This source file includes following definitions.
- netdev_vlan_rx_add_vid
- netdev_vlan_rx_kill_vid
- starfire_init_one
- mdio_read
- mdio_write
- netdev_open
- check_duplex
- tx_timeout
- init_ring
- start_tx
- intr_handler
- __netdev_rx
- netdev_poll
- refill_rx_ring
- netdev_media_change
- netdev_error
- get_stats
- set_vlan_mode
- set_rx_mode
- check_if_running
- get_drvinfo
- get_link_ksettings
- set_link_ksettings
- nway_reset
- get_link
- get_msglevel
- set_msglevel
- netdev_ioctl
- netdev_close
- starfire_suspend
- starfire_resume
- starfire_remove_one
- starfire_init
- starfire_cleanup
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 #define DRV_NAME "starfire"
30 #define DRV_VERSION "2.1"
31 #define DRV_RELDATE "July 6, 2008"
32
33 #include <linux/interrupt.h>
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/pci.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/init.h>
40 #include <linux/delay.h>
41 #include <linux/crc32.h>
42 #include <linux/ethtool.h>
43 #include <linux/mii.h>
44 #include <linux/if_vlan.h>
45 #include <linux/mm.h>
46 #include <linux/firmware.h>
47 #include <asm/processor.h>
48 #include <linux/uaccess.h>
49 #include <asm/io.h>
50
51
52
53
54
55 #define HAS_BROKEN_FIRMWARE
56
57
58
59
60 #ifdef HAS_BROKEN_FIRMWARE
61 #define PADDING_MASK 3
62 #endif
63
64
65
66
67 #define ZEROCOPY
68
69 #if IS_ENABLED(CONFIG_VLAN_8021Q)
70 #define VLAN_SUPPORT
71 #endif
72
73
74
75
76
77 static int intr_latency;
78 static int small_frames;
79
80 static int debug = 1;
81 static int max_interrupt_work = 20;
82 static int mtu;
83
84
85 static const int multicast_filter_limit = 512;
86
87 static int enable_hw_cksum = 1;
88
89 #define PKT_BUF_SZ 1536
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
105 static int rx_copybreak = PKT_BUF_SZ;
106 #else
107 static int rx_copybreak ;
108 #endif
109
110
111 #ifdef __sparc__
112 #define DMA_BURST_SIZE 64
113 #else
114 #define DMA_BURST_SIZE 128
115 #endif
116
117
118
119
120
121
122 #define RX_RING_SIZE 256
123 #define TX_RING_SIZE 32
124
125 #define DONE_Q_SIZE 1024
126
127 #define QUEUE_ALIGN 256
128
129 #if RX_RING_SIZE > 256
130 #define RX_Q_ENTRIES Rx2048QEntries
131 #else
132 #define RX_Q_ENTRIES Rx256QEntries
133 #endif
134
135
136
137 #define TX_TIMEOUT (2 * HZ)
138
139 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
140
141 #define ADDR_64BITS
142 #define netdrv_addr_t __le64
143 #define cpu_to_dma(x) cpu_to_le64(x)
144 #define dma_to_cpu(x) le64_to_cpu(x)
145 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
146 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
147 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
148 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
149 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
150 #else
151 #define netdrv_addr_t __le32
152 #define cpu_to_dma(x) cpu_to_le32(x)
153 #define dma_to_cpu(x) le32_to_cpu(x)
154 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
155 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
156 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
157 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
158 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
159 #endif
160
161 #define skb_first_frag_len(skb) skb_headlen(skb)
162 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
163
164
165 #define FIRMWARE_RX "adaptec/starfire_rx.bin"
166 #define FIRMWARE_TX "adaptec/starfire_tx.bin"
167
168
169 static const char version[] =
170 KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
171 " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
172
173 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
174 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
175 MODULE_LICENSE("GPL");
176 MODULE_VERSION(DRV_VERSION);
177 MODULE_FIRMWARE(FIRMWARE_RX);
178 MODULE_FIRMWARE(FIRMWARE_TX);
179
180 module_param(max_interrupt_work, int, 0);
181 module_param(mtu, int, 0);
182 module_param(debug, int, 0);
183 module_param(rx_copybreak, int, 0);
184 module_param(intr_latency, int, 0);
185 module_param(small_frames, int, 0);
186 module_param(enable_hw_cksum, int, 0);
187 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
188 MODULE_PARM_DESC(mtu, "MTU (all boards)");
189 MODULE_PARM_DESC(debug, "Debug level (0-6)");
190 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
191 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
192 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
193 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282 enum chip_capability_flags {CanHaveMII=1, };
283
284 enum chipset {
285 CH_6915 = 0,
286 };
287
288 static const struct pci_device_id starfire_pci_tbl[] = {
289 { PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
290 { 0, }
291 };
292 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
293
294
295 static const struct chip_info {
296 const char *name;
297 int drv_flags;
298 } netdrv_tbl[] = {
299 { "Adaptec Starfire 6915", CanHaveMII },
300 };
301
302
303
304
305
306
307
308
309
310
311 enum register_offsets {
312 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
313 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
314 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
315 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
316 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094,
317 TxRingHiAddr=0x5009C,
318 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
319 TxThreshold=0x500B0,
320 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
321 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
322 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
323 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
324 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
325 TxMode=0x55000, VlanType=0x55064,
326 PerfFilterTable=0x56000, HashTable=0x56100,
327 TxGfpMem=0x58000, RxGfpMem=0x5a000,
328 };
329
330
331
332
333
334
335 enum intr_status_bits {
336 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
337 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
338 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
339 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
340 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
341 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
342 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
343 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
344 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
345 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
346 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
347 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
348 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
349 IntrTxGfp=0x02, IntrPCIPad=0x01,
350
351 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
