 281         const struct skb_shared_info *si;
 282 
 283         *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
 284         if (dma_mapping_error(dev, *addr))
 285                 goto out_err;
 286 
 287         si = skb_shinfo(skb);
 288         end = &si->frags[si->nr_frags];
 289         for (fp = si->frags; fp < end; fp++) {
 290                 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
 291                                            DMA_TO_DEVICE);
 292                 if (dma_mapping_error(dev, *addr))
 293                         goto unwind;
 294         }
 295         return 0;
 296 
 297 unwind:
 298         while (fp-- > si->frags)
 299                 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
 300         dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
 301 
 302 out_err:
 303         return -ENOMEM;
 304 }
 305 
 306 static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
 307                       const struct ulptx_sgl *sgl, const struct sge_txq *tq)
 308 {
 309         const struct ulptx_sge_pair *p;
 310         unsigned int nfrags = skb_shinfo(skb)->nr_frags;
 311 
 312         if (likely(skb_headlen(skb)))
 313                 dma_unmap_single(dev, be64_to_cpu(sgl->addr0),
 314                                  be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
 315         else {
 316                 dma_unmap_page(dev, be64_to_cpu(sgl->addr0),
 317                                be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
 318                 nfrags--;
 319         }
 320 
 321         /*
 322          * the complexity below is because of the possibility of a wrap-around
 323          * in the middle of an SGL
 324          */
 325         for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
 326                 if (likely((u8 *)(p + 1) <= (u8 *)tq->stat)) {
 327 unmap:
 328                         dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
 329                                        be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
 330                         dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
 331                                        be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
 332                         p++;
 333                 } else if ((u8 *)p == (u8 *)tq->stat) {
 334                         p = (const struct ulptx_sge_pair *)tq->desc;
 335                         goto unmap;
 336                 } else if ((u8 *)p + 8 == (u8 *)tq->stat) {
 337                         const __be64 *addr = (const __be64 *)tq->desc;
 338 
 339                         dma_unmap_page(dev, be64_to_cpu(addr[0]),
 340                                        be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
 341                         dma_unmap_page(dev, be64_to_cpu(addr[1]),
 342                                        be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
 343                         p = (const struct ulptx_sge_pair *)&addr[2];
 344                 } else {
 345                         const __be64 *addr = (const __be64 *)tq->desc;
 346 
 347                         dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
 348                                        be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
 349                         dma_unmap_page(dev, be64_to_cpu(addr[0]),
 350                                        be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
 351                         p = (const struct ulptx_sge_pair *)&addr[1];
 352                 }
 353         }
 354         if (nfrags) {
 355                 __be64 addr;
 356 
 357                 if ((u8 *)p == (u8 *)tq->stat)
 358                         p = (const struct ulptx_sge_pair *)tq->desc;
 359                 addr = ((u8 *)p + 16 <= (u8 *)tq->stat
 360                         ? p->addr[0]
 361                         : *(const __be64 *)tq->desc);
 362                 dma_unmap_page(dev, be64_to_cpu(addr), be32_to_cpu(p->len[0]),
 363                                DMA_TO_DEVICE);
 364         }
 365 }
 366 
 367 /**
 368  *      free_tx_desc - reclaims TX descriptors and their buffers
 369  *      @adapter: the adapter
 370  *      @tq: the TX queue to reclaim descriptors from
 371  *      @n: the number of descriptors to reclaim
 372  *      @unmap: whether the buffers should be unmapped for DMA
 373  *
 374  *      Reclaims TX descriptors from an SGE TX queue and frees the associated
 375  *      TX buffers.  Called with the TX queue lock held.
 376  */
 377 static void free_tx_desc(struct adapter *adapter, struct sge_txq *tq,
 378                          unsigned int n, bool unmap)
 379 {
 380         struct tx_sw_desc *sdesc;
 381         unsigned int cidx = tq->cidx;
 382         struct device *dev = adapter->pdev_dev;
 383 
 384         const int need_unmap = need_skb_unmap() && unmap;
 385 
 386         sdesc = &tq->sdesc[cidx];
 387         while (n--) {
 388                 /*
 389                  * If we kept a reference to the original TX skb, we need to
 390                  * unmap it from PCI DMA space (if required) and free it.
 391                  */
 392                 if (sdesc->skb) {
 393                         if (need_unmap)
 394                                 unmap_sgl(dev, sdesc->skb, sdesc->sgl, tq);
 395                         dev_consume_skb_any(sdesc->skb);
 396                         sdesc->skb = NULL;
 397                 }
 398 
 399                 sdesc++;
 400                 if (++cidx == tq->size) {
 401                         cidx = 0;
 402                         sdesc = tq->sdesc;
 403                 }
 404         }
 405         tq->cidx = cidx;
 406 }
 407 
 408 /*
 409  * Return the number of reclaimable descriptors in a TX queue.
 410  */
 411 static inline int reclaimable(const struct sge_txq *tq)
 412 {
 413         int hw_cidx = be16_to_cpu(tq->stat->cidx);
 414         int reclaimable = hw_cidx - tq->cidx;
 415         if (reclaimable < 0)
 416                 reclaimable += tq->size;
 417         return reclaimable;
 418 }
 419 
 420 /**
 421  *      reclaim_completed_tx - reclaims completed TX descriptors
 422  *      @adapter: the adapter
 423  *      @tq: the TX queue to reclaim completed descriptors from
 424  *      @unmap: whether the buffers should be unmapped for DMA
 425  *
 426  *      Reclaims TX descriptors that the SGE has indicated it has processed,
 427  *      and frees the associated buffers if possible.  Called with the TX
 428  *      queue locked.
 429  */
 430 static inline void reclaim_completed_tx(struct adapter *adapter,
 431                                         struct sge_txq *tq,
 432                                         bool unmap)
 433 {
 434         int avail = reclaimable(tq);
 435 
 436         if (avail) {
 437                 /*
 438                  * Limit the amount of clean up work we do at a time to keep
 439                  * the TX lock hold time O(1).
 440                  */
 441                 if (avail > MAX_TX_RECLAIM)
 442                         avail = MAX_TX_RECLAIM;
 443 
 444                 free_tx_desc(adapter, tq, avail, unmap);
 445                 tq->in_use -= avail;
 446         }
 447 }
 448 
 449 /**
 450  *      get_buf_size - return the size of an RX Free List buffer.
 451  *      @adapter: pointer to the associated adapter
 452  *      @sdesc: pointer to the software buffer descriptor
 453  */
 454 static inline int get_buf_size(const struct adapter *adapter,
 455                                const struct rx_sw_desc *sdesc)
 456 {
 457         const struct sge *s = &adapter->sge;
 458 
 459         return (s->fl_pg_order > 0 && (sdesc->dma_addr & RX_LARGE_BUF)
 460                 ? (PAGE_SIZE << s->fl_pg_order) : PAGE_SIZE);
 461 }
 462 
 463 /**
 464  *      free_rx_bufs - free RX buffers on an SGE Free List
 465  *      @adapter: the adapter
 466  *      @fl: the SGE Free List to free buffers from
 467  *      @n: how many buffers to free
 468  *
 469  *      Release the next @n buffers on an SGE Free List RX queue.   The
 470  *      buffers must be made inaccessible to hardware before calling this
 471  *      function.
 472  */
 473 static void free_rx_bufs(struct adapter *adapter, struct sge_fl *fl, int n)
 474 {
 475         while (n--) {
 476                 struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
 477 
 478                 if (is_buf_mapped(sdesc))
 479                         dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
 480                                        get_buf_size(adapter, sdesc),
 481                                        PCI_DMA_FROMDEVICE);
 482                 put_page(sdesc->page);
 483                 sdesc->page = NULL;
 484                 if (++fl->cidx == fl->size)
 485                         fl->cidx = 0;
 486                 fl->avail--;
 487         }
 488 }
 489 
 490 /**
 491  *      unmap_rx_buf - unmap the current RX buffer on an SGE Free List
 492  *      @adapter: the adapter
 493  *      @fl: the SGE Free List
 494  *
 495  *      Unmap the current buffer on an SGE Free List RX queue.   The
 496  *      buffer must be made inaccessible to HW before calling this function.
 497  *
 498  *      This is similar to @free_rx_bufs above but does not free the buffer.
 499  *      Do note that the FL still loses any further access to the buffer.
 500  *      This is used predominantly to "transfer ownership" of an FL buffer
 501  *      to another entity (typically an skb's fragment list).
 502  */
 503 static void unmap_rx_buf(struct adapter *adapter, struct sge_fl *fl)
 504 {
 505         struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
 506 
 507         if (is_buf_mapped(sdesc))
 508                 dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
 509                                get_buf_size(adapter, sdesc),
 510                                PCI_DMA_FROMDEVICE);
 511         sdesc->page = NULL;
 512         if (++fl->cidx == fl->size)
 513                 fl->cidx = 0;
 514         fl->avail--;
 515 }
 516 
 517 /**
 518  *      ring_fl_db - righ doorbell on free list
 519  *      @adapter: the adapter
 520  *      @fl: the Free List whose doorbell should be rung ...
 521  *
 522  *      Tell the Scatter Gather Engine that there are new free list entries
 523  *      available.
 524  */
 525 static inline void ring_fl_db(struct adapter *adapter, struct sge_fl *fl)
 526 {
 527         u32 val = adapter->params.arch.sge_fl_db;
 528 
 529         /* The SGE keeps track of its Producer and Consumer Indices in terms
 530          * of Egress Queue Units so we can only tell it about integral numbers
 531          * of multiples of Free List Entries per Egress Queue Units ...
 532          */
 533         if (fl->pend_cred >= FL_PER_EQ_UNIT) {
 534                 if (is_t4(adapter->params.chip))
 535                         val |= PIDX_V(fl->pend_cred / FL_PER_EQ_UNIT);
 536                 else
 537                         val |= PIDX_T5_V(fl->pend_cred / FL_PER_EQ_UNIT);
 538 
 539                 /* Make sure all memory writes to the Free List queue are
 540                  * committed before we tell the hardware about them.
 541                  */
 542                 wmb();
 543 
 544                 /* If we don't have access to the new User Doorbell (T5+), use
 545                  * the old doorbell mechanism; otherwise use the new BAR2
 546                  * mechanism.
 547                  */
 548                 if (unlikely(fl->bar2_addr == NULL)) {
 549                         t4_write_reg(adapter,
 550                                      T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
 551                                      QID_V(fl->cntxt_id) | val);
 552                 } else {
 553                         writel(val | QID_V(fl->bar2_qid),
 554                                fl->bar2_addr + SGE_UDB_KDOORBELL);
 555 
 556                         /* This Write memory Barrier will force the write to
 557                          * the User Doorbell area to be flushed.
 558                          */
 559                         wmb();
 560                 }
 561                 fl->pend_cred %= FL_PER_EQ_UNIT;
 562         }
 563 }
 564 
 565 /**
 566  *      set_rx_sw_desc - initialize software RX buffer descriptor
 567  *      @sdesc: pointer to the softwore RX buffer descriptor
 568  *      @page: pointer to the page data structure backing the RX buffer
 569  *      @dma_addr: PCI DMA address (possibly with low-bit flags)
 570  */
 571 static inline void set_rx_sw_desc(struct rx_sw_desc *sdesc, struct page *page,
 572                                   dma_addr_t dma_addr)
 573 {
 574         sdesc->page = page;
 575         sdesc->dma_addr = dma_addr;
 576 }
 577 
 578 /*
 579  * Support for poisoning RX buffers ...
 580  */
 581 #define POISON_BUF_VAL -1
 582 
 583 static inline void poison_buf(struct page *page, size_t sz)
 584 {
 585 #if POISON_BUF_VAL >= 0
 586         memset(page_address(page), POISON_BUF_VAL, sz);
 587 #endif
 588 }
 589 
 590 /**
 591  *      refill_fl - refill an SGE RX buffer ring
 592  *      @adapter: the adapter
 593  *      @fl: the Free List ring to refill
 594  *      @n: the number of new buffers to allocate
 595  *      @gfp: the gfp flags for the allocations
 596  *
 597  *      (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
 598  *      allocated with the supplied gfp flags.  The caller must assure that
 599  *      @n does not exceed the queue's capacity -- i.e. (cidx == pidx) _IN
 600  *      EGRESS QUEUE UNITS_ indicates an empty Free List!  Returns the number
 601  *      of buffers allocated.  If afterwards the queue is found critically low,
 602  *      mark it as starving in the bitmap of starving FLs.
