root/drivers/net/ethernet/chelsio/cxgb/sge.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. tx_sched_stop
  2. t1_sched_update_parms
  3. t1_sched_set_max_avail_bytes
  4. t1_sched_set_drain_bits_per_us
  5. tx_sched_init
  6. sched_update_avail
  7. sched_skb
  8. doorbell_pio
  9. free_freelQ_buffers
  10. free_rx_resources
  11. alloc_rx_resources
  12. free_cmdQ_buffers
  13. free_tx_resources
  14. alloc_tx_resources
  15. setup_ring_params
  16. t1_vlan_mode
  17. configure_sge
  18. jumbo_payload_capacity
  19. t1_sge_destroy
  20. refill_free_list
  21. freelQs_empty
  22. t1_sge_intr_disable
  23. t1_sge_intr_enable
  24. t1_sge_intr_clear
  25. t1_sge_intr_error_handler
  26. t1_sge_get_intr_counts
  27. t1_sge_get_port_stats
  28. recycle_fl_buf
  29. get_packet
  30. unexpected_offload
  31. compute_large_page_tx_descs
  32. write_tx_desc
  33. write_large_page_tx_descs
  34. write_tx_descs
  35. reclaim_completed_tx
  36. restart_sched
  37. sge_rx
  38. enough_free_Tx_descs
  39. restart_tx_queues
  40. update_tx_info
  41. process_responses
  42. responses_pending
  43. process_pure_responses
  44. t1_poll
  45. t1_interrupt
  46. t1_sge_tx
  47. eth_hdr_len
  48. t1_start_xmit
  49. sge_tx_reclaim_cb
  50. t1_sge_set_coalesce_params
  51. t1_sge_configure
  52. t1_sge_stop
  53. t1_sge_start
  54. espibug_workaround_t204
  55. espibug_workaround
  56. t1_sge_create

   1 /*****************************************************************************
   2  *                                                                           *
   3  * File: sge.c                                                               *
   4  * $Revision: 1.26 $                                                         *
   5  * $Date: 2005/06/21 18:29:48 $                                              *
   6  * Description:                                                              *
   7  *  DMA engine.                                                              *
   8  *  part of the Chelsio 10Gb Ethernet Driver.                                *
   9  *                                                                           *
  10  * This program is free software; you can redistribute it and/or modify      *
  11  * it under the terms of the GNU General Public License, version 2, as       *
  12  * published by the Free Software Foundation.                                *
  13  *                                                                           *
  14  * You should have received a copy of the GNU General Public License along   *
  15  * with this program; if not, see <http://www.gnu.org/licenses/>.            *
  16  *                                                                           *
  17  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED    *
  18  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF      *
  19  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.                     *
  20  *                                                                           *
  21  * http://www.chelsio.com                                                    *
  22  *                                                                           *
  23  * Copyright (c) 2003 - 2005 Chelsio Communications, Inc.                    *
  24  * All rights reserved.                                                      *
  25  *                                                                           *
  26  * Maintainers: maintainers@chelsio.com                                      *
  27  *                                                                           *
  28  * Authors: Dimitrios Michailidis   <dm@chelsio.com>                         *
  29  *          Tina Yang               <tainay@chelsio.com>                     *
  30  *          Felix Marti             <felix@chelsio.com>                      *
  31  *          Scott Bardone           <sbardone@chelsio.com>                   *
  32  *          Kurt Ottaway            <kottaway@chelsio.com>                   *
  33  *          Frank DiMambro          <frank@chelsio.com>                      *
  34  *                                                                           *
  35  * History:                                                                  *
  36  *                                                                           *
  37  ****************************************************************************/
  38 
  39 #include "common.h"
  40 
  41 #include <linux/types.h>
  42 #include <linux/errno.h>
  43 #include <linux/pci.h>
  44 #include <linux/ktime.h>
  45 #include <linux/netdevice.h>
  46 #include <linux/etherdevice.h>
  47 #include <linux/if_vlan.h>
  48 #include <linux/skbuff.h>
  49 #include <linux/mm.h>
  50 #include <linux/tcp.h>
  51 #include <linux/ip.h>
  52 #include <linux/in.h>
  53 #include <linux/if_arp.h>
  54 #include <linux/slab.h>
  55 #include <linux/prefetch.h>
  56 
  57 #include "cpl5_cmd.h"
  58 #include "sge.h"
  59 #include "regs.h"
  60 #include "espi.h"
  61 
  62 /* This belongs in if_ether.h */
  63 #define ETH_P_CPL5 0xf
  64 
  65 #define SGE_CMDQ_N              2
  66 #define SGE_FREELQ_N            2
  67 #define SGE_CMDQ0_E_N           1024
  68 #define SGE_CMDQ1_E_N           128
  69 #define SGE_FREEL_SIZE          4096
  70 #define SGE_JUMBO_FREEL_SIZE    512
  71 #define SGE_FREEL_REFILL_THRESH 16
  72 #define SGE_RESPQ_E_N           1024
  73 #define SGE_INTRTIMER_NRES      1000
  74 #define SGE_RX_SM_BUF_SIZE      1536
  75 #define SGE_TX_DESC_MAX_PLEN    16384
  76 
  77 #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
  78 
  79 /*
  80  * Period of the TX buffer reclaim timer.  This timer does not need to run
  81  * frequently as TX buffers are usually reclaimed by new TX packets.
  82  */
  83 #define TX_RECLAIM_PERIOD (HZ / 4)
  84 
  85 #define M_CMD_LEN       0x7fffffff
  86 #define V_CMD_LEN(v)    (v)
  87 #define G_CMD_LEN(v)    ((v) & M_CMD_LEN)
  88 #define V_CMD_GEN1(v)   ((v) << 31)
  89 #define V_CMD_GEN2(v)   (v)
  90 #define F_CMD_DATAVALID (1 << 1)
  91 #define F_CMD_SOP       (1 << 2)
  92 #define V_CMD_EOP(v)    ((v) << 3)
  93 
  94 /*
  95  * Command queue, receive buffer list, and response queue descriptors.
  96  */
  97 #if defined(__BIG_ENDIAN_BITFIELD)
  98 struct cmdQ_e {
  99         u32 addr_lo;
 100         u32 len_gen;
 101         u32 flags;
 102         u32 addr_hi;
 103 };
 104 
 105 struct freelQ_e {
 106         u32 addr_lo;
 107         u32 len_gen;
 108         u32 gen2;
 109         u32 addr_hi;
 110 };
 111 
 112 struct respQ_e {
 113         u32 Qsleeping           : 4;
 114         u32 Cmdq1CreditReturn   : 5;
 115         u32 Cmdq1DmaComplete    : 5;
 116         u32 Cmdq0CreditReturn   : 5;
 117         u32 Cmdq0DmaComplete    : 5;
 118         u32 FreelistQid         : 2;
 119         u32 CreditValid         : 1;
 120         u32 DataValid           : 1;
 121         u32 Offload             : 1;
 122         u32 Eop                 : 1;
 123         u32 Sop                 : 1;
 124         u32 GenerationBit       : 1;
 125         u32 BufferLength;
 126 };
 127 #elif defined(__LITTLE_ENDIAN_BITFIELD)
 128 struct cmdQ_e {
 129         u32 len_gen;
 130         u32 addr_lo;
 131         u32 addr_hi;
 132         u32 flags;
 133 };
 134 
 135 struct freelQ_e {
 136         u32 len_gen;
 137         u32 addr_lo;
 138         u32 addr_hi;
 139         u32 gen2;
 140 };
 141 
 142 struct respQ_e {
 143         u32 BufferLength;
 144         u32 GenerationBit       : 1;
 145         u32 Sop                 : 1;
 146         u32 Eop                 : 1;
 147         u32 Offload             : 1;
 148         u32 DataValid           : 1;
 149         u32 CreditValid         : 1;
 150         u32 FreelistQid         : 2;
 151         u32 Cmdq0DmaComplete    : 5;
 152         u32 Cmdq0CreditReturn   : 5;
 153         u32 Cmdq1DmaComplete    : 5;
 154         u32 Cmdq1CreditReturn   : 5;
 155         u32 Qsleeping           : 4;
 156 } ;
 157 #endif
 158 
 159 /*
 160  * SW Context Command and Freelist Queue Descriptors
 161  */
 162 struct cmdQ_ce {
 163         struct sk_buff *skb;
 164         DEFINE_DMA_UNMAP_ADDR(dma_addr);
 165         DEFINE_DMA_UNMAP_LEN(dma_len);
 166 };
 167 
 168 struct freelQ_ce {
 169         struct sk_buff *skb;
 170         DEFINE_DMA_UNMAP_ADDR(dma_addr);
 171         DEFINE_DMA_UNMAP_LEN(dma_len);
 172 };
 173 
 174 /*
 175  * SW command, freelist and response rings
 176  */
 177 struct cmdQ {
 178         unsigned long   status;         /* HW DMA fetch status */
 179         unsigned int    in_use;         /* # of in-use command descriptors */
 180         unsigned int    size;           /* # of descriptors */
 181         unsigned int    processed;      /* total # of descs HW has processed */
 182         unsigned int    cleaned;        /* total # of descs SW has reclaimed */
 183         unsigned int    stop_thres;     /* SW TX queue suspend threshold */
 184         u16             pidx;           /* producer index (SW) */
 185         u16             cidx;           /* consumer index (HW) */
 186         u8              genbit;         /* current generation (=valid) bit */
 187         u8              sop;            /* is next entry start of packet? */
 188         struct cmdQ_e  *entries;        /* HW command descriptor Q */
 189         struct cmdQ_ce *centries;       /* SW command context descriptor Q */
 190         dma_addr_t      dma_addr;       /* DMA addr HW command descriptor Q */