352 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
353 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
354 };
355
356
357 enum rx_mode_bits {
358 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
359 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
360 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
361 WakeupOnGFP=0x0800,
362 };
363
364
365 enum tx_mode_bits {
366 MiiSoftReset=0x8000, MIILoopback=0x4000,
367 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
368 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
369 };
370
371
372 enum tx_ctrl_bits {
373 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
374 TxDescSpace128=0x30, TxDescSpace256=0x40,
375 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
376 TxDescType3=0x03, TxDescType4=0x04,
377 TxNoDMACompletion=0x08,
378 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
379 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
380 TxDMABurstSizeShift=8,
381 };
382
383
384 enum rx_ctrl_bits {
385 RxBufferLenShift=16, RxMinDescrThreshShift=0,
386 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
387 Rx2048QEntries=0x4000, Rx256QEntries=0,
388 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
389 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
390 RxDescSpace4=0x000, RxDescSpace8=0x100,
391 RxDescSpace16=0x200, RxDescSpace32=0x300,
392 RxDescSpace64=0x400, RxDescSpace128=0x500,
393 RxConsumerWrEn=0x80,
394 };
395
396
397 enum rx_dmactrl_bits {
398 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
399 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
400 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
401 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
402 RxChecksumRejectTCPOnly=0x01000000,
403 RxCompletionQ2Enable=0x800000,
404 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
405 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
406 RxDMAQ2NonIP=0x400000,
407 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
408 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
409 RxBurstSizeShift=0,
410 };
411
412
413 enum rx_compl_bits {
414 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
415 RxComplProducerWrEn=0x40,
416 RxComplType0=0x00, RxComplType1=0x10,
417 RxComplType2=0x20, RxComplType3=0x30,
418 RxComplThreshShift=0,
419 };
420
421
422 enum tx_compl_bits {
423 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
424 TxComplProducerWrEn=0x40,
425 TxComplIntrStatus=0x20,
426 CommonQueueMode=0x10,
427 TxComplThreshShift=0,
428 };
429
430
431 enum gen_ctrl_bits {
432 RxEnable=0x05, TxEnable=0x0a,
433 RxGFPEnable=0x10, TxGFPEnable=0x20,
434 };
435
436
437 enum intr_ctrl_bits {
438 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
439 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
440 IntrLatencyMask=0x1f,
441 };
442
443
444 struct starfire_rx_desc {
445 netdrv_addr_t rxaddr;
446 };
447 enum rx_desc_bits {
448 RxDescValid=1, RxDescEndRing=2,
449 };
450
451
452 struct short_rx_done_desc {
453 __le32 status;
454 };
455 struct basic_rx_done_desc {
456 __le32 status;
457 __le16 vlanid;
458 __le16 status2;
459 };
460 struct csum_rx_done_desc {
461 __le32 status;
462 __le16 csum;
463 __le16 status2;
464 };
465 struct full_rx_done_desc {
466 __le32 status;
467 __le16 status3;
468 __le16 status2;
469 __le16 vlanid;
470 __le16 csum;
471 __le32 timestamp;
472 };
473
474 #ifdef VLAN_SUPPORT
475 typedef struct full_rx_done_desc rx_done_desc;
476 #define RxComplType RxComplType3
477 #else
478 typedef struct csum_rx_done_desc rx_done_desc;
479 #define RxComplType RxComplType2
480 #endif
481
482 enum rx_done_bits {
483 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
484 };
485
486
487 struct starfire_tx_desc_1 {
488 __le32 status;
489 __le32 addr;
490 };
491
492
493 struct starfire_tx_desc_2 {
494 __le32 status;
495 __le32 reserved;
496 __le64 addr;
497 };
498
499 #ifdef ADDR_64BITS
500 typedef struct starfire_tx_desc_2 starfire_tx_desc;
501 #define TX_DESC_TYPE TxDescType2
502 #else
503 typedef struct starfire_tx_desc_1 starfire_tx_desc;
504 #define TX_DESC_TYPE TxDescType1
505 #endif
506 #define TX_DESC_SPACING TxDescSpaceUnlim
507
508 enum tx_desc_bits {
509 TxDescID=0xB0000000,
510 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
511 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
512 };
513 struct tx_done_desc {
514 __le32 status;
515 #if 0
516 __le32 intrstatus;
517 #endif
518 };
519
520 struct rx_ring_info {
521 struct sk_buff *skb;
522 dma_addr_t mapping;
523 };
524 struct tx_ring_info {
525 struct sk_buff *skb;
526 dma_addr_t mapping;
527 unsigned int used_slots;
528 };
529
530 #define PHY_CNT 2
531 struct netdev_private {
532
533 struct starfire_rx_desc *rx_ring;
534 starfire_tx_desc *tx_ring;
535 dma_addr_t rx_ring_dma;
536 dma_addr_t tx_ring_dma;
537
538 struct rx_ring_info rx_info[RX_RING_SIZE];
539 struct tx_ring_info tx_info[TX_RING_SIZE];
540
541 rx_done_desc *rx_done_q;
542 dma_addr_t rx_done_q_dma;
543 unsigned int rx_done;
544 struct tx_done_desc *tx_done_q;
545 dma_addr_t tx_done_q_dma;
546 unsigned int tx_done;
547 struct napi_struct napi;
548 struct net_device *dev;
549 struct pci_dev *pci_dev;
550 #ifdef VLAN_SUPPORT
551 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
552 #endif
553 void *queue_mem;
554 dma_addr_t queue_mem_dma;
555 size_t queue_mem_size;
556
557
558 spinlock_t lock;
559 unsigned int cur_rx, dirty_rx;
560 unsigned int cur_tx, dirty_tx, reap_tx;
561 unsigned int rx_buf_sz;
562
563 int speed100;
564 u32 tx_mode;
565 u32 intr_timer_ctrl;
566 u8 tx_threshold;
567
568 struct mii_if_info mii_if;
569 int phy_cnt;
570 unsigned char phys[PHY_CNT];
571 void __iomem *base;
572 };
573
574
575 static int mdio_read(struct net_device *dev, int phy_id, int location);
576 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
577 static int netdev_open(struct net_device *dev);
578 static void check_duplex(struct net_device *dev);
579 static void tx_timeout(struct net_device *dev);
580 static void init_ring(struct net_device *dev);
581 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
582 static irqreturn_t intr_handler(int irq, void *dev_instance);
583 static void netdev_error(struct net_device *dev, int intr_status);
584 static int __netdev_rx(struct net_device *dev, int *quota);
585 static int netdev_poll(struct napi_struct *napi, int budget);
586 static void refill_rx_ring(struct net_device *dev);
587 static void netdev_error(struct net_device *dev, int intr_status);
588 static void set_rx_mode(struct net_device *dev);
589 static struct net_device_stats *get_stats(struct net_device *dev);
590 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
591 static int netdev_close(struct net_device *dev);
592 static void netdev_media_change(struct net_device *dev);
593 static const struct ethtool_ops ethtool_ops;