 603  */
 604 static unsigned int refill_fl(struct adapter *adapter, struct sge_fl *fl,
 605                               int n, gfp_t gfp)
 606 {
 607         struct sge *s = &adapter->sge;
 608         struct page *page;
 609         dma_addr_t dma_addr;
 610         unsigned int cred = fl->avail;
 611         __be64 *d = &fl->desc[fl->pidx];
 612         struct rx_sw_desc *sdesc = &fl->sdesc[fl->pidx];
 613 
 614         /*
 615          * Sanity: ensure that the result of adding n Free List buffers
 616          * won't result in wrapping the SGE's Producer Index around to
 617          * it's Consumer Index thereby indicating an empty Free List ...
 618          */
 619         BUG_ON(fl->avail + n > fl->size - FL_PER_EQ_UNIT);
 620 
 621         gfp |= __GFP_NOWARN;
 622 
 623         /*
 624          * If we support large pages, prefer large buffers and fail over to
 625          * small pages if we can't allocate large pages to satisfy the refill.
 626          * If we don't support large pages, drop directly into the small page
 627          * allocation code.
 628          */
 629         if (s->fl_pg_order == 0)
 630                 goto alloc_small_pages;
 631 
 632         while (n) {
 633                 page = __dev_alloc_pages(gfp, s->fl_pg_order);
 634                 if (unlikely(!page)) {
 635                         /*
 636                          * We've failed inour attempt to allocate a "large
 637                          * page".  Fail over to the "small page" allocation
 638                          * below.
 639                          */
 640                         fl->large_alloc_failed++;
 641                         break;
 642                 }
 643                 poison_buf(page, PAGE_SIZE << s->fl_pg_order);
 644 
 645                 dma_addr = dma_map_page(adapter->pdev_dev, page, 0,
 646                                         PAGE_SIZE << s->fl_pg_order,
 647                                         PCI_DMA_FROMDEVICE);
 648                 if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
 649                         /*
 650                          * We've run out of DMA mapping space.  Free up the
 651                          * buffer and return with what we've managed to put
 652                          * into the free list.  We don't want to fail over to
 653                          * the small page allocation below in this case
 654                          * because DMA mapping resources are typically
 655                          * critical resources once they become scarse.
 656                          */
 657                         __free_pages(page, s->fl_pg_order);
 658                         goto out;
 659                 }
 660                 dma_addr |= RX_LARGE_BUF;
 661                 *d++ = cpu_to_be64(dma_addr);
 662 
 663                 set_rx_sw_desc(sdesc, page, dma_addr);
 664                 sdesc++;
 665 
 666                 fl->avail++;
 667                 if (++fl->pidx == fl->size) {
 668                         fl->pidx = 0;
 669                         sdesc = fl->sdesc;
 670                         d = fl->desc;
 671                 }
 672                 n--;
 673         }
 674 
 675 alloc_small_pages:
 676         while (n--) {
 677                 page = __dev_alloc_page(gfp);
 678                 if (unlikely(!page)) {
 679                         fl->alloc_failed++;
 680                         break;
 681                 }
 682                 poison_buf(page, PAGE_SIZE);
 683 
 684                 dma_addr = dma_map_page(adapter->pdev_dev, page, 0, PAGE_SIZE,
 685                                        PCI_DMA_FROMDEVICE);
 686                 if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
 687                         put_page(page);
 688                         break;
 689                 }
 690                 *d++ = cpu_to_be64(dma_addr);
 691 
 692                 set_rx_sw_desc(sdesc, page, dma_addr);
 693                 sdesc++;
 694 
 695                 fl->avail++;
 696                 if (++fl->pidx == fl->size) {
 697                         fl->pidx = 0;
 698                         sdesc = fl->sdesc;
 699                         d = fl->desc;
 700                 }
 701         }
 702 
 703 out:
 704         /*
 705          * Update our accounting state to incorporate the new Free List
 706          * buffers, tell the hardware about them and return the number of
 707          * buffers which we were able to allocate.
 708          */
 709         cred = fl->avail - cred;
 710         fl->pend_cred += cred;
 711         ring_fl_db(adapter, fl);
 712 
 713         if (unlikely(fl_starving(adapter, fl))) {
 714                 smp_wmb();
 715                 set_bit(fl->cntxt_id, adapter->sge.starving_fl);
 716         }
 717 
 718         return cred;
 719 }
 720 
 721 /*
 722  * Refill a Free List to its capacity or the Maximum Refill Increment,
 723  * whichever is smaller ...
 724  */
 725 static inline void __refill_fl(struct adapter *adapter, struct sge_fl *fl)
 726 {
 727         refill_fl(adapter, fl,
 728                   min((unsigned int)MAX_RX_REFILL, fl_cap(fl) - fl->avail),
 729                   GFP_ATOMIC);
 730 }
 731 
 732 /**
 733  *      alloc_ring - allocate resources for an SGE descriptor ring
 734  *      @dev: the PCI device's core device
 735  *      @nelem: the number of descriptors
 736  *      @hwsize: the size of each hardware descriptor
 737  *      @swsize: the size of each software descriptor
 738  *      @busaddrp: the physical PCI bus address of the allocated ring
 739  *      @swringp: return address pointer for software ring
 740  *      @stat_size: extra space in hardware ring for status information
 741  *
 742  *      Allocates resources for an SGE descriptor ring, such as TX queues,
 743  *      free buffer lists, response queues, etc.  Each SGE ring requires
 744  *      space for its hardware descriptors plus, optionally, space for software
 745  *      state associated with each hardware entry (the metadata).  The function
 746  *      returns three values: the virtual address for the hardware ring (the
 747  *      return value of the function), the PCI bus address of the hardware
 748  *      ring (in *busaddrp), and the address of the software ring (in swringp).
 749  *      Both the hardware and software rings are returned zeroed out.
 750  */
 751 static void *alloc_ring(struct device *dev, size_t nelem, size_t hwsize,
 752                         size_t swsize, dma_addr_t *busaddrp, void *swringp,
 753                         size_t stat_size)
 754 {
 755         /*
 756          * Allocate the hardware ring and PCI DMA bus address space for said.
 757          */
 758         size_t hwlen = nelem * hwsize + stat_size;
 759         void *hwring = dma_alloc_coherent(dev, hwlen, busaddrp, GFP_KERNEL);
 760 
 761         if (!hwring)
 762                 return NULL;
 763 
 764         /*
 765          * If the caller wants a software ring, allocate it and return a
 766          * pointer to it in *swringp.
 767          */
 768         BUG_ON((swsize != 0) != (swringp != NULL));
 769         if (swsize) {
 770                 void *swring = kcalloc(nelem, swsize, GFP_KERNEL);
 771 
 772                 if (!swring) {
 773                         dma_free_coherent(dev, hwlen, hwring, *busaddrp);
 774                         return NULL;
 775                 }
 776                 *(void **)swringp = swring;
 777         }
 778 
 779         return hwring;
 780 }
 781 
 782 /**
 783  *      sgl_len - calculates the size of an SGL of the given capacity
 784  *      @n: the number of SGL entries
 785  *
 786  *      Calculates the number of flits (8-byte units) needed for a Direct
 787  *      Scatter/Gather List that can hold the given number of entries.
 788  */
 789 static inline unsigned int sgl_len(unsigned int n)
 790 {
 791         /*
 792          * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
 793          * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
 794          * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
 795          * repeated sequences of { Length[i], Length[i+1], Address[i],
 796          * Address[i+1] } (this ensures that all addresses are on 64-bit
 797          * boundaries).  If N is even, then Length[N+1] should be set to 0 and
 798          * Address[N+1] is omitted.
 799          *
 800          * The following calculation incorporates all of the above.  It's
 801          * somewhat hard to follow but, briefly: the "+2" accounts for the
 802          * first two flits which include the DSGL header, Length0 and
 803          * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
 804          * flits for every pair of the remaining N) +1 if (n-1) is odd; and
 805          * finally the "+((n-1)&1)" adds the one remaining flit needed if
 806          * (n-1) is odd ...
 807          */
 808         n--;
 809         return (3 * n) / 2 + (n & 1) + 2;
 810 }
 811 
 812 /**
 813  *      flits_to_desc - returns the num of TX descriptors for the given flits
 814  *      @flits: the number of flits
 815  *
 816  *      Returns the number of TX descriptors needed for the supplied number
 817  *      of flits.
 818  */
 819 static inline unsigned int flits_to_desc(unsigned int flits)
 820 {
 821         BUG_ON(flits > SGE_MAX_WR_LEN / sizeof(__be64));
 822         return DIV_ROUND_UP(flits, TXD_PER_EQ_UNIT);
 823 }
 824 
 825 /**
 826  *      is_eth_imm - can an Ethernet packet be sent as immediate data?
 827  *      @skb: the packet
 828  *
 829  *      Returns whether an Ethernet packet is small enough to fit completely as
 830  *      immediate data.
 831  */
 832 static inline int is_eth_imm(const struct sk_buff *skb)
 833 {
 834         /*
 835          * The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
 836          * which does not accommodate immediate data.  We could dike out all
 837          * of the support code for immediate data but that would tie our hands
 838          * too much if we ever want to enhace the firmware.  It would also
 839          * create more differences between the PF and VF Drivers.
 840          */
 841         return false;
 842 }
 843 
 844 /**
 845  *      calc_tx_flits - calculate the number of flits for a packet TX WR
 846  *      @skb: the packet
 847  *
 848  *      Returns the number of flits needed for a TX Work Request for the
 849  *      given Ethernet packet, including the needed WR and CPL headers.
 850  */
 851 static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
 852 {
 853         unsigned int flits;
 854 
 855         /*
 856          * If the skb is small enough, we can pump it out as a work request
 857          * with only immediate data.  In that case we just have to have the
 858          * TX Packet header plus the skb data in the Work Request.
 859          */
 860         if (is_eth_imm(skb))
 861                 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
 862                                     sizeof(__be64));
 863 
 864         /*
 865          * Otherwise, we're going to have to construct a Scatter gather list
 866          * of the skb body and fragments.  We also include the flits necessary
 867          * for the TX Packet Work Request and CPL.  We always have a firmware
 868          * Write Header (incorporated as part of the cpl_tx_pkt_lso and
 869          * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
 870          * message or, if we're doing a Large Send Offload, an LSO CPL message
 871          * with an embedded TX Packet Write CPL message.
 872          */
 873         flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
 874         if (skb_shinfo(skb)->gso_size)
 875                 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
 876                           sizeof(struct cpl_tx_pkt_lso_core) +
 877                           sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
 878         else
 879                 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
 880                           sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
 881         return flits;
 882 }
 883 
 884 /**
 885  *      write_sgl - populate a Scatter/Gather List for a packet
 886  *      @skb: the packet
 887  *      @tq: the TX queue we are writing into
 888  *      @sgl: starting location for writing the SGL
 889  *      @end: points right after the end of the SGL
 890  *      @start: start offset into skb main-body data to include in the SGL
 891  *      @addr: the list of DMA bus addresses for the SGL elements
 892  *
 893  *      Generates a Scatter/Gather List for the buffers that make up a packet.
 894  *      The caller must provide adequate space for the SGL that will be written.
 895  *      The SGL includes all of the packet's page fragments and the data in its
 896  *      main body except for the first @start bytes.  @pos must be 16-byte
 897  *      aligned and within a TX descriptor with available space.  @end points
 898  *      write after the end of the SGL but does not account for any potential
 899  *      wrap around, i.e., @end > @tq->stat.