 191         spinlock_t      lock;           /* Lock to protect cmdQ enqueuing */
 192 };
 193 
 194 struct freelQ {
 195         unsigned int    credits;        /* # of available RX buffers */
 196         unsigned int    size;           /* free list capacity */
 197         u16             pidx;           /* producer index (SW) */
 198         u16             cidx;           /* consumer index (HW) */
 199         u16             rx_buffer_size; /* Buffer size on this free list */
 200         u16             dma_offset;     /* DMA offset to align IP headers */
 201         u16             recycleq_idx;   /* skb recycle q to use */
 202         u8              genbit;         /* current generation (=valid) bit */
 203         struct freelQ_e *entries;       /* HW freelist descriptor Q */
 204         struct freelQ_ce *centries;     /* SW freelist context descriptor Q */
 205         dma_addr_t      dma_addr;       /* DMA addr HW freelist descriptor Q */
 206 };
 207 
 208 struct respQ {
 209         unsigned int    credits;        /* credits to be returned to SGE */
 210         unsigned int    size;           /* # of response Q descriptors */
 211         u16             cidx;           /* consumer index (SW) */
 212         u8              genbit;         /* current generation(=valid) bit */
 213         struct respQ_e *entries;        /* HW response descriptor Q */
 214         dma_addr_t      dma_addr;       /* DMA addr HW response descriptor Q */
 215 };
 216 
 217 /* Bit flags for cmdQ.status */
 218 enum {
 219         CMDQ_STAT_RUNNING = 1,          /* fetch engine is running */
 220         CMDQ_STAT_LAST_PKT_DB = 2       /* last packet rung the doorbell */
 221 };
 222 
 223 /* T204 TX SW scheduler */
 224 
 225 /* Per T204 TX port */
 226 struct sched_port {
 227         unsigned int    avail;          /* available bits - quota */
 228         unsigned int    drain_bits_per_1024ns; /* drain rate */
 229         unsigned int    speed;          /* drain rate, mbps */
 230         unsigned int    mtu;            /* mtu size */
 231         struct sk_buff_head skbq;       /* pending skbs */
 232 };
 233 
 234 /* Per T204 device */
 235 struct sched {
 236         ktime_t         last_updated;   /* last time quotas were computed */
 237         unsigned int    max_avail;      /* max bits to be sent to any port */
 238         unsigned int    port;           /* port index (round robin ports) */
 239         unsigned int    num;            /* num skbs in per port queues */
 240         struct sched_port p[MAX_NPORTS];
 241         struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
 242 };
 243 static void restart_sched(unsigned long);
 244 
 245 
 246 /*
 247  * Main SGE data structure
 248  *
 249  * Interrupts are handled by a single CPU and it is likely that on a MP system
 250  * the application is migrated to another CPU. In that scenario, we try to
 251  * separate the RX(in irq context) and TX state in order to decrease memory
 252  * contention.
 253  */
 254 struct sge {
 255         struct adapter *adapter;        /* adapter backpointer */
 256         struct net_device *netdev;      /* netdevice backpointer */
 257         struct freelQ   freelQ[SGE_FREELQ_N]; /* buffer free lists */
 258         struct respQ    respQ;          /* response Q */
 259         unsigned long   stopped_tx_queues; /* bitmap of suspended Tx queues */
 260         unsigned int    rx_pkt_pad;     /* RX padding for L2 packets */
 261         unsigned int    jumbo_fl;       /* jumbo freelist Q index */
 262         unsigned int    intrtimer_nres; /* no-resource interrupt timer */
 263         unsigned int    fixed_intrtimer;/* non-adaptive interrupt timer */
 264         struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
 265         struct timer_list espibug_timer;
 266         unsigned long   espibug_timeout;
 267         struct sk_buff  *espibug_skb[MAX_NPORTS];
 268         u32             sge_control;    /* shadow value of sge control reg */
 269         struct sge_intr_counts stats;
 270         struct sge_port_stats __percpu *port_stats[MAX_NPORTS];
 271         struct sched    *tx_sched;
 272         struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
 273 };
 274 
 275 static const u8 ch_mac_addr[ETH_ALEN] = {
 276         0x0, 0x7, 0x43, 0x0, 0x0, 0x0
 277 };
 278 
 279 /*
 280  * stop tasklet and free all pending skb's
 281  */
 282 static void tx_sched_stop(struct sge *sge)
 283 {
 284         struct sched *s = sge->tx_sched;
 285         int i;
 286 
 287         tasklet_kill(&s->sched_tsk);
 288 
 289         for (i = 0; i < MAX_NPORTS; i++)
 290                 __skb_queue_purge(&s->p[s->port].skbq);
 291 }
 292 
 293 /*
 294  * t1_sched_update_parms() is called when the MTU or link speed changes. It
 295  * re-computes scheduler parameters to scope with the change.
 296  */
 297 unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
 298                                    unsigned int mtu, unsigned int speed)
 299 {
 300         struct sched *s = sge->tx_sched;
 301         struct sched_port *p = &s->p[port];
 302         unsigned int max_avail_segs;
 303 
 304         pr_debug("%s mtu=%d speed=%d\n", __func__, mtu, speed);
 305         if (speed)
 306                 p->speed = speed;
 307         if (mtu)
 308                 p->mtu = mtu;
 309 
 310         if (speed || mtu) {
 311                 unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
 312                 do_div(drain, (p->mtu + 50) * 1000);
 313                 p->drain_bits_per_1024ns = (unsigned int) drain;
 314 
 315                 if (p->speed < 1000)
 316                         p->drain_bits_per_1024ns =
 317                                 90 * p->drain_bits_per_1024ns / 100;
 318         }
 319 
 320         if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
 321                 p->drain_bits_per_1024ns -= 16;
 322                 s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
 323                 max_avail_segs = max(1U, 4096 / (p->mtu - 40));
 324         } else {
 325                 s->max_avail = 16384;
 326                 max_avail_segs = max(1U, 9000 / (p->mtu - 40));
 327         }
 328 
 329         pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
 330                  "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
 331                  p->speed, s->max_avail, max_avail_segs,
 332                  p->drain_bits_per_1024ns);
 333 
 334         return max_avail_segs * (p->mtu - 40);
 335 }
 336 
 337 #if 0
 338 
 339 /*
 340  * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
 341  * data that can be pushed per port.
 342  */
 343 void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
 344 {
 345         struct sched *s = sge->tx_sched;
 346         unsigned int i;
 347 
 348         s->max_avail = val;
 349         for (i = 0; i < MAX_NPORTS; i++)
 350                 t1_sched_update_parms(sge, i, 0, 0);
 351 }
 352 
 353 /*
 354  * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
 355  * is draining.
 356  */
 357 void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
 358                                          unsigned int val)
 359 {
 360         struct sched *s = sge->tx_sched;
 361         struct sched_port *p = &s->p[port];
 362         p->drain_bits_per_1024ns = val * 1024 / 1000;
 363         t1_sched_update_parms(sge, port, 0, 0);
 364 }
 365 
 366 #endif  /*  0  */
 367 
 368 /*
 369  * tx_sched_init() allocates resources and does basic initialization.
 370  */
 371 static int tx_sched_init(struct sge *sge)
 372 {
 373         struct sched *s;
 374         int i;
 375 
 376         s = kzalloc(sizeof (struct sched), GFP_KERNEL);
 377         if (!s)
 378                 return -ENOMEM;
 379 
 380         pr_debug("tx_sched_init\n");
 381         tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge);
 382         sge->tx_sched = s;
 383 
 384         for (i = 0; i < MAX_NPORTS; i++) {
 385                 skb_queue_head_init(&s->p[i].skbq);
 386                 t1_sched_update_parms(sge, i, 1500, 1000);
 387         }
 388 
 389         return 0;
 390 }
 391 
 392 /*
 393  * sched_update_avail() computes the delta since the last time it was called
 394  * and updates the per port quota (number of bits that can be sent to the any
 395  * port).
 396  */
 397 static inline int sched_update_avail(struct sge *sge)
 398 {
 399         struct sched *s = sge->tx_sched;
 400         ktime_t now = ktime_get();
 401         unsigned int i;
 402         long long delta_time_ns;
 403 
 404         delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
 405 
 406         pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
 407         if (delta_time_ns < 15000)
 408                 return 0;
 409 
 410         for (i = 0; i < MAX_NPORTS; i++) {
 411                 struct sched_port *p = &s->p[i];
 412                 unsigned int delta_avail;
 413 
 414                 delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
 415                 p->avail = min(p->avail + delta_avail, s->max_avail);
 416         }
 417 
 418         s->last_updated = now;
 419 
 420         return 1;
 421 }
 422 
 423 /*
 424  * sched_skb() is called from two different places. In the tx path, any
 425  * packet generating load on an output port will call sched_skb()
 426  * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
 427  * context (skb == NULL).
 428  * The scheduler only returns a skb (which will then be sent) if the
 429  * length of the skb is <= the current quota of the output port.
