root/drivers/net/ethernet/micrel/ks8851.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ks8851_wrreg16
  2. ks8851_wrreg8
  3. ks8851_rdreg
  4. ks8851_rdreg8
  5. ks8851_rdreg16
  6. ks8851_rdreg32
  7. ks8851_soft_reset
  8. ks8851_set_powermode
  9. ks8851_write_mac_addr
  10. ks8851_read_mac_addr
  11. ks8851_init_mac
  12. ks8851_rdfifo
  13. ks8851_dbg_dumpkkt
  14. ks8851_rx_pkts
  15. ks8851_irq
  16. calc_txlen
  17. ks8851_wrpkt
  18. ks8851_done_tx
  19. ks8851_tx_work
  20. ks8851_net_open
  21. ks8851_net_stop
  22. ks8851_start_xmit
  23. ks8851_rxctrl_work
  24. ks8851_set_rx_mode
  25. ks8851_set_mac_address
  26. ks8851_net_ioctl
  27. ks8851_get_drvinfo
  28. ks8851_get_msglevel
  29. ks8851_set_msglevel
  30. ks8851_get_link_ksettings
  31. ks8851_set_link_ksettings
  32. ks8851_get_link
  33. ks8851_nway_reset
  34. ks8851_eeprom_regread
  35. ks8851_eeprom_regwrite
  36. ks8851_eeprom_claim
  37. ks8851_eeprom_release
  38. ks8851_set_eeprom
  39. ks8851_get_eeprom
  40. ks8851_get_eeprom_len
  41. ks8851_phy_reg
  42. ks8851_phy_read
  43. ks8851_phy_write
  44. ks8851_read_selftest
  45. ks8851_suspend
  46. ks8851_resume
  47. ks8851_probe
  48. ks8851_remove

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /* drivers/net/ethernet/micrel/ks8851.c
   3  *
   4  * Copyright 2009 Simtec Electronics
   5  *      http://www.simtec.co.uk/
   6  *      Ben Dooks <ben@simtec.co.uk>
   7  */
   8 
   9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10 
  11 #define DEBUG
  12 
  13 #include <linux/interrupt.h>
  14 #include <linux/module.h>
  15 #include <linux/kernel.h>
  16 #include <linux/netdevice.h>
  17 #include <linux/etherdevice.h>
  18 #include <linux/ethtool.h>
  19 #include <linux/cache.h>
  20 #include <linux/crc32.h>
  21 #include <linux/mii.h>
  22 #include <linux/eeprom_93cx6.h>
  23 #include <linux/regulator/consumer.h>
  24 
  25 #include <linux/spi/spi.h>
  26 #include <linux/gpio.h>
  27 #include <linux/of_gpio.h>
  28 #include <linux/of_net.h>
  29 
  30 #include "ks8851.h"
  31 
  32 /**
  33  * struct ks8851_rxctrl - KS8851 driver rx control
  34  * @mchash: Multicast hash-table data.
  35  * @rxcr1: KS_RXCR1 register setting
  36  * @rxcr2: KS_RXCR2 register setting
  37  *
  38  * Representation of the settings needs to control the receive filtering
  39  * such as the multicast hash-filter and the receive register settings. This
  40  * is used to make the job of working out if the receive settings change and
  41  * then issuing the new settings to the worker that will send the necessary
  42  * commands.
  43  */
  44 struct ks8851_rxctrl {
  45         u16     mchash[4];
  46         u16     rxcr1;
  47         u16     rxcr2;
  48 };
  49 
  50 /**
  51  * union ks8851_tx_hdr - tx header data
  52  * @txb: The header as bytes
  53  * @txw: The header as 16bit, little-endian words
  54  *
  55  * A dual representation of the tx header data to allow
  56  * access to individual bytes, and to allow 16bit accesses
  57  * with 16bit alignment.
  58  */
  59 union ks8851_tx_hdr {
  60         u8      txb[6];
  61         __le16  txw[3];
  62 };
  63 
  64 /**
  65  * struct ks8851_net - KS8851 driver private data
  66  * @netdev: The network device we're bound to
  67  * @spidev: The spi device we're bound to.
  68  * @lock: Lock to ensure that the device is not accessed when busy.
  69  * @statelock: Lock on this structure for tx list.
  70  * @mii: The MII state information for the mii calls.
  71  * @rxctrl: RX settings for @rxctrl_work.
  72  * @tx_work: Work queue for tx packets
  73  * @rxctrl_work: Work queue for updating RX mode and multicast lists
  74  * @txq: Queue of packets for transmission.
  75  * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
  76  * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
  77  * @txh: Space for generating packet TX header in DMA-able data
  78  * @rxd: Space for receiving SPI data, in DMA-able space.
  79  * @txd: Space for transmitting SPI data, in DMA-able space.
  80  * @msg_enable: The message flags controlling driver output (see ethtool).
  81  * @fid: Incrementing frame id tag.
  82  * @rc_ier: Cached copy of KS_IER.
  83  * @rc_ccr: Cached copy of KS_CCR.
  84  * @rc_rxqcr: Cached copy of KS_RXQCR.
  85  * @eeprom: 93CX6 EEPROM state for accessing on-board EEPROM.
  86  * @vdd_reg:    Optional regulator supplying the chip
  87  * @vdd_io: Optional digital power supply for IO
  88  * @gpio: Optional reset_n gpio
  89  *
  90  * The @lock ensures that the chip is protected when certain operations are
  91  * in progress. When the read or write packet transfer is in progress, most
  92  * of the chip registers are not ccessible until the transfer is finished and
  93  * the DMA has been de-asserted.
  94  *
  95  * The @statelock is used to protect information in the structure which may
  96  * need to be accessed via several sources, such as the network driver layer
  97  * or one of the work queues.
  98  *
  99  * We align the buffers we may use for rx/tx to ensure that if the SPI driver
 100  * wants to DMA map them, it will not have any problems with data the driver
 101  * modifies.
 102  */
 103 struct ks8851_net {
 104         struct net_device       *netdev;
 105         struct spi_device       *spidev;
 106         struct mutex            lock;
 107         spinlock_t              statelock;
 108 
 109         union ks8851_tx_hdr     txh ____cacheline_aligned;
 110         u8                      rxd[8];
 111         u8                      txd[8];
 112 
 113         u32                     msg_enable ____cacheline_aligned;
 114         u16                     tx_space;
 115         u8                      fid;
 116 
 117         u16                     rc_ier;
 118         u16                     rc_rxqcr;
 119         u16                     rc_ccr;
 120 
 121         struct mii_if_info      mii;
 122         struct ks8851_rxctrl    rxctrl;
 123 
 124         struct work_struct      tx_work;
 125         struct work_struct      rxctrl_work;
 126 
 127         struct sk_buff_head     txq;
 128 
 129         struct spi_message      spi_msg1;
 130         struct spi_message      spi_msg2;
 131         struct spi_transfer     spi_xfer1;
 132         struct spi_transfer     spi_xfer2[2];
 133 
 134         struct eeprom_93cx6     eeprom;
 135         struct regulator        *vdd_reg;
 136         struct regulator        *vdd_io;
 137         int                     gpio;
 138 };
 139 
 140 static int msg_enable;
 141 
 142 /* SPI frame opcodes */
 143 #define KS_SPIOP_RD     (0x00)
 144 #define KS_SPIOP_WR     (0x40)
 145 #define KS_SPIOP_RXFIFO (0x80)
 146 #define KS_SPIOP_TXFIFO (0xC0)
 147 
 148 /* shift for byte-enable data */
 149 #define BYTE_EN(_x)     ((_x) << 2)
 150 
 151 /* turn register number and byte-enable mask into data for start of packet */
 152 #define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg)  << (8+2) | (_reg) >> 6)
 153 
 154 /* SPI register read/write calls.
