root/drivers/net/ethernet/chelsio/cxgb4vf/t4vf_hw.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. t4vf_wait_dev_ready
  2. get_mbox_rpl
  3. t4vf_record_mbox
  4. t4vf_wr_mbox_core
  5. fwcaps16_to_caps32
  6. fwcap_to_cc_pause
  7. fwcap_to_cc_fec
  8. fwcap_to_speed
  9. fwcap_to_fwspeed
  10. init_link_config
  11. t4vf_port_init
  12. t4vf_fw_reset
  13. t4vf_query_params
  14. t4vf_set_params
  15. t4vf_fl_pkt_align
  16. t4vf_bar2_sge_qregs
  17. t4vf_get_pf_from_vf
  18. t4vf_get_sge_params
  19. t4vf_get_vpd_params
  20. t4vf_get_dev_params
  21. t4vf_get_rss_glb_config
  22. t4vf_get_vfres
  23. t4vf_read_rss_vi_config
  24. t4vf_write_rss_vi_config
  25. t4vf_config_rss_range
  26. t4vf_alloc_vi
  27. t4vf_free_vi
  28. t4vf_enable_vi
  29. t4vf_enable_pi
  30. t4vf_identify_port
  31. t4vf_set_rxmode
  32. t4vf_alloc_mac_filt
  33. t4vf_free_mac_filt
  34. t4vf_change_mac
  35. t4vf_set_addr_hash
  36. t4vf_get_port_stats
  37. t4vf_iq_free
  38. t4vf_eth_eq_free
  39. t4vf_link_down_rc_str
  40. t4vf_handle_get_port_info
  41. t4vf_update_port_info
  42. t4vf_handle_fw_rpl
  43. t4vf_prep_adapter
  44. t4vf_get_vf_mac_acl
  45. t4vf_get_vf_vlan_acl

   1 /*
   2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
   3  * driver for Linux.
   4  *
   5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
   6  *
   7  * This software is available to you under a choice of one of two
   8  * licenses.  You may choose to be licensed under the terms of the GNU
   9  * General Public License (GPL) Version 2, available from the file
  10  * COPYING in the main directory of this source tree, or the
  11  * OpenIB.org BSD license below:
  12  *
  13  *     Redistribution and use in source and binary forms, with or
  14  *     without modification, are permitted provided that the following
  15  *     conditions are met:
  16  *
  17  *      - Redistributions of source code must retain the above
  18  *        copyright notice, this list of conditions and the following
  19  *        disclaimer.
  20  *
  21  *      - Redistributions in binary form must reproduce the above
  22  *        copyright notice, this list of conditions and the following
  23  *        disclaimer in the documentation and/or other materials
  24  *        provided with the distribution.
  25  *
  26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  33  * SOFTWARE.
  34  */
  35 
  36 #include <linux/pci.h>
  37 
  38 #include "t4vf_common.h"
  39 #include "t4vf_defs.h"
  40 
  41 #include "../cxgb4/t4_regs.h"
  42 #include "../cxgb4/t4_values.h"
  43 #include "../cxgb4/t4fw_api.h"
  44 
  45 /*
  46  * Wait for the device to become ready (signified by our "who am I" register
  47  * returning a value other than all 1's).  Return an error if it doesn't
  48  * become ready ...
  49  */
  50 int t4vf_wait_dev_ready(struct adapter *adapter)
  51 {
  52         const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
  53         const u32 notready1 = 0xffffffff;
  54         const u32 notready2 = 0xeeeeeeee;
  55         u32 val;
  56 
  57         val = t4_read_reg(adapter, whoami);
  58         if (val != notready1 && val != notready2)
  59                 return 0;
  60         msleep(500);
  61         val = t4_read_reg(adapter, whoami);
  62         if (val != notready1 && val != notready2)
  63                 return 0;
  64         else
  65                 return -EIO;
  66 }
  67 
  68 /*
  69  * Get the reply to a mailbox command and store it in @rpl in big-endian order
  70  * (since the firmware data structures are specified in a big-endian layout).
  71  */
  72 static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
  73                          u32 mbox_data)
  74 {
  75         for ( ; size; size -= 8, mbox_data += 8)
  76                 *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
  77 }
  78 
  79 /**
  80  *      t4vf_record_mbox - record a Firmware Mailbox Command/Reply in the log
  81  *      @adapter: the adapter
  82  *      @cmd: the Firmware Mailbox Command or Reply
  83  *      @size: command length in bytes
  84  *      @access: the time (ms) needed to access the Firmware Mailbox
  85  *      @execute: the time (ms) the command spent being executed
  86  */
  87 static void t4vf_record_mbox(struct adapter *adapter, const __be64 *cmd,
  88                              int size, int access, int execute)
  89 {
  90         struct mbox_cmd_log *log = adapter->mbox_log;
  91         struct mbox_cmd *entry;
  92         int i;
  93 
  94         entry = mbox_cmd_log_entry(log, log->cursor++);
  95         if (log->cursor == log->size)
  96                 log->cursor = 0;
  97 
  98         for (i = 0; i < size / 8; i++)
  99                 entry->cmd[i] = be64_to_cpu(cmd[i]);
 100         while (i < MBOX_LEN / 8)
 101                 entry->cmd[i++] = 0;
 102         entry->timestamp = jiffies;
 103         entry->seqno = log->seqno++;
 104         entry->access = access;
 105         entry->execute = execute;
 106 }
 107 
 108 /**
 109  *      t4vf_wr_mbox_core - send a command to FW through the mailbox
 110  *      @adapter: the adapter
 111  *      @cmd: the command to write
 112  *      @size: command length in bytes
 113  *      @rpl: where to optionally store the reply
 114  *      @sleep_ok: if true we may sleep while awaiting command completion
 115  *
 116  *      Sends the given command to FW through the mailbox and waits for the
 117  *      FW to execute the command.  If @rpl is not %NULL it is used to store
 118  *      the FW's reply to the command.  The command and its optional reply
 119  *      are of the same length.  FW can take up to 500 ms to respond.
 120  *      @sleep_ok determines whether we may sleep while awaiting the response.
 121  *      If sleeping is allowed we use progressive backoff otherwise we spin.
 122  *
 123  *      The return value is 0 on success or a negative errno on failure.  A
 124  *      failure can happen either because we are not able to execute the
 125  *      command or FW executes it but signals an error.  In the latter case
 126  *      the return value is the error code indicated by FW (negated).
 127  */
 128 int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
 129                       void *rpl, bool sleep_ok)
 130 {
 131         static const int delay[] = {
 132                 1, 1, 3, 5, 10, 10, 20, 50, 100
 133         };
 134 
 135         u16 access = 0, execute = 0;
 136         u32 v, mbox_data;
 137         int i, ms, delay_idx, ret;
 138         const __be64 *p;
 139         u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
 140         u32 cmd_op = FW_CMD_OP_G(be32_to_cpu(((struct fw_cmd_hdr *)cmd)->hi));
 141         __be64 cmd_rpl[MBOX_LEN / 8];
 142         struct mbox_list entry;
 143 
 144         /* In T6, mailbox size is changed to 128 bytes to avoid
 145          * invalidating the entire prefetch buffer.
 146          */
 147         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
 148                 mbox_data = T4VF_MBDATA_BASE_ADDR;
 149         else
 150                 mbox_data = T6VF_MBDATA_BASE_ADDR;
 151 
 152         /*
 153          * Commands must be multiples of 16 bytes in length and may not be
 154          * larger than the size of the Mailbox Data register array.
 155          */
 156         if ((size % 16) != 0 ||
 157             size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
 158                 return -EINVAL;
 159 
 160         /* Queue ourselves onto the mailbox access list.  When our entry is at
 161          * the front of the list, we have rights to access the mailbox.  So we
 162          * wait [for a while] till we're at the front [or bail out with an
 163          * EBUSY] ...
 164          */
 165         spin_lock(&adapter->mbox_lock);
 166         list_add_tail(&entry.list, &adapter->mlist.list);
 167         spin_unlock(&adapter->mbox_lock);
 168 
 169         delay_idx = 0;
 170         ms = delay[0];
 171 
 172         for (i = 0; ; i += ms) {
 173                 /* If we've waited too long, return a busy indication.  This
 174                  * really ought to be based on our initial position in the
 175                  * mailbox access list but this is a start.  We very rearely
 176                  * contend on access to the mailbox ...
 177                  */
 178                 if (i > FW_CMD_MAX_TIMEOUT) {
 179                         spin_lock(&adapter->mbox_lock);
 180                         list_del(&entry.list);
 181                         spin_unlock(&adapter->mbox_lock);
 182                         ret = -EBUSY;
 183                         t4vf_record_mbox(adapter, cmd, size, access, ret);
 184                         return ret;
 185                 }
 186 
 187                 /* If we're at the head, break out and start the mailbox
 188                  * protocol.
 189                  */
 190                 if (list_first_entry(&adapter->mlist.list, struct mbox_list,
 191                                      list) == &entry)
 192                         break;
 193 
 194                 /* Delay for a bit before checking again ... */
 195                 if (sleep_ok) {
 196                         ms = delay[delay_idx];  /* last element may repeat */
 197                         if (delay_idx < ARRAY_SIZE(delay) - 1)
 198                                 delay_idx++;
 199                         msleep(ms);
 200                 } else {
 201                         mdelay(ms);
 202                 }
 203         }
 204 
 205         /*
 206          * Loop trying to get ownership of the mailbox.  Return an error
 207          * if we can't gain ownership.
 208          */
 209         v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
 210         for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
 211                 v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
 212         if (v != MBOX_OWNER_DRV) {
 213                 spin_lock(&adapter->mbox_lock);
 214                 list_del(&entry.list);
 215                 spin_unlock(&adapter->mbox_lock);
 216                 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
 217                 t4vf_record_mbox(adapter, cmd, size, access, ret);
 218                 return ret;
 219         }
 220 
 221         /*
 222          * Write the command array into the Mailbox Data register array and
 223          * transfer ownership of the mailbox to the firmware.
 224          *
 225          * For the VFs, the Mailbox Data "registers" are actually backed by
 226          * T4's "MA" interface rather than PL Registers (as is the case for
 227          * the PFs).  Because these are in different coherency domains, the
 228          * write to the VF's PL-register-backed Mailbox Control can race in
 229          * front of the writes to the MA-backed VF Mailbox Data "registers".