 430  */
 431 static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
 432                                 unsigned int credits)
 433 {
 434         struct sched *s = sge->tx_sched;
 435         struct sk_buff_head *skbq;
 436         unsigned int i, len, update = 1;
 437 
 438         pr_debug("sched_skb %p\n", skb);
 439         if (!skb) {
 440                 if (!s->num)
 441                         return NULL;
 442         } else {
 443                 skbq = &s->p[skb->dev->if_port].skbq;
 444                 __skb_queue_tail(skbq, skb);
 445                 s->num++;
 446                 skb = NULL;
 447         }
 448 
 449         if (credits < MAX_SKB_FRAGS + 1)
 450                 goto out;
 451 
 452 again:
 453         for (i = 0; i < MAX_NPORTS; i++) {
 454                 s->port = (s->port + 1) & (MAX_NPORTS - 1);
 455                 skbq = &s->p[s->port].skbq;
 456 
 457                 skb = skb_peek(skbq);
 458 
 459                 if (!skb)
 460                         continue;
 461 
 462                 len = skb->len;
 463                 if (len <= s->p[s->port].avail) {
 464                         s->p[s->port].avail -= len;
 465                         s->num--;
 466                         __skb_unlink(skb, skbq);
 467                         goto out;
 468                 }
 469                 skb = NULL;
 470         }
 471 
 472         if (update-- && sched_update_avail(sge))
 473                 goto again;
 474 
 475 out:
 476         /* If there are more pending skbs, we use the hardware to schedule us
 477          * again.
 478          */
 479         if (s->num && !skb) {
 480                 struct cmdQ *q = &sge->cmdQ[0];
 481                 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
 482                 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
 483                         set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
 484                         writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
 485                 }
 486         }
 487         pr_debug("sched_skb ret %p\n", skb);
 488 
 489         return skb;
 490 }
 491 
 492 /*
 493  * PIO to indicate that memory mapped Q contains valid descriptor(s).
 494  */
 495 static inline void doorbell_pio(struct adapter *adapter, u32 val)
 496 {
 497         wmb();
 498         writel(val, adapter->regs + A_SG_DOORBELL);
 499 }
 500 
 501 /*
 502  * Frees all RX buffers on the freelist Q. The caller must make sure that
 503  * the SGE is turned off before calling this function.
 504  */
 505 static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
 506 {
 507         unsigned int cidx = q->cidx;
 508 
 509         while (q->credits--) {
 510                 struct freelQ_ce *ce = &q->centries[cidx];
 511 
 512                 pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
 513                                  dma_unmap_len(ce, dma_len),
 514                                  PCI_DMA_FROMDEVICE);
 515                 dev_kfree_skb(ce->skb);
 516                 ce->skb = NULL;
 517                 if (++cidx == q->size)
 518                         cidx = 0;
 519         }
 520 }
 521 
 522 /*
 523  * Free RX free list and response queue resources.
 524  */
 525 static void free_rx_resources(struct sge *sge)
 526 {
 527         struct pci_dev *pdev = sge->adapter->pdev;
 528         unsigned int size, i;
 529 
 530         if (sge->respQ.entries) {
 531                 size = sizeof(struct respQ_e) * sge->respQ.size;
 532                 pci_free_consistent(pdev, size, sge->respQ.entries,
 533                                     sge->respQ.dma_addr);
 534         }
 535 
 536         for (i = 0; i < SGE_FREELQ_N; i++) {
 537                 struct freelQ *q = &sge->freelQ[i];
 538 
 539                 if (q->centries) {
 540                         free_freelQ_buffers(pdev, q);
 541                         kfree(q->centries);
 542                 }
 543                 if (q->entries) {
 544                         size = sizeof(struct freelQ_e) * q->size;
 545                         pci_free_consistent(pdev, size, q->entries,
 546                                             q->dma_addr);
 547                 }
 548         }
 549 }
 550 
 551 /*
 552  * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
 553  * response queue.
 554  */
 555 static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
 556 {
 557         struct pci_dev *pdev = sge->adapter->pdev;
 558         unsigned int size, i;
 559 
 560         for (i = 0; i < SGE_FREELQ_N; i++) {
 561                 struct freelQ *q = &sge->freelQ[i];
 562 
 563                 q->genbit = 1;
 564                 q->size = p->freelQ_size[i];
 565                 q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
 566                 size = sizeof(struct freelQ_e) * q->size;
 567                 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
 568                 if (!q->entries)
 569                         goto err_no_mem;
 570 
 571                 size = sizeof(struct freelQ_ce) * q->size;
 572                 q->centries = kzalloc(size, GFP_KERNEL);
 573                 if (!q->centries)
 574                         goto err_no_mem;
 575         }
 576 
 577         /*
 578          * Calculate the buffer sizes for the two free lists.  FL0 accommodates
 579          * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
 580          * including all the sk_buff overhead.
 581          *
 582          * Note: For T2 FL0 and FL1 are reversed.
 583          */
 584         sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
 585                 sizeof(struct cpl_rx_data) +
 586                 sge->freelQ[!sge->jumbo_fl].dma_offset;
 587 
 588         size = (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 589 
 590         sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
 591 
 592         /*
 593          * Setup which skb recycle Q should be used when recycling buffers from
 594          * each free list.
 595          */
 596         sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
 597         sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
 598 
 599         sge->respQ.genbit = 1;
 600         sge->respQ.size = SGE_RESPQ_E_N;
 601         sge->respQ.credits = 0;
 602         size = sizeof(struct respQ_e) * sge->respQ.size;
 603         sge->respQ.entries =
 604                 pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
 605         if (!sge->respQ.entries)
 606                 goto err_no_mem;
 607         return 0;
 608 
 609 err_no_mem:
 610         free_rx_resources(sge);
 611         return -ENOMEM;
 612 }
 613 
 614 /*
 615  * Reclaims n TX descriptors and frees the buffers associated with them.
 616  */
 617 static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
 618 {
 619         struct cmdQ_ce *ce;
 620         struct pci_dev *pdev = sge->adapter->pdev;
 621         unsigned int cidx = q->cidx;
 622 
 623         q->in_use -= n;
 624         ce = &q->centries[cidx];
 625         while (n--) {
 626                 if (likely(dma_unmap_len(ce, dma_len))) {
 627                         pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
 628                                          dma_unmap_len(ce, dma_len),
 629                                          PCI_DMA_TODEVICE);
 630                         if (q->sop)
 631                                 q->sop = 0;
 632                 }
 633                 if (ce->skb) {
 634                         dev_kfree_skb_any(ce->skb);
 635                         q->sop = 1;
 636                 }
 637                 ce++;
 638                 if (++cidx == q->size) {
 639                         cidx = 0;
 640                         ce = q->centries;
 641                 }
 642         }
 643         q->cidx = cidx;
 644 }
 645 
 646 /*
 647  * Free TX resources.
 648  *
 649  * Assumes that SGE is stopped and all interrupts are disabled.
 650  */
 651 static void free_tx_resources(struct sge *sge)
 652 {
 653         struct pci_dev *pdev = sge->adapter->pdev;
 654         unsigned int size, i;
 655 
 656         for (i = 0; i < SGE_CMDQ_N; i++) {
 657                 struct cmdQ *q = &sge->cmdQ[i];
 658 
 659                 if (q->centries) {
 660                         if (q->in_use)
 661                                 free_cmdQ_buffers(sge, q, q->in_use);
 662                         kfree(q->centries);
 663                 }
 664                 if (q->entries) {
 665                         size = sizeof(struct cmdQ_e) * q->size;
 666                         pci_free_consistent(pdev, size, q->entries,
 667                                             q->dma_addr);
 668                 }
 669         }
 670 }
 671 
 672 /*
 673  * Allocates basic TX resources, consisting of memory mapped command Qs.
 674  */
 675 static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
 676 {
 677         struct pci_dev *pdev = sge->adapter->pdev;
 678         unsigned int size, i;
 679 
 680         for (i = 0; i < SGE_CMDQ_N; i++) {
 681                 struct cmdQ *q = &sge->cmdQ[i];
 682 
 683                 q->genbit = 1;
 684                 q->sop = 1;
 685                 q->size = p->cmdQ_size[i];
 686                 q->in_use = 0;
 687                 q->status = 0;
 688                 q->processed = q->cleaned = 0;
 689                 q->stop_thres = 0;
 690                 spin_lock_init(&q->lock);
 691                 size = sizeof(struct cmdQ_e) * q->size;
 692                 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
 693                 if (!q->entries)
 694                         goto err_no_mem;
 695 
 696                 size = sizeof(struct cmdQ_ce) * q->size;
 697                 q->centries = kzalloc(size, GFP_KERNEL);
 698                 if (!q->centries)
 699                         goto err_no_mem;
 700         }
 701 
 702         /*
 703          * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
 704          * only.  For queue 0 set the stop threshold so we can handle one more
 705          * packet from each port, plus reserve an additional 24 entries for
 706          * Ethernet packets only.  Queue 1 never suspends nor do we reserve
 707          * space for Ethernet packets.
 708          */
 709         sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
 710                 (MAX_SKB_FRAGS + 1);
 711         return 0;
 712 
 713 err_no_mem:
 714         free_tx_resources(sge);
 715         return -ENOMEM;
 716 }
 717 
 718 static inline void setup_ring_params(struct adapter *adapter, u64 addr,
 719                                      u32 size, int base_reg_lo,
 720                                      int base_reg_hi, int size_reg)
 721 {
 722         writel((u32)addr, adapter->regs + base_reg_lo);
 723         writel(addr >> 32, adapter->regs + base_reg_hi);
 724         writel(size, adapter->regs + size_reg);
 725 }
 726 
 727 /*
 728  * Enable/disable VLAN acceleration.
 729  */
 730 void t1_vlan_mode(struct adapter *adapter, netdev_features_t features)
 731 {
 732         struct sge *sge = adapter->sge;
 733 
 734         if (features & NETIF_F_HW_VLAN_CTAG_RX)
 735                 sge->sge_control |= F_VLAN_XTRACT;
 736         else
 737                 sge->sge_control &= ~F_VLAN_XTRACT;
 738         if (adapter->open_device_map) {
 739                 writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
 740                 readl(adapter->regs + A_SG_CONTROL);   /* flush */
 741         }
 742 }
 743 
 744 /*
 745  * Programs the various SGE registers. However, the engine is not yet enabled,
 746  * but sge->sge_control is setup and ready to go.