 155  *
 156  * All these calls issue SPI transactions to access the chip's registers. They
 157  * all require that the necessary lock is held to prevent accesses when the
 158  * chip is busy transferring packet data (RX/TX FIFO accesses).
 159  */
 160 
 161 /**
 162  * ks8851_wrreg16 - write 16bit register value to chip
 163  * @ks: The chip state
 164  * @reg: The register address
 165  * @val: The value to write
 166  *
 167  * Issue a write to put the value @val into the register specified in @reg.
 168  */
 169 static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
 170 {
 171         struct spi_transfer *xfer = &ks->spi_xfer1;
 172         struct spi_message *msg = &ks->spi_msg1;
 173         __le16 txb[2];
 174         int ret;
 175 
 176         txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
 177         txb[1] = cpu_to_le16(val);
 178 
 179         xfer->tx_buf = txb;
 180         xfer->rx_buf = NULL;
 181         xfer->len = 4;
 182 
 183         ret = spi_sync(ks->spidev, msg);
 184         if (ret < 0)
 185                 netdev_err(ks->netdev, "spi_sync() failed\n");
 186 }
 187 
 188 /**
 189  * ks8851_wrreg8 - write 8bit register value to chip
 190  * @ks: The chip state
 191  * @reg: The register address
 192  * @val: The value to write
 193  *
 194  * Issue a write to put the value @val into the register specified in @reg.
 195  */
 196 static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
 197 {
 198         struct spi_transfer *xfer = &ks->spi_xfer1;
 199         struct spi_message *msg = &ks->spi_msg1;
 200         __le16 txb[2];
 201         int ret;
 202         int bit;
 203 
 204         bit = 1 << (reg & 3);
 205 
 206         txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
 207         txb[1] = val;
 208 
 209         xfer->tx_buf = txb;
 210         xfer->rx_buf = NULL;
 211         xfer->len = 3;
 212 
 213         ret = spi_sync(ks->spidev, msg);
 214         if (ret < 0)
 215                 netdev_err(ks->netdev, "spi_sync() failed\n");
 216 }
 217 
 218 /**
 219  * ks8851_rdreg - issue read register command and return the data
 220  * @ks: The device state
 221  * @op: The register address and byte enables in message format.
 222  * @rxb: The RX buffer to return the result into
 223  * @rxl: The length of data expected.
 224  *
 225  * This is the low level read call that issues the necessary spi message(s)
 226  * to read data from the register specified in @op.
 227  */
 228 static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
 229                          u8 *rxb, unsigned rxl)
 230 {
 231         struct spi_transfer *xfer;
 232         struct spi_message *msg;
 233         __le16 *txb = (__le16 *)ks->txd;
 234         u8 *trx = ks->rxd;
 235         int ret;
 236 
 237         txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
 238 
 239         if (ks->spidev->master->flags & SPI_MASTER_HALF_DUPLEX) {
 240                 msg = &ks->spi_msg2;
 241                 xfer = ks->spi_xfer2;
 242 
 243                 xfer->tx_buf = txb;
 244                 xfer->rx_buf = NULL;
 245                 xfer->len = 2;
 246 
 247                 xfer++;
 248                 xfer->tx_buf = NULL;
 249                 xfer->rx_buf = trx;
 250                 xfer->len = rxl;
 251         } else {
 252                 msg = &ks->spi_msg1;
 253                 xfer = &ks->spi_xfer1;
 254 
 255                 xfer->tx_buf = txb;
 256                 xfer->rx_buf = trx;
 257                 xfer->len = rxl + 2;
 258         }
 259 
 260         ret = spi_sync(ks->spidev, msg);
 261         if (ret < 0)
 262                 netdev_err(ks->netdev, "read: spi_sync() failed\n");
 263         else if (ks->spidev->master->flags & SPI_MASTER_HALF_DUPLEX)
 264                 memcpy(rxb, trx, rxl);
 265         else
 266                 memcpy(rxb, trx + 2, rxl);
 267 }
 268 
 269 /**
 270  * ks8851_rdreg8 - read 8 bit register from device
 271  * @ks: The chip information
 272  * @reg: The register address
 273  *
 274  * Read a 8bit register from the chip, returning the result
 275 */
 276 static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
 277 {
 278         u8 rxb[1];
 279 
 280         ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
 281         return rxb[0];
 282 }
 283 
 284 /**
 285  * ks8851_rdreg16 - read 16 bit register from device
 286  * @ks: The chip information
 287  * @reg: The register address
 288  *
 289  * Read a 16bit register from the chip, returning the result
 290 */
 291 static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
 292 {
 293         __le16 rx = 0;
 294 
 295         ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
 296         return le16_to_cpu(rx);
 297 }
 298 
 299 /**
 300  * ks8851_rdreg32 - read 32 bit register from device
 301  * @ks: The chip information
 302  * @reg: The register address
 303  *
 304  * Read a 32bit register from the chip.
 305  *
 306  * Note, this read requires the address be aligned to 4 bytes.
 307 */
 308 static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
 309 {
 310         __le32 rx = 0;
 311 
 312         WARN_ON(reg & 3);
 313 
 314         ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
 315         return le32_to_cpu(rx);
 316 }
 317 
 318 /**
 319  * ks8851_soft_reset - issue one of the soft reset to the device
 320  * @ks: The device state.
 321  * @op: The bit(s) to set in the GRR
 322  *
 323  * Issue the relevant soft-reset command to the device's GRR register
 324  * specified by @op.
 325  *
 326  * Note, the delays are in there as a caution to ensure that the reset
 327  * has time to take effect and then complete. Since the datasheet does
 328  * not currently specify the exact sequence, we have chosen something
 329  * that seems to work with our device.
 330  */
 331 static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
 332 {
 333         ks8851_wrreg16(ks, KS_GRR, op);
 334         mdelay(1);      /* wait a short time to effect reset */
 335         ks8851_wrreg16(ks, KS_GRR, 0);
 336         mdelay(1);      /* wait for condition to clear */
 337 }
 338 
 339 /**
 340  * ks8851_set_powermode - set power mode of the device
 341  * @ks: The device state
 342  * @pwrmode: The power mode value to write to KS_PMECR.
 343  *
 344  * Change the power mode of the chip.
 345  */
 346 static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
 347 {
 348         unsigned pmecr;
 349 
 350         netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
 351 
 352         pmecr = ks8851_rdreg16(ks, KS_PMECR);
 353         pmecr &= ~PMECR_PM_MASK;
 354         pmecr |= pwrmode;
 355 
 356         ks8851_wrreg16(ks, KS_PMECR, pmecr);
 357 }
 358 
 359 /**
 360  * ks8851_write_mac_addr - write mac address to device registers
 361  * @dev: The network device
 362  *
 363  * Update the KS8851 MAC address registers from the address in @dev.