 230          * So we need to do a read-back on at least one byte of the VF Mailbox
 231          * Data registers before doing the write to the VF Mailbox Control
 232          * register.
 233          */
 234         if (cmd_op != FW_VI_STATS_CMD)
 235                 t4vf_record_mbox(adapter, cmd, size, access, 0);
 236         for (i = 0, p = cmd; i < size; i += 8)
 237                 t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
 238         t4_read_reg(adapter, mbox_data);         /* flush write */
 239 
 240         t4_write_reg(adapter, mbox_ctl,
 241                      MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
 242         t4_read_reg(adapter, mbox_ctl);          /* flush write */
 243 
 244         /*
 245          * Spin waiting for firmware to acknowledge processing our command.
 246          */
 247         delay_idx = 0;
 248         ms = delay[0];
 249 
 250         for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
 251                 if (sleep_ok) {
 252                         ms = delay[delay_idx];
 253                         if (delay_idx < ARRAY_SIZE(delay) - 1)
 254                                 delay_idx++;
 255                         msleep(ms);
 256                 } else
 257                         mdelay(ms);
 258 
 259                 /*
 260                  * If we're the owner, see if this is the reply we wanted.
 261                  */
 262                 v = t4_read_reg(adapter, mbox_ctl);
 263                 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
 264                         /*
 265                          * If the Message Valid bit isn't on, revoke ownership
 266                          * of the mailbox and continue waiting for our reply.
 267                          */
 268                         if ((v & MBMSGVALID_F) == 0) {
 269                                 t4_write_reg(adapter, mbox_ctl,
 270                                              MBOWNER_V(MBOX_OWNER_NONE));
 271                                 continue;
 272                         }
 273 
 274                         /*
 275                          * We now have our reply.  Extract the command return
 276                          * value, copy the reply back to our caller's buffer
 277                          * (if specified) and revoke ownership of the mailbox.
 278                          * We return the (negated) firmware command return
 279                          * code (this depends on FW_SUCCESS == 0).
 280                          */
 281                         get_mbox_rpl(adapter, cmd_rpl, size, mbox_data);
 282 
 283                         /* return value in low-order little-endian word */
 284                         v = be64_to_cpu(cmd_rpl[0]);
 285 
 286                         if (rpl) {
 287                                 /* request bit in high-order BE word */
 288                                 WARN_ON((be32_to_cpu(*(const __be32 *)cmd)
 289                                          & FW_CMD_REQUEST_F) == 0);
 290                                 memcpy(rpl, cmd_rpl, size);
 291                                 WARN_ON((be32_to_cpu(*(__be32 *)rpl)
 292                                          & FW_CMD_REQUEST_F) != 0);
 293                         }
 294                         t4_write_reg(adapter, mbox_ctl,
 295                                      MBOWNER_V(MBOX_OWNER_NONE));
 296                         execute = i + ms;
 297                         if (cmd_op != FW_VI_STATS_CMD)
 298                                 t4vf_record_mbox(adapter, cmd_rpl, size, access,
 299                                                  execute);
 300                         spin_lock(&adapter->mbox_lock);
 301                         list_del(&entry.list);
 302                         spin_unlock(&adapter->mbox_lock);
 303                         return -FW_CMD_RETVAL_G(v);
 304                 }
 305         }
 306 
 307         /* We timed out.  Return the error ... */
 308         ret = -ETIMEDOUT;
 309         t4vf_record_mbox(adapter, cmd, size, access, ret);
 310         spin_lock(&adapter->mbox_lock);
 311         list_del(&entry.list);
 312         spin_unlock(&adapter->mbox_lock);
 313         return ret;
 314 }
 315 
 316 /* In the Physical Function Driver Common Code, the ADVERT_MASK is used to
 317  * mask out bits in the Advertised Port Capabilities which are managed via
 318  * separate controls, like Pause Frames and Forward Error Correction.  In the
 319  * Virtual Function Common Code, since we never perform L1 Configuration on
 320  * the Link, the only things we really need to filter out are things which
 321  * we decode and report separately like Speed.
 322  */
 323 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
 324                      FW_PORT_CAP32_802_3_PAUSE | \
 325                      FW_PORT_CAP32_802_3_ASM_DIR | \
 326                      FW_PORT_CAP32_FEC_V(FW_PORT_CAP32_FEC_M) | \
 327                      FW_PORT_CAP32_ANEG)
 328 
 329 /**
 330  *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
 331  *      @caps16: a 16-bit Port Capabilities value
 332  *
 333  *      Returns the equivalent 32-bit Port Capabilities value.
 334  */
 335 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
 336 {
 337         fw_port_cap32_t caps32 = 0;
 338 
 339         #define CAP16_TO_CAP32(__cap) \
 340                 do { \
 341                         if (caps16 & FW_PORT_CAP_##__cap) \
 342                                 caps32 |= FW_PORT_CAP32_##__cap; \
 343                 } while (0)
 344 
 345         CAP16_TO_CAP32(SPEED_100M);
 346         CAP16_TO_CAP32(SPEED_1G);
 347         CAP16_TO_CAP32(SPEED_25G);
 348         CAP16_TO_CAP32(SPEED_10G);
 349         CAP16_TO_CAP32(SPEED_40G);
 350         CAP16_TO_CAP32(SPEED_100G);
 351         CAP16_TO_CAP32(FC_RX);
 352         CAP16_TO_CAP32(FC_TX);
 353         CAP16_TO_CAP32(ANEG);
 354         CAP16_TO_CAP32(MDIAUTO);
 355         CAP16_TO_CAP32(MDISTRAIGHT);
 356         CAP16_TO_CAP32(FEC_RS);
 357         CAP16_TO_CAP32(FEC_BASER_RS);
 358         CAP16_TO_CAP32(802_3_PAUSE);
 359         CAP16_TO_CAP32(802_3_ASM_DIR);
 360 
 361         #undef CAP16_TO_CAP32
 362 
 363         return caps32;
 364 }
 365 
 366 /* Translate Firmware Pause specification to Common Code */
 367 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
 368 {
 369         enum cc_pause cc_pause = 0;
 370 
 371         if (fw_pause & FW_PORT_CAP32_FC_RX)
 372                 cc_pause |= PAUSE_RX;
 373         if (fw_pause & FW_PORT_CAP32_FC_TX)
 374                 cc_pause |= PAUSE_TX;
 375 
 376         return cc_pause;
 377 }
 378 
 379 /* Translate Firmware Forward Error Correction specification to Common Code */
 380 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
 381 {
 382         enum cc_fec cc_fec = 0;
 383 
 384         if (fw_fec & FW_PORT_CAP32_FEC_RS)
 385                 cc_fec |= FEC_RS;
 386         if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
 387                 cc_fec |= FEC_BASER_RS;
 388 
 389         return cc_fec;
 390 }
 391 
 392 /**
 393  * Return the highest speed set in the port capabilities, in Mb/s.
 394  */
 395 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
 396 {
 397         #define TEST_SPEED_RETURN(__caps_speed, __speed) \
 398                 do { \
 399                         if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
 400                                 return __speed; \
 401                 } while (0)
 402 
 403         TEST_SPEED_RETURN(400G, 400000);
 404         TEST_SPEED_RETURN(200G, 200000);
 405         TEST_SPEED_RETURN(100G, 100000);
 406         TEST_SPEED_RETURN(50G,   50000);
 407         TEST_SPEED_RETURN(40G,   40000);
 408         TEST_SPEED_RETURN(25G,   25000);
 409         TEST_SPEED_RETURN(10G,   10000);
 410         TEST_SPEED_RETURN(1G,     1000);
 411         TEST_SPEED_RETURN(100M,    100);
 412 
 413         #undef TEST_SPEED_RETURN
 414 
 415         return 0;
 416 }
 417 
 418 /**
 419  *      fwcap_to_fwspeed - return highest speed in Port Capabilities
 420  *      @acaps: advertised Port Capabilities
 421  *
 422  *      Get the highest speed for the port from the advertised Port
 423  *      Capabilities.  It will be either the highest speed from the list of
 424  *      speeds or whatever user has set using ethtool.
 425  */
 426 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
 427 {
 428         #define TEST_SPEED_RETURN(__caps_speed) \
 429                 do { \
 430                         if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
 431                                 return FW_PORT_CAP32_SPEED_##__caps_speed; \
 432                 } while (0)
 433 
 434         TEST_SPEED_RETURN(400G);
 435         TEST_SPEED_RETURN(200G);
 436         TEST_SPEED_RETURN(100G);
 437         TEST_SPEED_RETURN(50G);
 438         TEST_SPEED_RETURN(40G);
 439         TEST_SPEED_RETURN(25G);
 440         TEST_SPEED_RETURN(10G);
 441         TEST_SPEED_RETURN(1G);
 442         TEST_SPEED_RETURN(100M);
 443 
 444         #undef TEST_SPEED_RETURN
 445         return 0;
 446 }
 447 
 448 /*
 449  *      init_link_config - initialize a link's SW state
 450  *      @lc: structure holding the link state
 451  *      @pcaps: link Port Capabilities
 452  *      @acaps: link current Advertised Port Capabilities
 453  *
 454  *      Initializes the SW state maintained for each link, including the link's
 455  *      capabilities and default speed/flow-control/autonegotiation settings.
 456  */
 457 static void init_link_config(struct link_config *lc,
 458                              fw_port_cap32_t pcaps,
 459                              fw_port_cap32_t acaps)
 460 {
 461         lc->pcaps = pcaps;
 462         lc->lpacaps = 0;
 463         lc->speed_caps = 0;
 464         lc->speed = 0;
 465         lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
 466 
 467         /* For Forward Error Control, we default to whatever the Firmware
 468          * tells us the Link is currently advertising.
 469          */
 470         lc->auto_fec = fwcap_to_cc_fec(acaps);
 471         lc->requested_fec = FEC_AUTO;
 472         lc->fec = lc->auto_fec;
 473 
 474         /* If the Port is capable of Auto-Negtotiation, initialize it as
 475          * "enabled" and copy over all of the Physical Port Capabilities
 476          * to the Advertised Port Capabilities.  Otherwise mark it as
 477          * Auto-Negotiate disabled and select the highest supported speed
 478          * for the link.  Note parallel structure in t4_link_l1cfg_core()
 479          * and t4_handle_get_port_info().