 747  */
 748 static void configure_sge(struct sge *sge, struct sge_params *p)
 749 {
 750         struct adapter *ap = sge->adapter;
 751 
 752         writel(0, ap->regs + A_SG_CONTROL);
 753         setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
 754                           A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
 755         setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
 756                           A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
 757         setup_ring_params(ap, sge->freelQ[0].dma_addr,
 758                           sge->freelQ[0].size, A_SG_FL0BASELWR,
 759                           A_SG_FL0BASEUPR, A_SG_FL0SIZE);
 760         setup_ring_params(ap, sge->freelQ[1].dma_addr,
 761                           sge->freelQ[1].size, A_SG_FL1BASELWR,
 762                           A_SG_FL1BASEUPR, A_SG_FL1SIZE);
 763 
 764         /* The threshold comparison uses <. */
 765         writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
 766 
 767         setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
 768                           A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
 769         writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
 770 
 771         sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
 772                 F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
 773                 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
 774                 V_RX_PKT_OFFSET(sge->rx_pkt_pad);
 775 
 776 #if defined(__BIG_ENDIAN_BITFIELD)
 777         sge->sge_control |= F_ENABLE_BIG_ENDIAN;
 778 #endif
 779 
 780         /* Initialize no-resource timer */
 781         sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
 782 
 783         t1_sge_set_coalesce_params(sge, p);
 784 }
 785 
 786 /*
 787  * Return the payload capacity of the jumbo free-list buffers.
 788  */
 789 static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
 790 {
 791         return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
 792                 sge->freelQ[sge->jumbo_fl].dma_offset -
 793                 sizeof(struct cpl_rx_data);
 794 }
 795 
 796 /*
 797  * Frees all SGE related resources and the sge structure itself
 798  */
 799 void t1_sge_destroy(struct sge *sge)
 800 {
 801         int i;
 802 
 803         for_each_port(sge->adapter, i)
 804                 free_percpu(sge->port_stats[i]);
 805 
 806         kfree(sge->tx_sched);
 807         free_tx_resources(sge);
 808         free_rx_resources(sge);
 809         kfree(sge);
 810 }
 811 
 812 /*
 813  * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
 814  * context Q) until the Q is full or alloc_skb fails.
 815  *
 816  * It is possible that the generation bits already match, indicating that the
 817  * buffer is already valid and nothing needs to be done. This happens when we
 818  * copied a received buffer into a new sk_buff during the interrupt processing.
 819  *
 820  * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
 821  * we specify a RX_OFFSET in order to make sure that the IP header is 4B
 822  * aligned.
 823  */
 824 static void refill_free_list(struct sge *sge, struct freelQ *q)
 825 {
 826         struct pci_dev *pdev = sge->adapter->pdev;
 827         struct freelQ_ce *ce = &q->centries[q->pidx];
 828         struct freelQ_e *e = &q->entries[q->pidx];
 829         unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
 830 
 831         while (q->credits < q->size) {
 832                 struct sk_buff *skb;
 833                 dma_addr_t mapping;
 834 
 835                 skb = dev_alloc_skb(q->rx_buffer_size);
 836                 if (!skb)
 837                         break;
 838 
 839                 skb_reserve(skb, q->dma_offset);
 840                 mapping = pci_map_single(pdev, skb->data, dma_len,
 841                                          PCI_DMA_FROMDEVICE);
 842                 skb_reserve(skb, sge->rx_pkt_pad);
 843 
 844                 ce->skb = skb;
 845                 dma_unmap_addr_set(ce, dma_addr, mapping);
 846                 dma_unmap_len_set(ce, dma_len, dma_len);
 847                 e->addr_lo = (u32)mapping;
 848                 e->addr_hi = (u64)mapping >> 32;
 849                 e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
 850                 wmb();
 851                 e->gen2 = V_CMD_GEN2(q->genbit);
 852 
 853                 e++;
 854                 ce++;
 855                 if (++q->pidx == q->size) {
 856                         q->pidx = 0;
 857                         q->genbit ^= 1;
 858                         ce = q->centries;
 859                         e = q->entries;
 860                 }
 861                 q->credits++;
 862         }
 863 }
 864 
 865 /*
 866  * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
 867  * of both rings, we go into 'few interrupt mode' in order to give the system
 868  * time to free up resources.
 869  */
 870 static void freelQs_empty(struct sge *sge)
 871 {
 872         struct adapter *adapter = sge->adapter;
 873         u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
 874         u32 irqholdoff_reg;
 875 
 876         refill_free_list(sge, &sge->freelQ[0]);
 877         refill_free_list(sge, &sge->freelQ[1]);
 878 
 879         if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
 880             sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
 881                 irq_reg |= F_FL_EXHAUSTED;
 882                 irqholdoff_reg = sge->fixed_intrtimer;
 883         } else {
 884                 /* Clear the F_FL_EXHAUSTED interrupts for now */
 885                 irq_reg &= ~F_FL_EXHAUSTED;
 886                 irqholdoff_reg = sge->intrtimer_nres;
 887         }
 888         writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
 889         writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
 890 
 891         /* We reenable the Qs to force a freelist GTS interrupt later */
 892         doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
 893 }
 894 
 895 #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
 896 #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
 897 #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
 898                         F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
 899 
 900 /*
 901  * Disable SGE Interrupts
 902  */
 903 void t1_sge_intr_disable(struct sge *sge)
 904 {
 905         u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
 906 
 907         writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
 908         writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
 909 }
 910 
 911 /*
 912  * Enable SGE interrupts.
 913  */
 914 void t1_sge_intr_enable(struct sge *sge)
 915 {
 916         u32 en = SGE_INT_ENABLE;
 917         u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
 918 
 919         if (sge->adapter->port[0].dev->hw_features & NETIF_F_TSO)
 920                 en &= ~F_PACKET_TOO_BIG;
 921         writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
 922         writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
 923 }
 924 
 925 /*
 926  * Clear SGE interrupts.
 927  */
 928 void t1_sge_intr_clear(struct sge *sge)
 929 {
 930         writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
 931         writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
 932 }
 933 
 934 /*
 935  * SGE 'Error' interrupt handler
 936  */
 937 int t1_sge_intr_error_handler(struct sge *sge)
 938 {
 939         struct adapter *adapter = sge->adapter;
 940         u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
 941 
 942         if (adapter->port[0].dev->hw_features & NETIF_F_TSO)
 943                 cause &= ~F_PACKET_TOO_BIG;
 944         if (cause & F_RESPQ_EXHAUSTED)
 945                 sge->stats.respQ_empty++;
 946         if (cause & F_RESPQ_OVERFLOW) {
 947                 sge->stats.respQ_overflow++;
 948                 pr_alert("%s: SGE response queue overflow\n",
 949                          adapter->name);
 950         }
 951         if (cause & F_FL_EXHAUSTED) {
 952                 sge->stats.freelistQ_empty++;
 953                 freelQs_empty(sge);
 954         }
 955         if (cause & F_PACKET_TOO_BIG) {
 956                 sge->stats.pkt_too_big++;
 957                 pr_alert("%s: SGE max packet size exceeded\n",
 958                          adapter->name);
 959         }
 960         if (cause & F_PACKET_MISMATCH) {
 961                 sge->stats.pkt_mismatch++;
 962                 pr_alert("%s: SGE packet mismatch\n", adapter->name);
 963         }
 964         if (cause & SGE_INT_FATAL)
 965                 t1_fatal_err(adapter);
 966 
 967         writel(cause, adapter->regs + A_SG_INT_CAUSE);
 968         return 0;
 969 }
 970 
 971 const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
 972 {
 973         return &sge->stats;
 974 }
 975 
 976 void t1_sge_get_port_stats(const struct sge *sge, int port,
 977                            struct sge_port_stats *ss)
 978 {
 979         int cpu;
 980 
 981         memset(ss, 0, sizeof(*ss));
 982         for_each_possible_cpu(cpu) {
 983                 struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
 984 
 985                 ss->rx_cso_good += st->rx_cso_good;
 986                 ss->tx_cso += st->tx_cso;
 987                 ss->tx_tso += st->tx_tso;
 988                 ss->tx_need_hdrroom += st->tx_need_hdrroom;
 989                 ss->vlan_xtract += st->vlan_xtract;
 990                 ss->vlan_insert += st->vlan_insert;
 991         }
 992 }
 993 
 994 /**
 995  *      recycle_fl_buf - recycle a free list buffer
 996  *      @fl: the free list
 997  *      @idx: index of buffer to recycle
 998  *
 999  *      Recycles the specified buffer on the given free list by adding it at
1000  *      the next available slot on the list.