 364  *
 365  * This call assumes that the chip is not running, so there is no need to
 366  * shutdown the RXQ process whilst setting this.
 367 */
 368 static int ks8851_write_mac_addr(struct net_device *dev)
 369 {
 370         struct ks8851_net *ks = netdev_priv(dev);
 371         int i;
 372 
 373         mutex_lock(&ks->lock);
 374 
 375         /*
 376          * Wake up chip in case it was powered off when stopped; otherwise,
 377          * the first write to the MAC address does not take effect.
 378          */
 379         ks8851_set_powermode(ks, PMECR_PM_NORMAL);
 380         for (i = 0; i < ETH_ALEN; i++)
 381                 ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
 382         if (!netif_running(dev))
 383                 ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
 384 
 385         mutex_unlock(&ks->lock);
 386 
 387         return 0;
 388 }
 389 
 390 /**
 391  * ks8851_read_mac_addr - read mac address from device registers
 392  * @dev: The network device
 393  *
 394  * Update our copy of the KS8851 MAC address from the registers of @dev.
 395 */
 396 static void ks8851_read_mac_addr(struct net_device *dev)
 397 {
 398         struct ks8851_net *ks = netdev_priv(dev);
 399         int i;
 400 
 401         mutex_lock(&ks->lock);
 402 
 403         for (i = 0; i < ETH_ALEN; i++)
 404                 dev->dev_addr[i] = ks8851_rdreg8(ks, KS_MAR(i));
 405 
 406         mutex_unlock(&ks->lock);
 407 }
 408 
 409 /**
 410  * ks8851_init_mac - initialise the mac address
 411  * @ks: The device structure
 412  *
 413  * Get or create the initial mac address for the device and then set that
 414  * into the station address register. A mac address supplied in the device
 415  * tree takes precedence. Otherwise, if there is an EEPROM present, then
 416  * we try that. If no valid mac address is found we use eth_random_addr()
 417  * to create a new one.
 418  */
 419 static void ks8851_init_mac(struct ks8851_net *ks)
 420 {
 421         struct net_device *dev = ks->netdev;
 422         const u8 *mac_addr;
 423 
 424         mac_addr = of_get_mac_address(ks->spidev->dev.of_node);
 425         if (!IS_ERR(mac_addr)) {
 426                 ether_addr_copy(dev->dev_addr, mac_addr);
 427                 ks8851_write_mac_addr(dev);
 428                 return;
 429         }
 430 
 431         if (ks->rc_ccr & CCR_EEPROM) {
 432                 ks8851_read_mac_addr(dev);
 433                 if (is_valid_ether_addr(dev->dev_addr))
 434                         return;
 435 
 436                 netdev_err(ks->netdev, "invalid mac address read %pM\n",
 437                                 dev->dev_addr);
 438         }
 439 
 440         eth_hw_addr_random(dev);
 441         ks8851_write_mac_addr(dev);
 442 }
 443 
 444 /**
 445  * ks8851_rdfifo - read data from the receive fifo
 446  * @ks: The device state.
 447  * @buff: The buffer address
 448  * @len: The length of the data to read
 449  *
 450  * Issue an RXQ FIFO read command and read the @len amount of data from
 451  * the FIFO into the buffer specified by @buff.
 452  */
 453 static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
 454 {
 455         struct spi_transfer *xfer = ks->spi_xfer2;
 456         struct spi_message *msg = &ks->spi_msg2;
 457         u8 txb[1];
 458         int ret;
 459 
 460         netif_dbg(ks, rx_status, ks->netdev,
 461                   "%s: %d@%p\n", __func__, len, buff);
 462 
 463         /* set the operation we're issuing */
 464         txb[0] = KS_SPIOP_RXFIFO;
 465 
 466         xfer->tx_buf = txb;
 467         xfer->rx_buf = NULL;
 468         xfer->len = 1;
 469 
 470         xfer++;
 471         xfer->rx_buf = buff;
 472         xfer->tx_buf = NULL;
 473         xfer->len = len;
 474 
 475         ret = spi_sync(ks->spidev, msg);
 476         if (ret < 0)
 477                 netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
 478 }
 479 
 480 /**
 481  * ks8851_dbg_dumpkkt - dump initial packet contents to debug
 482  * @ks: The device state
 483  * @rxpkt: The data for the received packet
 484  *
 485  * Dump the initial data from the packet to dev_dbg().
 486 */
 487 static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
 488 {
 489         netdev_dbg(ks->netdev,
 490                    "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
 491                    rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
 492                    rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
 493                    rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
 494 }
 495 
 496 /**
 497  * ks8851_rx_pkts - receive packets from the host
 498  * @ks: The device information.
 499  *
 500  * This is called from the IRQ work queue when the system detects that there
 501  * are packets in the receive queue. Find out how many packets there are and
 502  * read them from the FIFO.
 503  */
 504 static void ks8851_rx_pkts(struct ks8851_net *ks)
 505 {
 506         struct sk_buff *skb;
 507         unsigned rxfc;
 508         unsigned rxlen;
 509         unsigned rxstat;
 510         u32 rxh;
 511         u8 *rxpkt;
 512 
 513         rxfc = ks8851_rdreg8(ks, KS_RXFC);
 514 
 515         netif_dbg(ks, rx_status, ks->netdev,
 516                   "%s: %d packets\n", __func__, rxfc);
 517 
 518         /* Currently we're issuing a read per packet, but we could possibly
 519          * improve the code by issuing a single read, getting the receive
 520          * header, allocating the packet and then reading the packet data
 521          * out in one go.
 522          *
 523          * This form of operation would require us to hold the SPI bus'
 524          * chipselect low during the entie transaction to avoid any
 525          * reset to the data stream coming from the chip.
 526          */
 527 
 528         for (; rxfc != 0; rxfc--) {
 529                 rxh = ks8851_rdreg32(ks, KS_RXFHSR);
 530                 rxstat = rxh & 0xffff;
 531                 rxlen = (rxh >> 16) & 0xfff;
 532 
 533                 netif_dbg(ks, rx_status, ks->netdev,
 534                           "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
 535 
 536                 /* the length of the packet includes the 32bit CRC */
 537 
 538                 /* set dma read address */
 539                 ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
 540 
 541                 /* start DMA access */
 542                 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
 543 
 544                 if (rxlen > 4) {
 545                         unsigned int rxalign;
 546 
 547                         rxlen -= 4;
 548                         rxalign = ALIGN(rxlen, 4);
 549                         skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
 550                         if (skb) {
 551 
 552                                 /* 4 bytes of status header + 4 bytes of
 553                                  * garbage: we put them before ethernet
 554                                  * header, so that they are copied,
 555                                  * but ignored.
 556                                  */
 557 
 558                                 rxpkt = skb_put(skb, rxlen) - 8;
 559 
 560                                 ks8851_rdfifo(ks, rxpkt, rxalign + 8);
 561 
 562                                 if (netif_msg_pktdata(ks))
 563                                         ks8851_dbg_dumpkkt(ks, rxpkt);
 564 
 565                                 skb->protocol = eth_type_trans(skb, ks->netdev);
 566                                 netif_rx_ni(skb);
 567 
 568                                 ks->netdev->stats.rx_packets++;
 569                                 ks->netdev->stats.rx_bytes += rxlen;
 570                         }
 571                 }
 572 
 573                 /* end DMA access and dequeue packet */
 574                 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_RRXEF);
 575         }
 576 }
 577 
 578 /**
 579  * ks8851_irq - IRQ handler for dealing with interrupt requests
 580  * @irq: IRQ number
 581  * @_ks: cookie
 582  *
 583  * This handler is invoked when the IRQ line asserts to find out what happened.