 480          */
 481         if (lc->pcaps & FW_PORT_CAP32_ANEG) {
 482                 lc->acaps = acaps & ADVERT_MASK;
 483                 lc->autoneg = AUTONEG_ENABLE;
 484                 lc->requested_fc |= PAUSE_AUTONEG;
 485         } else {
 486                 lc->acaps = 0;
 487                 lc->autoneg = AUTONEG_DISABLE;
 488                 lc->speed_caps = fwcap_to_fwspeed(acaps);
 489         }
 490 }
 491 
 492 /**
 493  *      t4vf_port_init - initialize port hardware/software state
 494  *      @adapter: the adapter
 495  *      @pidx: the adapter port index
 496  */
 497 int t4vf_port_init(struct adapter *adapter, int pidx)
 498 {
 499         struct port_info *pi = adap2pinfo(adapter, pidx);
 500         unsigned int fw_caps = adapter->params.fw_caps_support;
 501         struct fw_vi_cmd vi_cmd, vi_rpl;
 502         struct fw_port_cmd port_cmd, port_rpl;
 503         enum fw_port_type port_type;
 504         int mdio_addr;
 505         fw_port_cap32_t pcaps, acaps;
 506         int ret;
 507 
 508         /* If we haven't yet determined whether we're talking to Firmware
 509          * which knows the new 32-bit Port Capabilities, it's time to find
 510          * out now.  This will also tell new Firmware to send us Port Status
 511          * Updates using the new 32-bit Port Capabilities version of the
 512          * Port Information message.
 513          */
 514         if (fw_caps == FW_CAPS_UNKNOWN) {
 515                 u32 param, val;
 516 
 517                 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
 518                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
 519                 val = 1;
 520                 ret = t4vf_set_params(adapter, 1, &param, &val);
 521                 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
 522                 adapter->params.fw_caps_support = fw_caps;
 523         }
 524 
 525         /*
 526          * Execute a VI Read command to get our Virtual Interface information
 527          * like MAC address, etc.
 528          */
 529         memset(&vi_cmd, 0, sizeof(vi_cmd));
 530         vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
 531                                        FW_CMD_REQUEST_F |
 532                                        FW_CMD_READ_F);
 533         vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
 534         vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
 535         ret = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
 536         if (ret != FW_SUCCESS)
 537                 return ret;
 538 
 539         BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
 540         pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
 541         t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
 542 
 543         /*
 544          * If we don't have read access to our port information, we're done
 545          * now.  Otherwise, execute a PORT Read command to get it ...
 546          */
 547         if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
 548                 return 0;
 549 
 550         memset(&port_cmd, 0, sizeof(port_cmd));
 551         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
 552                                             FW_CMD_REQUEST_F |
 553                                             FW_CMD_READ_F |
 554                                             FW_PORT_CMD_PORTID_V(pi->port_id));
 555         port_cmd.action_to_len16 = cpu_to_be32(
 556                 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
 557                                      ? FW_PORT_ACTION_GET_PORT_INFO
 558                                      : FW_PORT_ACTION_GET_PORT_INFO32) |
 559                 FW_LEN16(port_cmd));
 560         ret = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
 561         if (ret != FW_SUCCESS)
 562                 return ret;
 563 
 564         /* Extract the various fields from the Port Information message. */
 565         if (fw_caps == FW_CAPS16) {
 566                 u32 lstatus = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
 567 
 568                 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
 569                 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
 570                              ? FW_PORT_CMD_MDIOADDR_G(lstatus)
 571                              : -1);
 572                 pcaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.pcap));
 573                 acaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.acap));
 574         } else {
 575                 u32 lstatus32 =
 576                            be32_to_cpu(port_rpl.u.info32.lstatus32_to_cbllen32);
 577 
 578                 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
 579                 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
 580                              ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
 581                              : -1);
 582                 pcaps = be32_to_cpu(port_rpl.u.info32.pcaps32);
 583                 acaps = be32_to_cpu(port_rpl.u.info32.acaps32);
 584         }
 585 
 586         pi->port_type = port_type;
 587         pi->mdio_addr = mdio_addr;
 588         pi->mod_type = FW_PORT_MOD_TYPE_NA;
 589 
 590         init_link_config(&pi->link_cfg, pcaps, acaps);
 591         return 0;
 592 }
 593 
 594 /**
 595  *      t4vf_fw_reset - issue a reset to FW
 596  *      @adapter: the adapter
 597  *
 598  *      Issues a reset command to FW.  For a Physical Function this would
 599  *      result in the Firmware resetting all of its state.  For a Virtual
 600  *      Function this just resets the state associated with the VF.
 601  */
 602 int t4vf_fw_reset(struct adapter *adapter)
 603 {
 604         struct fw_reset_cmd cmd;
 605 
 606         memset(&cmd, 0, sizeof(cmd));
 607         cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
 608                                       FW_CMD_WRITE_F);
 609         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
 610         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
 611 }
 612 
 613 /**
 614  *      t4vf_query_params - query FW or device parameters
 615  *      @adapter: the adapter
 616  *      @nparams: the number of parameters
 617  *      @params: the parameter names
 618  *      @vals: the parameter values
 619  *
 620  *      Reads the values of firmware or device parameters.  Up to 7 parameters
 621  *      can be queried at once.
 622  */
 623 static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
 624                              const u32 *params, u32 *vals)
 625 {
 626         int i, ret;
 627         struct fw_params_cmd cmd, rpl;
 628         struct fw_params_param *p;
 629         size_t len16;
 630 
 631         if (nparams > 7)
 632                 return -EINVAL;
 633 
 634         memset(&cmd, 0, sizeof(cmd));
 635         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
 636                                     FW_CMD_REQUEST_F |
 637                                     FW_CMD_READ_F);
 638         len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
 639                                       param[nparams].mnem), 16);
 640         cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
 641         for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
 642                 p->mnem = htonl(*params++);
 643 
 644         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
 645         if (ret == 0)
 646                 for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
 647                         *vals++ = be32_to_cpu(p->val);
 648         return ret;
 649 }
 650 
 651 /**
 652  *      t4vf_set_params - sets FW or device parameters
 653  *      @adapter: the adapter
 654  *      @nparams: the number of parameters
 655  *      @params: the parameter names
 656  *      @vals: the parameter values
 657  *
 658  *      Sets the values of firmware or device parameters.  Up to 7 parameters
 659  *      can be specified at once.
 660  */
 661 int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
 662                     const u32 *params, const u32 *vals)
 663 {
 664         int i;
 665         struct fw_params_cmd cmd;
 666         struct fw_params_param *p;
 667         size_t len16;
 668 
 669         if (nparams > 7)
 670                 return -EINVAL;
 671 
 672         memset(&cmd, 0, sizeof(cmd));
 673         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
 674                                     FW_CMD_REQUEST_F |
 675                                     FW_CMD_WRITE_F);
 676         len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
 677                                       param[nparams]), 16);
 678         cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
 679         for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
 680                 p->mnem = cpu_to_be32(*params++);
 681                 p->val = cpu_to_be32(*vals++);
 682         }
 683 
 684         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
 685 }
 686 
 687 /**
 688  *      t4vf_fl_pkt_align - return the fl packet alignment
 689  *      @adapter: the adapter
 690  *
 691  *      T4 has a single field to specify the packing and padding boundary.
 692  *      T5 onwards has separate fields for this and hence the alignment for
 693  *      next packet offset is maximum of these two.  And T6 changes the
 694  *      Ingress Padding Boundary Shift, so it's all a mess and it's best
 695  *      if we put this in low-level Common Code ...
 696  *
 697  */
 698 int t4vf_fl_pkt_align(struct adapter *adapter)
 699 {
 700         u32 sge_control, sge_control2;
 701         unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
 702 
 703         sge_control = adapter->params.sge.sge_control;
 704 
 705         /* T4 uses a single control field to specify both the PCIe Padding and
 706          * Packing Boundary.  T5 introduced the ability to specify these
 707          * separately.  The actual Ingress Packet Data alignment boundary
 708          * within Packed Buffer Mode is the maximum of these two
 709          * specifications.  (Note that it makes no real practical sense to
 710          * have the Pading Boudary be larger than the Packing Boundary but you
 711          * could set the chip up that way and, in fact, legacy T4 code would
 712          * end doing this because it would initialize the Padding Boundary and
 713          * leave the Packing Boundary initialized to 0 (16 bytes).)
 714          * Padding Boundary values in T6 starts from 8B,
 715          * where as it is 32B for T4 and T5.
 716          */
 717         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
 718                 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
 719         else
 720                 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
 721 
 722         ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
 723 
 724         fl_align = ingpadboundary;
 725         if (!is_t4(adapter->params.chip)) {
 726                 /* T5 has a different interpretation of one of the PCIe Packing
 727                  * Boundary values.
 728                  */
 729                 sge_control2 = adapter->params.sge.sge_control2;
 730                 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
 731                 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
 732                         ingpackboundary = 16;
 733                 else
 734                         ingpackboundary = 1 << (ingpackboundary +
 735                                                 INGPACKBOUNDARY_SHIFT_X);
 736 
 737                 fl_align = max(ingpadboundary, ingpackboundary);
 738         }
 739         return fl_align;
 740 }
 741 
 742 /**
 743  *      t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information
 744  *      @adapter: the adapter
 745  *      @qid: the Queue ID
 746  *      @qtype: the Ingress or Egress type for @qid
 747  *      @pbar2_qoffset: BAR2 Queue Offset
 748  *      @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
 749  *
 750  *      Returns the BAR2 SGE Queue Registers information associated with the
 751  *      indicated Absolute Queue ID.  These are passed back in return value
 752  *      pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
 753  *      and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
 754  *
 755  *      This may return an error which indicates that BAR2 SGE Queue
 756  *      registers aren't available.  If an error is not returned, then the
 757  *      following values are returned:
 758  *
 759  *        *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
 760  *        *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
 761  *
 762  *      If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
 763  *      require the "Inferred Queue ID" ability may be used.  E.g. the
 764  *      Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
 765  *      then these "Inferred Queue ID" register may not be used.
 766  */
 767 int t4vf_bar2_sge_qregs(struct adapter *adapter,
 768                         unsigned int qid,
 769                         enum t4_bar2_qtype qtype,
 770                         u64 *pbar2_qoffset,
 771                         unsigned int *pbar2_qid)
 772 {
 773         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
 774         u64 bar2_page_offset, bar2_qoffset;
 775         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
 776 
 777         /* T4 doesn't support BAR2 SGE Queue registers.