1001  */
1002 static void recycle_fl_buf(struct freelQ *fl, int idx)
1003 {
1004         struct freelQ_e *from = &fl->entries[idx];
1005         struct freelQ_e *to = &fl->entries[fl->pidx];
1006 
1007         fl->centries[fl->pidx] = fl->centries[idx];
1008         to->addr_lo = from->addr_lo;
1009         to->addr_hi = from->addr_hi;
1010         to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
1011         wmb();
1012         to->gen2 = V_CMD_GEN2(fl->genbit);
1013         fl->credits++;
1014 
1015         if (++fl->pidx == fl->size) {
1016                 fl->pidx = 0;
1017                 fl->genbit ^= 1;
1018         }
1019 }
1020 
1021 static int copybreak __read_mostly = 256;
1022 module_param(copybreak, int, 0);
1023 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
1024 
1025 /**
1026  *      get_packet - return the next ingress packet buffer
1027  *      @adapter: the adapter that received the packet
1028  *      @fl: the SGE free list holding the packet
1029  *      @len: the actual packet length, excluding any SGE padding
1030  *
1031  *      Get the next packet from a free list and complete setup of the
1032  *      sk_buff.  If the packet is small we make a copy and recycle the
1033  *      original buffer, otherwise we use the original buffer itself.  If a
1034  *      positive drop threshold is supplied packets are dropped and their
1035  *      buffers recycled if (a) the number of remaining buffers is under the
1036  *      threshold and the packet is too big to copy, or (b) the packet should
1037  *      be copied but there is no memory for the copy.
1038  */
1039 static inline struct sk_buff *get_packet(struct adapter *adapter,
1040                                          struct freelQ *fl, unsigned int len)
1041 {
1042         const struct freelQ_ce *ce = &fl->centries[fl->cidx];
1043         struct pci_dev *pdev = adapter->pdev;
1044         struct sk_buff *skb;
1045 
1046         if (len < copybreak) {
1047                 skb = napi_alloc_skb(&adapter->napi, len);
1048                 if (!skb)
1049                         goto use_orig_buf;
1050 
1051                 skb_put(skb, len);
1052                 pci_dma_sync_single_for_cpu(pdev,
1053                                             dma_unmap_addr(ce, dma_addr),
1054                                             dma_unmap_len(ce, dma_len),
1055                                             PCI_DMA_FROMDEVICE);
1056                 skb_copy_from_linear_data(ce->skb, skb->data, len);
1057                 pci_dma_sync_single_for_device(pdev,
1058                                                dma_unmap_addr(ce, dma_addr),
1059                                                dma_unmap_len(ce, dma_len),
1060                                                PCI_DMA_FROMDEVICE);
1061                 recycle_fl_buf(fl, fl->cidx);
1062                 return skb;
1063         }
1064 
1065 use_orig_buf:
1066         if (fl->credits < 2) {
1067                 recycle_fl_buf(fl, fl->cidx);
1068                 return NULL;
1069         }
1070 
1071         pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
1072                          dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1073         skb = ce->skb;
1074         prefetch(skb->data);
1075 
1076         skb_put(skb, len);
1077         return skb;
1078 }
1079 
1080 /**
1081  *      unexpected_offload - handle an unexpected offload packet
1082  *      @adapter: the adapter
1083  *      @fl: the free list that received the packet
1084  *
1085  *      Called when we receive an unexpected offload packet (e.g., the TOE
1086  *      function is disabled or the card is a NIC).  Prints a message and
1087  *      recycles the buffer.
1088  */
1089 static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
1090 {
1091         struct freelQ_ce *ce = &fl->centries[fl->cidx];
1092         struct sk_buff *skb = ce->skb;
1093 
1094         pci_dma_sync_single_for_cpu(adapter->pdev, dma_unmap_addr(ce, dma_addr),
1095                             dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1096         pr_err("%s: unexpected offload packet, cmd %u\n",
1097                adapter->name, *skb->data);
1098         recycle_fl_buf(fl, fl->cidx);
1099 }
1100 
1101 /*
1102  * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1103  * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1104  * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1105  * Note that the *_large_page_tx_descs stuff will be optimized out when
1106  * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1107  *
1108  * compute_large_page_descs() computes how many additional descriptors are
1109  * required to break down the stack's request.
1110  */
1111 static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
1112 {
1113         unsigned int count = 0;
1114 
1115         if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1116                 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
1117                 unsigned int i, len = skb_headlen(skb);
1118                 while (len > SGE_TX_DESC_MAX_PLEN) {
1119                         count++;
1120                         len -= SGE_TX_DESC_MAX_PLEN;
1121                 }
1122                 for (i = 0; nfrags--; i++) {
1123                         const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1124                         len = skb_frag_size(frag);
1125                         while (len > SGE_TX_DESC_MAX_PLEN) {
1126                                 count++;
1127                                 len -= SGE_TX_DESC_MAX_PLEN;
1128                         }
1129                 }
1130         }
1131         return count;
1132 }
1133 
1134 /*
1135  * Write a cmdQ entry.
1136  *
1137  * Since this function writes the 'flags' field, it must not be used to
1138  * write the first cmdQ entry.
1139  */
1140 static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
1141                                  unsigned int len, unsigned int gen,
1142                                  unsigned int eop)
1143 {
1144         BUG_ON(len > SGE_TX_DESC_MAX_PLEN);
1145 
1146         e->addr_lo = (u32)mapping;
1147         e->addr_hi = (u64)mapping >> 32;
1148         e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
1149         e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
1150 }
1151 
1152 /*
1153  * See comment for previous function.
1154  *
1155  * write_tx_descs_large_page() writes additional SGE tx descriptors if
1156  * *desc_len exceeds HW's capability.
1157  */
1158 static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
1159                                                      struct cmdQ_e **e,
1160                                                      struct cmdQ_ce **ce,
1161                                                      unsigned int *gen,
1162                                                      dma_addr_t *desc_mapping,
1163                                                      unsigned int *desc_len,
1164                                                      unsigned int nfrags,
1165                                                      struct cmdQ *q)
1166 {
1167         if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1168                 struct cmdQ_e *e1 = *e;
1169                 struct cmdQ_ce *ce1 = *ce;
1170 
1171                 while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
1172                         *desc_len -= SGE_TX_DESC_MAX_PLEN;
1173                         write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
1174                                       *gen, nfrags == 0 && *desc_len == 0);
1175                         ce1->skb = NULL;
1176                         dma_unmap_len_set(ce1, dma_len, 0);
1177                         *desc_mapping += SGE_TX_DESC_MAX_PLEN;
1178                         if (*desc_len) {
1179                                 ce1++;
1180                                 e1++;
1181                                 if (++pidx == q->size) {
1182                                         pidx = 0;
1183                                         *gen ^= 1;
1184                                         ce1 = q->centries;
1185                                         e1 = q->entries;
1186                                 }
1187                         }
1188                 }
1189                 *e = e1;
1190                 *ce = ce1;
1191         }
1192         return pidx;
1193 }
1194 
1195 /*
1196  * Write the command descriptors to transmit the given skb starting at
1197  * descriptor pidx with the given generation.
1198  */
1199 static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
1200                                   unsigned int pidx, unsigned int gen,
1201                                   struct cmdQ *q)
1202 {
1203         dma_addr_t mapping, desc_mapping;
1204         struct cmdQ_e *e, *e1;
1205         struct cmdQ_ce *ce;
1206         unsigned int i, flags, first_desc_len, desc_len,
1207             nfrags = skb_shinfo(skb)->nr_frags;
1208 
1209         e = e1 = &q->entries[pidx];
1210         ce = &q->centries[pidx];
1211 
1212         mapping = pci_map_single(adapter->pdev, skb->data,
1213                                  skb_headlen(skb), PCI_DMA_TODEVICE);
1214 
1215         desc_mapping = mapping;
1216         desc_len = skb_headlen(skb);
1217 
1218         flags = F_CMD_DATAVALID | F_CMD_SOP |
1219             V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
1220             V_CMD_GEN2(gen);
1221         first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
1222             desc_len : SGE_TX_DESC_MAX_PLEN;
1223         e->addr_lo = (u32)desc_mapping;
1224         e->addr_hi = (u64)desc_mapping >> 32;
1225         e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
1226         ce->skb = NULL;
1227         dma_unmap_len_set(ce, dma_len, 0);
1228 
1229         if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
1230             desc_len > SGE_TX_DESC_MAX_PLEN) {
1231                 desc_mapping += first_desc_len;
1232                 desc_len -= first_desc_len;
1233                 e1++;
1234                 ce++;
1235                 if (++pidx == q->size) {
1236                         pidx = 0;
1237                         gen ^= 1;
1238                         e1 = q->entries;
1239                         ce = q->centries;
1240                 }
1241                 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1242                                                  &desc_mapping, &desc_len,
1243                                                  nfrags, q);
1244 
1245                 if (likely(desc_len))
1246                         write_tx_desc(e1, desc_mapping, desc_len, gen,
1247                                       nfrags == 0);
1248         }
1249 
1250         ce->skb = NULL;
1251         dma_unmap_addr_set(ce, dma_addr, mapping);
1252         dma_unmap_len_set(ce, dma_len, skb_headlen(skb));
1253 
1254         for (i = 0; nfrags--; i++) {
1255                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1256                 e1++;
1257                 ce++;
1258                 if (++pidx == q->size) {
1259                         pidx = 0;
1260                         gen ^= 1;
1261                         e1 = q->entries;
1262                         ce = q->centries;
1263                 }
1264 
1265                 mapping = skb_frag_dma_map(&adapter->pdev->dev, frag, 0,
1266                                            skb_frag_size(frag), DMA_TO_DEVICE);
1267                 desc_mapping = mapping;
1268                 desc_len = skb_frag_size(frag);
1269 
1270                 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1271                                                  &desc_mapping, &desc_len,
1272                                                  nfrags, q);
1273                 if (likely(desc_len))
1274                         write_tx_desc(e1, desc_mapping, desc_len, gen,
1275                                       nfrags == 0);
1276                 ce->skb = NULL;
1277                 dma_unmap_addr_set(ce, dma_addr, mapping);
1278                 dma_unmap_len_set(ce, dma_len, skb_frag_size(frag));
1279         }
1280         ce->skb = skb;
1281         wmb();
1282         e->flags = flags;
1283 }
1284 
1285 /*
1286  * Clean up completed Tx buffers.