 900  */
 901 static void write_sgl(const struct sk_buff *skb, struct sge_txq *tq,
 902                       struct ulptx_sgl *sgl, u64 *end, unsigned int start,
 903                       const dma_addr_t *addr)
 904 {
 905         unsigned int i, len;
 906         struct ulptx_sge_pair *to;
 907         const struct skb_shared_info *si = skb_shinfo(skb);
 908         unsigned int nfrags = si->nr_frags;
 909         struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
 910 
 911         len = skb_headlen(skb) - start;
 912         if (likely(len)) {
 913                 sgl->len0 = htonl(len);
 914                 sgl->addr0 = cpu_to_be64(addr[0] + start);
 915                 nfrags++;
 916         } else {
 917                 sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
 918                 sgl->addr0 = cpu_to_be64(addr[1]);
 919         }
 920 
 921         sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
 922                               ULPTX_NSGE_V(nfrags));
 923         if (likely(--nfrags == 0))
 924                 return;
 925         /*
 926          * Most of the complexity below deals with the possibility we hit the
 927          * end of the queue in the middle of writing the SGL.  For this case
 928          * only we create the SGL in a temporary buffer and then copy it.
 929          */
 930         to = (u8 *)end > (u8 *)tq->stat ? buf : sgl->sge;
 931 
 932         for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
 933                 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
 934                 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
 935                 to->addr[0] = cpu_to_be64(addr[i]);
 936                 to->addr[1] = cpu_to_be64(addr[++i]);
 937         }
 938         if (nfrags) {
 939                 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
 940                 to->len[1] = cpu_to_be32(0);
 941                 to->addr[0] = cpu_to_be64(addr[i + 1]);
 942         }
 943         if (unlikely((u8 *)end > (u8 *)tq->stat)) {
 944                 unsigned int part0 = (u8 *)tq->stat - (u8 *)sgl->sge, part1;
 945 
 946                 if (likely(part0))
 947                         memcpy(sgl->sge, buf, part0);
 948                 part1 = (u8 *)end - (u8 *)tq->stat;
 949                 memcpy(tq->desc, (u8 *)buf + part0, part1);
 950                 end = (void *)tq->desc + part1;
 951         }
 952         if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
 953                 *end = 0;
 954 }
 955 
 956 /**
 957  *      check_ring_tx_db - check and potentially ring a TX queue's doorbell
 958  *      @adapter: the adapter
 959  *      @tq: the TX queue
 960  *      @n: number of new descriptors to give to HW
 961  *
 962  *      Ring the doorbel for a TX queue.
 963  */
 964 static inline void ring_tx_db(struct adapter *adapter, struct sge_txq *tq,
 965                               int n)
 966 {
 967         /* Make sure that all writes to the TX Descriptors are committed
 968          * before we tell the hardware about them.
 969          */
 970         wmb();
 971 
 972         /* If we don't have access to the new User Doorbell (T5+), use the old
 973          * doorbell mechanism; otherwise use the new BAR2 mechanism.
 974          */
 975         if (unlikely(tq->bar2_addr == NULL)) {
 976                 u32 val = PIDX_V(n);
 977 
 978                 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
 979                              QID_V(tq->cntxt_id) | val);
 980         } else {
 981                 u32 val = PIDX_T5_V(n);
 982 
 983                 /* T4 and later chips share the same PIDX field offset within
 984                  * the doorbell, but T5 and later shrank the field in order to
 985                  * gain a bit for Doorbell Priority.  The field was absurdly
 986                  * large in the first place (14 bits) so we just use the T5
 987                  * and later limits and warn if a Queue ID is too large.
 988                  */
 989                 WARN_ON(val & DBPRIO_F);
 990 
 991                 /* If we're only writing a single Egress Unit and the BAR2
 992                  * Queue ID is 0, we can use the Write Combining Doorbell
 993                  * Gather Buffer; otherwise we use the simple doorbell.
 994                  */
 995                 if (n == 1 && tq->bar2_qid == 0) {
 996                         unsigned int index = (tq->pidx
 997                                               ? (tq->pidx - 1)
 998                                               : (tq->size - 1));
 999                         __be64 *src = (__be64 *)&tq->desc[index];
1000                         __be64 __iomem *dst = (__be64 __iomem *)(tq->bar2_addr +
1001                                                          SGE_UDB_WCDOORBELL);
1002                         unsigned int count = EQ_UNIT / sizeof(__be64);
1003 
1004                         /* Copy the TX Descriptor in a tight loop in order to
1005                          * try to get it to the adapter in a single Write
1006                          * Combined transfer on the PCI-E Bus.  If the Write
1007                          * Combine fails (say because of an interrupt, etc.)
1008                          * the hardware will simply take the last write as a
1009                          * simple doorbell write with a PIDX Increment of 1
1010                          * and will fetch the TX Descriptor from memory via
1011                          * DMA.
1012                          */
1013                         while (count) {
1014                                 /* the (__force u64) is because the compiler
1015                                  * doesn't understand the endian swizzling
1016                                  * going on
1017                                  */
1018                                 writeq((__force u64)*src, dst);
1019                                 src++;
1020                                 dst++;
1021                                 count--;
1022                         }
1023                 } else
1024                         writel(val | QID_V(tq->bar2_qid),
1025                                tq->bar2_addr + SGE_UDB_KDOORBELL);
1026 
1027                 /* This Write Memory Barrier will force the write to the User
1028                  * Doorbell area to be flushed.  This is needed to prevent
1029                  * writes on different CPUs for the same queue from hitting
1030                  * the adapter out of order.  This is required when some Work
1031                  * Requests take the Write Combine Gather Buffer path (user
1032                  * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
1033                  * take the traditional path where we simply increment the
1034                  * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
1035                  * hardware DMA read the actual Work Request.
1036                  */
1037                 wmb();
1038         }
1039 }
1040 
1041 /**
1042  *      inline_tx_skb - inline a packet's data into TX descriptors
1043  *      @skb: the packet
1044  *      @tq: the TX queue where the packet will be inlined
1045  *      @pos: starting position in the TX queue to inline the packet
1046  *
1047  *      Inline a packet's contents directly into TX descriptors, starting at
1048  *      the given position within the TX DMA ring.
1049  *      Most of the complexity of this operation is dealing with wrap arounds
1050  *      in the middle of the packet we want to inline.
1051  */
1052 static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *tq,
1053                           void *pos)
1054 {
1055         u64 *p;
1056         int left = (void *)tq->stat - pos;
1057 
1058         if (likely(skb->len <= left)) {
1059                 if (likely(!skb->data_len))
1060                         skb_copy_from_linear_data(skb, pos, skb->len);
1061                 else
1062                         skb_copy_bits(skb, 0, pos, skb->len);
1063                 pos += skb->len;
1064         } else {
1065                 skb_copy_bits(skb, 0, pos, left);
1066                 skb_copy_bits(skb, left, tq->desc, skb->len - left);
1067                 pos = (void *)tq->desc + (skb->len - left);
1068         }
1069 
1070         /* 0-pad to multiple of 16 */
1071         p = PTR_ALIGN(pos, 8);
1072         if ((uintptr_t)p & 8)
1073                 *p = 0;
1074 }
1075 
1076 /*
1077  * Figure out what HW csum a packet wants and return the appropriate control
1078  * bits.
1079  */
1080 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1081 {
1082         int csum_type;
1083         const struct iphdr *iph = ip_hdr(skb);
1084 
1085         if (iph->version == 4) {
1086                 if (iph->protocol == IPPROTO_TCP)
1087                         csum_type = TX_CSUM_TCPIP;
1088                 else if (iph->protocol == IPPROTO_UDP)
1089                         csum_type = TX_CSUM_UDPIP;
1090                 else {
1091 nocsum:
1092                         /*
1093                          * unknown protocol, disable HW csum
1094                          * and hope a bad packet is detected
1095                          */
1096                         return TXPKT_L4CSUM_DIS_F;
1097                 }
1098         } else {
1099                 /*
1100                  * this doesn't work with extension headers
1101                  */
1102                 const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
1103 
1104                 if (ip6h->nexthdr == IPPROTO_TCP)
1105                         csum_type = TX_CSUM_TCPIP6;
1106                 else if (ip6h->nexthdr == IPPROTO_UDP)
1107                         csum_type = TX_CSUM_UDPIP6;
1108                 else
1109                         goto nocsum;
1110         }
1111 
1112         if (likely(csum_type >= TX_CSUM_TCPIP)) {
1113                 u64 hdr_len = TXPKT_IPHDR_LEN_V(skb_network_header_len(skb));
1114                 int eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1115 
1116                 if (chip <= CHELSIO_T5)
1117                         hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1118                 else
1119                         hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1120                 return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1121         } else {
1122                 int start = skb_transport_offset(skb);
1123 
1124                 return TXPKT_CSUM_TYPE_V(csum_type) |
1125                         TXPKT_CSUM_START_V(start) |
1126                         TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1127         }
1128 }
1129 
1130 /*
1131  * Stop an Ethernet TX queue and record that state change.
1132  */
1133 static void txq_stop(struct sge_eth_txq *txq)
1134 {
1135         netif_tx_stop_queue(txq->txq);
1136         txq->q.stops++;
1137 }
1138 
1139 /*
1140  * Advance our software state for a TX queue by adding n in use descriptors.
1141  */
1142 static inline void txq_advance(struct sge_txq *tq, unsigned int n)
1143 {
1144         tq->in_use += n;
1145         tq->pidx += n;
1146         if (tq->pidx >= tq->size)
1147                 tq->pidx -= tq->size;
1148 }
1149 
1150 /**
1151  *      t4vf_eth_xmit - add a packet to an Ethernet TX queue
1152  *      @skb: the packet
1153  *      @dev: the egress net device
1154  *
1155  *      Add a packet to an SGE Ethernet TX queue.  Runs with softirqs disabled.
1156  */
1157 int t4vf_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1158 {
1159         u32 wr_mid;
1160         u64 cntrl, *end;
1161         int qidx, credits, max_pkt_len;
1162         unsigned int flits, ndesc;
1163         struct adapter *adapter;
1164         struct sge_eth_txq *txq;
1165         const struct port_info *pi;
1166         struct fw_eth_tx_pkt_vm_wr *wr;
1167         struct cpl_tx_pkt_core *cpl;
1168         const struct skb_shared_info *ssi;
1169         dma_addr_t addr[MAX_SKB_FRAGS + 1];
1170         const size_t fw_hdr_copy_len = (sizeof(wr->ethmacdst) +
1171                                         sizeof(wr->ethmacsrc) +
1172                                         sizeof(wr->ethtype) +
1173                                         sizeof(wr->vlantci));
1174 
1175         /*
1176          * The chip minimum packet length is 10 octets but the firmware
1177          * command that we are using requires that we copy the Ethernet header
1178          * (including the VLAN tag) into the header so we reject anything
1179          * smaller than that ...
1180          */
1181         if (unlikely(skb->len < fw_hdr_copy_len))
1182                 goto out_free;
1183 
1184         /* Discard the packet if the length is greater than mtu */
1185         max_pkt_len = ETH_HLEN + dev->mtu;
1186         if (skb_vlan_tagged(skb))
1187                 max_pkt_len += VLAN_HLEN;
1188         if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1189                 goto out_free;
1190 
1191         /*
1192          * Figure out which TX Queue we're going to use.
1193          */
1194         pi = netdev_priv(dev);
1195         adapter = pi->adapter;
1196         qidx = skb_get_queue_mapping(skb);
1197         BUG_ON(qidx >= pi->nqsets);
1198         txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1199 
1200         if (pi->vlan_id && !skb_vlan_tag_present(skb))
1201                 __vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q),
1202                                        pi->vlan_id);
1203 
1204         /*
1205          * Take this opportunity to reclaim any TX Descriptors whose DMA
1206          * transfers have completed.
1207          */
1208         reclaim_completed_tx(adapter, &txq->q, true);
1209 
1210         /*
1211          * Calculate the number of flits and TX Descriptors we're going to
1212          * need along with how many TX Descriptors will be left over after
1213          * we inject our Work Request.
1214          */
1215         flits = calc_tx_flits(skb);
1216         ndesc = flits_to_desc(flits);
1217         credits = txq_avail(&txq->q) - ndesc;
1218 
1219         if (unlikely(credits < 0)) {
1220                 /*
1221                  * Not enough room for this packet's Work Request.  Stop the
1222                  * TX Queue and return a "busy" condition.  The queue will get
1223                  * started later on when the firmware informs us that space
1224                  * has opened up.