 778          */
 779         if (is_t4(adapter->params.chip))
 780                 return -EINVAL;
 781 
 782         /* Get our SGE Page Size parameters.
 783          */
 784         page_shift = adapter->params.sge.sge_vf_hps + 10;
 785         page_size = 1 << page_shift;
 786 
 787         /* Get the right Queues per Page parameters for our Queue.
 788          */
 789         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
 790                      ? adapter->params.sge.sge_vf_eq_qpp
 791                      : adapter->params.sge.sge_vf_iq_qpp);
 792         qpp_mask = (1 << qpp_shift) - 1;
 793 
 794         /* Calculate the basics of the BAR2 SGE Queue register area:
 795          *  o The BAR2 page the Queue registers will be in.
 796          *  o The BAR2 Queue ID.
 797          *  o The BAR2 Queue ID Offset into the BAR2 page.
 798          */
 799         bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
 800         bar2_qid = qid & qpp_mask;
 801         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
 802 
 803         /* If the BAR2 Queue ID Offset is less than the Page Size, then the
 804          * hardware will infer the Absolute Queue ID simply from the writes to
 805          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
 806          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
 807          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
 808          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
 809          * from the BAR2 Page and BAR2 Queue ID.
 810          *
 811          * One important censequence of this is that some BAR2 SGE registers
 812          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
 813          * there.  But other registers synthesize the SGE Queue ID purely
 814          * from the writes to the registers -- the Write Combined Doorbell
 815          * Buffer is a good example.  These BAR2 SGE Registers are only
 816          * available for those BAR2 SGE Register areas where the SGE Absolute
 817          * Queue ID can be inferred from simple writes.
 818          */
 819         bar2_qoffset = bar2_page_offset;
 820         bar2_qinferred = (bar2_qid_offset < page_size);
 821         if (bar2_qinferred) {
 822                 bar2_qoffset += bar2_qid_offset;
 823                 bar2_qid = 0;
 824         }
 825 
 826         *pbar2_qoffset = bar2_qoffset;
 827         *pbar2_qid = bar2_qid;
 828         return 0;
 829 }
 830 
 831 unsigned int t4vf_get_pf_from_vf(struct adapter *adapter)
 832 {
 833         u32 whoami;
 834 
 835         whoami = t4_read_reg(adapter, T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A);
 836         return (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
 837                         SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami));
 838 }
 839 
 840 /**
 841  *      t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
 842  *      @adapter: the adapter
 843  *
 844  *      Retrieves various core SGE parameters in the form of hardware SGE
 845  *      register values.  The caller is responsible for decoding these as
 846  *      needed.  The SGE parameters are stored in @adapter->params.sge.
 847  */
 848 int t4vf_get_sge_params(struct adapter *adapter)
 849 {
 850         struct sge_params *sge_params = &adapter->params.sge;
 851         u32 params[7], vals[7];
 852         int v;
 853 
 854         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 855                      FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A));
 856         params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 857                      FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A));
 858         params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 859                      FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A));
 860         params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 861                      FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A));
 862         params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 863                      FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A));
 864         params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 865                      FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A));
 866         params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 867                      FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A));
 868         v = t4vf_query_params(adapter, 7, params, vals);
 869         if (v)
 870                 return v;
 871         sge_params->sge_control = vals[0];
 872         sge_params->sge_host_page_size = vals[1];
 873         sge_params->sge_fl_buffer_size[0] = vals[2];
 874         sge_params->sge_fl_buffer_size[1] = vals[3];
 875         sge_params->sge_timer_value_0_and_1 = vals[4];
 876         sge_params->sge_timer_value_2_and_3 = vals[5];
 877         sge_params->sge_timer_value_4_and_5 = vals[6];
 878 
 879         /* T4 uses a single control field to specify both the PCIe Padding and
 880          * Packing Boundary.  T5 introduced the ability to specify these
 881          * separately with the Padding Boundary in SGE_CONTROL and and Packing
 882          * Boundary in SGE_CONTROL2.  So for T5 and later we need to grab
 883          * SGE_CONTROL in order to determine how ingress packet data will be
 884          * laid out in Packed Buffer Mode.  Unfortunately, older versions of
 885          * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
 886          * failure grabbing it we throw an error since we can't figure out the
 887          * right value.
 888          */
 889         if (!is_t4(adapter->params.chip)) {
 890                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 891                              FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
 892                 v = t4vf_query_params(adapter, 1, params, vals);
 893                 if (v != FW_SUCCESS) {
 894                         dev_err(adapter->pdev_dev,
 895                                 "Unable to get SGE Control2; "
 896                                 "probably old firmware.\n");
 897                         return v;
 898                 }
 899                 sge_params->sge_control2 = vals[0];
 900         }
 901 
 902         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 903                      FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A));
 904         params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 905                      FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A));
 906         v = t4vf_query_params(adapter, 2, params, vals);
 907         if (v)
 908                 return v;
 909         sge_params->sge_ingress_rx_threshold = vals[0];
 910         sge_params->sge_congestion_control = vals[1];
 911 
 912         /* For T5 and later we want to use the new BAR2 Doorbells.
 913          * Unfortunately, older firmware didn't allow the this register to be
 914          * read.
 915          */
 916         if (!is_t4(adapter->params.chip)) {
 917                 unsigned int pf, s_hps, s_qpp;
 918 
 919                 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 920                              FW_PARAMS_PARAM_XYZ_V(
 921                                      SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
 922                 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
 923                              FW_PARAMS_PARAM_XYZ_V(
 924                                      SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
 925                 v = t4vf_query_params(adapter, 2, params, vals);
 926                 if (v != FW_SUCCESS) {
 927                         dev_warn(adapter->pdev_dev,
 928                                  "Unable to get VF SGE Queues/Page; "
 929                                  "probably old firmware.\n");
 930                         return v;
 931                 }
 932                 sge_params->sge_egress_queues_per_page = vals[0];
 933                 sge_params->sge_ingress_queues_per_page = vals[1];
 934 
 935                 /* We need the Queues/Page for our VF.  This is based on the
 936                  * PF from which we're instantiated and is indexed in the
 937                  * register we just read. Do it once here so other code in
 938                  * the driver can just use it.
 939                  */
 940                 pf = t4vf_get_pf_from_vf(adapter);
 941                 s_hps = (HOSTPAGESIZEPF0_S +
 942                          (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
 943                 sge_params->sge_vf_hps =
 944                         ((sge_params->sge_host_page_size >> s_hps)
 945                          & HOSTPAGESIZEPF0_M);
 946 
 947                 s_qpp = (QUEUESPERPAGEPF0_S +
 948                          (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
 949                 sge_params->sge_vf_eq_qpp =
 950                         ((sge_params->sge_egress_queues_per_page >> s_qpp)
 951                          & QUEUESPERPAGEPF0_M);
 952                 sge_params->sge_vf_iq_qpp =
 953                         ((sge_params->sge_ingress_queues_per_page >> s_qpp)
 954                          & QUEUESPERPAGEPF0_M);
 955         }
 956 
 957         return 0;
 958 }
 959 
 960 /**
 961  *      t4vf_get_vpd_params - retrieve device VPD paremeters
 962  *      @adapter: the adapter
 963  *
 964  *      Retrives various device Vital Product Data parameters.  The parameters
 965  *      are stored in @adapter->params.vpd.
 966  */
 967 int t4vf_get_vpd_params(struct adapter *adapter)
 968 {
 969         struct vpd_params *vpd_params = &adapter->params.vpd;
 970         u32 params[7], vals[7];
 971         int v;
 972 
 973         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
 974                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
 975         v = t4vf_query_params(adapter, 1, params, vals);
 976         if (v)
 977                 return v;
 978         vpd_params->cclk = vals[0];
 979 
 980         return 0;
 981 }
 982 
 983 /**
 984  *      t4vf_get_dev_params - retrieve device paremeters
 985  *      @adapter: the adapter
 986  *
 987  *      Retrives various device parameters.  The parameters are stored in
 988  *      @adapter->params.dev.
 989  */
 990 int t4vf_get_dev_params(struct adapter *adapter)
 991 {
 992         struct dev_params *dev_params = &adapter->params.dev;
 993         u32 params[7], vals[7];
 994         int v;
 995 
 996         params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
 997                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
 998         params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
 999                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
1000         v = t4vf_query_params(adapter, 2, params, vals);
1001         if (v)
1002                 return v;
1003         dev_params->fwrev = vals[0];
1004         dev_params->tprev = vals[1];
1005 
1006         return 0;
1007 }
1008 
1009 /**
1010  *      t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
1011  *      @adapter: the adapter
1012  *
1013  *      Retrieves global RSS mode and parameters with which we have to live
1014  *      and stores them in the @adapter's RSS parameters.
1015  */
1016 int t4vf_get_rss_glb_config(struct adapter *adapter)
1017 {
1018         struct rss_params *rss = &adapter->params.rss;
1019         struct fw_rss_glb_config_cmd cmd, rpl;
1020         int v;
1021 
1022         /*
1023          * Execute an RSS Global Configuration read command to retrieve
1024          * our RSS configuration.
1025          */
1026         memset(&cmd, 0, sizeof(cmd));
1027         cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
1028                                       FW_CMD_REQUEST_F |
1029                                       FW_CMD_READ_F);
1030         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1031         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1032         if (v)
1033                 return v;
1034 
1035         /*
1036          * Transate the big-endian RSS Global Configuration into our
1037          * cpu-endian format based on the RSS mode.  We also do first level
1038          * filtering at this point to weed out modes which don't support
1039          * VF Drivers ...
1040          */
1041         rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
1042                         be32_to_cpu(rpl.u.manual.mode_pkd));
1043         switch (rss->mode) {
1044         case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1045                 u32 word = be32_to_cpu(
1046                                 rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
1047 
1048                 rss->u.basicvirtual.synmapen =
1049                         ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
1050                 rss->u.basicvirtual.syn4tupenipv6 =
1051                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
1052                 rss->u.basicvirtual.syn2tupenipv6 =
1053                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
1054                 rss->u.basicvirtual.syn4tupenipv4 =
1055                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
1056                 rss->u.basicvirtual.syn2tupenipv4 =
1057                         ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
1058 
1059                 rss->u.basicvirtual.ofdmapen =
1060                         ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
1061 
1062                 rss->u.basicvirtual.tnlmapen =
1063                         ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
1064                 rss->u.basicvirtual.tnlalllookup =
1065                         ((word  & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
1066 
1067                 rss->u.basicvirtual.hashtoeplitz =
1068                         ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
1069 
1070                 /* we need at least Tunnel Map Enable to be set */
1071                 if (!rss->u.basicvirtual.tnlmapen)
1072                         return -EINVAL;
1073                 break;
1074         }
1075 
1076         default:
1077                 /* all unknown/unsupported RSS modes result in an error */
1078                 return -EINVAL;
1079         }
1080 
1081         return 0;
1082 }
1083 
1084 /**
1085  *      t4vf_get_vfres - retrieve VF resource limits
1086  *      @adapter: the adapter
1087  *
1088  *      Retrieves configured resource limits and capabilities for a virtual
1089  *      function.  The results are stored in @adapter->vfres.