1287  */
1288 static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
1289 {
1290         unsigned int reclaim = q->processed - q->cleaned;
1291 
1292         if (reclaim) {
1293                 pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1294                          q->processed, q->cleaned);
1295                 free_cmdQ_buffers(sge, q, reclaim);
1296                 q->cleaned += reclaim;
1297         }
1298 }
1299 
1300 /*
1301  * Called from tasklet. Checks the scheduler for any
1302  * pending skbs that can be sent.
1303  */
1304 static void restart_sched(unsigned long arg)
1305 {
1306         struct sge *sge = (struct sge *) arg;
1307         struct adapter *adapter = sge->adapter;
1308         struct cmdQ *q = &sge->cmdQ[0];
1309         struct sk_buff *skb;
1310         unsigned int credits, queued_skb = 0;
1311 
1312         spin_lock(&q->lock);
1313         reclaim_completed_tx(sge, q);
1314 
1315         credits = q->size - q->in_use;
1316         pr_debug("restart_sched credits=%d\n", credits);
1317         while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
1318                 unsigned int genbit, pidx, count;
1319                 count = 1 + skb_shinfo(skb)->nr_frags;
1320                 count += compute_large_page_tx_descs(skb);
1321                 q->in_use += count;
1322                 genbit = q->genbit;
1323                 pidx = q->pidx;
1324                 q->pidx += count;
1325                 if (q->pidx >= q->size) {
1326                         q->pidx -= q->size;
1327                         q->genbit ^= 1;
1328                 }
1329                 write_tx_descs(adapter, skb, pidx, genbit, q);
1330                 credits = q->size - q->in_use;
1331                 queued_skb = 1;
1332         }
1333 
1334         if (queued_skb) {
1335                 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1336                 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1337                         set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1338                         writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1339                 }
1340         }
1341         spin_unlock(&q->lock);
1342 }
1343 
1344 /**
1345  *      sge_rx - process an ingress ethernet packet
1346  *      @sge: the sge structure
1347  *      @fl: the free list that contains the packet buffer
1348  *      @len: the packet length
1349  *
1350  *      Process an ingress ethernet pakcet and deliver it to the stack.
1351  */
1352 static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
1353 {
1354         struct sk_buff *skb;
1355         const struct cpl_rx_pkt *p;
1356         struct adapter *adapter = sge->adapter;
1357         struct sge_port_stats *st;
1358         struct net_device *dev;
1359 
1360         skb = get_packet(adapter, fl, len - sge->rx_pkt_pad);
1361         if (unlikely(!skb)) {
1362                 sge->stats.rx_drops++;
1363                 return;
1364         }
1365 
1366         p = (const struct cpl_rx_pkt *) skb->data;
1367         if (p->iff >= adapter->params.nports) {
1368                 kfree_skb(skb);
1369                 return;
1370         }
1371         __skb_pull(skb, sizeof(*p));
1372 
1373         st = this_cpu_ptr(sge->port_stats[p->iff]);
1374         dev = adapter->port[p->iff].dev;
1375 
1376         skb->protocol = eth_type_trans(skb, dev);
1377         if ((dev->features & NETIF_F_RXCSUM) && p->csum == 0xffff &&
1378             skb->protocol == htons(ETH_P_IP) &&
1379             (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
1380                 ++st->rx_cso_good;
1381                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1382         } else
1383                 skb_checksum_none_assert(skb);
1384 
1385         if (p->vlan_valid) {
1386                 st->vlan_xtract++;
1387                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan));
1388         }
1389         netif_receive_skb(skb);
1390 }
1391 
1392 /*
1393  * Returns true if a command queue has enough available descriptors that
1394  * we can resume Tx operation after temporarily disabling its packet queue.
1395  */
1396 static inline int enough_free_Tx_descs(const struct cmdQ *q)
1397 {
1398         unsigned int r = q->processed - q->cleaned;
1399 
1400         return q->in_use - r < (q->size >> 1);
1401 }
1402 
1403 /*
1404  * Called when sufficient space has become available in the SGE command queues
1405  * after the Tx packet schedulers have been suspended to restart the Tx path.
1406  */
1407 static void restart_tx_queues(struct sge *sge)
1408 {
1409         struct adapter *adap = sge->adapter;
1410         int i;
1411 
1412         if (!enough_free_Tx_descs(&sge->cmdQ[0]))
1413                 return;
1414 
1415         for_each_port(adap, i) {
1416                 struct net_device *nd = adap->port[i].dev;
1417 
1418                 if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
1419                     netif_running(nd)) {
1420                         sge->stats.cmdQ_restarted[2]++;
1421                         netif_wake_queue(nd);
1422                 }
1423         }
1424 }
1425 
1426 /*
1427  * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
1428  * information.
1429  */
1430 static unsigned int update_tx_info(struct adapter *adapter,
1431                                           unsigned int flags,
1432                                           unsigned int pr0)
1433 {
1434         struct sge *sge = adapter->sge;
1435         struct cmdQ *cmdq = &sge->cmdQ[0];
1436 
1437         cmdq->processed += pr0;
1438         if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
1439                 freelQs_empty(sge);
1440                 flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
1441         }
1442         if (flags & F_CMDQ0_ENABLE) {
1443                 clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1444 
1445                 if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
1446                     !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
1447                         set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1448                         writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1449                 }
1450                 if (sge->tx_sched)
1451                         tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
1452 
1453                 flags &= ~F_CMDQ0_ENABLE;
1454         }
1455 
1456         if (unlikely(sge->stopped_tx_queues != 0))
1457                 restart_tx_queues(sge);
1458 
1459         return flags;
1460 }
1461 
1462 /*
1463  * Process SGE responses, up to the supplied budget.  Returns the number of
1464  * responses processed.  A negative budget is effectively unlimited.
1465  */
1466 static int process_responses(struct adapter *adapter, int budget)
1467 {
1468         struct sge *sge = adapter->sge;
1469         struct respQ *q = &sge->respQ;
1470         struct respQ_e *e = &q->entries[q->cidx];
1471         int done = 0;
1472         unsigned int flags = 0;
1473         unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1474 
1475         while (done < budget && e->GenerationBit == q->genbit) {
1476                 flags |= e->Qsleeping;
1477 
1478                 cmdq_processed[0] += e->Cmdq0CreditReturn;
1479                 cmdq_processed[1] += e->Cmdq1CreditReturn;
1480 
1481                 /* We batch updates to the TX side to avoid cacheline
1482                  * ping-pong of TX state information on MP where the sender
1483                  * might run on a different CPU than this function...
1484                  */
1485                 if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) {
1486                         flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1487                         cmdq_processed[0] = 0;
1488                 }
1489 
1490                 if (unlikely(cmdq_processed[1] > 16)) {
1491                         sge->cmdQ[1].processed += cmdq_processed[1];
1492                         cmdq_processed[1] = 0;
1493                 }
1494 
1495                 if (likely(e->DataValid)) {
1496                         struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1497 
1498                         BUG_ON(!e->Sop || !e->Eop);
1499                         if (unlikely(e->Offload))
1500                                 unexpected_offload(adapter, fl);
1501                         else
1502                                 sge_rx(sge, fl, e->BufferLength);
1503 
1504                         ++done;
1505 
1506                         /*
1507                          * Note: this depends on each packet consuming a
1508                          * single free-list buffer; cf. the BUG above.
1509                          */
1510                         if (++fl->cidx == fl->size)
1511                                 fl->cidx = 0;
1512                         prefetch(fl->centries[fl->cidx].skb);
1513 
1514                         if (unlikely(--fl->credits <
1515                                      fl->size - SGE_FREEL_REFILL_THRESH))
1516                                 refill_free_list(sge, fl);
1517                 } else
1518                         sge->stats.pure_rsps++;
1519 
1520                 e++;
1521                 if (unlikely(++q->cidx == q->size)) {
1522                         q->cidx = 0;
1523                         q->genbit ^= 1;
1524                         e = q->entries;
1525                 }
1526                 prefetch(e);
1527 
1528                 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1529                         writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1530                         q->credits = 0;
1531                 }
1532         }
1533 
1534         flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1535         sge->cmdQ[1].processed += cmdq_processed[1];
1536 
1537         return done;
1538 }
1539 
1540 static inline int responses_pending(const struct adapter *adapter)
1541 {
1542         const struct respQ *Q = &adapter->sge->respQ;
1543         const struct respQ_e *e = &Q->entries[Q->cidx];
1544 
1545         return e->GenerationBit == Q->genbit;
1546 }
1547 
1548 /*
1549  * A simpler version of process_responses() that handles only pure (i.e.,
1550  * non data-carrying) responses.  Such respones are too light-weight to justify
1551  * calling a softirq when using NAPI, so we handle them specially in hard
1552  * interrupt context.  The function is called with a pointer to a response,
1553  * which the caller must ensure is a valid pure response.  Returns 1 if it
1554  * encounters a valid data-carrying response, 0 otherwise.
