root/drivers/net/ethernet/3com/3c59x.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. window_set
  2. poll_vortex
  3. vortex_suspend
  4. vortex_resume
  5. vortex_eisa_probe
  6. vortex_eisa_remove
  7. vortex_eisa_init
  8. vortex_init_one
  9. vortex_probe1
  10. issue_and_wait
  11. vortex_set_duplex
  12. vortex_check_media
  13. vortex_up
  14. vortex_open
  15. vortex_timer
  16. vortex_tx_timeout
  17. vortex_error
  18. vortex_start_xmit
  19. boomerang_start_xmit
  20. _vortex_interrupt
  21. _boomerang_interrupt
  22. vortex_boomerang_interrupt
  23. vortex_rx
  24. boomerang_rx
  25. vortex_down
  26. vortex_close
  27. dump_tx_ring
  28. vortex_get_stats
  29. update_stats
  30. vortex_nway_reset
  31. vortex_get_link_ksettings
  32. vortex_set_link_ksettings
  33. vortex_get_msglevel
  34. vortex_set_msglevel
  35. vortex_get_sset_count
  36. vortex_get_ethtool_stats
  37. vortex_get_strings
  38. vortex_get_drvinfo
  39. vortex_get_wol
  40. vortex_set_wol
  41. vortex_ioctl
  42. set_rx_mode
  43. set_8021q_mode
  44. set_8021q_mode
  45. mdio_delay
  46. mdio_sync
  47. mdio_read
  48. mdio_write
  49. acpi_set_WOL
  50. vortex_remove_one
  51. vortex_init
  52. vortex_eisa_cleanup
  53. vortex_cleanup

   1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
   2 /*
   3         Written 1996-1999 by Donald Becker.
   4 
   5         This software may be used and distributed according to the terms
   6         of the GNU General Public License, incorporated herein by reference.
   7 
   8         This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
   9         Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
  10         and the EtherLink XL 3c900 and 3c905 cards.
  11 
  12         Problem reports and questions should be directed to
  13         vortex@scyld.com
  14 
  15         The author may be reached as becker@scyld.com, or C/O
  16         Scyld Computing Corporation
  17         410 Severn Ave., Suite 210
  18         Annapolis MD 21403
  19 
  20 */
  21 
  22 /*
  23  * FIXME: This driver _could_ support MTU changing, but doesn't.  See Don's hamachi.c implementation
  24  * as well as other drivers
  25  *
  26  * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
  27  * due to dead code elimination.  There will be some performance benefits from this due to
  28  * elimination of all the tests and reduced cache footprint.
  29  */
  30 
  31 
  32 #define DRV_NAME        "3c59x"
  33 
  34 
  35 
  36 /* A few values that may be tweaked. */
  37 /* Keep the ring sizes a power of two for efficiency. */
  38 #define TX_RING_SIZE    16
  39 #define RX_RING_SIZE    32
  40 #define PKT_BUF_SZ              1536                    /* Size of each temporary Rx buffer.*/
  41 
  42 /* "Knobs" that adjust features and parameters. */
  43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
  44    Setting to > 1512 effectively disables this feature. */
  45 #ifndef __arm__
  46 static int rx_copybreak = 200;
  47 #else
  48 /* ARM systems perform better by disregarding the bus-master
  49    transfer capability of these cards. -- rmk */
  50 static int rx_copybreak = 1513;
  51 #endif
  52 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
  53 static const int mtu = 1500;
  54 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
  55 static int max_interrupt_work = 32;
  56 /* Tx timeout interval (millisecs) */
  57 static int watchdog = 5000;
  58 
  59 /* Allow aggregation of Tx interrupts.  Saves CPU load at the cost
  60  * of possible Tx stalls if the system is blocking interrupts
  61  * somewhere else.  Undefine this to disable.