1090  */
1091 int t4vf_get_vfres(struct adapter *adapter)
1092 {
1093         struct vf_resources *vfres = &adapter->params.vfres;
1094         struct fw_pfvf_cmd cmd, rpl;
1095         int v;
1096         u32 word;
1097 
1098         /*
1099          * Execute PFVF Read command to get VF resource limits; bail out early
1100          * with error on command failure.
1101          */
1102         memset(&cmd, 0, sizeof(cmd));
1103         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
1104                                     FW_CMD_REQUEST_F |
1105                                     FW_CMD_READ_F);
1106         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1107         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1108         if (v)
1109                 return v;
1110 
1111         /*
1112          * Extract VF resource limits and return success.
1113          */
1114         word = be32_to_cpu(rpl.niqflint_niq);
1115         vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
1116         vfres->niq = FW_PFVF_CMD_NIQ_G(word);
1117 
1118         word = be32_to_cpu(rpl.type_to_neq);
1119         vfres->neq = FW_PFVF_CMD_NEQ_G(word);
1120         vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
1121 
1122         word = be32_to_cpu(rpl.tc_to_nexactf);
1123         vfres->tc = FW_PFVF_CMD_TC_G(word);
1124         vfres->nvi = FW_PFVF_CMD_NVI_G(word);
1125         vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
1126 
1127         word = be32_to_cpu(rpl.r_caps_to_nethctrl);
1128         vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
1129         vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
1130         vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
1131 
1132         return 0;
1133 }
1134 
1135 /**
1136  *      t4vf_read_rss_vi_config - read a VI's RSS configuration
1137  *      @adapter: the adapter
1138  *      @viid: Virtual Interface ID
1139  *      @config: pointer to host-native VI RSS Configuration buffer
1140  *
1141  *      Reads the Virtual Interface's RSS configuration information and
1142  *      translates it into CPU-native format.
1143  */
1144 int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
1145                             union rss_vi_config *config)
1146 {
1147         struct fw_rss_vi_config_cmd cmd, rpl;
1148         int v;
1149 
1150         memset(&cmd, 0, sizeof(cmd));
1151         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1152                                      FW_CMD_REQUEST_F |
1153                                      FW_CMD_READ_F |
1154                                      FW_RSS_VI_CONFIG_CMD_VIID(viid));
1155         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1156         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1157         if (v)
1158                 return v;
1159 
1160         switch (adapter->params.rss.mode) {
1161         case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1162                 u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
1163 
1164                 config->basicvirtual.ip6fourtupen =
1165                         ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
1166                 config->basicvirtual.ip6twotupen =
1167                         ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
1168                 config->basicvirtual.ip4fourtupen =
1169                         ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
1170                 config->basicvirtual.ip4twotupen =
1171                         ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
1172                 config->basicvirtual.udpen =
1173                         ((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
1174                 config->basicvirtual.defaultq =
1175                         FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
1176                 break;
1177         }
1178 
1179         default:
1180                 return -EINVAL;
1181         }
1182 
1183         return 0;
1184 }
1185 
1186 /**
1187  *      t4vf_write_rss_vi_config - write a VI's RSS configuration
1188  *      @adapter: the adapter
1189  *      @viid: Virtual Interface ID
1190  *      @config: pointer to host-native VI RSS Configuration buffer
1191  *
1192  *      Write the Virtual Interface's RSS configuration information
1193  *      (translating it into firmware-native format before writing).
1194  */
1195 int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
1196                              union rss_vi_config *config)
1197 {
1198         struct fw_rss_vi_config_cmd cmd, rpl;
1199 
1200         memset(&cmd, 0, sizeof(cmd));
1201         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1202                                      FW_CMD_REQUEST_F |
1203                                      FW_CMD_WRITE_F |
1204                                      FW_RSS_VI_CONFIG_CMD_VIID(viid));
1205         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1206         switch (adapter->params.rss.mode) {
1207         case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1208                 u32 word = 0;
1209 
1210                 if (config->basicvirtual.ip6fourtupen)
1211                         word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
1212                 if (config->basicvirtual.ip6twotupen)
1213                         word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
1214                 if (config->basicvirtual.ip4fourtupen)
1215                         word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
1216                 if (config->basicvirtual.ip4twotupen)
1217                         word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
1218                 if (config->basicvirtual.udpen)
1219                         word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
1220                 word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
1221                                 config->basicvirtual.defaultq);
1222                 cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
1223                 break;
1224         }
1225 
1226         default:
1227                 return -EINVAL;
1228         }
1229 
1230         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1231 }
1232 
1233 /**
1234  *      t4vf_config_rss_range - configure a portion of the RSS mapping table
1235  *      @adapter: the adapter
1236  *      @viid: Virtual Interface of RSS Table Slice
1237  *      @start: starting entry in the table to write
1238  *      @n: how many table entries to write
1239  *      @rspq: values for the "Response Queue" (Ingress Queue) lookup table
1240  *      @nrspq: number of values in @rspq
1241  *
1242  *      Programs the selected part of the VI's RSS mapping table with the
1243  *      provided values.  If @nrspq < @n the supplied values are used repeatedly
1244  *      until the full table range is populated.
1245  *
1246  *      The caller must ensure the values in @rspq are in the range 0..1023.
1247  */
1248 int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
1249                           int start, int n, const u16 *rspq, int nrspq)
1250 {
1251         const u16 *rsp = rspq;
1252         const u16 *rsp_end = rspq+nrspq;
1253         struct fw_rss_ind_tbl_cmd cmd;
1254 
1255         /*
1256          * Initialize firmware command template to write the RSS table.
1257          */
1258         memset(&cmd, 0, sizeof(cmd));
1259         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
1260                                      FW_CMD_REQUEST_F |
1261                                      FW_CMD_WRITE_F |
1262                                      FW_RSS_IND_TBL_CMD_VIID_V(viid));
1263         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1264 
1265         /*
1266          * Each firmware RSS command can accommodate up to 32 RSS Ingress
1267          * Queue Identifiers.  These Ingress Queue IDs are packed three to
1268          * a 32-bit word as 10-bit values with the upper remaining 2 bits
1269          * reserved.
1270          */
1271         while (n > 0) {
1272                 __be32 *qp = &cmd.iq0_to_iq2;
1273                 int nq = min(n, 32);
1274                 int ret;
1275 
1276                 /*
1277                  * Set up the firmware RSS command header to send the next
1278                  * "nq" Ingress Queue IDs to the firmware.
1279                  */
1280                 cmd.niqid = cpu_to_be16(nq);
1281                 cmd.startidx = cpu_to_be16(start);
1282 
1283                 /*
1284                  * "nq" more done for the start of the next loop.
1285                  */
1286                 start += nq;
1287                 n -= nq;
1288 
1289                 /*
1290                  * While there are still Ingress Queue IDs to stuff into the
1291                  * current firmware RSS command, retrieve them from the
1292                  * Ingress Queue ID array and insert them into the command.
1293                  */
1294                 while (nq > 0) {
1295                         /*
1296                          * Grab up to the next 3 Ingress Queue IDs (wrapping
1297                          * around the Ingress Queue ID array if necessary) and
1298                          * insert them into the firmware RSS command at the
1299                          * current 3-tuple position within the commad.
1300                          */
1301                         u16 qbuf[3];
1302                         u16 *qbp = qbuf;
1303                         int nqbuf = min(3, nq);
1304 
1305                         nq -= nqbuf;
1306                         qbuf[0] = qbuf[1] = qbuf[2] = 0;
1307                         while (nqbuf) {
1308                                 nqbuf--;
1309                                 *qbp++ = *rsp++;
1310                                 if (rsp >= rsp_end)
1311                                         rsp = rspq;
1312                         }
1313                         *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
1314                                             FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
1315                                             FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
1316                 }
1317 
1318                 /*
1319                  * Send this portion of the RRS table update to the firmware;
1320                  * bail out on any errors.
1321                  */
1322                 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1323                 if (ret)
1324                         return ret;
1325         }
1326         return 0;
1327 }
1328 
1329 /**
1330  *      t4vf_alloc_vi - allocate a virtual interface on a port
1331  *      @adapter: the adapter
1332  *      @port_id: physical port associated with the VI
1333  *
1334  *      Allocate a new Virtual Interface and bind it to the indicated
1335  *      physical port.  Return the new Virtual Interface Identifier on
1336  *      success, or a [negative] error number on failure.
1337  */
1338 int t4vf_alloc_vi(struct adapter *adapter, int port_id)
1339 {
1340         struct fw_vi_cmd cmd, rpl;
1341         int v;
1342 
1343         /*
1344          * Execute a VI command to allocate Virtual Interface and return its
1345          * VIID.
1346          */
1347         memset(&cmd, 0, sizeof(cmd));
1348         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1349                                     FW_CMD_REQUEST_F |
1350                                     FW_CMD_WRITE_F |
1351                                     FW_CMD_EXEC_F);
1352         cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1353                                          FW_VI_CMD_ALLOC_F);
1354         cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
1355         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1356         if (v)
1357                 return v;
1358 
1359         return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
1360 }
1361 
1362 /**
1363  *      t4vf_free_vi -- free a virtual interface
1364  *      @adapter: the adapter
1365  *      @viid: the virtual interface identifier
1366  *
1367  *      Free a previously allocated Virtual Interface.  Return an error on
1368  *      failure.
1369  */
1370 int t4vf_free_vi(struct adapter *adapter, int viid)
1371 {
1372         struct fw_vi_cmd cmd;
1373 
1374         /*
1375          * Execute a VI command to free the Virtual Interface.