1555  */
1556 static int process_pure_responses(struct adapter *adapter)
1557 {
1558         struct sge *sge = adapter->sge;
1559         struct respQ *q = &sge->respQ;
1560         struct respQ_e *e = &q->entries[q->cidx];
1561         const struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1562         unsigned int flags = 0;
1563         unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1564 
1565         prefetch(fl->centries[fl->cidx].skb);
1566         if (e->DataValid)
1567                 return 1;
1568 
1569         do {
1570                 flags |= e->Qsleeping;
1571 
1572                 cmdq_processed[0] += e->Cmdq0CreditReturn;
1573                 cmdq_processed[1] += e->Cmdq1CreditReturn;
1574 
1575                 e++;
1576                 if (unlikely(++q->cidx == q->size)) {
1577                         q->cidx = 0;
1578                         q->genbit ^= 1;
1579                         e = q->entries;
1580                 }
1581                 prefetch(e);
1582 
1583                 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1584                         writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1585                         q->credits = 0;
1586                 }
1587                 sge->stats.pure_rsps++;
1588         } while (e->GenerationBit == q->genbit && !e->DataValid);
1589 
1590         flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1591         sge->cmdQ[1].processed += cmdq_processed[1];
1592 
1593         return e->GenerationBit == q->genbit;
1594 }
1595 
1596 /*
1597  * Handler for new data events when using NAPI.  This does not need any locking
1598  * or protection from interrupts as data interrupts are off at this point and
1599  * other adapter interrupts do not interfere.
1600  */
1601 int t1_poll(struct napi_struct *napi, int budget)
1602 {
1603         struct adapter *adapter = container_of(napi, struct adapter, napi);
1604         int work_done = process_responses(adapter, budget);
1605 
1606         if (likely(work_done < budget)) {
1607                 napi_complete_done(napi, work_done);
1608                 writel(adapter->sge->respQ.cidx,
1609                        adapter->regs + A_SG_SLEEPING);
1610         }
1611         return work_done;
1612 }
1613 
1614 irqreturn_t t1_interrupt(int irq, void *data)
1615 {
1616         struct adapter *adapter = data;
1617         struct sge *sge = adapter->sge;
1618         int handled;
1619 
1620         if (likely(responses_pending(adapter))) {
1621                 writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1622 
1623                 if (napi_schedule_prep(&adapter->napi)) {
1624                         if (process_pure_responses(adapter))
1625                                 __napi_schedule(&adapter->napi);
1626                         else {
1627                                 /* no data, no NAPI needed */
1628                                 writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
1629                                 /* undo schedule_prep */
1630                                 napi_enable(&adapter->napi);
1631                         }
1632                 }
1633                 return IRQ_HANDLED;
1634         }
1635 
1636         spin_lock(&adapter->async_lock);
1637         handled = t1_slow_intr_handler(adapter);
1638         spin_unlock(&adapter->async_lock);
1639 
1640         if (!handled)
1641                 sge->stats.unhandled_irqs++;
1642 
1643         return IRQ_RETVAL(handled != 0);
1644 }
1645 
1646 /*
1647  * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1648  *
1649  * The code figures out how many entries the sk_buff will require in the
1650  * cmdQ and updates the cmdQ data structure with the state once the enqueue
1651  * has complete. Then, it doesn't access the global structure anymore, but
1652  * uses the corresponding fields on the stack. In conjunction with a spinlock
1653  * around that code, we can make the function reentrant without holding the
1654  * lock when we actually enqueue (which might be expensive, especially on
1655  * architectures with IO MMUs).
1656  *
1657  * This runs with softirqs disabled.
1658  */
1659 static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
1660                      unsigned int qid, struct net_device *dev)
1661 {
1662         struct sge *sge = adapter->sge;
1663         struct cmdQ *q = &sge->cmdQ[qid];
1664         unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
1665 
1666         spin_lock(&q->lock);
1667 
1668         reclaim_completed_tx(sge, q);
1669 
1670         pidx = q->pidx;
1671         credits = q->size - q->in_use;
1672         count = 1 + skb_shinfo(skb)->nr_frags;
1673         count += compute_large_page_tx_descs(skb);
1674 
1675         /* Ethernet packet */
1676         if (unlikely(credits < count)) {
1677                 if (!netif_queue_stopped(dev)) {
1678                         netif_stop_queue(dev);
1679                         set_bit(dev->if_port, &sge->stopped_tx_queues);
1680                         sge->stats.cmdQ_full[2]++;
1681                         pr_err("%s: Tx ring full while queue awake!\n",
1682                                adapter->name);
1683                 }
1684                 spin_unlock(&q->lock);
1685                 return NETDEV_TX_BUSY;
1686         }
1687 
1688         if (unlikely(credits - count < q->stop_thres)) {
1689                 netif_stop_queue(dev);
1690                 set_bit(dev->if_port, &sge->stopped_tx_queues);
1691                 sge->stats.cmdQ_full[2]++;
1692         }
1693 
1694         /* T204 cmdQ0 skbs that are destined for a certain port have to go
1695          * through the scheduler.
1696          */
1697         if (sge->tx_sched && !qid && skb->dev) {
1698 use_sched:
1699                 use_sched_skb = 1;
1700                 /* Note that the scheduler might return a different skb than
1701                  * the one passed in.
1702                  */
1703                 skb = sched_skb(sge, skb, credits);
1704                 if (!skb) {
1705                         spin_unlock(&q->lock);
1706                         return NETDEV_TX_OK;
1707                 }
1708                 pidx = q->pidx;
1709                 count = 1 + skb_shinfo(skb)->nr_frags;
1710                 count += compute_large_page_tx_descs(skb);
1711         }
1712 
1713         q->in_use += count;
1714         genbit = q->genbit;
1715         pidx = q->pidx;
1716         q->pidx += count;
1717         if (q->pidx >= q->size) {
1718                 q->pidx -= q->size;
1719                 q->genbit ^= 1;
1720         }
1721         spin_unlock(&q->lock);
1722 
1723         write_tx_descs(adapter, skb, pidx, genbit, q);
1724 
1725         /*
1726          * We always ring the doorbell for cmdQ1.  For cmdQ0, we only ring
1727          * the doorbell if the Q is asleep. There is a natural race, where
1728          * the hardware is going to sleep just after we checked, however,
1729          * then the interrupt handler will detect the outstanding TX packet
1730          * and ring the doorbell for us.
1731          */
1732         if (qid)
1733                 doorbell_pio(adapter, F_CMDQ1_ENABLE);
1734         else {
1735                 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1736                 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1737                         set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1738                         writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1739                 }
1740         }
1741 
1742         if (use_sched_skb) {
1743                 if (spin_trylock(&q->lock)) {
1744                         credits = q->size - q->in_use;
1745                         skb = NULL;
1746                         goto use_sched;
1747                 }
1748         }
1749         return NETDEV_TX_OK;
1750 }
1751 
1752 #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1753 
1754 /*
1755  *      eth_hdr_len - return the length of an Ethernet header
1756  *      @data: pointer to the start of the Ethernet header
1757  *
1758  *      Returns the length of an Ethernet header, including optional VLAN tag.
1759  */
1760 static inline int eth_hdr_len(const void *data)
1761 {
1762         const struct ethhdr *e = data;
1763 
1764         return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
1765 }
1766 
1767 /*
1768  * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1769  */
1770 netdev_tx_t t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
1771 {
1772         struct adapter *adapter = dev->ml_priv;
1773         struct sge *sge = adapter->sge;
1774         struct sge_port_stats *st = this_cpu_ptr(sge->port_stats[dev->if_port]);
1775         struct cpl_tx_pkt *cpl;
1776         struct sk_buff *orig_skb = skb;
1777         int ret;
1778 
1779         if (skb->protocol == htons(ETH_P_CPL5))
1780                 goto send;
1781 
1782         /*
1783          * We are using a non-standard hard_header_len.
1784          * Allocate more header room in the rare cases it is not big enough.
1785          */
1786         if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
1787                 skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
1788                 ++st->tx_need_hdrroom;
1789                 dev_kfree_skb_any(orig_skb);
1790                 if (!skb)
1791                         return NETDEV_TX_OK;
1792         }
1793 
1794         if (skb_shinfo(skb)->gso_size) {
1795                 int eth_type;
1796                 struct cpl_tx_pkt_lso *hdr;
1797 
1798                 ++st->tx_tso;
1799 
1800                 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1801                         CPL_ETH_II : CPL_ETH_II_VLAN;
1802 
1803                 hdr = skb_push(skb, sizeof(*hdr));
1804                 hdr->opcode = CPL_TX_PKT_LSO;
1805                 hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
1806                 hdr->ip_hdr_words = ip_hdr(skb)->ihl;
1807                 hdr->tcp_hdr_words = tcp_hdr(skb)->doff;
1808                 hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
1809                                                           skb_shinfo(skb)->gso_size));
1810                 hdr->len = htonl(skb->len - sizeof(*hdr));
1811                 cpl = (struct cpl_tx_pkt *)hdr;
1812         } else {
1813                 /*
1814                  * Packets shorter than ETH_HLEN can break the MAC, drop them
1815                  * early.  Also, we may get oversized packets because some
1816                  * parts of the kernel don't handle our unusual hard_header_len
1817                  * right, drop those too.
1818                  */
1819                 if (unlikely(skb->len < ETH_HLEN ||
1820                              skb->len > dev->mtu + eth_hdr_len(skb->data))) {
1821                         netdev_dbg(dev, "packet size %d hdr %d mtu%d\n",
1822                                    skb->len, eth_hdr_len(skb->data), dev->mtu);
1823                         dev_kfree_skb_any(skb);
1824                         return NETDEV_TX_OK;
1825                 }
1826 
1827                 if (skb->ip_summed == CHECKSUM_PARTIAL &&
1828                     ip_hdr(skb)->protocol == IPPROTO_UDP) {
1829                         if (unlikely(skb_checksum_help(skb))) {
1830                                 netdev_dbg(dev, "unable to do udp checksum\n");
1831                                 dev_kfree_skb_any(skb);
1832                                 return NETDEV_TX_OK;
1833                         }
1834                 }
1835 
1836                 /* Hmmm, assuming to catch the gratious arp... and we'll use
1837                  * it to flush out stuck espi packets...