594
595
596 #ifdef VLAN_SUPPORT
597 static int netdev_vlan_rx_add_vid(struct net_device *dev,
598 __be16 proto, u16 vid)
599 {
600 struct netdev_private *np = netdev_priv(dev);
601
602 spin_lock(&np->lock);
603 if (debug > 1)
604 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
605 set_bit(vid, np->active_vlans);
606 set_rx_mode(dev);
607 spin_unlock(&np->lock);
608
609 return 0;
610 }
611
612 static int netdev_vlan_rx_kill_vid(struct net_device *dev,
613 __be16 proto, u16 vid)
614 {
615 struct netdev_private *np = netdev_priv(dev);
616
617 spin_lock(&np->lock);
618 if (debug > 1)
619 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
620 clear_bit(vid, np->active_vlans);
621 set_rx_mode(dev);
622 spin_unlock(&np->lock);
623
624 return 0;
625 }
626 #endif
627
628
629 static const struct net_device_ops netdev_ops = {
630 .ndo_open = netdev_open,
631 .ndo_stop = netdev_close,
632 .ndo_start_xmit = start_tx,
633 .ndo_tx_timeout = tx_timeout,
634 .ndo_get_stats = get_stats,
635 .ndo_set_rx_mode = set_rx_mode,
636 .ndo_do_ioctl = netdev_ioctl,
637 .ndo_set_mac_address = eth_mac_addr,
638 .ndo_validate_addr = eth_validate_addr,
639 #ifdef VLAN_SUPPORT
640 .ndo_vlan_rx_add_vid = netdev_vlan_rx_add_vid,
641 .ndo_vlan_rx_kill_vid = netdev_vlan_rx_kill_vid,
642 #endif
643 };
644
645 static int starfire_init_one(struct pci_dev *pdev,
646 const struct pci_device_id *ent)
647 {
648 struct device *d = &pdev->dev;
649 struct netdev_private *np;
650 int i, irq, chip_idx = ent->driver_data;
651 struct net_device *dev;
652 long ioaddr;
653 void __iomem *base;
654 int drv_flags, io_size;
655 int boguscnt;
656
657
658 #ifndef MODULE
659 static int printed_version;
660 if (!printed_version++)
661 printk(version);
662 #endif
663
664 if (pci_enable_device (pdev))
665 return -EIO;
666
667 ioaddr = pci_resource_start(pdev, 0);
668 io_size = pci_resource_len(pdev, 0);
669 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
670 dev_err(d, "no PCI MEM resources, aborting\n");
671 return -ENODEV;
672 }
673
674 dev = alloc_etherdev(sizeof(*np));
675 if (!dev)
676 return -ENOMEM;
677
678 SET_NETDEV_DEV(dev, &pdev->dev);
679
680 irq = pdev->irq;
681
682 if (pci_request_regions (pdev, DRV_NAME)) {
683 dev_err(d, "cannot reserve PCI resources, aborting\n");
684 goto err_out_free_netdev;
685 }
686
687 base = ioremap(ioaddr, io_size);
688 if (!base) {
689 dev_err(d, "cannot remap %#x @ %#lx, aborting\n",
690 io_size, ioaddr);
691 goto err_out_free_res;
692 }
693
694 pci_set_master(pdev);
695
696
697 pci_try_set_mwi(pdev);
698
699 #ifdef ZEROCOPY
700
701 if (enable_hw_cksum)
702 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
703 #endif
704
705 #ifdef VLAN_SUPPORT
706 dev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
707 #endif
708 #ifdef ADDR_64BITS
709 dev->features |= NETIF_F_HIGHDMA;
710 #endif
711
712
713 for (i = 0; i < 6; i++)
714 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
715
716 #if ! defined(final_version)
717 if (debug > 4)
718 for (i = 0; i < 0x20; i++)
719 printk("%2.2x%s",
720 (unsigned int)readb(base + EEPROMCtrl + i),
721 i % 16 != 15 ? " " : "\n");
722 #endif
723
724
725 writel(MiiSoftReset, base + TxMode);
726 udelay(1000);
727 writel(0, base + TxMode);
728
729
730 writel(1, base + PCIDeviceConfig);
731 boguscnt = 1000;
732 while (--boguscnt > 0) {
733 udelay(10);
734 if ((readl(base + PCIDeviceConfig) & 1) == 0)
735 break;
736 }
737 if (boguscnt == 0)
738 printk("%s: chipset reset never completed!\n", dev->name);
739
740 udelay(1000);
741
742 np = netdev_priv(dev);
743 np->dev = dev;
744 np->base = base;
745 spin_lock_init(&np->lock);
746 pci_set_drvdata(pdev, dev);
747
748 np->pci_dev = pdev;
749
750 np->mii_if.dev = dev;
751 np->mii_if.mdio_read = mdio_read;
752 np->mii_if.mdio_write = mdio_write;
753 np->mii_if.phy_id_mask = 0x1f;
754 np->mii_if.reg_num_mask = 0x1f;
755
756 drv_flags = netdrv_tbl[chip_idx].drv_flags;
757
758 np->speed100 = 1;
759
760
761 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
762 Timer10X | EnableIntrMasking;
763
764 if (small_frames > 0) {
765 np->intr_timer_ctrl |= SmallFrameBypass;
766 switch (small_frames) {
767 case 1 ... 64:
768 np->intr_timer_ctrl |= SmallFrame64;
769 break;
770 case 65 ... 128:
771 np->intr_timer_ctrl |= SmallFrame128;
772 break;
773 case 129 ... 256:
774 np->intr_timer_ctrl |= SmallFrame256;
775 break;
776 default:
777 np->intr_timer_ctrl |= SmallFrame512;
778 if (small_frames > 512)
779 printk("Adjusting small_frames down to 512\n");
780 break;
781 }
782 }
783
784 dev->netdev_ops = &netdev_ops;
785 dev->watchdog_timeo = TX_TIMEOUT;
786 dev->ethtool_ops = ðtool_ops;
787
788 netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
789
790 if (mtu)
791 dev->mtu = mtu;
792
793 if (register_netdev(dev))
794 goto err_out_cleardev;
795
796 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
797 dev->name, netdrv_tbl[chip_idx].name, base,
798 dev->dev_addr, irq);
799
800 if (drv_flags & CanHaveMII) {
801 int phy, phy_idx = 0;
802 int mii_status;
803 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
804 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
805 msleep(100);
806 boguscnt = 1000;
807 while (--boguscnt > 0)
808 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
809 break;
810 if (boguscnt == 0) {
811 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
812 continue;
813 }
814 mii_status = mdio_read(dev, phy, MII_BMSR);
815 if (mii_status != 0) {
816 np->phys[phy_idx++] = phy;
817 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
818 printk(KERN_INFO "%s: MII PHY found at address %d, status "
819 "%#4.4x advertising %#4.4x.\n",
820 dev->name, phy, mii_status, np->mii_if.advertising);
821
822 break;
823 }
824 }
825 np->phy_cnt = phy_idx;
826 if (np->phy_cnt > 0)
827 np->mii_if.phy_id = np->phys[0];
828 else
829 memset(&np->mii_if, 0, sizeof(np->mii_if));
830 }
831
832 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
833 dev->name, enable_hw_cksum ? "enabled" : "disabled");
834 return 0;
835
836 err_out_cleardev:
837 iounmap(base);
838 err_out_free_res:
839 pci_release_regions (pdev);
840 err_out_free_netdev:
841 free_netdev(dev);
842 return -ENODEV;
843 }
844
845
846
847 static int mdio_read(struct net_device *dev, int phy_id, int location)
848 {
849 struct netdev_private *np = netdev_priv(dev);
850 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
851 int result, boguscnt=1000;
852
853 do {
854 result = readl(mdio_addr);
855 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
856 if (boguscnt == 0)
857 return 0;
858 if ((result & 0xffff) == 0xffff)
859 return 0;
860 return result & 0xffff;
861 }
862
863
864 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
865 {
866 struct netdev_private *np = netdev_priv(dev);