1376          */
1377         memset(&cmd, 0, sizeof(cmd));
1378         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1379                                     FW_CMD_REQUEST_F |
1380                                     FW_CMD_EXEC_F);
1381         cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1382                                          FW_VI_CMD_FREE_F);
1383         cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
1384         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1385 }
1386 
1387 /**
1388  *      t4vf_enable_vi - enable/disable a virtual interface
1389  *      @adapter: the adapter
1390  *      @viid: the Virtual Interface ID
1391  *      @rx_en: 1=enable Rx, 0=disable Rx
1392  *      @tx_en: 1=enable Tx, 0=disable Tx
1393  *
1394  *      Enables/disables a virtual interface.
1395  */
1396 int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
1397                    bool rx_en, bool tx_en)
1398 {
1399         struct fw_vi_enable_cmd cmd;
1400 
1401         memset(&cmd, 0, sizeof(cmd));
1402         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1403                                      FW_CMD_REQUEST_F |
1404                                      FW_CMD_EXEC_F |
1405                                      FW_VI_ENABLE_CMD_VIID_V(viid));
1406         cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
1407                                        FW_VI_ENABLE_CMD_EEN_V(tx_en) |
1408                                        FW_LEN16(cmd));
1409         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1410 }
1411 
1412 /**
1413  *      t4vf_enable_pi - enable/disable a Port's virtual interface
1414  *      @adapter: the adapter
1415  *      @pi: the Port Information structure
1416  *      @rx_en: 1=enable Rx, 0=disable Rx
1417  *      @tx_en: 1=enable Tx, 0=disable Tx
1418  *
1419  *      Enables/disables a Port's virtual interface.  If the Virtual
1420  *      Interface enable/disable operation is successful, we notify the
1421  *      OS-specific code of a potential Link Status change via the OS Contract
1422  *      API t4vf_os_link_changed().
1423  */
1424 int t4vf_enable_pi(struct adapter *adapter, struct port_info *pi,
1425                    bool rx_en, bool tx_en)
1426 {
1427         int ret = t4vf_enable_vi(adapter, pi->viid, rx_en, tx_en);
1428 
1429         if (ret)
1430                 return ret;
1431         t4vf_os_link_changed(adapter, pi->pidx,
1432                              rx_en && tx_en && pi->link_cfg.link_ok);
1433         return 0;
1434 }
1435 
1436 /**
1437  *      t4vf_identify_port - identify a VI's port by blinking its LED
1438  *      @adapter: the adapter
1439  *      @viid: the Virtual Interface ID
1440  *      @nblinks: how many times to blink LED at 2.5 Hz
1441  *
1442  *      Identifies a VI's port by blinking its LED.
1443  */
1444 int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
1445                        unsigned int nblinks)
1446 {
1447         struct fw_vi_enable_cmd cmd;
1448 
1449         memset(&cmd, 0, sizeof(cmd));
1450         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1451                                      FW_CMD_REQUEST_F |
1452                                      FW_CMD_EXEC_F |
1453                                      FW_VI_ENABLE_CMD_VIID_V(viid));
1454         cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
1455                                        FW_LEN16(cmd));
1456         cmd.blinkdur = cpu_to_be16(nblinks);
1457         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1458 }
1459 
1460 /**
1461  *      t4vf_set_rxmode - set Rx properties of a virtual interface
1462  *      @adapter: the adapter
1463  *      @viid: the VI id
1464  *      @mtu: the new MTU or -1 for no change
1465  *      @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
1466  *      @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
1467  *      @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
1468  *      @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
1469  *              -1 no change
1470  *
1471  *      Sets Rx properties of a virtual interface.
1472  */
1473 int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
1474                     int mtu, int promisc, int all_multi, int bcast, int vlanex,
1475                     bool sleep_ok)
1476 {
1477         struct fw_vi_rxmode_cmd cmd;
1478 
1479         /* convert to FW values */
1480         if (mtu < 0)
1481                 mtu = FW_VI_RXMODE_CMD_MTU_M;
1482         if (promisc < 0)
1483                 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
1484         if (all_multi < 0)
1485                 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
1486         if (bcast < 0)
1487                 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
1488         if (vlanex < 0)
1489                 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
1490 
1491         memset(&cmd, 0, sizeof(cmd));
1492         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
1493                                      FW_CMD_REQUEST_F |
1494                                      FW_CMD_WRITE_F |
1495                                      FW_VI_RXMODE_CMD_VIID_V(viid));
1496         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1497         cmd.mtu_to_vlanexen =
1498                 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
1499                             FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
1500                             FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
1501                             FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
1502                             FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
1503         return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1504 }
1505 
1506 /**
1507  *      t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1508  *      @adapter: the adapter
1509  *      @viid: the Virtual Interface Identifier
1510  *      @free: if true any existing filters for this VI id are first removed
1511  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
1512  *      @addr: the MAC address(es)
1513  *      @idx: where to store the index of each allocated filter
1514  *      @hash: pointer to hash address filter bitmap
1515  *      @sleep_ok: call is allowed to sleep
1516  *
1517  *      Allocates an exact-match filter for each of the supplied addresses and
1518  *      sets it to the corresponding address.  If @idx is not %NULL it should
1519  *      have at least @naddr entries, each of which will be set to the index of
1520  *      the filter allocated for the corresponding MAC address.  If a filter
1521  *      could not be allocated for an address its index is set to 0xffff.
1522  *      If @hash is not %NULL addresses that fail to allocate an exact filter
1523  *      are hashed and update the hash filter bitmap pointed at by @hash.
1524  *
1525  *      Returns a negative error number or the number of filters allocated.
1526  */
1527 int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1528                         unsigned int naddr, const u8 **addr, u16 *idx,
1529                         u64 *hash, bool sleep_ok)
1530 {
1531         int offset, ret = 0;
1532         unsigned nfilters = 0;
1533         unsigned int rem = naddr;
1534         struct fw_vi_mac_cmd cmd, rpl;
1535         unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1536 
1537         if (naddr > max_naddr)
1538                 return -EINVAL;
1539 
1540         for (offset = 0; offset < naddr; /**/) {
1541                 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1542                                          ? rem
1543                                          : ARRAY_SIZE(cmd.u.exact));
1544                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1545                                                      u.exact[fw_naddr]), 16);
1546                 struct fw_vi_mac_exact *p;
1547                 int i;
1548 
1549                 memset(&cmd, 0, sizeof(cmd));
1550                 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1551                                              FW_CMD_REQUEST_F |
1552                                              FW_CMD_WRITE_F |
1553                                              (free ? FW_CMD_EXEC_F : 0) |
1554                                              FW_VI_MAC_CMD_VIID_V(viid));
1555                 cmd.freemacs_to_len16 =
1556                         cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
1557                                     FW_CMD_LEN16_V(len16));
1558 
1559                 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1560                         p->valid_to_idx = cpu_to_be16(
1561                                 FW_VI_MAC_CMD_VALID_F |
1562                                 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
1563                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1564                 }
1565 
1566 
1567                 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1568                                         sleep_ok);
1569                 if (ret && ret != -ENOMEM)
1570                         break;
1571 
1572                 for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1573                         u16 index = FW_VI_MAC_CMD_IDX_G(
1574                                 be16_to_cpu(p->valid_to_idx));
1575 
1576                         if (idx)
1577                                 idx[offset+i] =
1578                                         (index >= max_naddr
1579                                          ? 0xffff
1580                                          : index);
1581                         if (index < max_naddr)
1582                                 nfilters++;
1583                         else if (hash)
1584                                 *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1585                 }
1586 
1587                 free = false;
1588                 offset += fw_naddr;
1589                 rem -= fw_naddr;
1590         }
1591 
1592         /*
1593          * If there were no errors or we merely ran out of room in our MAC
1594          * address arena, return the number of filters actually written.
1595          */
1596         if (ret == 0 || ret == -ENOMEM)
1597                 ret = nfilters;
1598         return ret;
1599 }
1600 
1601 /**
1602  *      t4vf_free_mac_filt - frees exact-match filters of given MAC addresses
1603  *      @adapter: the adapter
1604  *      @viid: the VI id
1605  *      @naddr: the number of MAC addresses to allocate filters for (up to 7)
1606  *      @addr: the MAC address(es)
1607  *      @sleep_ok: call is allowed to sleep
1608  *
1609  *      Frees the exact-match filter for each of the supplied addresses
1610  *
1611  *      Returns a negative error number or the number of filters freed.
1612  */
1613 int t4vf_free_mac_filt(struct adapter *adapter, unsigned int viid,
1614                        unsigned int naddr, const u8 **addr, bool sleep_ok)
1615 {
1616         int offset, ret = 0;
1617         struct fw_vi_mac_cmd cmd;
1618         unsigned int nfilters = 0;
1619         unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1620         unsigned int rem = naddr;
1621 
1622         if (naddr > max_naddr)
1623                 return -EINVAL;
1624 
1625         for (offset = 0; offset < (int)naddr ; /**/) {
1626                 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) ?
1627                                          rem : ARRAY_SIZE(cmd.u.exact));
1628                 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1629                                                      u.exact[fw_naddr]), 16);
1630                 struct fw_vi_mac_exact *p;
1631                 int i;
1632 
1633                 memset(&cmd, 0, sizeof(cmd));
1634                 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1635                                      FW_CMD_REQUEST_F |
1636                                      FW_CMD_WRITE_F |
1637                                      FW_CMD_EXEC_V(0) |
1638                                      FW_VI_MAC_CMD_VIID_V(viid));
1639                 cmd.freemacs_to_len16 =
1640                                 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
1641                                             FW_CMD_LEN16_V(len16));
1642 
1643                 for (i = 0, p = cmd.u.exact; i < (int)fw_naddr; i++, p++) {
1644                         p->valid_to_idx = cpu_to_be16(
1645                                 FW_VI_MAC_CMD_VALID_F |
1646                                 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
1647                         memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1648                 }
1649 
1650                 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &cmd,
1651                                         sleep_ok);
1652                 if (ret)
1653                         break;
1654 
1655                 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1656                         u16 index = FW_VI_MAC_CMD_IDX_G(
1657                                                 be16_to_cpu(p->valid_to_idx));
1658 
1659                         if (index < max_naddr)
1660                                 nfilters++;
1661                 }
1662 
1663                 offset += fw_naddr;
1664                 rem -= fw_naddr;
1665         }
1666 
1667         if (ret == 0)
1668                 ret = nfilters;
1669         return ret;
1670 }
1671 
1672 /**
1673  *      t4vf_change_mac - modifies the exact-match filter for a MAC address
1674  *      @adapter: the adapter
1675  *      @viid: the Virtual Interface ID
1676  *      @idx: index of existing filter for old value of MAC address, or -1
1677  *      @addr: the new MAC address value
1678  *      @persist: if idx < 0, the new MAC allocation should be persistent
1679  *
1680  *      Modifies an exact-match filter and sets it to the new MAC address.