 584  * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs
 585  * in thread context.
 586  *
 587  * Read the interrupt status, work out what needs to be done and then clear
 588  * any of the interrupts that are not needed.
 589  */
 590 static irqreturn_t ks8851_irq(int irq, void *_ks)
 591 {
 592         struct ks8851_net *ks = _ks;
 593         unsigned status;
 594         unsigned handled = 0;
 595 
 596         mutex_lock(&ks->lock);
 597 
 598         status = ks8851_rdreg16(ks, KS_ISR);
 599 
 600         netif_dbg(ks, intr, ks->netdev,
 601                   "%s: status 0x%04x\n", __func__, status);
 602 
 603         if (status & IRQ_LCI)
 604                 handled |= IRQ_LCI;
 605 
 606         if (status & IRQ_LDI) {
 607                 u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
 608                 pmecr &= ~PMECR_WKEVT_MASK;
 609                 ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
 610 
 611                 handled |= IRQ_LDI;
 612         }
 613 
 614         if (status & IRQ_RXPSI)
 615                 handled |= IRQ_RXPSI;
 616 
 617         if (status & IRQ_TXI) {
 618                 handled |= IRQ_TXI;
 619 
 620                 /* no lock here, tx queue should have been stopped */
 621 
 622                 /* update our idea of how much tx space is available to the
 623                  * system */
 624                 ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
 625 
 626                 netif_dbg(ks, intr, ks->netdev,
 627                           "%s: txspace %d\n", __func__, ks->tx_space);
 628         }
 629 
 630         if (status & IRQ_RXI)
 631                 handled |= IRQ_RXI;
 632 
 633         if (status & IRQ_SPIBEI) {
 634                 dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
 635                 handled |= IRQ_SPIBEI;
 636         }
 637 
 638         ks8851_wrreg16(ks, KS_ISR, handled);
 639 
 640         if (status & IRQ_RXI) {
 641                 /* the datasheet says to disable the rx interrupt during
 642                  * packet read-out, however we're masking the interrupt
 643                  * from the device so do not bother masking just the RX
 644                  * from the device. */
 645 
 646                 ks8851_rx_pkts(ks);
 647         }
 648 
 649         /* if something stopped the rx process, probably due to wanting
 650          * to change the rx settings, then do something about restarting
 651          * it. */
 652         if (status & IRQ_RXPSI) {
 653                 struct ks8851_rxctrl *rxc = &ks->rxctrl;
 654 
 655                 /* update the multicast hash table */
 656                 ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
 657                 ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
 658                 ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
 659                 ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
 660 
 661                 ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
 662                 ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
 663         }
 664 
 665         mutex_unlock(&ks->lock);
 666 
 667         if (status & IRQ_LCI)
 668                 mii_check_link(&ks->mii);
 669 
 670         if (status & IRQ_TXI)
 671                 netif_wake_queue(ks->netdev);
 672 
 673         return IRQ_HANDLED;
 674 }
 675 
 676 /**
 677  * calc_txlen - calculate size of message to send packet
 678  * @len: Length of data
 679  *
 680  * Returns the size of the TXFIFO message needed to send
 681  * this packet.
 682  */
 683 static inline unsigned calc_txlen(unsigned len)
 684 {
 685         return ALIGN(len + 4, 4);
 686 }
 687 
 688 /**
 689  * ks8851_wrpkt - write packet to TX FIFO
 690  * @ks: The device state.
 691  * @txp: The sk_buff to transmit.
 692  * @irq: IRQ on completion of the packet.
 693  *
 694  * Send the @txp to the chip. This means creating the relevant packet header
 695  * specifying the length of the packet and the other information the chip
 696  * needs, such as IRQ on completion. Send the header and the packet data to
 697  * the device.
 698  */
 699 static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
 700 {
 701         struct spi_transfer *xfer = ks->spi_xfer2;
 702         struct spi_message *msg = &ks->spi_msg2;
 703         unsigned fid = 0;
 704         int ret;
 705 
 706         netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
 707                   __func__, txp, txp->len, txp->data, irq);
 708 
 709         fid = ks->fid++;
 710         fid &= TXFR_TXFID_MASK;
 711 
 712         if (irq)
 713                 fid |= TXFR_TXIC;       /* irq on completion */
 714 
 715         /* start header at txb[1] to align txw entries */
 716         ks->txh.txb[1] = KS_SPIOP_TXFIFO;
 717         ks->txh.txw[1] = cpu_to_le16(fid);
 718         ks->txh.txw[2] = cpu_to_le16(txp->len);
 719 
 720         xfer->tx_buf = &ks->txh.txb[1];
 721         xfer->rx_buf = NULL;
 722         xfer->len = 5;
 723 
 724         xfer++;
 725         xfer->tx_buf = txp->data;
 726         xfer->rx_buf = NULL;
 727         xfer->len = ALIGN(txp->len, 4);
 728 
 729         ret = spi_sync(ks->spidev, msg);
 730         if (ret < 0)
 731                 netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
 732 }
 733 
 734 /**
 735  * ks8851_done_tx - update and then free skbuff after transmitting
 736  * @ks: The device state
 737  * @txb: The buffer transmitted
 738  */
 739 static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
 740 {
 741         struct net_device *dev = ks->netdev;
 742 
 743         dev->stats.tx_bytes += txb->len;
 744         dev->stats.tx_packets++;
 745 
 746         dev_kfree_skb(txb);
 747 }
 748 
 749 /**
 750  * ks8851_tx_work - process tx packet(s)
 751  * @work: The work strucutre what was scheduled.
 752  *
 753  * This is called when a number of packets have been scheduled for
 754  * transmission and need to be sent to the device.
 755  */
 756 static void ks8851_tx_work(struct work_struct *work)
 757 {
 758         struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
 759         struct sk_buff *txb;
 760         bool last = skb_queue_empty(&ks->txq);
 761 
 762         mutex_lock(&ks->lock);
 763 
 764         while (!last) {
 765                 txb = skb_dequeue(&ks->txq);
 766                 last = skb_queue_empty(&ks->txq);
 767 
 768                 if (txb != NULL) {
 769                         ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
 770                         ks8851_wrpkt(ks, txb, last);
 771                         ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 772                         ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
 773 
 774                         ks8851_done_tx(ks, txb);
 775                 }
 776         }
 777 
 778         mutex_unlock(&ks->lock);
 779 }
 780 
 781 /**
 782  * ks8851_net_open - open network device
 783  * @dev: The network device being opened.
 784  *
 785  * Called when the network device is marked active, such as a user executing
 786  * 'ifconfig up' on the device.