867 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
868 writel(value, mdio_addr);
869
870 }
871
872
873 static int netdev_open(struct net_device *dev)
874 {
875 const struct firmware *fw_rx, *fw_tx;
876 const __be32 *fw_rx_data, *fw_tx_data;
877 struct netdev_private *np = netdev_priv(dev);
878 void __iomem *ioaddr = np->base;
879 const int irq = np->pci_dev->irq;
880 int i, retval;
881 size_t tx_size, rx_size;
882 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
883
884
885
886 retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
887 if (retval)
888 return retval;
889
890
891 writel(0, ioaddr + GenCtrl);
892 writel(1, ioaddr + PCIDeviceConfig);
893 if (debug > 1)
894 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
895 dev->name, irq);
896
897
898 if (!np->queue_mem) {
899 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
900 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
901 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
902 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
903 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
904 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
905 if (np->queue_mem == NULL) {
906 free_irq(irq, dev);
907 return -ENOMEM;
908 }
909
910 np->tx_done_q = np->queue_mem;
911 np->tx_done_q_dma = np->queue_mem_dma;
912 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
913 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
914 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
915 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
916 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
917 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
918 }
919
920
921 netif_carrier_off(dev);
922 init_ring(dev);
923
924 writel((np->rx_buf_sz << RxBufferLenShift) |
925 (0 << RxMinDescrThreshShift) |
926 RxPrefetchMode | RxVariableQ |
927 RX_Q_ENTRIES |
928 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
929 RxDescSpace4,
930 ioaddr + RxDescQCtrl);
931
932
933 writel(RxChecksumIgnore |
934 (0 << RxEarlyIntThreshShift) |
935 (6 << RxHighPrioThreshShift) |
936 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
937 ioaddr + RxDMACtrl);
938
939
940 writel((2 << TxHiPriFIFOThreshShift) |
941 (0 << TxPadLenShift) |
942 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
943 TX_DESC_Q_ADDR_SIZE |
944 TX_DESC_SPACING | TX_DESC_TYPE,
945 ioaddr + TxDescCtrl);
946
947 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
948 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
949 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
950 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
951 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
952
953 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
954 writel(np->rx_done_q_dma |
955 RxComplType |
956 (0 << RxComplThreshShift),
957 ioaddr + RxCompletionAddr);
958
959 if (debug > 1)
960 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
961
962
963 for (i = 0; i < 6; i++)
964 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
965
966
967 writew(0, ioaddr + PerfFilterTable);
968 writew(0, ioaddr + PerfFilterTable + 4);
969 writew(0, ioaddr + PerfFilterTable + 8);
970 for (i = 1; i < 16; i++) {
971 __be16 *eaddrs = (__be16 *)dev->dev_addr;
972 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
973 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
974 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
975 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
976 }
977
978
979
980 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable;
981 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
982 udelay(1000);
983 writel(np->tx_mode, ioaddr + TxMode);
984 np->tx_threshold = 4;
985 writel(np->tx_threshold, ioaddr + TxThreshold);
986
987 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
988
989 napi_enable(&np->napi);
990
991 netif_start_queue(dev);
992
993 if (debug > 1)
994 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
995 set_rx_mode(dev);
996
997 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
998 check_duplex(dev);
999
1000
1001 writel(0x0f00ff00, ioaddr + GPIOCtrl);
1002
1003
1004 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1005 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1006 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1007 ioaddr + IntrEnable);
1008
1009 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1010 ioaddr + PCIDeviceConfig);
1011
1012 #ifdef VLAN_SUPPORT
1013
1014 writel(ETH_P_8021Q, ioaddr + VlanType);
1015 #endif
1016
1017 retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1018 if (retval) {
1019 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1020 FIRMWARE_RX);
1021 goto out_init;
1022 }
1023 if (fw_rx->size % 4) {
1024 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1025 fw_rx->size, FIRMWARE_RX);
1026 retval = -EINVAL;
1027 goto out_rx;
1028 }
1029 retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1030 if (retval) {
1031 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1032 FIRMWARE_TX);
1033 goto out_rx;
1034 }
1035 if (fw_tx->size % 4) {
1036 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1037 fw_tx->size, FIRMWARE_TX);
1038 retval = -EINVAL;
1039 goto out_tx;
1040 }
1041 fw_rx_data = (const __be32 *)&fw_rx->data[0];
1042 fw_tx_data = (const __be32 *)&fw_tx->data[0];
1043 rx_size = fw_rx->size / 4;
1044 tx_size = fw_tx->size / 4;
1045
1046
1047 for (i = 0; i < rx_size; i++)
1048 writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1049 for (i = 0; i < tx_size; i++)
1050 writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1051 if (enable_hw_cksum)
1052
1053 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1054 else
1055
1056 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1057
1058 if (debug > 1)
1059 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1060 dev->name);
1061
1062 out_tx:
1063 release_firmware(fw_tx);
1064 out_rx:
1065 release_firmware(fw_rx);
1066 out_init:
1067 if (retval)
1068 netdev_close(dev);
1069 return retval;
1070 }
1071
1072
1073 static void check_duplex(struct net_device *dev)
1074 {
1075 struct netdev_private *np = netdev_priv(dev);
1076 u16 reg0;
1077 int silly_count = 1000;
1078
1079 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1080 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1081 udelay(500);
1082 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1083 ;
1084 if (!silly_count) {
1085 printk("%s: MII reset failed!\n", dev->name);
1086 return;
1087 }
1088
1089 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1090
1091 if (!np->mii_if.force_media) {
1092 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1093 } else {
1094 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1095 if (np->speed100)
1096 reg0 |= BMCR_SPEED100;