1225                  */
1226                 txq_stop(txq);
1227                 dev_err(adapter->pdev_dev,
1228                         "%s: TX ring %u full while queue awake!\n",
1229                         dev->name, qidx);
1230                 return NETDEV_TX_BUSY;
1231         }
1232 
1233         if (!is_eth_imm(skb) &&
1234             unlikely(map_skb(adapter->pdev_dev, skb, addr) < 0)) {
1235                 /*
1236                  * We need to map the skb into PCI DMA space (because it can't
1237                  * be in-lined directly into the Work Request) and the mapping
1238                  * operation failed.  Record the error and drop the packet.
1239                  */
1240                 txq->mapping_err++;
1241                 goto out_free;
1242         }
1243 
1244         wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1245         if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1246                 /*
1247                  * After we're done injecting the Work Request for this
1248                  * packet, we'll be below our "stop threshold" so stop the TX
1249                  * Queue now and schedule a request for an SGE Egress Queue
1250                  * Update message.  The queue will get started later on when
1251                  * the firmware processes this Work Request and sends us an
1252                  * Egress Queue Status Update message indicating that space
1253                  * has opened up.
1254                  */
1255                 txq_stop(txq);
1256                 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1257         }
1258 
1259         /*
1260          * Start filling in our Work Request.  Note that we do _not_ handle
1261          * the WR Header wrapping around the TX Descriptor Ring.  If our
1262          * maximum header size ever exceeds one TX Descriptor, we'll need to
1263          * do something else here.
1264          */
1265         BUG_ON(DIV_ROUND_UP(ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1266         wr = (void *)&txq->q.desc[txq->q.pidx];
1267         wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1268         wr->r3[0] = cpu_to_be32(0);
1269         wr->r3[1] = cpu_to_be32(0);
1270         skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
1271         end = (u64 *)wr + flits;
1272 
1273         /*
1274          * If this is a Large Send Offload packet we'll put in an LSO CPL
1275          * message with an encapsulated TX Packet CPL message.  Otherwise we
1276          * just use a TX Packet CPL message.
1277          */
1278         ssi = skb_shinfo(skb);
1279         if (ssi->gso_size) {
1280                 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1281                 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1282                 int l3hdr_len = skb_network_header_len(skb);
1283                 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1284 
1285                 wr->op_immdlen =
1286                         cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1287                                     FW_WR_IMMDLEN_V(sizeof(*lso) +
1288                                                     sizeof(*cpl)));
1289                 /*
1290                  * Fill in the LSO CPL message.
1291                  */
1292                 lso->lso_ctrl =
1293                         cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1294                                     LSO_FIRST_SLICE_F |
1295                                     LSO_LAST_SLICE_F |
1296                                     LSO_IPV6_V(v6) |
1297                                     LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1298                                     LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1299                                     LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1300                 lso->ipid_ofst = cpu_to_be16(0);
1301                 lso->mss = cpu_to_be16(ssi->gso_size);
1302                 lso->seqno_offset = cpu_to_be32(0);
1303                 if (is_t4(adapter->params.chip))
1304                         lso->len = cpu_to_be32(skb->len);
1305                 else
1306                         lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len));
1307 
1308                 /*
1309                  * Set up TX Packet CPL pointer, control word and perform
1310                  * accounting.
1311                  */
1312                 cpl = (void *)(lso + 1);
1313 
1314                 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
1315                         cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1316                 else
1317                         cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1318 
1319                 cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1320                                            TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1321                          TXPKT_IPHDR_LEN_V(l3hdr_len);
1322                 txq->tso++;
1323                 txq->tx_cso += ssi->gso_segs;
1324         } else {
1325                 int len;
1326 
1327                 len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
1328                 wr->op_immdlen =
1329                         cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1330                                     FW_WR_IMMDLEN_V(len));
1331 
1332                 /*
1333                  * Set up TX Packet CPL pointer, control word and perform
1334                  * accounting.
1335                  */
1336                 cpl = (void *)(wr + 1);
1337                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1338                         cntrl = hwcsum(adapter->params.chip, skb) |
1339                                 TXPKT_IPCSUM_DIS_F;
1340                         txq->tx_cso++;
1341                 } else
1342                         cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1343         }
1344 
1345         /*
1346          * If there's a VLAN tag present, add that to the list of things to
1347          * do in this Work Request.
1348          */
1349         if (skb_vlan_tag_present(skb)) {
1350                 txq->vlan_ins++;
1351                 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1352         }
1353 
1354         /*
1355          * Fill in the TX Packet CPL message header.
1356          */
1357         cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
1358                                  TXPKT_INTF_V(pi->port_id) |
1359                                  TXPKT_PF_V(0));
1360         cpl->pack = cpu_to_be16(0);
1361         cpl->len = cpu_to_be16(skb->len);
1362         cpl->ctrl1 = cpu_to_be64(cntrl);
1363 
1364 #ifdef T4_TRACE
1365         T4_TRACE5(adapter->tb[txq->q.cntxt_id & 7],
1366                   "eth_xmit: ndesc %u, credits %u, pidx %u, len %u, frags %u",
1367                   ndesc, credits, txq->q.pidx, skb->len, ssi->nr_frags);
1368 #endif
1369 
1370         /*
1371          * Fill in the body of the TX Packet CPL message with either in-lined
1372          * data or a Scatter/Gather List.
1373          */
1374         if (is_eth_imm(skb)) {
1375                 /*
1376                  * In-line the packet's data and free the skb since we don't
1377                  * need it any longer.
1378                  */
1379                 inline_tx_skb(skb, &txq->q, cpl + 1);
1380                 dev_consume_skb_any(skb);
1381         } else {
1382                 /*
1383                  * Write the skb's Scatter/Gather list into the TX Packet CPL
1384                  * message and retain a pointer to the skb so we can free it
1385                  * later when its DMA completes.  (We store the skb pointer
1386                  * in the Software Descriptor corresponding to the last TX
1387                  * Descriptor used by the Work Request.)
1388                  *
1389                  * The retained skb will be freed when the corresponding TX
1390                  * Descriptors are reclaimed after their DMAs complete.
1391                  * However, this could take quite a while since, in general,
1392                  * the hardware is set up to be lazy about sending DMA
1393                  * completion notifications to us and we mostly perform TX
1394                  * reclaims in the transmit routine.
1395                  *
1396                  * This is good for performamce but means that we rely on new
1397                  * TX packets arriving to run the destructors of completed
1398                  * packets, which open up space in their sockets' send queues.
1399                  * Sometimes we do not get such new packets causing TX to
1400                  * stall.  A single UDP transmitter is a good example of this
1401                  * situation.  We have a clean up timer that periodically
1402                  * reclaims completed packets but it doesn't run often enough
1403                  * (nor do we want it to) to prevent lengthy stalls.  A
1404                  * solution to this problem is to run the destructor early,
1405                  * after the packet is queued but before it's DMAd.  A con is
1406                  * that we lie to socket memory accounting, but the amount of
1407                  * extra memory is reasonable (limited by the number of TX
1408                  * descriptors), the packets do actually get freed quickly by
1409                  * new packets almost always, and for protocols like TCP that
1410                  * wait for acks to really free up the data the extra memory
1411                  * is even less.  On the positive side we run the destructors
1412                  * on the sending CPU rather than on a potentially different
1413                  * completing CPU, usually a good thing.
1414                  *
1415                  * Run the destructor before telling the DMA engine about the
1416                  * packet to make sure it doesn't complete and get freed
1417                  * prematurely.
1418                  */
1419                 struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
1420                 struct sge_txq *tq = &txq->q;
1421                 int last_desc;
1422 
1423                 /*
1424                  * If the Work Request header was an exact multiple of our TX
1425                  * Descriptor length, then it's possible that the starting SGL
1426                  * pointer lines up exactly with the end of our TX Descriptor
1427                  * ring.  If that's the case, wrap around to the beginning
1428                  * here ...
1429                  */
1430                 if (unlikely((void *)sgl == (void *)tq->stat)) {
1431                         sgl = (void *)tq->desc;
1432                         end = ((void *)tq->desc + ((void *)end - (void *)tq->stat));
1433                 }
1434 
1435                 write_sgl(skb, tq, sgl, end, 0, addr);
1436                 skb_orphan(skb);
1437 
1438                 last_desc = tq->pidx + ndesc - 1;
1439                 if (last_desc >= tq->size)
1440                         last_desc -= tq->size;
1441                 tq->sdesc[last_desc].skb = skb;
1442                 tq->sdesc[last_desc].sgl = sgl;
1443         }
1444 
1445         /*
1446          * Advance our internal TX Queue state, tell the hardware about
1447          * the new TX descriptors and return success.
1448          */
1449         txq_advance(&txq->q, ndesc);
1450         netif_trans_update(dev);
1451         ring_tx_db(adapter, &txq->q, ndesc);
1452         return NETDEV_TX_OK;
1453 
1454 out_free:
1455         /*
1456          * An error of some sort happened.  Free the TX skb and tell the
1457          * OS that we've "dealt" with the packet ...
1458          */
1459         dev_kfree_skb_any(skb);
1460         return NETDEV_TX_OK;
1461 }
1462 
1463 /**
1464  *      copy_frags - copy fragments from gather list into skb_shared_info
1465  *      @skb: destination skb
1466  *      @gl: source internal packet gather list
1467  *      @offset: packet start offset in first page
1468  *
1469  *      Copy an internal packet gather list into a Linux skb_shared_info
1470  *      structure.
1471  */
1472 static inline void copy_frags(struct sk_buff *skb,
1473                               const struct pkt_gl *gl,
1474                               unsigned int offset)
1475 {
1476         int i;
1477 
1478         /* usually there's just one frag */
1479         __skb_fill_page_desc(skb, 0, gl->frags[0].page,
1480                              gl->frags[0].offset + offset,
1481                              gl->frags[0].size - offset);
1482         skb_shinfo(skb)->nr_frags = gl->nfrags;
1483         for (i = 1; i < gl->nfrags; i++)
1484                 __skb_fill_page_desc(skb, i, gl->frags[i].page,
1485                                      gl->frags[i].offset,
1486                                      gl->frags[i].size);
1487 
1488         /* get a reference to the last page, we don't own it */
1489         get_page(gl->frags[gl->nfrags - 1].page);
1490 }
1491 
1492 /**
1493  *      t4vf_pktgl_to_skb - build an sk_buff from a packet gather list
1494  *      @gl: the gather list
1495  *      @skb_len: size of sk_buff main body if it carries fragments
1496  *      @pull_len: amount of data to move to the sk_buff's main body
1497  *
1498  *      Builds an sk_buff from the given packet gather list.  Returns the
1499  *      sk_buff or %NULL if sk_buff allocation failed.
1500  */
1501 static struct sk_buff *t4vf_pktgl_to_skb(const struct pkt_gl *gl,
1502                                          unsigned int skb_len,
1503                                          unsigned int pull_len)
1504 {
1505         struct sk_buff *skb;
1506 
1507         /*
1508          * If the ingress packet is small enough, allocate an skb large enough
1509          * for all of the data and copy it inline.  Otherwise, allocate an skb
1510          * with enough room to pull in the header and reference the rest of
1511          * the data via the skb fragment list.
1512          *
1513          * Below we rely on RX_COPY_THRES being less than the smallest Rx
1514          * buff!  size, which is expected since buffers are at least
1515          * PAGE_SIZEd.  In this case packets up to RX_COPY_THRES have only one
1516          * fragment.
1517          */
1518         if (gl->tot_len <= RX_COPY_THRES) {
1519                 /* small packets have only one fragment */
1520                 skb = alloc_skb(gl->tot_len, GFP_ATOMIC);
1521                 if (unlikely(!skb))
1522                         goto out;
1523                 __skb_put(skb, gl->tot_len);
1524                 skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1525         } else {
1526                 skb = alloc_skb(skb_len, GFP_ATOMIC);
1527                 if (unlikely(!skb))
1528                         goto out;
1529                 __skb_put(skb, pull_len);
1530                 skb_copy_to_linear_data(skb, gl->va, pull_len);
1531 
1532                 copy_frags(skb, gl, pull_len);
1533                 skb->len = gl->tot_len;
1534                 skb->data_len = skb->len - pull_len;
1535                 skb->truesize += skb->data_len;
1536         }
1537 
1538 out:
1539         return skb;
1540 }
1541 
1542 /**
1543  *      t4vf_pktgl_free - free a packet gather list
1544  *      @gl: the gather list
1545  *
1546  *      Releases the pages of a packet gather list.  We do not own the last
1547  *      page on the list and do not free it.