 787  */
 788 static int ks8851_net_open(struct net_device *dev)
 789 {
 790         struct ks8851_net *ks = netdev_priv(dev);
 791         int ret;
 792 
 793         ret = request_threaded_irq(dev->irq, NULL, ks8851_irq,
 794                                    IRQF_TRIGGER_LOW | IRQF_ONESHOT,
 795                                    dev->name, ks);
 796         if (ret < 0) {
 797                 netdev_err(dev, "failed to get irq\n");
 798                 return ret;
 799         }
 800 
 801         /* lock the card, even if we may not actually be doing anything
 802          * else at the moment */
 803         mutex_lock(&ks->lock);
 804 
 805         netif_dbg(ks, ifup, ks->netdev, "opening\n");
 806 
 807         /* bring chip out of any power saving mode it was in */
 808         ks8851_set_powermode(ks, PMECR_PM_NORMAL);
 809 
 810         /* issue a soft reset to the RX/TX QMU to put it into a known
 811          * state. */
 812         ks8851_soft_reset(ks, GRR_QMU);
 813 
 814         /* setup transmission parameters */
 815 
 816         ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
 817                                      TXCR_TXPE | /* pad to min length */
 818                                      TXCR_TXCRC | /* add CRC */
 819                                      TXCR_TXFCE)); /* enable flow control */
 820 
 821         /* auto-increment tx data, reset tx pointer */
 822         ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
 823 
 824         /* setup receiver control */
 825 
 826         ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /*  from mac filter */
 827                                       RXCR1_RXFCE | /* enable flow control */
 828                                       RXCR1_RXBE | /* broadcast enable */
 829                                       RXCR1_RXUE | /* unicast enable */
 830                                       RXCR1_RXE)); /* enable rx block */
 831 
 832         /* transfer entire frames out in one go */
 833         ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
 834 
 835         /* set receive counter timeouts */
 836         ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
 837         ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
 838         ks8851_wrreg16(ks, KS_RXFCTR, 10);  /* 10 frames to IRQ */
 839 
 840         ks->rc_rxqcr = (RXQCR_RXFCTE |  /* IRQ on frame count exceeded */
 841                         RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
 842                         RXQCR_RXDTTE);  /* IRQ on time exceeded */
 843 
 844         ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 845 
 846         /* clear then enable interrupts */
 847 
 848 #define STD_IRQ (IRQ_LCI |      /* Link Change */       \
 849                  IRQ_TXI |      /* TX done */           \
 850                  IRQ_RXI |      /* RX done */           \
 851                  IRQ_SPIBEI |   /* SPI bus error */     \
 852                  IRQ_TXPSI |    /* TX process stop */   \
 853                  IRQ_RXPSI)     /* RX process stop */
 854 
 855         ks->rc_ier = STD_IRQ;
 856         ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
 857         ks8851_wrreg16(ks, KS_IER, STD_IRQ);
 858 
 859         netif_start_queue(ks->netdev);
 860 
 861         netif_dbg(ks, ifup, ks->netdev, "network device up\n");
 862 
 863         mutex_unlock(&ks->lock);
 864         mii_check_link(&ks->mii);
 865         return 0;
 866 }
 867 
 868 /**
 869  * ks8851_net_stop - close network device
 870  * @dev: The device being closed.
 871  *
 872  * Called to close down a network device which has been active. Cancell any
 873  * work, shutdown the RX and TX process and then place the chip into a low
 874  * power state whilst it is not being used.
 875  */
 876 static int ks8851_net_stop(struct net_device *dev)
 877 {
 878         struct ks8851_net *ks = netdev_priv(dev);
 879 
 880         netif_info(ks, ifdown, dev, "shutting down\n");
 881 
 882         netif_stop_queue(dev);
 883 
 884         mutex_lock(&ks->lock);
 885         /* turn off the IRQs and ack any outstanding */
 886         ks8851_wrreg16(ks, KS_IER, 0x0000);
 887         ks8851_wrreg16(ks, KS_ISR, 0xffff);
 888         mutex_unlock(&ks->lock);
 889 
 890         /* stop any outstanding work */
 891         flush_work(&ks->tx_work);
 892         flush_work(&ks->rxctrl_work);
 893 
 894         mutex_lock(&ks->lock);
 895         /* shutdown RX process */
 896         ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
 897 
 898         /* shutdown TX process */
 899         ks8851_wrreg16(ks, KS_TXCR, 0x0000);
 900 
 901         /* set powermode to soft power down to save power */
 902         ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
 903         mutex_unlock(&ks->lock);
 904 
 905         /* ensure any queued tx buffers are dumped */
 906         while (!skb_queue_empty(&ks->txq)) {
 907                 struct sk_buff *txb = skb_dequeue(&ks->txq);
 908 
 909                 netif_dbg(ks, ifdown, ks->netdev,
 910                           "%s: freeing txb %p\n", __func__, txb);
 911 
 912                 dev_kfree_skb(txb);
 913         }
 914 
 915         free_irq(dev->irq, ks);
 916 
 917         return 0;
 918 }
 919 
 920 /**
 921  * ks8851_start_xmit - transmit packet
 922  * @skb: The buffer to transmit
 923  * @dev: The device used to transmit the packet.
 924  *
 925  * Called by the network layer to transmit the @skb. Queue the packet for
 926  * the device and schedule the necessary work to transmit the packet when
 927  * it is free.
 928  *
 929  * We do this to firstly avoid sleeping with the network device locked,
 930  * and secondly so we can round up more than one packet to transmit which
 931  * means we can try and avoid generating too many transmit done interrupts.
 932  */
 933 static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
 934                                      struct net_device *dev)
 935 {
 936         struct ks8851_net *ks = netdev_priv(dev);
 937         unsigned needed = calc_txlen(skb->len);
 938         netdev_tx_t ret = NETDEV_TX_OK;
 939 
 940         netif_dbg(ks, tx_queued, ks->netdev,
 941                   "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
 942 
 943         spin_lock(&ks->statelock);
 944 
 945         if (needed > ks->tx_space) {
 946                 netif_stop_queue(dev);
 947                 ret = NETDEV_TX_BUSY;
 948         } else {
 949                 ks->tx_space -= needed;
 950                 skb_queue_tail(&ks->txq, skb);
 951         }
 952 
 953         spin_unlock(&ks->statelock);
 954         schedule_work(&ks->tx_work);
 955 
 956         return ret;
 957 }
 958 
 959 /**
 960  * ks8851_rxctrl_work - work handler to change rx mode
 961  * @work: The work structure this belongs to.
 962  *
 963  * Lock the device and issue the necessary changes to the receive mode from
 964  * the network device layer. This is done so that we can do this without
 965  * having to sleep whilst holding the network device lock.
 966  *
 967  * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
 968  * receive parameters are programmed, we issue a write to disable the RXQ and
 969  * then wait for the interrupt handler to be triggered once the RXQ shutdown is
 970  * complete. The interrupt handler then writes the new values into the chip.