1097 if (np->mii_if.full_duplex)
1098 reg0 |= BMCR_FULLDPLX;
1099 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1100 dev->name,
1101 np->speed100 ? "100" : "10",
1102 np->mii_if.full_duplex ? "full" : "half");
1103 }
1104 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1105 }
1106
1107
1108 static void tx_timeout(struct net_device *dev)
1109 {
1110 struct netdev_private *np = netdev_priv(dev);
1111 void __iomem *ioaddr = np->base;
1112 int old_debug;
1113
1114 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1115 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1116
1117
1118
1119
1120
1121
1122
1123 old_debug = debug;
1124 debug = 2;
1125 netdev_close(dev);
1126 netdev_open(dev);
1127 debug = old_debug;
1128
1129
1130
1131 netif_trans_update(dev);
1132 dev->stats.tx_errors++;
1133 netif_wake_queue(dev);
1134 }
1135
1136
1137
1138 static void init_ring(struct net_device *dev)
1139 {
1140 struct netdev_private *np = netdev_priv(dev);
1141 int i;
1142
1143 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1144 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1145
1146 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1147
1148
1149 for (i = 0; i < RX_RING_SIZE; i++) {
1150 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1151 np->rx_info[i].skb = skb;
1152 if (skb == NULL)
1153 break;
1154 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1155 if (pci_dma_mapping_error(np->pci_dev,
1156 np->rx_info[i].mapping)) {
1157 dev_kfree_skb(skb);
1158 np->rx_info[i].skb = NULL;
1159 break;
1160 }
1161
1162 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1163 }
1164 writew(i - 1, np->base + RxDescQIdx);
1165 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1166
1167
1168 for ( ; i < RX_RING_SIZE; i++) {
1169 np->rx_ring[i].rxaddr = 0;
1170 np->rx_info[i].skb = NULL;
1171 np->rx_info[i].mapping = 0;
1172 }
1173
1174 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1175
1176
1177 for (i = 0; i < DONE_Q_SIZE; i++) {
1178 np->rx_done_q[i].status = 0;
1179 np->tx_done_q[i].status = 0;
1180 }
1181
1182 for (i = 0; i < TX_RING_SIZE; i++)
1183 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1184 }
1185
1186
1187 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1188 {
1189 struct netdev_private *np = netdev_priv(dev);
1190 unsigned int entry;
1191 unsigned int prev_tx;
1192 u32 status;
1193 int i, j;
1194
1195
1196
1197
1198
1199 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1200 netif_stop_queue(dev);
1201 return NETDEV_TX_BUSY;
1202 }
1203
1204 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1205 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1206 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1207 return NETDEV_TX_OK;
1208 }
1209 #endif
1210
1211 prev_tx = np->cur_tx;
1212 entry = np->cur_tx % TX_RING_SIZE;
1213 for (i = 0; i < skb_num_frags(skb); i++) {
1214 int wrap_ring = 0;
1215 status = TxDescID;
1216
1217 if (i == 0) {
1218 np->tx_info[entry].skb = skb;
1219 status |= TxCRCEn;
1220 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1221 status |= TxRingWrap;
1222 wrap_ring = 1;
1223 }
1224 if (np->reap_tx) {
1225 status |= TxDescIntr;
1226 np->reap_tx = 0;
1227 }
1228 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1229 status |= TxCalTCP;
1230 dev->stats.tx_compressed++;
1231 }
1232 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1233
1234 np->tx_info[entry].mapping =
1235 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1236 } else {
1237 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1238 status |= skb_frag_size(this_frag);
1239 np->tx_info[entry].mapping =
1240 pci_map_single(np->pci_dev,
1241 skb_frag_address(this_frag),
1242 skb_frag_size(this_frag),
1243 PCI_DMA_TODEVICE);
1244 }
1245 if (pci_dma_mapping_error(np->pci_dev,
1246 np->tx_info[entry].mapping)) {
1247 dev->stats.tx_dropped++;
1248 goto err_out;
1249 }
1250
1251 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1252 np->tx_ring[entry].status = cpu_to_le32(status);
1253 if (debug > 3)
1254 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1255 dev->name, np->cur_tx, np->dirty_tx,
1256 entry, status);
1257 if (wrap_ring) {
1258 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1259 np->cur_tx += np->tx_info[entry].used_slots;
1260 entry = 0;
1261 } else {
1262 np->tx_info[entry].used_slots = 1;
1263 np->cur_tx += np->tx_info[entry].used_slots;
1264 entry++;
1265 }
1266
1267 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1268 np->reap_tx = 1;
1269 }
1270
1271
1272
1273
1274 wmb();
1275
1276
1277 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1278
1279
1280 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1281 netif_stop_queue(dev);
1282
1283 return NETDEV_TX_OK;
1284
1285 err_out:
1286 entry = prev_tx % TX_RING_SIZE;
1287 np->tx_info[entry].skb = NULL;
1288 if (i > 0) {
1289 pci_unmap_single(np->pci_dev,
1290 np->tx_info[entry].mapping,
1291 skb_first_frag_len(skb),
1292 PCI_DMA_TODEVICE);
1293 np->tx_info[entry].mapping = 0;
1294 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1295 for (j = 1; j < i; j++) {
1296 pci_unmap_single(np->pci_dev,
1297 np->tx_info[entry].mapping,
1298 skb_frag_size(
1299 &skb_shinfo(skb)->frags[j-1]),
1300 PCI_DMA_TODEVICE);
1301 entry++;
1302 }
1303 }
1304 dev_kfree_skb_any(skb);
1305 np->cur_tx = prev_tx;
1306 return NETDEV_TX_OK;
1307 }
1308
1309
1310
1311 static irqreturn_t intr_handler(int irq, void *dev_instance)
1312 {
1313 struct net_device *dev = dev_instance;
1314 struct netdev_private *np = netdev_priv(dev);
1315 void __iomem *ioaddr = np->base;
1316 int boguscnt = max_interrupt_work;
1317 int consumer;
1318 int tx_status;
1319 int handled = 0;
1320
1321 do {
1322 u32 intr_status = readl(ioaddr + IntrClear);
1323
1324 if (debug > 4)
1325 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1326 dev->name, intr_status);
1327
1328 if (intr_status == 0 || intr_status == (u32) -1)
1329 break;
1330
1331 handled = 1;
1332
1333 if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1334 u32 enable;
1335
1336 if (likely(napi_schedule_prep(&np->napi))) {
1337 __napi_schedule(&np->napi);
1338 enable = readl(ioaddr + IntrEnable);
1339 enable &= ~(IntrRxDone | IntrRxEmpty);
1340 writel(enable, ioaddr + IntrEnable);
1341
1342 readl(ioaddr + IntrEnable);
1343 } else {
1344
1345 enable = readl(ioaddr + IntrEnable);
1346 if (enable & (IntrRxDone | IntrRxEmpty)) {
1347 printk(KERN_INFO
1348 "%s: interrupt while in poll!\n",
1349 dev->name);
1350 enable &= ~(IntrRxDone | IntrRxEmpty);
1351 writel(enable, ioaddr + IntrEnable);
1352 }
1353 }
1354 }
1355
1356
1357
1358
1359 consumer = readl(ioaddr + TxConsumerIdx);
1360 if (debug > 3)
1361 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1362 dev->name, consumer);
1363