1548  */
1549 static void t4vf_pktgl_free(const struct pkt_gl *gl)
1550 {
1551         int frag;
1552 
1553         frag = gl->nfrags - 1;
1554         while (frag--)
1555                 put_page(gl->frags[frag].page);
1556 }
1557 
1558 /**
1559  *      do_gro - perform Generic Receive Offload ingress packet processing
1560  *      @rxq: ingress RX Ethernet Queue
1561  *      @gl: gather list for ingress packet
1562  *      @pkt: CPL header for last packet fragment
1563  *
1564  *      Perform Generic Receive Offload (GRO) ingress packet processing.
1565  *      We use the standard Linux GRO interfaces for this.
1566  */
1567 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1568                    const struct cpl_rx_pkt *pkt)
1569 {
1570         struct adapter *adapter = rxq->rspq.adapter;
1571         struct sge *s = &adapter->sge;
1572         struct port_info *pi;
1573         int ret;
1574         struct sk_buff *skb;
1575 
1576         skb = napi_get_frags(&rxq->rspq.napi);
1577         if (unlikely(!skb)) {
1578                 t4vf_pktgl_free(gl);
1579                 rxq->stats.rx_drops++;
1580                 return;
1581         }
1582 
1583         copy_frags(skb, gl, s->pktshift);
1584         skb->len = gl->tot_len - s->pktshift;
1585         skb->data_len = skb->len;
1586         skb->truesize += skb->data_len;
1587         skb->ip_summed = CHECKSUM_UNNECESSARY;
1588         skb_record_rx_queue(skb, rxq->rspq.idx);
1589         pi = netdev_priv(skb->dev);
1590 
1591         if (pkt->vlan_ex && !pi->vlan_id) {
1592                 __vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q),
1593                                         be16_to_cpu(pkt->vlan));
1594                 rxq->stats.vlan_ex++;
1595         }
1596         ret = napi_gro_frags(&rxq->rspq.napi);
1597 
1598         if (ret == GRO_HELD)
1599                 rxq->stats.lro_pkts++;
1600         else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1601                 rxq->stats.lro_merged++;
1602         rxq->stats.pkts++;
1603         rxq->stats.rx_cso++;
1604 }
1605 
1606 /**
1607  *      t4vf_ethrx_handler - process an ingress ethernet packet
1608  *      @rspq: the response queue that received the packet
1609  *      @rsp: the response queue descriptor holding the RX_PKT message
1610  *      @gl: the gather list of packet fragments
1611  *
1612  *      Process an ingress ethernet packet and deliver it to the stack.
1613  */
1614 int t4vf_ethrx_handler(struct sge_rspq *rspq, const __be64 *rsp,
1615                        const struct pkt_gl *gl)
1616 {
1617         struct sk_buff *skb;
1618         const struct cpl_rx_pkt *pkt = (void *)rsp;
1619         bool csum_ok = pkt->csum_calc && !pkt->err_vec &&
1620                        (rspq->netdev->features & NETIF_F_RXCSUM);
1621         struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1622         struct adapter *adapter = rspq->adapter;
1623         struct sge *s = &adapter->sge;
1624         struct port_info *pi;
1625 
1626         /*
1627          * If this is a good TCP packet and we have Generic Receive Offload
1628          * enabled, handle the packet in the GRO path.
1629          */
1630         if ((pkt->l2info & cpu_to_be32(RXF_TCP_F)) &&
1631             (rspq->netdev->features & NETIF_F_GRO) && csum_ok &&
1632             !pkt->ip_frag) {
1633                 do_gro(rxq, gl, pkt);
1634                 return 0;
1635         }
1636 
1637         /*
1638          * Convert the Packet Gather List into an skb.
1639          */
1640         skb = t4vf_pktgl_to_skb(gl, RX_SKB_LEN, RX_PULL_LEN);
1641         if (unlikely(!skb)) {
1642                 t4vf_pktgl_free(gl);
1643                 rxq->stats.rx_drops++;
1644                 return 0;
1645         }
1646         __skb_pull(skb, s->pktshift);
1647         skb->protocol = eth_type_trans(skb, rspq->netdev);
1648         skb_record_rx_queue(skb, rspq->idx);
1649         pi = netdev_priv(skb->dev);
1650         rxq->stats.pkts++;
1651 
1652         if (csum_ok && !pkt->err_vec &&
1653             (be32_to_cpu(pkt->l2info) & (RXF_UDP_F | RXF_TCP_F))) {
1654                 if (!pkt->ip_frag) {
1655                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1656                         rxq->stats.rx_cso++;
1657                 } else if (pkt->l2info & htonl(RXF_IP_F)) {
1658                         __sum16 c = (__force __sum16)pkt->csum;
1659                         skb->csum = csum_unfold(c);
1660                         skb->ip_summed = CHECKSUM_COMPLETE;
1661                         rxq->stats.rx_cso++;
1662                 }
1663         } else
1664                 skb_checksum_none_assert(skb);
1665 
1666         if (pkt->vlan_ex && !pi->vlan_id) {
1667                 rxq->stats.vlan_ex++;
1668                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1669                                        be16_to_cpu(pkt->vlan));
1670         }
1671 
1672         netif_receive_skb(skb);
1673 
1674         return 0;
1675 }
1676 
1677 /**
1678  *      is_new_response - check if a response is newly written
1679  *      @rc: the response control descriptor
1680  *      @rspq: the response queue
1681  *
1682  *      Returns true if a response descriptor contains a yet unprocessed
1683  *      response.
1684  */
1685 static inline bool is_new_response(const struct rsp_ctrl *rc,
1686                                    const struct sge_rspq *rspq)
1687 {
1688         return ((rc->type_gen >> RSPD_GEN_S) & 0x1) == rspq->gen;
1689 }
1690 
1691 /**
1692  *      restore_rx_bufs - put back a packet's RX buffers
1693  *      @gl: the packet gather list
1694  *      @fl: the SGE Free List
1695  *      @nfrags: how many fragments in @si
1696  *
1697  *      Called when we find out that the current packet, @si, can't be
1698  *      processed right away for some reason.  This is a very rare event and
1699  *      there's no effort to make this suspension/resumption process
1700  *      particularly efficient.
1701  *
1702  *      We implement the suspension by putting all of the RX buffers associated
1703  *      with the current packet back on the original Free List.  The buffers
1704  *      have already been unmapped and are left unmapped, we mark them as
1705  *      unmapped in order to prevent further unmapping attempts.  (Effectively
1706  *      this function undoes the series of @unmap_rx_buf calls which were done
1707  *      to create the current packet's gather list.)  This leaves us ready to
1708  *      restart processing of the packet the next time we start processing the
1709  *      RX Queue ...
1710  */
1711 static void restore_rx_bufs(const struct pkt_gl *gl, struct sge_fl *fl,
1712                             int frags)
1713 {
1714         struct rx_sw_desc *sdesc;
1715 
1716         while (frags--) {
1717                 if (fl->cidx == 0)
1718                         fl->cidx = fl->size - 1;
1719                 else
1720                         fl->cidx--;
1721                 sdesc = &fl->sdesc[fl->cidx];
1722                 sdesc->page = gl->frags[frags].page;
1723                 sdesc->dma_addr |= RX_UNMAPPED_BUF;
1724                 fl->avail++;
1725         }
1726 }
1727 
1728 /**
1729  *      rspq_next - advance to the next entry in a response queue
1730  *      @rspq: the queue
1731  *
1732  *      Updates the state of a response queue to advance it to the next entry.
1733  */
1734 static inline void rspq_next(struct sge_rspq *rspq)
1735 {
1736         rspq->cur_desc = (void *)rspq->cur_desc + rspq->iqe_len;
1737         if (unlikely(++rspq->cidx == rspq->size)) {
1738                 rspq->cidx = 0;
1739                 rspq->gen ^= 1;
1740                 rspq->cur_desc = rspq->desc;
1741         }
1742 }
1743 
1744 /**
1745  *      process_responses - process responses from an SGE response queue
1746  *      @rspq: the ingress response queue to process
1747  *      @budget: how many responses can be processed in this round
1748  *
1749  *      Process responses from a Scatter Gather Engine response queue up to
1750  *      the supplied budget.  Responses include received packets as well as
1751  *      control messages from firmware or hardware.
1752  *
1753  *      Additionally choose the interrupt holdoff time for the next interrupt
1754  *      on this queue.  If the system is under memory shortage use a fairly
1755  *      long delay to help recovery.
1756  */
1757 static int process_responses(struct sge_rspq *rspq, int budget)
1758 {
1759         struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1760         struct adapter *adapter = rspq->adapter;
1761         struct sge *s = &adapter->sge;
1762         int budget_left = budget;
1763 
1764         while (likely(budget_left)) {
1765                 int ret, rsp_type;
1766                 const struct rsp_ctrl *rc;
1767 
1768                 rc = (void *)rspq->cur_desc + (rspq->iqe_len - sizeof(*rc));
1769                 if (!is_new_response(rc, rspq))
1770                         break;
1771 
1772                 /*
1773                  * Figure out what kind of response we've received from the
1774                  * SGE.
1775                  */
1776                 dma_rmb();
1777                 rsp_type = RSPD_TYPE_G(rc->type_gen);
1778                 if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
1779                         struct page_frag *fp;
1780                         struct pkt_gl gl;
1781                         const struct rx_sw_desc *sdesc;
1782                         u32 bufsz, frag;
1783                         u32 len = be32_to_cpu(rc->pldbuflen_qid);
1784 
1785                         /*
1786                          * If we get a "new buffer" message from the SGE we
1787                          * need to move on to the next Free List buffer.
1788                          */
1789                         if (len & RSPD_NEWBUF_F) {
1790                                 /*
1791                                  * We get one "new buffer" message when we
1792                                  * first start up a queue so we need to ignore
1793                                  * it when our offset into the buffer is 0.
1794                                  */
1795                                 if (likely(rspq->offset > 0)) {
1796                                         free_rx_bufs(rspq->adapter, &rxq->fl,
1797                                                      1);
1798                                         rspq->offset = 0;
1799                                 }
1800                                 len = RSPD_LEN_G(len);
1801                         }
1802                         gl.tot_len = len;
1803 
1804                         /*
1805                          * Gather packet fragments.
1806                          */
1807                         for (frag = 0, fp = gl.frags; /**/; frag++, fp++) {
1808                                 BUG_ON(frag >= MAX_SKB_FRAGS);
1809                                 BUG_ON(rxq->fl.avail == 0);
1810                                 sdesc = &rxq->fl.sdesc[rxq->fl.cidx];
1811                                 bufsz = get_buf_size(adapter, sdesc);
1812                                 fp->page = sdesc->page;
1813                                 fp->offset = rspq->offset;
1814                                 fp->size = min(bufsz, len);
1815                                 len -= fp->size;
1816                                 if (!len)
1817                                         break;
1818                                 unmap_rx_buf(rspq->adapter, &rxq->fl);
1819                         }
1820                         gl.nfrags = frag+1;
1821 
1822                         /*
1823                          * Last buffer remains mapped so explicitly make it
1824                          * coherent for CPU access and start preloading first
1825                          * cache line ...
1826                          */
1827                         dma_sync_single_for_cpu(rspq->adapter->pdev_dev,
1828                                                 get_buf_addr(sdesc),
1829                                                 fp->size, DMA_FROM_DEVICE);
1830                         gl.va = (page_address(gl.frags[0].page) +
1831                                  gl.frags[0].offset);
1832                         prefetch(gl.va);
1833 
1834                         /*
1835                          * Hand the new ingress packet to the handler for
1836                          * this Response Queue.
1837                          */
1838                         ret = rspq->handler(rspq, rspq->cur_desc, &gl);
1839                         if (likely(ret == 0))
1840                                 rspq->offset += ALIGN(fp->size, s->fl_align);
1841                         else
1842                                 restore_rx_bufs(&gl, &rxq->fl, frag);
1843                 } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
1844                         ret = rspq->handler(rspq, rspq->cur_desc, NULL);
1845                 } else {
1846                         WARN_ON(rsp_type > RSPD_TYPE_CPL_X);
1847                         ret = 0;
1848                 }
1849 
1850                 if (unlikely(ret)) {
1851                         /*
1852                          * Couldn't process descriptor, back off for recovery.