1838                  */
1839                 if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
1840                         if (skb->protocol == htons(ETH_P_ARP) &&
1841                             arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) {
1842                                 adapter->sge->espibug_skb[dev->if_port] = skb;
1843                                 /* We want to re-use this skb later. We
1844                                  * simply bump the reference count and it
1845                                  * will not be freed...
1846                                  */
1847                                 skb = skb_get(skb);
1848                         }
1849                 }
1850 
1851                 cpl = __skb_push(skb, sizeof(*cpl));
1852                 cpl->opcode = CPL_TX_PKT;
1853                 cpl->ip_csum_dis = 1;    /* SW calculates IP csum */
1854                 cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
1855                 /* the length field isn't used so don't bother setting it */
1856 
1857                 st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
1858         }
1859         cpl->iff = dev->if_port;
1860 
1861         if (skb_vlan_tag_present(skb)) {
1862                 cpl->vlan_valid = 1;
1863                 cpl->vlan = htons(skb_vlan_tag_get(skb));
1864                 st->vlan_insert++;
1865         } else
1866                 cpl->vlan_valid = 0;
1867 
1868 send:
1869         ret = t1_sge_tx(skb, adapter, 0, dev);
1870 
1871         /* If transmit busy, and we reallocated skb's due to headroom limit,
1872          * then silently discard to avoid leak.
1873          */
1874         if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
1875                 dev_kfree_skb_any(skb);
1876                 ret = NETDEV_TX_OK;
1877         }
1878         return ret;
1879 }
1880 
1881 /*
1882  * Callback for the Tx buffer reclaim timer.  Runs with softirqs disabled.
1883  */
1884 static void sge_tx_reclaim_cb(struct timer_list *t)
1885 {
1886         int i;
1887         struct sge *sge = from_timer(sge, t, tx_reclaim_timer);
1888 
1889         for (i = 0; i < SGE_CMDQ_N; ++i) {
1890                 struct cmdQ *q = &sge->cmdQ[i];
1891 
1892                 if (!spin_trylock(&q->lock))
1893                         continue;
1894 
1895                 reclaim_completed_tx(sge, q);
1896                 if (i == 0 && q->in_use) {    /* flush pending credits */
1897                         writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
1898                 }
1899                 spin_unlock(&q->lock);
1900         }
1901         mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1902 }
1903 
1904 /*
1905  * Propagate changes of the SGE coalescing parameters to the HW.
1906  */
1907 int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
1908 {
1909         sge->fixed_intrtimer = p->rx_coalesce_usecs *
1910                 core_ticks_per_usec(sge->adapter);
1911         writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
1912         return 0;
1913 }
1914 
1915 /*
1916  * Allocates both RX and TX resources and configures the SGE. However,
1917  * the hardware is not enabled yet.
1918  */
1919 int t1_sge_configure(struct sge *sge, struct sge_params *p)
1920 {
1921         if (alloc_rx_resources(sge, p))
1922                 return -ENOMEM;
1923         if (alloc_tx_resources(sge, p)) {
1924                 free_rx_resources(sge);
1925                 return -ENOMEM;
1926         }
1927         configure_sge(sge, p);
1928 
1929         /*
1930          * Now that we have sized the free lists calculate the payload
1931          * capacity of the large buffers.  Other parts of the driver use
1932          * this to set the max offload coalescing size so that RX packets
1933          * do not overflow our large buffers.
1934          */
1935         p->large_buf_capacity = jumbo_payload_capacity(sge);
1936         return 0;
1937 }
1938 
1939 /*
1940  * Disables the DMA engine.
1941  */
1942 void t1_sge_stop(struct sge *sge)
1943 {
1944         int i;
1945         writel(0, sge->adapter->regs + A_SG_CONTROL);
1946         readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1947 
1948         if (is_T2(sge->adapter))
1949                 del_timer_sync(&sge->espibug_timer);
1950 
1951         del_timer_sync(&sge->tx_reclaim_timer);
1952         if (sge->tx_sched)
1953                 tx_sched_stop(sge);
1954 
1955         for (i = 0; i < MAX_NPORTS; i++)
1956                 kfree_skb(sge->espibug_skb[i]);
1957 }
1958 
1959 /*
1960  * Enables the DMA engine.
1961  */
1962 void t1_sge_start(struct sge *sge)
1963 {
1964         refill_free_list(sge, &sge->freelQ[0]);
1965         refill_free_list(sge, &sge->freelQ[1]);
1966 
1967         writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
1968         doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
1969         readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1970 
1971         mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1972 
1973         if (is_T2(sge->adapter))
1974                 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
1975 }
1976 
1977 /*
1978  * Callback for the T2 ESPI 'stuck packet feature' workaorund
1979  */
1980 static void espibug_workaround_t204(struct timer_list *t)
1981 {
1982         struct sge *sge = from_timer(sge, t, espibug_timer);
1983         struct adapter *adapter = sge->adapter;
1984         unsigned int nports = adapter->params.nports;
1985         u32 seop[MAX_NPORTS];
1986 
1987         if (adapter->open_device_map & PORT_MASK) {
1988                 int i;
1989 
1990                 if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
1991                         return;
1992 
1993                 for (i = 0; i < nports; i++) {
1994                         struct sk_buff *skb = sge->espibug_skb[i];
1995 
1996                         if (!netif_running(adapter->port[i].dev) ||
1997                             netif_queue_stopped(adapter->port[i].dev) ||
1998                             !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
1999                                 continue;
2000 
2001                         if (!skb->cb[0]) {
2002                                 skb_copy_to_linear_data_offset(skb,
2003                                                     sizeof(struct cpl_tx_pkt),
2004                                                                ch_mac_addr,
2005                                                                ETH_ALEN);
2006                                 skb_copy_to_linear_data_offset(skb,
2007                                                                skb->len - 10,
2008                                                                ch_mac_addr,
2009                                                                ETH_ALEN);
2010                                 skb->cb[0] = 0xff;
2011                         }
2012 
2013                         /* bump the reference count to avoid freeing of
2014                          * the skb once the DMA has completed.
2015                          */
2016                         skb = skb_get(skb);
2017                         t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
2018                 }
2019         }
2020         mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2021 }
2022 
2023 static void espibug_workaround(struct timer_list *t)
2024 {
2025         struct sge *sge = from_timer(sge, t, espibug_timer);
2026         struct adapter *adapter = sge->adapter;
2027 
2028         if (netif_running(adapter->port[0].dev)) {
2029                 struct sk_buff *skb = sge->espibug_skb[0];
2030                 u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
2031 
2032                 if ((seop & 0xfff0fff) == 0xfff && skb) {
2033                         if (!skb->cb[0]) {
2034                                 skb_copy_to_linear_data_offset(skb,
2035                                                      sizeof(struct cpl_tx_pkt),
2036                                                                ch_mac_addr,
2037                                                                ETH_ALEN);
2038                                 skb_copy_to_linear_data_offset(skb,
2039                                                                skb->len - 10,
2040                                                                ch_mac_addr,
2041                                                                ETH_ALEN);
2042                                 skb->cb[0] = 0xff;
2043                         }
2044 
2045                         /* bump the reference count to avoid freeing of the
2046                          * skb once the DMA has completed.
2047                          */
2048                         skb = skb_get(skb);
2049                         t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
2050                 }
2051         }
2052         mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2053 }
2054 
2055 /*
2056  * Creates a t1_sge structure and returns suggested resource parameters.
2057  */
2058 struct sge *t1_sge_create(struct adapter *adapter, struct sge_params *p)
2059 {
2060         struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
2061         int i;
2062 
2063         if (!sge)
2064                 return NULL;
2065 
2066         sge->adapter = adapter;
2067         sge->netdev = adapter->port[0].dev;
2068         sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
2069         sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
2070 
2071         for_each_port(adapter, i) {
2072                 sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
2073                 if (!sge->port_stats[i])
2074                         goto nomem_port;
2075         }
2076 
2077         timer_setup(&sge->tx_reclaim_timer, sge_tx_reclaim_cb, 0);
2078 
2079         if (is_T2(sge->adapter)) {
2080                 timer_setup(&sge->espibug_timer,
2081                             adapter->params.nports > 1 ? espibug_workaround_t204 : espibug_workaround,
2082                             0);
2083 
2084                 if (adapter->params.nports > 1)
2085                         tx_sched_init(sge);
2086 
2087                 sge->espibug_timeout = 1;
2088                 /* for T204, every 10ms */
2089                 if (adapter->params.nports > 1)
2090                         sge->espibug_timeout = HZ/100;
2091         }
2092 
2093 
2094         p->cmdQ_size[0] = SGE_CMDQ0_E_N;
2095         p->cmdQ_size[1] = SGE_CMDQ1_E_N;
2096         p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
2097         p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
2098         if (sge->tx_sched) {
2099                 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
2100                         p->rx_coalesce_usecs = 15;
2101                 else
2102                         p->rx_coalesce_usecs = 50;
2103         } else
2104                 p->rx_coalesce_usecs = 50;
2105 
2106         p->coalesce_enable = 0;
2107         p->sample_interval_usecs = 0;
2108 
2109         return sge;
2110 nomem_port:
2111         while (i >= 0) {
2112                 free_percpu(sge->port_stats[i]);
2113                 --i;
2114         }
2115         kfree(sge);
2116         return NULL;
2117 
2118 }

/* [<][>][^][v][top][bottom][index][help] */