1364 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1365 if (debug > 3)
1366 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1367 dev->name, np->dirty_tx, np->tx_done, tx_status);
1368 if ((tx_status & 0xe0000000) == 0xa0000000) {
1369 dev->stats.tx_packets++;
1370 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1371 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1372 struct sk_buff *skb = np->tx_info[entry].skb;
1373 np->tx_info[entry].skb = NULL;
1374 pci_unmap_single(np->pci_dev,
1375 np->tx_info[entry].mapping,
1376 skb_first_frag_len(skb),
1377 PCI_DMA_TODEVICE);
1378 np->tx_info[entry].mapping = 0;
1379 np->dirty_tx += np->tx_info[entry].used_slots;
1380 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1381 {
1382 int i;
1383 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1384 pci_unmap_single(np->pci_dev,
1385 np->tx_info[entry].mapping,
1386 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1387 PCI_DMA_TODEVICE);
1388 np->dirty_tx++;
1389 entry++;
1390 }
1391 }
1392
1393 dev_consume_skb_irq(skb);
1394 }
1395 np->tx_done_q[np->tx_done].status = 0;
1396 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1397 }
1398 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1399
1400 if (netif_queue_stopped(dev) &&
1401 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1402
1403 netif_wake_queue(dev);
1404 }
1405
1406
1407 if (intr_status & IntrStatsMax)
1408 get_stats(dev);
1409
1410
1411 if (intr_status & IntrLinkChange)
1412 netdev_media_change(dev);
1413
1414
1415 if (intr_status & IntrAbnormalSummary)
1416 netdev_error(dev, intr_status);
1417
1418 if (--boguscnt < 0) {
1419 if (debug > 1)
1420 printk(KERN_WARNING "%s: Too much work at interrupt, "
1421 "status=%#8.8x.\n",
1422 dev->name, intr_status);
1423 break;
1424 }
1425 } while (1);
1426
1427 if (debug > 4)
1428 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1429 dev->name, (int) readl(ioaddr + IntrStatus));
1430 return IRQ_RETVAL(handled);
1431 }
1432
1433
1434
1435
1436
1437
1438 static int __netdev_rx(struct net_device *dev, int *quota)
1439 {
1440 struct netdev_private *np = netdev_priv(dev);
1441 u32 desc_status;
1442 int retcode = 0;
1443
1444
1445 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1446 struct sk_buff *skb;
1447 u16 pkt_len;
1448 int entry;
1449 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1450
1451 if (debug > 4)
1452 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1453 if (!(desc_status & RxOK)) {
1454
1455 if (debug > 2)
1456 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
1457 dev->stats.rx_errors++;
1458 if (desc_status & RxFIFOErr)
1459 dev->stats.rx_fifo_errors++;
1460 goto next_rx;
1461 }
1462
1463 if (*quota <= 0) {
1464 retcode = 1;
1465 goto out;
1466 }
1467 (*quota)--;
1468
1469 pkt_len = desc_status;
1470 entry = (desc_status >> 16) & 0x7ff;
1471
1472 if (debug > 4)
1473 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1474
1475
1476 if (pkt_len < rx_copybreak &&
1477 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1478 skb_reserve(skb, 2);
1479 pci_dma_sync_single_for_cpu(np->pci_dev,
1480 np->rx_info[entry].mapping,
1481 pkt_len, PCI_DMA_FROMDEVICE);
1482 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1483 pci_dma_sync_single_for_device(np->pci_dev,
1484 np->rx_info[entry].mapping,
1485 pkt_len, PCI_DMA_FROMDEVICE);
1486 skb_put(skb, pkt_len);
1487 } else {
1488 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1489 skb = np->rx_info[entry].skb;
1490 skb_put(skb, pkt_len);
1491 np->rx_info[entry].skb = NULL;
1492 np->rx_info[entry].mapping = 0;
1493 }
1494 #ifndef final_version
1495
1496 if (debug > 5) {
1497 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n",
1498 skb->data, skb->data + 6,
1499 skb->data[12], skb->data[13]);
1500 }
1501 #endif
1502
1503 skb->protocol = eth_type_trans(skb, dev);
1504 #ifdef VLAN_SUPPORT
1505 if (debug > 4)
1506 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1507 #endif
1508 if (le16_to_cpu(desc->status2) & 0x0100) {
1509 skb->ip_summed = CHECKSUM_UNNECESSARY;
1510 dev->stats.rx_compressed++;
1511 }
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521 else if (le16_to_cpu(desc->status2) & 0x0040) {
1522 skb->ip_summed = CHECKSUM_COMPLETE;
1523 skb->csum = le16_to_cpu(desc->csum);
1524 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1525 }
1526 #ifdef VLAN_SUPPORT
1527 if (le16_to_cpu(desc->status2) & 0x0200) {
1528 u16 vlid = le16_to_cpu(desc->vlanid);
1529
1530 if (debug > 4) {
1531 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n",
1532 vlid);
1533 }
1534 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlid);
1535 }
1536 #endif
1537 netif_receive_skb(skb);
1538 dev->stats.rx_packets++;
1539
1540 next_rx:
1541 np->cur_rx++;
1542 desc->status = 0;
1543 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1544 }
1545
1546 if (*quota == 0) {
1547 retcode = 1;
1548 goto out;
1549 }
1550 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1551
1552 out:
1553 refill_rx_ring(dev);
1554 if (debug > 5)
1555 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1556 retcode, np->rx_done, desc_status);
1557 return retcode;
1558 }
1559
1560 static int netdev_poll(struct napi_struct *napi, int budget)
1561 {
1562 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1563 struct net_device *dev = np->dev;
1564 u32 intr_status;
1565 void __iomem *ioaddr = np->base;
1566 int quota = budget;
1567
1568 do {
1569 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1570
1571 if (__netdev_rx(dev, "a))
1572 goto out;
1573
1574 intr_status = readl(ioaddr + IntrStatus);
1575 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1576
1577 napi_complete(napi);
1578 intr_status = readl(ioaddr + IntrEnable);
1579 intr_status |= IntrRxDone | IntrRxEmpty;
1580 writel(intr_status, ioaddr + IntrEnable);
1581
1582 out:
1583 if (debug > 5)
1584 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n",
1585 budget - quota);
1586
1587
1588 return budget - quota;
1589 }
1590
1591 static void refill_rx_ring(struct net_device *dev)
1592 {
1593 struct netdev_private *np = netdev_priv(dev);
1594 struct sk_buff *skb;
1595 int entry = -1;
1596
1597
1598 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1599 entry = np->dirty_rx % RX_RING_SIZE;
1600 if (np->rx_info[entry].skb == NULL) {
1601 skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1602 np->rx_info[entry].skb = skb;
1603 if (skb == NULL)
1604 break;
1605 np->rx_info[entry].mapping =
1606 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1607 if (pci_dma_mapping_error(np->pci_dev,
1608 np->rx_info[entry].mapping)) {
1609 dev_kfree_skb(skb);
1610 np->rx_info[entry].skb = NULL;
1611 break;
1612 }
1613 np->rx_ring[entry].rxaddr =
1614 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1615 }
1616 if (entry == RX_RING_SIZE - 1)