1853                          * We use the SGE's last timer which has the longest
1854                          * interrupt coalescing value ...
1855                          */
1856                         const int NOMEM_TIMER_IDX = SGE_NTIMERS-1;
1857                         rspq->next_intr_params =
1858                                 QINTR_TIMER_IDX_V(NOMEM_TIMER_IDX);
1859                         break;
1860                 }
1861 
1862                 rspq_next(rspq);
1863                 budget_left--;
1864         }
1865 
1866         /*
1867          * If this is a Response Queue with an associated Free List and
1868          * at least two Egress Queue units available in the Free List
1869          * for new buffer pointers, refill the Free List.
1870          */
1871         if (rspq->offset >= 0 &&
1872             fl_cap(&rxq->fl) - rxq->fl.avail >= 2*FL_PER_EQ_UNIT)
1873                 __refill_fl(rspq->adapter, &rxq->fl);
1874         return budget - budget_left;
1875 }
1876 
1877 /**
1878  *      napi_rx_handler - the NAPI handler for RX processing
1879  *      @napi: the napi instance
1880  *      @budget: how many packets we can process in this round
1881  *
1882  *      Handler for new data events when using NAPI.  This does not need any
1883  *      locking or protection from interrupts as data interrupts are off at
1884  *      this point and other adapter interrupts do not interfere (the latter
1885  *      in not a concern at all with MSI-X as non-data interrupts then have
1886  *      a separate handler).
1887  */
1888 static int napi_rx_handler(struct napi_struct *napi, int budget)
1889 {
1890         unsigned int intr_params;
1891         struct sge_rspq *rspq = container_of(napi, struct sge_rspq, napi);
1892         int work_done = process_responses(rspq, budget);
1893         u32 val;
1894 
1895         if (likely(work_done < budget)) {
1896                 napi_complete_done(napi, work_done);
1897                 intr_params = rspq->next_intr_params;
1898                 rspq->next_intr_params = rspq->intr_params;
1899         } else
1900                 intr_params = QINTR_TIMER_IDX_V(SGE_TIMER_UPD_CIDX);
1901 
1902         if (unlikely(work_done == 0))
1903                 rspq->unhandled_irqs++;
1904 
1905         val = CIDXINC_V(work_done) | SEINTARM_V(intr_params);
1906         /* If we don't have access to the new User GTS (T5+), use the old
1907          * doorbell mechanism; otherwise use the new BAR2 mechanism.
1908          */
1909         if (unlikely(!rspq->bar2_addr)) {
1910                 t4_write_reg(rspq->adapter,
1911                              T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
1912                              val | INGRESSQID_V((u32)rspq->cntxt_id));
1913         } else {
1914                 writel(val | INGRESSQID_V(rspq->bar2_qid),
1915                        rspq->bar2_addr + SGE_UDB_GTS);
1916                 wmb();
1917         }
1918         return work_done;
1919 }
1920 
1921 /*
1922  * The MSI-X interrupt handler for an SGE response queue for the NAPI case
1923  * (i.e., response queue serviced by NAPI polling).
1924  */
1925 irqreturn_t t4vf_sge_intr_msix(int irq, void *cookie)
1926 {
1927         struct sge_rspq *rspq = cookie;
1928 
1929         napi_schedule(&rspq->napi);
1930         return IRQ_HANDLED;
1931 }
1932 
1933 /*
1934  * Process the indirect interrupt entries in the interrupt queue and kick off
1935  * NAPI for each queue that has generated an entry.
1936  */
1937 static unsigned int process_intrq(struct adapter *adapter)
1938 {
1939         struct sge *s = &adapter->sge;
1940         struct sge_rspq *intrq = &s->intrq;
1941         unsigned int work_done;
1942         u32 val;
1943 
1944         spin_lock(&adapter->sge.intrq_lock);
1945         for (work_done = 0; ; work_done++) {
1946                 const struct rsp_ctrl *rc;
1947                 unsigned int qid, iq_idx;
1948                 struct sge_rspq *rspq;
1949 
1950                 /*
1951                  * Grab the next response from the interrupt queue and bail
1952                  * out if it's not a new response.
1953                  */
1954                 rc = (void *)intrq->cur_desc + (intrq->iqe_len - sizeof(*rc));
1955                 if (!is_new_response(rc, intrq))
1956                         break;
1957 
1958                 /*
1959                  * If the response isn't a forwarded interrupt message issue a
1960                  * error and go on to the next response message.  This should
1961                  * never happen ...
1962                  */
1963                 dma_rmb();
1964                 if (unlikely(RSPD_TYPE_G(rc->type_gen) != RSPD_TYPE_INTR_X)) {
1965                         dev_err(adapter->pdev_dev,
1966                                 "Unexpected INTRQ response type %d\n",
1967                                 RSPD_TYPE_G(rc->type_gen));
1968                         continue;
1969                 }
1970 
1971                 /*
1972                  * Extract the Queue ID from the interrupt message and perform
1973                  * sanity checking to make sure it really refers to one of our
1974                  * Ingress Queues which is active and matches the queue's ID.
1975                  * None of these error conditions should ever happen so we may
1976                  * want to either make them fatal and/or conditionalized under
1977                  * DEBUG.
1978                  */
1979                 qid = RSPD_QID_G(be32_to_cpu(rc->pldbuflen_qid));
1980                 iq_idx = IQ_IDX(s, qid);
1981                 if (unlikely(iq_idx >= MAX_INGQ)) {
1982                         dev_err(adapter->pdev_dev,
1983                                 "Ingress QID %d out of range\n", qid);
1984                         continue;
1985                 }
1986                 rspq = s->ingr_map[iq_idx];
1987                 if (unlikely(rspq == NULL)) {
1988                         dev_err(adapter->pdev_dev,
1989                                 "Ingress QID %d RSPQ=NULL\n", qid);
1990                         continue;
1991                 }
1992                 if (unlikely(rspq->abs_id != qid)) {
1993                         dev_err(adapter->pdev_dev,
1994                                 "Ingress QID %d refers to RSPQ %d\n",
1995                                 qid, rspq->abs_id);
1996                         continue;
1997                 }
1998 
1999                 /*
2000                  * Schedule NAPI processing on the indicated Response Queue
2001                  * and move on to the next entry in the Forwarded Interrupt
2002                  * Queue.
2003                  */
2004                 napi_schedule(&rspq->napi);
2005                 rspq_next(intrq);
2006         }
2007 
2008         val = CIDXINC_V(work_done) | SEINTARM_V(intrq->intr_params);
2009         /* If we don't have access to the new User GTS (T5+), use the old
2010          * doorbell mechanism; otherwise use the new BAR2 mechanism.
2011          */
2012         if (unlikely(!intrq->bar2_addr)) {
2013                 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
2014                              val | INGRESSQID_V(intrq->cntxt_id));
2015         } else {
2016                 writel(val | INGRESSQID_V(intrq->bar2_qid),
2017                        intrq->bar2_addr + SGE_UDB_GTS);
2018                 wmb();
2019         }
2020 
2021         spin_unlock(&adapter->sge.intrq_lock);
2022 
2023         return work_done;
2024 }
2025 
2026 /*
2027  * The MSI interrupt handler handles data events from SGE response queues as
2028  * well as error and other async events as they all use the same MSI vector.
2029  */
2030 static irqreturn_t t4vf_intr_msi(int irq, void *cookie)
2031 {
2032         struct adapter *adapter = cookie;
2033 
2034         process_intrq(adapter);
2035         return IRQ_HANDLED;
2036 }
2037 
2038 /**
2039  *      t4vf_intr_handler - select the top-level interrupt handler
2040  *      @adapter: the adapter
2041  *
2042  *      Selects the top-level interrupt handler based on the type of interrupts
2043  *      (MSI-X or MSI).
2044  */
2045 irq_handler_t t4vf_intr_handler(struct adapter *adapter)
2046 {
2047         BUG_ON((adapter->flags &
2048                (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0);
2049         if (adapter->flags & CXGB4VF_USING_MSIX)
2050                 return t4vf_sge_intr_msix;
2051         else
2052                 return t4vf_intr_msi;
2053 }
2054 
2055 /**
2056  *      sge_rx_timer_cb - perform periodic maintenance of SGE RX queues
2057  *      @data: the adapter
2058  *
2059  *      Runs periodically from a timer to perform maintenance of SGE RX queues.
2060  *
2061  *      a) Replenishes RX queues that have run out due to memory shortage.
2062  *      Normally new RX buffers are added when existing ones are consumed but
2063  *      when out of memory a queue can become empty.  We schedule NAPI to do
2064  *      the actual refill.
2065  */
2066 static void sge_rx_timer_cb(struct timer_list *t)
2067 {
2068         struct adapter *adapter = from_timer(adapter, t, sge.rx_timer);
2069         struct sge *s = &adapter->sge;
2070         unsigned int i;
2071 
2072         /*
2073          * Scan the "Starving Free Lists" flag array looking for any Free
2074          * Lists in need of more free buffers.  If we find one and it's not
2075          * being actively polled, then bump its "starving" counter and attempt
2076          * to refill it.  If we're successful in adding enough buffers to push
2077          * the Free List over the starving threshold, then we can clear its
2078          * "starving" status.
2079          */
2080         for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) {
2081                 unsigned long m;
2082 
2083                 for (m = s->starving_fl[i]; m; m &= m - 1) {
2084                         unsigned int id = __ffs(m) + i * BITS_PER_LONG;
2085                         struct sge_fl *fl = s->egr_map[id];
2086 
2087                         clear_bit(id, s->starving_fl);
2088                         smp_mb__after_atomic();
2089 
2090                         /*
2091                          * Since we are accessing fl without a lock there's a
2092                          * small probability of a false positive where we
2093                          * schedule napi but the FL is no longer starving.
2094                          * No biggie.
2095                          */
2096                         if (fl_starving(adapter, fl)) {
2097                                 struct sge_eth_rxq *rxq;
2098 
2099                                 rxq = container_of(fl, struct sge_eth_rxq, fl);
2100                                 if (napi_reschedule(&rxq->rspq.napi))
2101                                         fl->starving++;
2102                                 else
2103                                         set_bit(id, s->starving_fl);
2104                         }
2105                 }
2106         }
2107 
2108         /*
2109          * Reschedule the next scan for starving Free Lists ...
2110          */
2111         mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
2112 }
2113 
2114 /**
2115  *      sge_tx_timer_cb - perform periodic maintenance of SGE Tx queues
2116  *      @data: the adapter
2117  *
2118  *      Runs periodically from a timer to perform maintenance of SGE TX queues.
2119  *
2120  *      b) Reclaims completed Tx packets for the Ethernet queues.  Normally
2121  *      packets are cleaned up by new Tx packets, this timer cleans up packets
2122  *      when no new packets are being submitted.  This is essential for pktgen,
2123  *      at least.
2124  */
2125 static void sge_tx_timer_cb(struct timer_list *t)
2126 {
2127         struct adapter *adapter = from_timer(adapter, t, sge.tx_timer);
2128         struct sge *s = &adapter->sge;
2129         unsigned int i, budget;
2130 
2131         budget = MAX_TIMER_TX_RECLAIM;
2132         i = s->ethtxq_rover;
2133         do {
2134                 struct sge_eth_txq *txq = &s->ethtxq[i];
2135 
2136                 if (reclaimable(&txq->q) && __netif_tx_trylock(txq->txq)) {
2137                         int avail = reclaimable(&txq->q);
2138 
2139                         if (avail > budget)
2140                                 avail = budget;
2141 
2142                         free_tx_desc(adapter, &txq->q, avail, true);
2143                         txq->q.in_use -= avail;
2144                         __netif_tx_unlock(txq->txq);
2145 
2146                         budget -= avail;
2147                         if (!budget)
2148                                 break;
2149                 }
2150 
2151                 i++;
2152                 if (i >= s->ethqsets)
2153                         i = 0;
2154         } while (i != s->ethtxq_rover);
2155         s->ethtxq_rover = i;
2156 
2157         /*
2158          * If we found too many reclaimable packets schedule a timer in the
2159          * near future to continue where we left off.  Otherwise the next timer
2160          * will be at its normal interval.