 971  */
 972 static void ks8851_rxctrl_work(struct work_struct *work)
 973 {
 974         struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
 975 
 976         mutex_lock(&ks->lock);
 977 
 978         /* need to shutdown RXQ before modifying filter parameters */
 979         ks8851_wrreg16(ks, KS_RXCR1, 0x00);
 980 
 981         mutex_unlock(&ks->lock);
 982 }
 983 
 984 static void ks8851_set_rx_mode(struct net_device *dev)
 985 {
 986         struct ks8851_net *ks = netdev_priv(dev);
 987         struct ks8851_rxctrl rxctrl;
 988 
 989         memset(&rxctrl, 0, sizeof(rxctrl));
 990 
 991         if (dev->flags & IFF_PROMISC) {
 992                 /* interface to receive everything */
 993 
 994                 rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
 995         } else if (dev->flags & IFF_ALLMULTI) {
 996                 /* accept all multicast packets */
 997 
 998                 rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
 999                                 RXCR1_RXPAFMA | RXCR1_RXMAFMA);
1000         } else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
1001                 struct netdev_hw_addr *ha;
1002                 u32 crc;
1003 
1004                 /* accept some multicast */
1005 
1006                 netdev_for_each_mc_addr(ha, dev) {
1007                         crc = ether_crc(ETH_ALEN, ha->addr);
1008                         crc >>= (32 - 6);  /* get top six bits */
1009 
1010                         rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
1011                 }
1012 
1013                 rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
1014         } else {
1015                 /* just accept broadcast / unicast */
1016                 rxctrl.rxcr1 = RXCR1_RXPAFMA;
1017         }
1018 
1019         rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
1020                          RXCR1_RXBE | /* broadcast enable */
1021                          RXCR1_RXE | /* RX process enable */
1022                          RXCR1_RXFCE); /* enable flow control */
1023 
1024         rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
1025 
1026         /* schedule work to do the actual set of the data if needed */
1027 
1028         spin_lock(&ks->statelock);
1029 
1030         if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
1031                 memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
1032                 schedule_work(&ks->rxctrl_work);
1033         }
1034 
1035         spin_unlock(&ks->statelock);
1036 }
1037 
1038 static int ks8851_set_mac_address(struct net_device *dev, void *addr)
1039 {
1040         struct sockaddr *sa = addr;
1041 
1042         if (netif_running(dev))
1043                 return -EBUSY;
1044 
1045         if (!is_valid_ether_addr(sa->sa_data))
1046                 return -EADDRNOTAVAIL;
1047 
1048         memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
1049         return ks8851_write_mac_addr(dev);
1050 }
1051 
1052 static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1053 {
1054         struct ks8851_net *ks = netdev_priv(dev);
1055 
1056         if (!netif_running(dev))
1057                 return -EINVAL;
1058 
1059         return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1060 }
1061 
1062 static const struct net_device_ops ks8851_netdev_ops = {
1063         .ndo_open               = ks8851_net_open,
1064         .ndo_stop               = ks8851_net_stop,
1065         .ndo_do_ioctl           = ks8851_net_ioctl,
1066         .ndo_start_xmit         = ks8851_start_xmit,
1067         .ndo_set_mac_address    = ks8851_set_mac_address,
1068         .ndo_set_rx_mode        = ks8851_set_rx_mode,
1069         .ndo_validate_addr      = eth_validate_addr,
1070 };
1071 
1072 /* ethtool support */
1073 
1074 static void ks8851_get_drvinfo(struct net_device *dev,
1075                                struct ethtool_drvinfo *di)
1076 {
1077         strlcpy(di->driver, "KS8851", sizeof(di->driver));
1078         strlcpy(di->version, "1.00", sizeof(di->version));
1079         strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
1080 }
1081 
1082 static u32 ks8851_get_msglevel(struct net_device *dev)
1083 {
1084         struct ks8851_net *ks = netdev_priv(dev);
1085         return ks->msg_enable;
1086 }
1087 
1088 static void ks8851_set_msglevel(struct net_device *dev, u32 to)
1089 {
1090         struct ks8851_net *ks = netdev_priv(dev);
1091         ks->msg_enable = to;
1092 }
1093 
1094 static int ks8851_get_link_ksettings(struct net_device *dev,
1095                                      struct ethtool_link_ksettings *cmd)
1096 {
1097         struct ks8851_net *ks = netdev_priv(dev);
1098 
1099         mii_ethtool_get_link_ksettings(&ks->mii, cmd);
1100 
1101         return 0;
1102 }
1103 
1104 static int ks8851_set_link_ksettings(struct net_device *dev,
1105                                      const struct ethtool_link_ksettings *cmd)
1106 {
1107         struct ks8851_net *ks = netdev_priv(dev);
1108         return mii_ethtool_set_link_ksettings(&ks->mii, cmd);
1109 }
1110 
1111 static u32 ks8851_get_link(struct net_device *dev)
1112 {
1113         struct ks8851_net *ks = netdev_priv(dev);
1114         return mii_link_ok(&ks->mii);
1115 }
1116 
1117 static int ks8851_nway_reset(struct net_device *dev)
1118 {
1119         struct ks8851_net *ks = netdev_priv(dev);
1120         return mii_nway_restart(&ks->mii);
1121 }
1122 
1123 /* EEPROM support */
1124 
1125 static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee)
1126 {
1127         struct ks8851_net *ks = ee->data;
1128         unsigned val;
1129 
1130         val = ks8851_rdreg16(ks, KS_EEPCR);
1131 
1132         ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0;
1133         ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0;
1134         ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0;
1135 }
1136 
1137 static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
1138 {
1139         struct ks8851_net *ks = ee->data;
1140         unsigned val = EEPCR_EESA;      /* default - eeprom access on */
1141 
1142         if (ee->drive_data)
1143                 val |= EEPCR_EESRWA;
1144         if (ee->reg_data_in)
1145                 val |= EEPCR_EEDO;
1146         if (ee->reg_data_clock)
1147                 val |= EEPCR_EESCK;
1148         if (ee->reg_chip_select)
1149                 val |= EEPCR_EECS;
1150 
1151         ks8851_wrreg16(ks, KS_EEPCR, val);
1152 }
1153 
1154 /**
1155  * ks8851_eeprom_claim - claim device EEPROM and activate the interface
1156  * @ks: The network device state.
1157  *
1158  * Check for the presence of an EEPROM, and then activate software access
1159  * to the device.