1617 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1618 }
1619 if (entry >= 0)
1620 writew(entry, np->base + RxDescQIdx);
1621 }
1622
1623
1624 static void netdev_media_change(struct net_device *dev)
1625 {
1626 struct netdev_private *np = netdev_priv(dev);
1627 void __iomem *ioaddr = np->base;
1628 u16 reg0, reg1, reg4, reg5;
1629 u32 new_tx_mode;
1630 u32 new_intr_timer_ctrl;
1631
1632
1633 mdio_read(dev, np->phys[0], MII_BMCR);
1634 mdio_read(dev, np->phys[0], MII_BMSR);
1635
1636 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1637 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1638
1639 if (reg1 & BMSR_LSTATUS) {
1640
1641 if (reg0 & BMCR_ANENABLE) {
1642
1643 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1644 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1645 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1646 np->speed100 = 1;
1647 np->mii_if.full_duplex = 1;
1648 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1649 np->speed100 = 1;
1650 np->mii_if.full_duplex = 0;
1651 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1652 np->speed100 = 0;
1653 np->mii_if.full_duplex = 1;
1654 } else {
1655 np->speed100 = 0;
1656 np->mii_if.full_duplex = 0;
1657 }
1658 } else {
1659
1660 if (reg0 & BMCR_SPEED100)
1661 np->speed100 = 1;
1662 else
1663 np->speed100 = 0;
1664 if (reg0 & BMCR_FULLDPLX)
1665 np->mii_if.full_duplex = 1;
1666 else
1667 np->mii_if.full_duplex = 0;
1668 }
1669 netif_carrier_on(dev);
1670 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1671 dev->name,
1672 np->speed100 ? "100" : "10",
1673 np->mii_if.full_duplex ? "full" : "half");
1674
1675 new_tx_mode = np->tx_mode & ~FullDuplex;
1676 if (np->mii_if.full_duplex)
1677 new_tx_mode |= FullDuplex;
1678 if (np->tx_mode != new_tx_mode) {
1679 np->tx_mode = new_tx_mode;
1680 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1681 udelay(1000);
1682 writel(np->tx_mode, ioaddr + TxMode);
1683 }
1684
1685 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1686 if (np->speed100)
1687 new_intr_timer_ctrl |= Timer10X;
1688 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1689 np->intr_timer_ctrl = new_intr_timer_ctrl;
1690 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1691 }
1692 } else {
1693 netif_carrier_off(dev);
1694 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1695 }
1696 }
1697
1698
1699 static void netdev_error(struct net_device *dev, int intr_status)
1700 {
1701 struct netdev_private *np = netdev_priv(dev);
1702
1703
1704 if (intr_status & IntrTxDataLow) {
1705 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1706 writel(++np->tx_threshold, np->base + TxThreshold);
1707 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1708 dev->name, np->tx_threshold * 16);
1709 } else
1710 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1711 }
1712 if (intr_status & IntrRxGFPDead) {
1713 dev->stats.rx_fifo_errors++;
1714 dev->stats.rx_errors++;
1715 }
1716 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1717 dev->stats.tx_fifo_errors++;
1718 dev->stats.tx_errors++;
1719 }
1720 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1721 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1722 dev->name, intr_status);
1723 }
1724
1725
1726 static struct net_device_stats *get_stats(struct net_device *dev)
1727 {
1728 struct netdev_private *np = netdev_priv(dev);
1729 void __iomem *ioaddr = np->base;
1730
1731
1732 dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1733 dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1734 dev->stats.tx_packets = readl(ioaddr + 0x57000);
1735 dev->stats.tx_aborted_errors =
1736 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1737 dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1738 dev->stats.collisions =
1739 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1740
1741
1742 dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1743 writew(0, ioaddr + RxDMAStatus);
1744 dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1745 dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1746 dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1747 dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1748
1749 return &dev->stats;
1750 }
1751
1752 #ifdef VLAN_SUPPORT
1753 static u32 set_vlan_mode(struct netdev_private *np)
1754 {
1755 u32 ret = VlanMode;
1756 u16 vid;
1757 void __iomem *filter_addr = np->base + HashTable + 8;
1758 int vlan_count = 0;
1759
1760 for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1761 if (vlan_count == 32)
1762 break;
1763 writew(vid, filter_addr);
1764 filter_addr += 16;
1765 vlan_count++;
1766 }
1767 if (vlan_count == 32) {
1768 ret |= PerfectFilterVlan;
1769 while (vlan_count < 32) {
1770 writew(0, filter_addr);
1771 filter_addr += 16;
1772 vlan_count++;
1773 }
1774 }
1775 return ret;
1776 }
1777 #endif
1778
1779 static void set_rx_mode(struct net_device *dev)
1780 {
1781 struct netdev_private *np = netdev_priv(dev);
1782 void __iomem *ioaddr = np->base;
1783 u32 rx_mode = MinVLANPrio;
1784 struct netdev_hw_addr *ha;
1785 int i;
1786
1787 #ifdef VLAN_SUPPORT
1788 rx_mode |= set_vlan_mode(np);
1789 #endif
1790
1791 if (dev->flags & IFF_PROMISC) {
1792 rx_mode |= AcceptAll;
1793 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1794 (dev->flags & IFF_ALLMULTI)) {
1795
1796 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1797 } else if (netdev_mc_count(dev) <= 14) {
1798
1799 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1800 __be16 *eaddrs;
1801 netdev_for_each_mc_addr(ha, dev) {
1802 eaddrs = (__be16 *) ha->addr;
1803 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1804 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1805 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1806 }
1807 eaddrs = (__be16 *)dev->dev_addr;
1808 i = netdev_mc_count(dev) + 2;
1809 while (i++ < 16) {
1810 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1811 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1812 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1813 }
1814 rx_mode |= AcceptBroadcast|PerfectFilter;
1815 } else {
1816
1817 void __iomem *filter_addr;
1818 __be16 *eaddrs;
1819 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long))));
1820
1821 memset(mc_filter, 0, sizeof(mc_filter));
1822 netdev_for_each_mc_addr(ha, dev) {
1823
1824
1825 int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1826 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1827
1828 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1829 }
1830
1831 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1832 eaddrs = (__be16 *)dev->dev_addr;
1833 for (i = 2; i < 16; i++) {
1834 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1835 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1836 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1837 }