2161          */
2162         mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2163 }
2164 
2165 /**
2166  *      bar2_address - return the BAR2 address for an SGE Queue's Registers
2167  *      @adapter: the adapter
2168  *      @qid: the SGE Queue ID
2169  *      @qtype: the SGE Queue Type (Egress or Ingress)
2170  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
2171  *
2172  *      Returns the BAR2 address for the SGE Queue Registers associated with
2173  *      @qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
2174  *      returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
2175  *      Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
2176  *      Registers are supported (e.g. the Write Combining Doorbell Buffer).
2177  */
2178 static void __iomem *bar2_address(struct adapter *adapter,
2179                                   unsigned int qid,
2180                                   enum t4_bar2_qtype qtype,
2181                                   unsigned int *pbar2_qid)
2182 {
2183         u64 bar2_qoffset;
2184         int ret;
2185 
2186         ret = t4vf_bar2_sge_qregs(adapter, qid, qtype,
2187                                   &bar2_qoffset, pbar2_qid);
2188         if (ret)
2189                 return NULL;
2190 
2191         return adapter->bar2 + bar2_qoffset;
2192 }
2193 
2194 /**
2195  *      t4vf_sge_alloc_rxq - allocate an SGE RX Queue
2196  *      @adapter: the adapter
2197  *      @rspq: pointer to to the new rxq's Response Queue to be filled in
2198  *      @iqasynch: if 0, a normal rspq; if 1, an asynchronous event queue
2199  *      @dev: the network device associated with the new rspq
2200  *      @intr_dest: MSI-X vector index (overriden in MSI mode)
2201  *      @fl: pointer to the new rxq's Free List to be filled in
2202  *      @hnd: the interrupt handler to invoke for the rspq
2203  */
2204 int t4vf_sge_alloc_rxq(struct adapter *adapter, struct sge_rspq *rspq,
2205                        bool iqasynch, struct net_device *dev,
2206                        int intr_dest,
2207                        struct sge_fl *fl, rspq_handler_t hnd)
2208 {
2209         struct sge *s = &adapter->sge;
2210         struct port_info *pi = netdev_priv(dev);
2211         struct fw_iq_cmd cmd, rpl;
2212         int ret, iqandst, flsz = 0;
2213         int relaxed = !(adapter->flags & CXGB4VF_ROOT_NO_RELAXED_ORDERING);
2214 
2215         /*
2216          * If we're using MSI interrupts and we're not initializing the
2217          * Forwarded Interrupt Queue itself, then set up this queue for
2218          * indirect interrupts to the Forwarded Interrupt Queue.  Obviously
2219          * the Forwarded Interrupt Queue must be set up before any other
2220          * ingress queue ...
2221          */
2222         if ((adapter->flags & CXGB4VF_USING_MSI) &&
2223             rspq != &adapter->sge.intrq) {
2224                 iqandst = SGE_INTRDST_IQ;
2225                 intr_dest = adapter->sge.intrq.abs_id;
2226         } else
2227                 iqandst = SGE_INTRDST_PCI;
2228 
2229         /*
2230          * Allocate the hardware ring for the Response Queue.  The size needs
2231          * to be a multiple of 16 which includes the mandatory status entry
2232          * (regardless of whether the Status Page capabilities are enabled or
2233          * not).
2234          */
2235         rspq->size = roundup(rspq->size, 16);
2236         rspq->desc = alloc_ring(adapter->pdev_dev, rspq->size, rspq->iqe_len,
2237                                 0, &rspq->phys_addr, NULL, 0);
2238         if (!rspq->desc)
2239                 return -ENOMEM;
2240 
2241         /*
2242          * Fill in the Ingress Queue Command.  Note: Ideally this code would
2243          * be in t4vf_hw.c but there are so many parameters and dependencies
2244          * on our Linux SGE state that we would end up having to pass tons of
2245          * parameters.  We'll have to think about how this might be migrated
2246          * into OS-independent common code ...
2247          */
2248         memset(&cmd, 0, sizeof(cmd));
2249         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
2250                                     FW_CMD_REQUEST_F |
2251                                     FW_CMD_WRITE_F |
2252                                     FW_CMD_EXEC_F);
2253         cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_ALLOC_F |
2254                                          FW_IQ_CMD_IQSTART_F |
2255                                          FW_LEN16(cmd));
2256         cmd.type_to_iqandstindex =
2257                 cpu_to_be32(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
2258                             FW_IQ_CMD_IQASYNCH_V(iqasynch) |
2259                             FW_IQ_CMD_VIID_V(pi->viid) |
2260                             FW_IQ_CMD_IQANDST_V(iqandst) |
2261                             FW_IQ_CMD_IQANUS_V(1) |
2262                             FW_IQ_CMD_IQANUD_V(SGE_UPDATEDEL_INTR) |
2263                             FW_IQ_CMD_IQANDSTINDEX_V(intr_dest));
2264         cmd.iqdroprss_to_iqesize =
2265                 cpu_to_be16(FW_IQ_CMD_IQPCIECH_V(pi->port_id) |
2266                             FW_IQ_CMD_IQGTSMODE_F |
2267                             FW_IQ_CMD_IQINTCNTTHRESH_V(rspq->pktcnt_idx) |
2268                             FW_IQ_CMD_IQESIZE_V(ilog2(rspq->iqe_len) - 4));
2269         cmd.iqsize = cpu_to_be16(rspq->size);
2270         cmd.iqaddr = cpu_to_be64(rspq->phys_addr);
2271 
2272         if (fl) {
2273                 unsigned int chip_ver =
2274                         CHELSIO_CHIP_VERSION(adapter->params.chip);
2275                 /*
2276                  * Allocate the ring for the hardware free list (with space
2277                  * for its status page) along with the associated software
2278                  * descriptor ring.  The free list size needs to be a multiple
2279                  * of the Egress Queue Unit and at least 2 Egress Units larger
2280                  * than the SGE's Egress Congrestion Threshold
2281                  * (fl_starve_thres - 1).
2282                  */
2283                 if (fl->size < s->fl_starve_thres - 1 + 2 * FL_PER_EQ_UNIT)
2284                         fl->size = s->fl_starve_thres - 1 + 2 * FL_PER_EQ_UNIT;
2285                 fl->size = roundup(fl->size, FL_PER_EQ_UNIT);
2286                 fl->desc = alloc_ring(adapter->pdev_dev, fl->size,
2287                                       sizeof(__be64), sizeof(struct rx_sw_desc),
2288                                       &fl->addr, &fl->sdesc, s->stat_len);
2289                 if (!fl->desc) {
2290                         ret = -ENOMEM;
2291                         goto err;
2292                 }
2293 
2294                 /*
2295                  * Calculate the size of the hardware free list ring plus
2296                  * Status Page (which the SGE will place after the end of the
2297                  * free list ring) in Egress Queue Units.
2298                  */
2299                 flsz = (fl->size / FL_PER_EQ_UNIT +
2300                         s->stat_len / EQ_UNIT);
2301 
2302                 /*
2303                  * Fill in all the relevant firmware Ingress Queue Command
2304                  * fields for the free list.
2305                  */
2306                 cmd.iqns_to_fl0congen =
2307                         cpu_to_be32(
2308                                 FW_IQ_CMD_FL0HOSTFCMODE_V(SGE_HOSTFCMODE_NONE) |
2309                                 FW_IQ_CMD_FL0PACKEN_F |
2310                                 FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
2311                                 FW_IQ_CMD_FL0DATARO_V(relaxed) |
2312                                 FW_IQ_CMD_FL0PADEN_F);
2313 
2314                 /* In T6, for egress queue type FL there is internal overhead
2315                  * of 16B for header going into FLM module.  Hence the maximum
2316                  * allowed burst size is 448 bytes.  For T4/T5, the hardware
2317                  * doesn't coalesce fetch requests if more than 64 bytes of
2318                  * Free List pointers are provided, so we use a 128-byte Fetch
2319                  * Burst Minimum there (T6 implements coalescing so we can use
2320                  * the smaller 64-byte value there).
2321                  */
2322                 cmd.fl0dcaen_to_fl0cidxfthresh =
2323                         cpu_to_be16(
2324                                 FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5
2325                                                      ? FETCHBURSTMIN_128B_X
2326                                                      : FETCHBURSTMIN_64B_T6_X) |
2327                                 FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ?
2328                                                      FETCHBURSTMAX_512B_X :
2329                                                      FETCHBURSTMAX_256B_X));
2330                 cmd.fl0size = cpu_to_be16(flsz);
2331                 cmd.fl0addr = cpu_to_be64(fl->addr);
2332         }
2333 
2334         /*
2335          * Issue the firmware Ingress Queue Command and extract the results if
2336          * it completes successfully.
2337          */
2338         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2339         if (ret)
2340                 goto err;
2341 
2342         netif_napi_add(dev, &rspq->napi, napi_rx_handler, 64);
2343         rspq->cur_desc = rspq->desc;
2344         rspq->cidx = 0;
2345         rspq->gen = 1;
2346         rspq->next_intr_params = rspq->intr_params;
2347         rspq->cntxt_id = be16_to_cpu(rpl.iqid);
2348         rspq->bar2_addr = bar2_address(adapter,
2349                                        rspq->cntxt_id,
2350                                        T4_BAR2_QTYPE_INGRESS,
2351                                        &rspq->bar2_qid);
2352         rspq->abs_id = be16_to_cpu(rpl.physiqid);
2353         rspq->size--;                   /* subtract status entry */
2354         rspq->adapter = adapter;
2355         rspq->netdev = dev;
2356         rspq->handler = hnd;
2357 
2358         /* set offset to -1 to distinguish ingress queues without FL */
2359         rspq->offset = fl ? 0 : -1;
2360 
2361         if (fl) {
2362                 fl->cntxt_id = be16_to_cpu(rpl.fl0id);
2363                 fl->avail = 0;
2364                 fl->pend_cred = 0;
2365                 fl->pidx = 0;
2366                 fl->cidx = 0;
2367                 fl->alloc_failed = 0;
2368                 fl->large_alloc_failed = 0;
2369                 fl->starving = 0;
2370 
2371                 /* Note, we must initialize the BAR2 Free List User Doorbell
2372                  * information before refilling the Free List!
2373                  */
2374                 fl->bar2_addr = bar2_address(adapter,
2375                                              fl->cntxt_id,
2376                                              T4_BAR2_QTYPE_EGRESS,
2377                                              &fl->bar2_qid);
2378 
2379                 refill_fl(adapter, fl, fl_cap(fl), GFP_KERNEL);
2380         }
2381 
2382         return 0;
2383 
2384 err:
2385         /*
2386          * An error occurred.  Clean up our partial allocation state and
2387          * return the error.
2388          */
2389         if (rspq->desc) {
2390                 dma_free_coherent(adapter->pdev_dev, rspq->size * rspq->iqe_len,
2391                                   rspq->desc, rspq->phys_addr);
2392                 rspq->desc = NULL;
2393         }
2394         if (fl && fl->desc) {
2395                 kfree(fl->sdesc);
2396                 fl->sdesc = NULL;
2397                 dma_free_coherent(adapter->pdev_dev, flsz * EQ_UNIT,
2398                                   fl->desc, fl->addr);
2399                 fl->desc = NULL;
2400         }
2401         return ret;
2402 }
2403 
2404 /**
2405  *      t4vf_sge_alloc_eth_txq - allocate an SGE Ethernet TX Queue
2406  *      @adapter: the adapter
2407  *      @txq: pointer to the new txq to be filled in
2408  *      @devq: the network TX queue associated with the new txq
2409  *      @iqid: the relative ingress queue ID to which events relating to
2410  *              the new txq should be directed
2411  */
2412 int t4vf_sge_alloc_eth_txq(struct adapter *adapter, struct sge_eth_txq *txq,
2413                            struct net_device *dev, struct netdev_queue *devq,
2414                            unsigned int iqid)
2415 {
2416         unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
2417         struct port_info *pi = netdev_priv(dev);
2418         struct fw_eq_eth_cmd cmd, rpl;
2419         struct sge *s = &adapter->sge;
2420         int ret, nentries;
2421 
2422         /*
2423          * Calculate the size of the hardware TX Queue (including the Status
2424          * Page on the end of the TX Queue) in units of TX Descriptors.