1160  */
1161 static int ks8851_eeprom_claim(struct ks8851_net *ks)
1162 {
1163         if (!(ks->rc_ccr & CCR_EEPROM))
1164                 return -ENOENT;
1165 
1166         mutex_lock(&ks->lock);
1167 
1168         /* start with clock low, cs high */
1169         ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
1170         return 0;
1171 }
1172 
1173 /**
1174  * ks8851_eeprom_release - release the EEPROM interface
1175  * @ks: The device state
1176  *
1177  * Release the software access to the device EEPROM
1178  */
1179 static void ks8851_eeprom_release(struct ks8851_net *ks)
1180 {
1181         unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
1182 
1183         ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
1184         mutex_unlock(&ks->lock);
1185 }
1186 
1187 #define KS_EEPROM_MAGIC (0x00008851)
1188 
1189 static int ks8851_set_eeprom(struct net_device *dev,
1190                              struct ethtool_eeprom *ee, u8 *data)
1191 {
1192         struct ks8851_net *ks = netdev_priv(dev);
1193         int offset = ee->offset;
1194         int len = ee->len;
1195         u16 tmp;
1196 
1197         /* currently only support byte writing */
1198         if (len != 1)
1199                 return -EINVAL;
1200 
1201         if (ee->magic != KS_EEPROM_MAGIC)
1202                 return -EINVAL;
1203 
1204         if (ks8851_eeprom_claim(ks))
1205                 return -ENOENT;
1206 
1207         eeprom_93cx6_wren(&ks->eeprom, true);
1208 
1209         /* ethtool currently only supports writing bytes, which means
1210          * we have to read/modify/write our 16bit EEPROMs */
1211 
1212         eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp);
1213 
1214         if (offset & 1) {
1215                 tmp &= 0xff;
1216                 tmp |= *data << 8;
1217         } else {
1218                 tmp &= 0xff00;
1219                 tmp |= *data;
1220         }
1221 
1222         eeprom_93cx6_write(&ks->eeprom, offset/2, tmp);
1223         eeprom_93cx6_wren(&ks->eeprom, false);
1224 
1225         ks8851_eeprom_release(ks);
1226 
1227         return 0;
1228 }
1229 
1230 static int ks8851_get_eeprom(struct net_device *dev,
1231                              struct ethtool_eeprom *ee, u8 *data)
1232 {
1233         struct ks8851_net *ks = netdev_priv(dev);
1234         int offset = ee->offset;
1235         int len = ee->len;
1236 
1237         /* must be 2 byte aligned */
1238         if (len & 1 || offset & 1)
1239                 return -EINVAL;
1240 
1241         if (ks8851_eeprom_claim(ks))
1242                 return -ENOENT;
1243 
1244         ee->magic = KS_EEPROM_MAGIC;
1245 
1246         eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
1247         ks8851_eeprom_release(ks);
1248 
1249         return 0;
1250 }
1251 
1252 static int ks8851_get_eeprom_len(struct net_device *dev)
1253 {
1254         struct ks8851_net *ks = netdev_priv(dev);
1255 
1256         /* currently, we assume it is an 93C46 attached, so return 128 */
1257         return ks->rc_ccr & CCR_EEPROM ? 128 : 0;
1258 }
1259 
1260 static const struct ethtool_ops ks8851_ethtool_ops = {
1261         .get_drvinfo    = ks8851_get_drvinfo,
1262         .get_msglevel   = ks8851_get_msglevel,
1263         .set_msglevel   = ks8851_set_msglevel,
1264         .get_link       = ks8851_get_link,
1265         .nway_reset     = ks8851_nway_reset,
1266         .get_eeprom_len = ks8851_get_eeprom_len,
1267         .get_eeprom     = ks8851_get_eeprom,
1268         .set_eeprom     = ks8851_set_eeprom,
1269         .get_link_ksettings = ks8851_get_link_ksettings,
1270         .set_link_ksettings = ks8851_set_link_ksettings,
1271 };
1272 
1273 /* MII interface controls */
1274 
1275 /**
1276  * ks8851_phy_reg - convert MII register into a KS8851 register
1277  * @reg: MII register number.
1278  *
1279  * Return the KS8851 register number for the corresponding MII PHY register
1280  * if possible. Return zero if the MII register has no direct mapping to the
1281  * KS8851 register set.
1282  */
1283 static int ks8851_phy_reg(int reg)
1284 {
1285         switch (reg) {
1286         case MII_BMCR:
1287                 return KS_P1MBCR;
1288         case MII_BMSR:
1289                 return KS_P1MBSR;
1290         case MII_PHYSID1:
1291                 return KS_PHY1ILR;
1292         case MII_PHYSID2:
1293                 return KS_PHY1IHR;
1294         case MII_ADVERTISE:
1295                 return KS_P1ANAR;
1296         case MII_LPA:
1297                 return KS_P1ANLPR;
1298         }
1299 
1300         return 0x0;
1301 }
1302 
1303 /**
1304  * ks8851_phy_read - MII interface PHY register read.
1305  * @dev: The network device the PHY is on.
1306  * @phy_addr: Address of PHY (ignored as we only have one)
1307  * @reg: The register to read.
1308  *
1309  * This call reads data from the PHY register specified in @reg. Since the
1310  * device does not support all the MII registers, the non-existent values
1311  * are always returned as zero.
1312  *
1313  * We return zero for unsupported registers as the MII code does not check
1314  * the value returned for any error status, and simply returns it to the
1315  * caller. The mii-tool that the driver was tested with takes any -ve error
1316  * as real PHY capabilities, thus displaying incorrect data to the user.
1317  */
1318 static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
1319 {
1320         struct ks8851_net *ks = netdev_priv(dev);
1321         int ksreg;
1322         int result;
1323 
1324         ksreg = ks8851_phy_reg(reg);
1325         if (!ksreg)
1326                 return 0x0;     /* no error return allowed, so use zero */
1327 
1328         mutex_lock(&ks->lock);
1329         result = ks8851_rdreg16(ks, ksreg);
1330         mutex_unlock(&ks->lock);
1331 
1332         return result;
1333 }
1334 
1335 static void ks8851_phy_write(struct net_device *dev,
1336                              int phy, int reg, int value)
1337 {
1338         struct ks8851_net *ks = netdev_priv(dev);
1339         int ksreg;
1340 
1341         ksreg = ks8851_phy_reg(reg);
1342         if (ksreg) {
1343                 mutex_lock(&ks->lock);
1344                 ks8851_wrreg16(ks, ksreg, value);
1345                 mutex_unlock(&ks->lock);
1346         }
1347 }
1348 
1349 /**
1350  * ks8851_read_selftest - read the selftest memory info.
1351  * @ks: The device state
1352  *
1353  * Read and check the TX/RX memory selftest information.