1838 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1839 writew(mc_filter[i], filter_addr);
1840 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1841 }
1842 writel(rx_mode, ioaddr + RxFilterMode);
1843 }
1844
1845 static int check_if_running(struct net_device *dev)
1846 {
1847 if (!netif_running(dev))
1848 return -EINVAL;
1849 return 0;
1850 }
1851
1852 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1853 {
1854 struct netdev_private *np = netdev_priv(dev);
1855 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1856 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1857 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1858 }
1859
1860 static int get_link_ksettings(struct net_device *dev,
1861 struct ethtool_link_ksettings *cmd)
1862 {
1863 struct netdev_private *np = netdev_priv(dev);
1864 spin_lock_irq(&np->lock);
1865 mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1866 spin_unlock_irq(&np->lock);
1867 return 0;
1868 }
1869
1870 static int set_link_ksettings(struct net_device *dev,
1871 const struct ethtool_link_ksettings *cmd)
1872 {
1873 struct netdev_private *np = netdev_priv(dev);
1874 int res;
1875 spin_lock_irq(&np->lock);
1876 res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1877 spin_unlock_irq(&np->lock);
1878 check_duplex(dev);
1879 return res;
1880 }
1881
1882 static int nway_reset(struct net_device *dev)
1883 {
1884 struct netdev_private *np = netdev_priv(dev);
1885 return mii_nway_restart(&np->mii_if);
1886 }
1887
1888 static u32 get_link(struct net_device *dev)
1889 {
1890 struct netdev_private *np = netdev_priv(dev);
1891 return mii_link_ok(&np->mii_if);
1892 }
1893
1894 static u32 get_msglevel(struct net_device *dev)
1895 {
1896 return debug;
1897 }
1898
1899 static void set_msglevel(struct net_device *dev, u32 val)
1900 {
1901 debug = val;
1902 }
1903
1904 static const struct ethtool_ops ethtool_ops = {
1905 .begin = check_if_running,
1906 .get_drvinfo = get_drvinfo,
1907 .nway_reset = nway_reset,
1908 .get_link = get_link,
1909 .get_msglevel = get_msglevel,
1910 .set_msglevel = set_msglevel,
1911 .get_link_ksettings = get_link_ksettings,
1912 .set_link_ksettings = set_link_ksettings,
1913 };
1914
1915 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1916 {
1917 struct netdev_private *np = netdev_priv(dev);
1918 struct mii_ioctl_data *data = if_mii(rq);
1919 int rc;
1920
1921 if (!netif_running(dev))
1922 return -EINVAL;
1923
1924 spin_lock_irq(&np->lock);
1925 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1926 spin_unlock_irq(&np->lock);
1927
1928 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1929 check_duplex(dev);
1930
1931 return rc;
1932 }
1933
1934 static int netdev_close(struct net_device *dev)
1935 {
1936 struct netdev_private *np = netdev_priv(dev);
1937 void __iomem *ioaddr = np->base;
1938 int i;
1939
1940 netif_stop_queue(dev);
1941
1942 napi_disable(&np->napi);
1943
1944 if (debug > 1) {
1945 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1946 dev->name, (int) readl(ioaddr + IntrStatus));
1947 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1948 dev->name, np->cur_tx, np->dirty_tx,
1949 np->cur_rx, np->dirty_rx);
1950 }
1951
1952
1953 writel(0, ioaddr + IntrEnable);
1954
1955
1956 writel(0, ioaddr + GenCtrl);
1957 readl(ioaddr + GenCtrl);
1958
1959 if (debug > 5) {
1960 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1961 (long long) np->tx_ring_dma);
1962 for (i = 0; i < 8 ; i++)
1963 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1964 i, le32_to_cpu(np->tx_ring[i].status),
1965 (long long) dma_to_cpu(np->tx_ring[i].addr),
1966 le32_to_cpu(np->tx_done_q[i].status));
1967 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1968 (long long) np->rx_ring_dma, np->rx_done_q);
1969 if (np->rx_done_q)
1970 for (i = 0; i < 8 ; i++) {
1971 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1972 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1973 }
1974 }
1975
1976 free_irq(np->pci_dev->irq, dev);
1977
1978
1979 for (i = 0; i < RX_RING_SIZE; i++) {
1980 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0);
1981 if (np->rx_info[i].skb != NULL) {
1982 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1983 dev_kfree_skb(np->rx_info[i].skb);
1984 }
1985 np->rx_info[i].skb = NULL;
1986 np->rx_info[i].mapping = 0;
1987 }
1988 for (i = 0; i < TX_RING_SIZE; i++) {
1989 struct sk_buff *skb = np->tx_info[i].skb;
1990 if (skb == NULL)
1991 continue;
1992 pci_unmap_single(np->pci_dev,
1993 np->tx_info[i].mapping,
1994 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1995 np->tx_info[i].mapping = 0;
1996 dev_kfree_skb(skb);
1997 np->tx_info[i].skb = NULL;
1998 }
1999
2000 return 0;
2001 }
2002
2003 #ifdef CONFIG_PM
2004 static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
2005 {
2006 struct net_device *dev = pci_get_drvdata(pdev);
2007
2008 if (netif_running(dev)) {
2009 netif_device_detach(dev);
2010 netdev_close(dev);
2011 }
2012
2013 pci_save_state(pdev);
2014 pci_set_power_state(pdev, pci_choose_state(pdev,state));
2015
2016 return 0;
2017 }
2018
2019 static int starfire_resume(struct pci_dev *pdev)
2020 {
2021 struct net_device *dev = pci_get_drvdata(pdev);
2022
2023 pci_set_power_state(pdev, PCI_D0);
2024 pci_restore_state(pdev);
2025
2026 if (netif_running(dev)) {
2027 netdev_open(dev);
2028 netif_device_attach(dev);
2029 }
2030
2031 return 0;
2032 }
2033 #endif
2034
2035
2036 static void starfire_remove_one(struct pci_dev *pdev)
2037 {
2038 struct net_device *dev = pci_get_drvdata(pdev);
2039 struct netdev_private *np = netdev_priv(dev);
2040
2041 BUG_ON(!dev);
2042
2043 unregister_netdev(dev);
2044
2045 if (np->queue_mem)
2046 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2047
2048
2049
2050 pci_set_power_state(pdev, PCI_D3hot);
2051 pci_disable_device(pdev);
2052
2053 iounmap(np->base);
2054 pci_release_regions(pdev);
2055
2056 free_netdev(dev);
2057 }
2058
2059
2060 static struct pci_driver starfire_driver = {
2061 .name = DRV_NAME,
2062 .probe = starfire_init_one,
2063 .remove = starfire_remove_one,
2064 #ifdef CONFIG_PM
2065 .suspend = starfire_suspend,
2066 .resume = starfire_resume,
2067 #endif
2068 .id_table = starfire_pci_tbl,
2069 };
2070
2071
2072 static int __init starfire_init (void)
2073 {
2074
2075 #ifdef MODULE
2076 printk(version);
2077
2078 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2079 #endif
2080
2081 BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2082
2083 return pci_register_driver(&starfire_driver);
2084 }
2085
2086
2087 static void __exit starfire_cleanup (void)
2088 {
2089 pci_unregister_driver (&starfire_driver);
2090 }
2091
2092
2093 module_init(starfire_init);
2094 module_exit(starfire_cleanup);
2095
2096
2097
2098
2099
2100
2101
2102