1681  *      Note that in general it is not possible to modify the value of a given
1682  *      filter so the generic way to modify an address filter is to free the
1683  *      one being used by the old address value and allocate a new filter for
1684  *      the new address value.  @idx can be -1 if the address is a new
1685  *      addition.
1686  *
1687  *      Returns a negative error number or the index of the filter with the new
1688  *      MAC value.
1689  */
1690 int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1691                     int idx, const u8 *addr, bool persist)
1692 {
1693         int ret;
1694         struct fw_vi_mac_cmd cmd, rpl;
1695         struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1696         size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1697                                              u.exact[1]), 16);
1698         unsigned int max_mac_addr = adapter->params.arch.mps_tcam_size;
1699 
1700         /*
1701          * If this is a new allocation, determine whether it should be
1702          * persistent (across a "freemacs" operation) or not.
1703          */
1704         if (idx < 0)
1705                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1706 
1707         memset(&cmd, 0, sizeof(cmd));
1708         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1709                                      FW_CMD_REQUEST_F |
1710                                      FW_CMD_WRITE_F |
1711                                      FW_VI_MAC_CMD_VIID_V(viid));
1712         cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1713         p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
1714                                       FW_VI_MAC_CMD_IDX_V(idx));
1715         memcpy(p->macaddr, addr, sizeof(p->macaddr));
1716 
1717         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1718         if (ret == 0) {
1719                 p = &rpl.u.exact[0];
1720                 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
1721                 if (ret >= max_mac_addr)
1722                         ret = -ENOMEM;
1723         }
1724         return ret;
1725 }
1726 
1727 /**
1728  *      t4vf_set_addr_hash - program the MAC inexact-match hash filter
1729  *      @adapter: the adapter
1730  *      @viid: the Virtual Interface Identifier
1731  *      @ucast: whether the hash filter should also match unicast addresses
1732  *      @vec: the value to be written to the hash filter
1733  *      @sleep_ok: call is allowed to sleep
1734  *
1735  *      Sets the 64-bit inexact-match hash filter for a virtual interface.
1736  */
1737 int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1738                        bool ucast, u64 vec, bool sleep_ok)
1739 {
1740         struct fw_vi_mac_cmd cmd;
1741         size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1742                                              u.exact[0]), 16);
1743 
1744         memset(&cmd, 0, sizeof(cmd));
1745         cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1746                                      FW_CMD_REQUEST_F |
1747                                      FW_CMD_WRITE_F |
1748                                      FW_VI_ENABLE_CMD_VIID_V(viid));
1749         cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
1750                                             FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
1751                                             FW_CMD_LEN16_V(len16));
1752         cmd.u.hash.hashvec = cpu_to_be64(vec);
1753         return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1754 }
1755 
1756 /**
1757  *      t4vf_get_port_stats - collect "port" statistics
1758  *      @adapter: the adapter
1759  *      @pidx: the port index
1760  *      @s: the stats structure to fill
1761  *
1762  *      Collect statistics for the "port"'s Virtual Interface.
1763  */
1764 int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1765                         struct t4vf_port_stats *s)
1766 {
1767         struct port_info *pi = adap2pinfo(adapter, pidx);
1768         struct fw_vi_stats_vf fwstats;
1769         unsigned int rem = VI_VF_NUM_STATS;
1770         __be64 *fwsp = (__be64 *)&fwstats;
1771 
1772         /*
1773          * Grab the Virtual Interface statistics a chunk at a time via mailbox
1774          * commands.  We could use a Work Request and get all of them at once
1775          * but that's an asynchronous interface which is awkward to use.
1776          */
1777         while (rem) {
1778                 unsigned int ix = VI_VF_NUM_STATS - rem;
1779                 unsigned int nstats = min(6U, rem);
1780                 struct fw_vi_stats_cmd cmd, rpl;
1781                 size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1782                               sizeof(struct fw_vi_stats_ctl));
1783                 size_t len16 = DIV_ROUND_UP(len, 16);
1784                 int ret;
1785 
1786                 memset(&cmd, 0, sizeof(cmd));
1787                 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
1788                                              FW_VI_STATS_CMD_VIID_V(pi->viid) |
1789                                              FW_CMD_REQUEST_F |
1790                                              FW_CMD_READ_F);
1791                 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1792                 cmd.u.ctl.nstats_ix =
1793                         cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
1794                                     FW_VI_STATS_CMD_NSTATS_V(nstats));
1795                 ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1796                 if (ret)
1797                         return ret;
1798 
1799                 memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1800 
1801                 rem -= nstats;
1802                 fwsp += nstats;
1803         }
1804 
1805         /*
1806          * Translate firmware statistics into host native statistics.
1807          */
1808         s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1809         s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1810         s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1811         s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1812         s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1813         s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1814         s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1815         s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1816         s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1817 
1818         s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1819         s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1820         s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1821         s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1822         s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1823         s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1824 
1825         s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1826 
1827         return 0;
1828 }
1829 
1830 /**
1831  *      t4vf_iq_free - free an ingress queue and its free lists
1832  *      @adapter: the adapter
1833  *      @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1834  *      @iqid: ingress queue ID
1835  *      @fl0id: FL0 queue ID or 0xffff if no attached FL0
1836  *      @fl1id: FL1 queue ID or 0xffff if no attached FL1
1837  *
1838  *      Frees an ingress queue and its associated free lists, if any.
1839  */
1840 int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1841                  unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1842 {
1843         struct fw_iq_cmd cmd;
1844 
1845         memset(&cmd, 0, sizeof(cmd));
1846         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
1847                                     FW_CMD_REQUEST_F |
1848                                     FW_CMD_EXEC_F);
1849         cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
1850                                          FW_LEN16(cmd));
1851         cmd.type_to_iqandstindex =
1852                 cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
1853 
1854         cmd.iqid = cpu_to_be16(iqid);
1855         cmd.fl0id = cpu_to_be16(fl0id);
1856         cmd.fl1id = cpu_to_be16(fl1id);
1857         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1858 }
1859 
1860 /**
1861  *      t4vf_eth_eq_free - free an Ethernet egress queue
1862  *      @adapter: the adapter
1863  *      @eqid: egress queue ID
1864  *
1865  *      Frees an Ethernet egress queue.
1866  */
1867 int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1868 {
1869         struct fw_eq_eth_cmd cmd;
1870 
1871         memset(&cmd, 0, sizeof(cmd));
1872         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
1873                                     FW_CMD_REQUEST_F |
1874                                     FW_CMD_EXEC_F);
1875         cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
1876                                          FW_LEN16(cmd));
1877         cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
1878         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1879 }
1880 
1881 /**
1882  *      t4vf_link_down_rc_str - return a string for a Link Down Reason Code
1883  *      @link_down_rc: Link Down Reason Code
1884  *
1885  *      Returns a string representation of the Link Down Reason Code.
1886  */
1887 static const char *t4vf_link_down_rc_str(unsigned char link_down_rc)
1888 {
1889         static const char * const reason[] = {
1890                 "Link Down",
1891                 "Remote Fault",
1892                 "Auto-negotiation Failure",
1893                 "Reserved",
1894                 "Insufficient Airflow",
1895                 "Unable To Determine Reason",
1896                 "No RX Signal Detected",
1897                 "Reserved",
1898         };
1899 
1900         if (link_down_rc >= ARRAY_SIZE(reason))
1901                 return "Bad Reason Code";
1902 
1903         return reason[link_down_rc];
1904 }
1905 
1906 /**
1907  *      t4vf_handle_get_port_info - process a FW reply message
1908  *      @pi: the port info
1909  *      @rpl: start of the FW message
1910  *
1911  *      Processes a GET_PORT_INFO FW reply message.
1912  */
1913 static void t4vf_handle_get_port_info(struct port_info *pi,
1914                                       const struct fw_port_cmd *cmd)
1915 {
1916         fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
1917         struct link_config *lc = &pi->link_cfg;
1918         struct adapter *adapter = pi->adapter;
1919         unsigned int speed, fc, fec, adv_fc;
1920         enum fw_port_module_type mod_type;
1921         int action, link_ok, linkdnrc;
1922         enum fw_port_type port_type;
1923 
1924         /* Extract the various fields from the Port Information message. */
1925         action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
1926         switch (action) {
1927         case FW_PORT_ACTION_GET_PORT_INFO: {
1928                 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
1929 
1930                 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
1931                 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
1932                 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
1933                 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
1934                 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
1935                 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
1936                 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
1937 
1938                 /* Unfortunately the format of the Link Status in the old
1939                  * 16-bit Port Information message isn't the same as the
1940                  * 16-bit Port Capabilities bitfield used everywhere else ...
1941                  */
1942                 linkattr = 0;
1943                 if (lstatus & FW_PORT_CMD_RXPAUSE_F)
1944                         linkattr |= FW_PORT_CAP32_FC_RX;
1945                 if (lstatus & FW_PORT_CMD_TXPAUSE_F)
1946                         linkattr |= FW_PORT_CAP32_FC_TX;
1947                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1948                         linkattr |= FW_PORT_CAP32_SPEED_100M;
1949                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1950                         linkattr |= FW_PORT_CAP32_SPEED_1G;
1951                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1952                         linkattr |= FW_PORT_CAP32_SPEED_10G;
1953                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
1954                         linkattr |= FW_PORT_CAP32_SPEED_25G;
1955                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1956                         linkattr |= FW_PORT_CAP32_SPEED_40G;
1957                 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
1958                         linkattr |= FW_PORT_CAP32_SPEED_100G;
1959 
1960                 break;
1961         }
1962 
1963         case FW_PORT_ACTION_GET_PORT_INFO32: {
1964                 u32 lstatus32;
1965 
1966                 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
1967                 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
1968                 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
1969                 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
1970                 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
1971                 pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
1972                 acaps = be32_to_cpu(cmd->u.info32.acaps32);
1973                 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
1974                 linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
1975                 break;
1976         }
1977 
1978         default:
1979                 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
1980                         be32_to_cpu(cmd->action_to_len16));
1981                 return;
1982         }
1983 
1984         fec = fwcap_to_cc_fec(acaps);
1985         adv_fc = fwcap_to_cc_pause(acaps);
1986         fc = fwcap_to_cc_pause(linkattr);
1987         speed = fwcap_to_speed(linkattr);
1988 
1989         if (mod_type != pi->mod_type) {
1990                 /* When a new Transceiver Module is inserted, the Firmware
1991                  * will examine any Forward Error Correction parameters
1992                  * present in the Transceiver Module i2c EPROM and determine
1993                  * the supported and recommended FEC settings from those
1994                  * based on IEEE 802.3 standards.  We always record the
1995                  * IEEE 802.3 recommended "automatic" settings.