1354  */
1355 static int ks8851_read_selftest(struct ks8851_net *ks)
1356 {
1357         unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1358         int ret = 0;
1359         unsigned rd;
1360 
1361         rd = ks8851_rdreg16(ks, KS_MBIR);
1362 
1363         if ((rd & both_done) != both_done) {
1364                 netdev_warn(ks->netdev, "Memory selftest not finished\n");
1365                 return 0;
1366         }
1367 
1368         if (rd & MBIR_TXMBFA) {
1369                 netdev_err(ks->netdev, "TX memory selftest fail\n");
1370                 ret |= 1;
1371         }
1372 
1373         if (rd & MBIR_RXMBFA) {
1374                 netdev_err(ks->netdev, "RX memory selftest fail\n");
1375                 ret |= 2;
1376         }
1377 
1378         return 0;
1379 }
1380 
1381 /* driver bus management functions */
1382 
1383 #ifdef CONFIG_PM_SLEEP
1384 
1385 static int ks8851_suspend(struct device *dev)
1386 {
1387         struct ks8851_net *ks = dev_get_drvdata(dev);
1388         struct net_device *netdev = ks->netdev;
1389 
1390         if (netif_running(netdev)) {
1391                 netif_device_detach(netdev);
1392                 ks8851_net_stop(netdev);
1393         }
1394 
1395         return 0;
1396 }
1397 
1398 static int ks8851_resume(struct device *dev)
1399 {
1400         struct ks8851_net *ks = dev_get_drvdata(dev);
1401         struct net_device *netdev = ks->netdev;
1402 
1403         if (netif_running(netdev)) {
1404                 ks8851_net_open(netdev);
1405                 netif_device_attach(netdev);
1406         }
1407 
1408         return 0;
1409 }
1410 #endif
1411 
1412 static SIMPLE_DEV_PM_OPS(ks8851_pm_ops, ks8851_suspend, ks8851_resume);
1413 
1414 static int ks8851_probe(struct spi_device *spi)
1415 {
1416         struct net_device *ndev;
1417         struct ks8851_net *ks;
1418         int ret;
1419         unsigned cider;
1420         int gpio;
1421 
1422         ndev = alloc_etherdev(sizeof(struct ks8851_net));
1423         if (!ndev)
1424                 return -ENOMEM;
1425 
1426         spi->bits_per_word = 8;
1427 
1428         ks = netdev_priv(ndev);
1429 
1430         ks->netdev = ndev;
1431         ks->spidev = spi;
1432         ks->tx_space = 6144;
1433 
1434         gpio = of_get_named_gpio_flags(spi->dev.of_node, "reset-gpios",
1435                                        0, NULL);
1436         if (gpio == -EPROBE_DEFER) {
1437                 ret = gpio;
1438                 goto err_gpio;
1439         }
1440 
1441         ks->gpio = gpio;
1442         if (gpio_is_valid(gpio)) {
1443                 ret = devm_gpio_request_one(&spi->dev, gpio,
1444                                             GPIOF_OUT_INIT_LOW, "ks8851_rst_n");
1445                 if (ret) {
1446                         dev_err(&spi->dev, "reset gpio request failed\n");
1447                         goto err_gpio;
1448                 }
1449         }
1450 
1451         ks->vdd_io = devm_regulator_get(&spi->dev, "vdd-io");
1452         if (IS_ERR(ks->vdd_io)) {
1453                 ret = PTR_ERR(ks->vdd_io);
1454                 goto err_reg_io;
1455         }
1456 
1457         ret = regulator_enable(ks->vdd_io);
1458         if (ret) {
1459                 dev_err(&spi->dev, "regulator vdd_io enable fail: %d\n",
1460                         ret);
1461                 goto err_reg_io;
1462         }
1463 
1464         ks->vdd_reg = devm_regulator_get(&spi->dev, "vdd");
1465         if (IS_ERR(ks->vdd_reg)) {
1466                 ret = PTR_ERR(ks->vdd_reg);
1467                 goto err_reg;
1468         }
1469 
1470         ret = regulator_enable(ks->vdd_reg);
1471         if (ret) {
1472                 dev_err(&spi->dev, "regulator vdd enable fail: %d\n",
1473                         ret);
1474                 goto err_reg;
1475         }
1476 
1477         if (gpio_is_valid(gpio)) {
1478                 usleep_range(10000, 11000);
1479                 gpio_set_value(gpio, 1);
1480         }
1481 
1482         mutex_init(&ks->lock);
1483         spin_lock_init(&ks->statelock);
1484 
1485         INIT_WORK(&ks->tx_work, ks8851_tx_work);
1486         INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1487 
1488         /* initialise pre-made spi transfer messages */
1489 
1490         spi_message_init(&ks->spi_msg1);
1491         spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
1492 
1493         spi_message_init(&ks->spi_msg2);
1494         spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
1495         spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
1496 
1497         /* setup EEPROM state */
1498 
1499         ks->eeprom.data = ks;
1500         ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
1501         ks->eeprom.register_read = ks8851_eeprom_regread;
1502         ks->eeprom.register_write = ks8851_eeprom_regwrite;
1503 
1504         /* setup mii state */
1505         ks->mii.dev             = ndev;
1506         ks->mii.phy_id          = 1,
1507         ks->mii.phy_id_mask     = 1;
1508         ks->mii.reg_num_mask    = 0xf;
1509         ks->mii.mdio_read       = ks8851_phy_read;
1510         ks->mii.mdio_write      = ks8851_phy_write;
1511 
1512         dev_info(&spi->dev, "message enable is %d\n", msg_enable);
1513 
1514         /* set the default message enable */
1515         ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1516                                                      NETIF_MSG_PROBE |
1517                                                      NETIF_MSG_LINK));
1518 
1519         skb_queue_head_init(&ks->txq);
1520 
1521         ndev->ethtool_ops = &ks8851_ethtool_ops;
1522         SET_NETDEV_DEV(ndev, &spi->dev);
1523 
1524         spi_set_drvdata(spi, ks);
1525 
1526         netif_carrier_off(ks->netdev);
1527         ndev->if_port = IF_PORT_100BASET;
1528         ndev->netdev_ops = &ks8851_netdev_ops;
1529         ndev->irq = spi->irq;
1530 
1531         /* issue a global soft reset to reset the device. */
1532         ks8851_soft_reset(ks, GRR_GSR);
1533 
1534         /* simple check for a valid chip being connected to the bus */
1535         cider = ks8851_rdreg16(ks, KS_CIDER);
1536         if ((cider & ~CIDER_REV_MASK) != CIDER_ID) {
1537                 dev_err(&spi->dev, "failed to read device ID\n");
1538                 ret = -ENODEV;
1539                 goto err_id;
1540         }
1541 
1542         /* cache the contents of the CCR register for EEPROM, etc. */
1543         ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1544 
1545         ks8851_read_selftest(ks);
1546         ks8851_init_mac(ks);
1547 
1548         ret = register_netdev(ndev);
1549         if (ret) {
1550                 dev_err(&spi->dev, "failed to register network device\n");
1551                 goto err_netdev;
1552         }
1553 
1554         netdev_info(ndev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
1555                     CIDER_REV_GET(cider), ndev->dev_addr, ndev->irq,
1556                     ks->rc_ccr & CCR_EEPROM ? "has" : "no");
1557 
1558         return 0;
1559 
1560 err_netdev:
1561 err_id:
1562         if (gpio_is_valid(gpio))
1563                 gpio_set_value(gpio, 0);
1564         regulator_disable(ks->vdd_reg);
1565 err_reg:
1566         regulator_disable(ks->vdd_io);
1567 err_reg_io:
1568 err_gpio:
1569         free_netdev(ndev);
1570         return ret;
1571 }
1572 
1573 static int ks8851_remove(struct spi_device *spi)
1574 {
1575         struct ks8851_net *priv = spi_get_drvdata(spi);
1576 
1577         if (netif_msg_drv(priv))
1578                 dev_info(&spi->dev, "remove\n");
1579 
1580         unregister_netdev(priv->netdev);
1581         if (gpio_is_valid(priv->gpio))
1582                 gpio_set_value(priv->gpio, 0);
1583         regulator_disable(priv->vdd_reg);
1584         regulator_disable(priv->vdd_io);
1585         free_netdev(priv->netdev);
1586 
1587         return 0;
1588 }
1589 
1590 static const struct of_device_id ks8851_match_table[] = {
1591         { .compatible = "micrel,ks8851" },
1592         { }
1593 };
1594 MODULE_DEVICE_TABLE(of, ks8851_match_table);
1595 
1596 static struct spi_driver ks8851_driver = {
1597         .driver = {
1598                 .name = "ks8851",
1599                 .of_match_table = ks8851_match_table,
1600                 .pm = &ks8851_pm_ops,
1601         },
1602         .probe = ks8851_probe,
1603         .remove = ks8851_remove,
1604 };
1605 module_spi_driver(ks8851_driver);
1606 
1607 MODULE_DESCRIPTION("KS8851 Network driver");
1608 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1609 MODULE_LICENSE("GPL");
1610 
1611 module_param_named(message, msg_enable, int, 0);
1612 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1613 MODULE_ALIAS("spi:ks8851");

/* [<][>][^][v][top][bottom][index][help] */