2425          */
2426         nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2427 
2428         /*
2429          * Allocate the hardware ring for the TX ring (with space for its
2430          * status page) along with the associated software descriptor ring.
2431          */
2432         txq->q.desc = alloc_ring(adapter->pdev_dev, txq->q.size,
2433                                  sizeof(struct tx_desc),
2434                                  sizeof(struct tx_sw_desc),
2435                                  &txq->q.phys_addr, &txq->q.sdesc, s->stat_len);
2436         if (!txq->q.desc)
2437                 return -ENOMEM;
2438 
2439         /*
2440          * Fill in the Egress Queue Command.  Note: As with the direct use of
2441          * the firmware Ingress Queue COmmand above in our RXQ allocation
2442          * routine, ideally, this code would be in t4vf_hw.c.  Again, we'll
2443          * have to see if there's some reasonable way to parameterize it
2444          * into the common code ...
2445          */
2446         memset(&cmd, 0, sizeof(cmd));
2447         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
2448                                     FW_CMD_REQUEST_F |
2449                                     FW_CMD_WRITE_F |
2450                                     FW_CMD_EXEC_F);
2451         cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_ALLOC_F |
2452                                          FW_EQ_ETH_CMD_EQSTART_F |
2453                                          FW_LEN16(cmd));
2454         cmd.autoequiqe_to_viid = cpu_to_be32(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
2455                                              FW_EQ_ETH_CMD_VIID_V(pi->viid));
2456         cmd.fetchszm_to_iqid =
2457                 cpu_to_be32(FW_EQ_ETH_CMD_HOSTFCMODE_V(SGE_HOSTFCMODE_STPG) |
2458                             FW_EQ_ETH_CMD_PCIECHN_V(pi->port_id) |
2459                             FW_EQ_ETH_CMD_IQID_V(iqid));
2460         cmd.dcaen_to_eqsize =
2461                 cpu_to_be32(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
2462                                                   ? FETCHBURSTMIN_64B_X
2463                                                   : FETCHBURSTMIN_64B_T6_X) |
2464                             FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
2465                             FW_EQ_ETH_CMD_CIDXFTHRESH_V(
2466                                                 CIDXFLUSHTHRESH_32_X) |
2467                             FW_EQ_ETH_CMD_EQSIZE_V(nentries));
2468         cmd.eqaddr = cpu_to_be64(txq->q.phys_addr);
2469 
2470         /*
2471          * Issue the firmware Egress Queue Command and extract the results if
2472          * it completes successfully.
2473          */
2474         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2475         if (ret) {
2476                 /*
2477                  * The girmware Ingress Queue Command failed for some reason.
2478                  * Free up our partial allocation state and return the error.
2479                  */
2480                 kfree(txq->q.sdesc);
2481                 txq->q.sdesc = NULL;
2482                 dma_free_coherent(adapter->pdev_dev,
2483                                   nentries * sizeof(struct tx_desc),
2484                                   txq->q.desc, txq->q.phys_addr);
2485                 txq->q.desc = NULL;
2486                 return ret;
2487         }
2488 
2489         txq->q.in_use = 0;
2490         txq->q.cidx = 0;
2491         txq->q.pidx = 0;
2492         txq->q.stat = (void *)&txq->q.desc[txq->q.size];
2493         txq->q.cntxt_id = FW_EQ_ETH_CMD_EQID_G(be32_to_cpu(rpl.eqid_pkd));
2494         txq->q.bar2_addr = bar2_address(adapter,
2495                                         txq->q.cntxt_id,
2496                                         T4_BAR2_QTYPE_EGRESS,
2497                                         &txq->q.bar2_qid);
2498         txq->q.abs_id =
2499                 FW_EQ_ETH_CMD_PHYSEQID_G(be32_to_cpu(rpl.physeqid_pkd));
2500         txq->txq = devq;
2501         txq->tso = 0;
2502         txq->tx_cso = 0;
2503         txq->vlan_ins = 0;
2504         txq->q.stops = 0;
2505         txq->q.restarts = 0;
2506         txq->mapping_err = 0;
2507         return 0;
2508 }
2509 
2510 /*
2511  * Free the DMA map resources associated with a TX queue.
2512  */
2513 static void free_txq(struct adapter *adapter, struct sge_txq *tq)
2514 {
2515         struct sge *s = &adapter->sge;
2516 
2517         dma_free_coherent(adapter->pdev_dev,
2518                           tq->size * sizeof(*tq->desc) + s->stat_len,
2519                           tq->desc, tq->phys_addr);
2520         tq->cntxt_id = 0;
2521         tq->sdesc = NULL;
2522         tq->desc = NULL;
2523 }
2524 
2525 /*
2526  * Free the resources associated with a response queue (possibly including a
2527  * free list).
2528  */
2529 static void free_rspq_fl(struct adapter *adapter, struct sge_rspq *rspq,
2530                          struct sge_fl *fl)
2531 {
2532         struct sge *s = &adapter->sge;
2533         unsigned int flid = fl ? fl->cntxt_id : 0xffff;
2534 
2535         t4vf_iq_free(adapter, FW_IQ_TYPE_FL_INT_CAP,
2536                      rspq->cntxt_id, flid, 0xffff);
2537         dma_free_coherent(adapter->pdev_dev, (rspq->size + 1) * rspq->iqe_len,
2538                           rspq->desc, rspq->phys_addr);
2539         netif_napi_del(&rspq->napi);
2540         rspq->netdev = NULL;
2541         rspq->cntxt_id = 0;
2542         rspq->abs_id = 0;
2543         rspq->desc = NULL;
2544 
2545         if (fl) {
2546                 free_rx_bufs(adapter, fl, fl->avail);
2547                 dma_free_coherent(adapter->pdev_dev,
2548                                   fl->size * sizeof(*fl->desc) + s->stat_len,
2549                                   fl->desc, fl->addr);
2550                 kfree(fl->sdesc);
2551                 fl->sdesc = NULL;
2552                 fl->cntxt_id = 0;
2553                 fl->desc = NULL;
2554         }
2555 }
2556 
2557 /**
2558  *      t4vf_free_sge_resources - free SGE resources
2559  *      @adapter: the adapter
2560  *
2561  *      Frees resources used by the SGE queue sets.
2562  */
2563 void t4vf_free_sge_resources(struct adapter *adapter)
2564 {
2565         struct sge *s = &adapter->sge;
2566         struct sge_eth_rxq *rxq = s->ethrxq;
2567         struct sge_eth_txq *txq = s->ethtxq;
2568         struct sge_rspq *evtq = &s->fw_evtq;
2569         struct sge_rspq *intrq = &s->intrq;
2570         int qs;
2571 
2572         for (qs = 0; qs < adapter->sge.ethqsets; qs++, rxq++, txq++) {
2573                 if (rxq->rspq.desc)
2574                         free_rspq_fl(adapter, &rxq->rspq, &rxq->fl);
2575                 if (txq->q.desc) {
2576                         t4vf_eth_eq_free(adapter, txq->q.cntxt_id);
2577                         free_tx_desc(adapter, &txq->q, txq->q.in_use, true);
2578                         kfree(txq->q.sdesc);
2579                         free_txq(adapter, &txq->q);
2580                 }
2581         }
2582         if (evtq->desc)
2583                 free_rspq_fl(adapter, evtq, NULL);
2584         if (intrq->desc)
2585                 free_rspq_fl(adapter, intrq, NULL);
2586 }
2587 
2588 /**
2589  *      t4vf_sge_start - enable SGE operation
2590  *      @adapter: the adapter
2591  *
2592  *      Start tasklets and timers associated with the DMA engine.
2593  */
2594 void t4vf_sge_start(struct adapter *adapter)
2595 {
2596         adapter->sge.ethtxq_rover = 0;
2597         mod_timer(&adapter->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2598         mod_timer(&adapter->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2599 }
2600 
2601 /**
2602  *      t4vf_sge_stop - disable SGE operation
2603  *      @adapter: the adapter
2604  *
2605  *      Stop tasklets and timers associated with the DMA engine.  Note that
2606  *      this is effective only if measures have been taken to disable any HW
2607  *      events that may restart them.
2608  */
2609 void t4vf_sge_stop(struct adapter *adapter)
2610 {
2611         struct sge *s = &adapter->sge;
2612 
2613         if (s->rx_timer.function)
2614                 del_timer_sync(&s->rx_timer);
2615         if (s->tx_timer.function)
2616                 del_timer_sync(&s->tx_timer);
2617 }
2618 
2619 /**
2620  *      t4vf_sge_init - initialize SGE
2621  *      @adapter: the adapter
2622  *
2623  *      Performs SGE initialization needed every time after a chip reset.
2624  *      We do not initialize any of the queue sets here, instead the driver
2625  *      top-level must request those individually.  We also do not enable DMA
2626  *      here, that should be done after the queues have been set up.
2627  */
2628 int t4vf_sge_init(struct adapter *adapter)
2629 {
2630         struct sge_params *sge_params = &adapter->params.sge;
2631         u32 fl_small_pg = sge_params->sge_fl_buffer_size[0];
2632         u32 fl_large_pg = sge_params->sge_fl_buffer_size[1];
2633         struct sge *s = &adapter->sge;
2634 
2635         /*
2636          * Start by vetting the basic SGE parameters which have been set up by
2637          * the Physical Function Driver.  Ideally we should be able to deal
2638          * with _any_ configuration.  Practice is different ...
2639          */
2640 
2641         /* We only bother using the Large Page logic if the Large Page Buffer
2642          * is larger than our Page Size Buffer.
2643          */
2644         if (fl_large_pg <= fl_small_pg)
2645                 fl_large_pg = 0;
2646 
2647         /* The Page Size Buffer must be exactly equal to our Page Size and the
2648          * Large Page Size Buffer should be 0 (per above) or a power of 2.
2649          */
2650         if (fl_small_pg != PAGE_SIZE ||
2651             (fl_large_pg & (fl_large_pg - 1)) != 0) {
2652                 dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n",
2653                         fl_small_pg, fl_large_pg);
2654                 return -EINVAL;
2655         }
2656         if ((sge_params->sge_control & RXPKTCPLMODE_F) !=
2657             RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
2658                 dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n");
2659                 return -EINVAL;
2660         }
2661 
2662         /*
2663          * Now translate the adapter parameters into our internal forms.
2664          */
2665         if (fl_large_pg)
2666                 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
2667         s->stat_len = ((sge_params->sge_control & EGRSTATUSPAGESIZE_F)
2668                         ? 128 : 64);
2669         s->pktshift = PKTSHIFT_G(sge_params->sge_control);
2670         s->fl_align = t4vf_fl_pkt_align(adapter);
2671 
2672         /* A FL with <= fl_starve_thres buffers is starving and a periodic
2673          * timer will attempt to refill it.  This needs to be larger than the
2674          * SGE's Egress Congestion Threshold.  If it isn't, then we can get
2675          * stuck waiting for new packets while the SGE is waiting for us to
2676          * give it more Free List entries.  (Note that the SGE's Egress
2677          * Congestion Threshold is in units of 2 Free List pointers.)
2678          */
2679         switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
2680         case CHELSIO_T4:
2681                 s->fl_starve_thres =
2682                    EGRTHRESHOLD_G(sge_params->sge_congestion_control);
2683                 break;
2684         case CHELSIO_T5:
2685                 s->fl_starve_thres =
2686                    EGRTHRESHOLDPACKING_G(sge_params->sge_congestion_control);
2687                 break;
2688         case CHELSIO_T6:
2689         default:
2690                 s->fl_starve_thres =
2691                    T6_EGRTHRESHOLDPACKING_G(sge_params->sge_congestion_control);
2692                 break;
2693         }
2694         s->fl_starve_thres = s->fl_starve_thres * 2 + 1;
2695 
2696         /*
2697          * Set up tasklet timers.
2698          */
2699         timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
2700         timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
2701 
2702         /*
2703          * Initialize Forwarded Interrupt Queue lock.
2704          */
2705         spin_lock_init(&s->intrq_lock);
2706 
2707         return 0;
2708 }

/* [<][>][^][v][top][bottom][index][help] */