1996                  */
1997                 lc->auto_fec = fec;
1998 
1999                 /* Some versions of the early T6 Firmware "cheated" when
2000                  * handling different Transceiver Modules by changing the
2001                  * underlaying Port Type reported to the Host Drivers.  As
2002                  * such we need to capture whatever Port Type the Firmware
2003                  * sends us and record it in case it's different from what we
2004                  * were told earlier.  Unfortunately, since Firmware is
2005                  * forever, we'll need to keep this code here forever, but in
2006                  * later T6 Firmware it should just be an assignment of the
2007                  * same value already recorded.
2008                  */
2009                 pi->port_type = port_type;
2010 
2011                 pi->mod_type = mod_type;
2012                 t4vf_os_portmod_changed(adapter, pi->pidx);
2013         }
2014 
2015         if (link_ok != lc->link_ok || speed != lc->speed ||
2016             fc != lc->fc || adv_fc != lc->advertised_fc ||
2017             fec != lc->fec) {
2018                 /* something changed */
2019                 if (!link_ok && lc->link_ok) {
2020                         lc->link_down_rc = linkdnrc;
2021                         dev_warn_ratelimited(adapter->pdev_dev,
2022                                              "Port %d link down, reason: %s\n",
2023                                              pi->port_id,
2024                                              t4vf_link_down_rc_str(linkdnrc));
2025                 }
2026                 lc->link_ok = link_ok;
2027                 lc->speed = speed;
2028                 lc->advertised_fc = adv_fc;
2029                 lc->fc = fc;
2030                 lc->fec = fec;
2031 
2032                 lc->pcaps = pcaps;
2033                 lc->lpacaps = lpacaps;
2034                 lc->acaps = acaps & ADVERT_MASK;
2035 
2036                 /* If we're not physically capable of Auto-Negotiation, note
2037                  * this as Auto-Negotiation disabled.  Otherwise, we track
2038                  * what Auto-Negotiation settings we have.  Note parallel
2039                  * structure in init_link_config().
2040                  */
2041                 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
2042                         lc->autoneg = AUTONEG_DISABLE;
2043                 } else if (lc->acaps & FW_PORT_CAP32_ANEG) {
2044                         lc->autoneg = AUTONEG_ENABLE;
2045                 } else {
2046                         /* When Autoneg is disabled, user needs to set
2047                          * single speed.
2048                          * Similar to cxgb4_ethtool.c: set_link_ksettings
2049                          */
2050                         lc->acaps = 0;
2051                         lc->speed_caps = fwcap_to_speed(acaps);
2052                         lc->autoneg = AUTONEG_DISABLE;
2053                 }
2054 
2055                 t4vf_os_link_changed(adapter, pi->pidx, link_ok);
2056         }
2057 }
2058 
2059 /**
2060  *      t4vf_update_port_info - retrieve and update port information if changed
2061  *      @pi: the port_info
2062  *
2063  *      We issue a Get Port Information Command to the Firmware and, if
2064  *      successful, we check to see if anything is different from what we
2065  *      last recorded and update things accordingly.
2066  */
2067 int t4vf_update_port_info(struct port_info *pi)
2068 {
2069         unsigned int fw_caps = pi->adapter->params.fw_caps_support;
2070         struct fw_port_cmd port_cmd;
2071         int ret;
2072 
2073         memset(&port_cmd, 0, sizeof(port_cmd));
2074         port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
2075                                             FW_CMD_REQUEST_F | FW_CMD_READ_F |
2076                                             FW_PORT_CMD_PORTID_V(pi->port_id));
2077         port_cmd.action_to_len16 = cpu_to_be32(
2078                 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
2079                                      ? FW_PORT_ACTION_GET_PORT_INFO
2080                                      : FW_PORT_ACTION_GET_PORT_INFO32) |
2081                 FW_LEN16(port_cmd));
2082         ret = t4vf_wr_mbox(pi->adapter, &port_cmd, sizeof(port_cmd),
2083                            &port_cmd);
2084         if (ret)
2085                 return ret;
2086         t4vf_handle_get_port_info(pi, &port_cmd);
2087         return 0;
2088 }
2089 
2090 /**
2091  *      t4vf_handle_fw_rpl - process a firmware reply message
2092  *      @adapter: the adapter
2093  *      @rpl: start of the firmware message
2094  *
2095  *      Processes a firmware message, such as link state change messages.
2096  */
2097 int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
2098 {
2099         const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
2100         u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
2101 
2102         switch (opcode) {
2103         case FW_PORT_CMD: {
2104                 /*
2105                  * Link/module state change message.
2106                  */
2107                 const struct fw_port_cmd *port_cmd =
2108                         (const struct fw_port_cmd *)rpl;
2109                 int action = FW_PORT_CMD_ACTION_G(
2110                         be32_to_cpu(port_cmd->action_to_len16));
2111                 int port_id, pidx;
2112 
2113                 if (action != FW_PORT_ACTION_GET_PORT_INFO &&
2114                     action != FW_PORT_ACTION_GET_PORT_INFO32) {
2115                         dev_err(adapter->pdev_dev,
2116                                 "Unknown firmware PORT reply action %x\n",
2117                                 action);
2118                         break;
2119                 }
2120 
2121                 port_id = FW_PORT_CMD_PORTID_G(
2122                         be32_to_cpu(port_cmd->op_to_portid));
2123                 for_each_port(adapter, pidx) {
2124                         struct port_info *pi = adap2pinfo(adapter, pidx);
2125 
2126                         if (pi->port_id != port_id)
2127                                 continue;
2128                         t4vf_handle_get_port_info(pi, port_cmd);
2129                 }
2130                 break;
2131         }
2132 
2133         default:
2134                 dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
2135                         opcode);
2136         }
2137         return 0;
2138 }
2139 
2140 /**
2141  */
2142 int t4vf_prep_adapter(struct adapter *adapter)
2143 {
2144         int err;
2145         unsigned int chipid;
2146 
2147         /* Wait for the device to become ready before proceeding ...
2148          */
2149         err = t4vf_wait_dev_ready(adapter);
2150         if (err)
2151                 return err;
2152 
2153         /* Default port and clock for debugging in case we can't reach
2154          * firmware.
2155          */
2156         adapter->params.nports = 1;
2157         adapter->params.vfres.pmask = 1;
2158         adapter->params.vpd.cclk = 50000;
2159 
2160         adapter->params.chip = 0;
2161         switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
2162         case CHELSIO_T4:
2163                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
2164                 adapter->params.arch.sge_fl_db = DBPRIO_F;
2165                 adapter->params.arch.mps_tcam_size =
2166                                 NUM_MPS_CLS_SRAM_L_INSTANCES;
2167                 break;
2168 
2169         case CHELSIO_T5:
2170                 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
2171                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
2172                 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
2173                 adapter->params.arch.mps_tcam_size =
2174                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
2175                 break;
2176 
2177         case CHELSIO_T6:
2178                 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
2179                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, chipid);
2180                 adapter->params.arch.sge_fl_db = 0;
2181                 adapter->params.arch.mps_tcam_size =
2182                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
2183                 break;
2184         }
2185 
2186         return 0;
2187 }
2188 
2189 /**
2190  *      t4vf_get_vf_mac_acl - Get the MAC address to be set to
2191  *                            the VI of this VF.
2192  *      @adapter: The adapter
2193  *      @pf: The pf associated with vf
2194  *      @naddr: the number of ACL MAC addresses returned in addr
2195  *      @addr: Placeholder for MAC addresses
2196  *
2197  *      Find the MAC address to be set to the VF's VI. The requested MAC address
2198  *      is from the host OS via callback in the PF driver.
2199  */
2200 int t4vf_get_vf_mac_acl(struct adapter *adapter, unsigned int pf,
2201                         unsigned int *naddr, u8 *addr)
2202 {
2203         struct fw_acl_mac_cmd cmd;
2204         int ret;
2205 
2206         memset(&cmd, 0, sizeof(cmd));
2207         cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
2208                                     FW_CMD_REQUEST_F |
2209                                     FW_CMD_READ_F);
2210         cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
2211         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
2212         if (ret)
2213                 return ret;
2214 
2215         if (cmd.nmac < *naddr)
2216                 *naddr = cmd.nmac;
2217 
2218         switch (pf) {
2219         case 3:
2220                 memcpy(addr, cmd.macaddr3, sizeof(cmd.macaddr3));
2221                 break;
2222         case 2:
2223                 memcpy(addr, cmd.macaddr2, sizeof(cmd.macaddr2));
2224                 break;
2225         case 1:
2226                 memcpy(addr, cmd.macaddr1, sizeof(cmd.macaddr1));
2227                 break;
2228         case 0:
2229                 memcpy(addr, cmd.macaddr0, sizeof(cmd.macaddr0));
2230                 break;
2231         }
2232 
2233         return ret;
2234 }
2235 
2236 /**
2237  *      t4vf_get_vf_vlan_acl - Get the VLAN ID to be set to
2238  *                             the VI of this VF.
2239  *      @adapter: The adapter
2240  *
2241  *      Find the VLAN ID to be set to the VF's VI. The requested VLAN ID
2242  *      is from the host OS via callback in the PF driver.
2243  */
2244 int t4vf_get_vf_vlan_acl(struct adapter *adapter)
2245 {
2246         struct fw_acl_vlan_cmd cmd;
2247         int vlan = 0;
2248         int ret = 0;
2249 
2250         cmd.op_to_vfn = htonl(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
2251                               FW_CMD_REQUEST_F | FW_CMD_READ_F);
2252 
2253         /* Note: Do not enable the ACL */
2254         cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
2255 
2256         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
2257 
2258         if (!ret)
2259                 vlan = be16_to_cpu(cmd.vlanid[0]);
2260 
2261         return vlan;
2262 }

/* [<][>][^][v][top][bottom][index][help] */