  62  */
  63 #define tx_interrupt_mitigation 1
  64 
  65 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
  66 #define vortex_debug debug
  67 #ifdef VORTEX_DEBUG
  68 static int vortex_debug = VORTEX_DEBUG;
  69 #else
  70 static int vortex_debug = 1;
  71 #endif
  72 
  73 #include <linux/module.h>
  74 #include <linux/kernel.h>
  75 #include <linux/string.h>
  76 #include <linux/timer.h>
  77 #include <linux/errno.h>
  78 #include <linux/in.h>
  79 #include <linux/ioport.h>
  80 #include <linux/interrupt.h>
  81 #include <linux/pci.h>
  82 #include <linux/mii.h>
  83 #include <linux/init.h>
  84 #include <linux/netdevice.h>
  85 #include <linux/etherdevice.h>
  86 #include <linux/skbuff.h>
  87 #include <linux/ethtool.h>
  88 #include <linux/highmem.h>
  89 #include <linux/eisa.h>
  90 #include <linux/bitops.h>
  91 #include <linux/jiffies.h>
  92 #include <linux/gfp.h>
  93 #include <asm/irq.h>                    /* For nr_irqs only. */
  94 #include <asm/io.h>
  95 #include <linux/uaccess.h>
  96 
  97 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
  98    This is only in the support-all-kernels source code. */
  99 
 100 #define RUN_AT(x) (jiffies + (x))
 101 
 102 #include <linux/delay.h>
 103 
 104 
 105 static const char version[] =
 106         DRV_NAME ": Donald Becker and others.\n";
 107 
 108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 109 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
 110 MODULE_LICENSE("GPL");
 111 
 112 
 113 /* Operational parameter that usually are not changed. */
 114 
 115 /* The Vortex size is twice that of the original EtherLinkIII series: the
 116    runtime register window, window 1, is now always mapped in.
 117    The Boomerang size is twice as large as the Vortex -- it has additional
 118    bus master control registers. */
 119 #define VORTEX_TOTAL_SIZE 0x20
 120 #define BOOMERANG_TOTAL_SIZE 0x40
 121 
 122 /* Set iff a MII transceiver on any interface requires mdio preamble.
 123    This only set with the original DP83840 on older 3c905 boards, so the extra
 124    code size of a per-interface flag is not worthwhile. */
 125 static char mii_preamble_required;
 126 
 127 #define PFX DRV_NAME ": "
 128 
 129 
 130 
 131 /*
 132                                 Theory of Operation
 133 
 134 I. Board Compatibility
 135 
 136 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
 137 XL, 3Com's PCI to 10/100baseT adapters.  It also works with the 10Mbs
 138 versions of the FastEtherLink cards.  The supported product IDs are
 139   3c590, 3c592, 3c595, 3c597, 3c900, 3c905
 140 
 141 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
 142 with the kernel source or available from
 143     cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
 144 
 145 II. Board-specific settings
 146 
 147 PCI bus devices are configured by the system at boot time, so no jumpers
 148 need to be set on the board.  The system BIOS should be set to assign the
 149 PCI INTA signal to an otherwise unused system IRQ line.
 150 
 151 The EEPROM settings for media type and forced-full-duplex are observed.
 152 The EEPROM media type should be left at the default "autoselect" unless using
 153 10base2 or AUI connections which cannot be reliably detected.
 154 
 155 III. Driver operation
 156 
 157 The 3c59x series use an interface that's very similar to the previous 3c5x9
 158 series.  The primary interface is two programmed-I/O FIFOs, with an
 159 alternate single-contiguous-region bus-master transfer (see next).
 160 
 161 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
 162 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
 163 DEC Tulip and Intel Speedo3.  The first chip version retains a compatible
 164 programmed-I/O interface that has been removed in 'B' and subsequent board
 165 revisions.
 166 
 167 One extension that is advertised in a very large font is that the adapters
 168 are capable of being bus masters.  On the Vortex chip this capability was
 169 only for a single contiguous region making it far less useful than the full
 170 bus master capability.  There is a significant performance impact of taking
 171 an extra interrupt or polling for the completion of each transfer, as well
 172 as difficulty sharing the single transfer engine between the transmit and
 173 receive threads.  Using DMA transfers is a win only with large blocks or
 174 with the flawed versions of the Intel Orion motherboard PCI controller.
 175 
 176 The Boomerang chip's full-bus-master interface is useful, and has the
 177 currently-unused advantages over other similar chips that queued transmit
 178 packets may be reordered and receive buffer groups are associated with a
 179 single frame.
 180 
 181 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
 182 Rather than a fixed intermediate receive buffer, this scheme allocates
 183 full-sized skbuffs as receive buffers.  The value RX_COPYBREAK is used as
 184 the copying breakpoint: it is chosen to trade-off the memory wasted by
 185 passing the full-sized skbuff to the queue layer for all frames vs. the
 186 copying cost of copying a frame to a correctly-sized skbuff.
 187 
 188 IIIC. Synchronization
 189 The driver runs as two independent, single-threaded flows of control.  One
 190 is the send-packet routine, which enforces single-threaded use by the
 191 dev->tbusy flag.  The other thread is the interrupt handler, which is single
 192 threaded by the hardware and other software.
 193 
 194 IV. Notes
 195 
 196 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
 197 3c590, 3c595, and 3c900 boards.
 198 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
 199 the EISA version is called "Demon".  According to Terry these names come
 200 from rides at the local amusement park.
 201 
 202 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
 203 This driver only supports ethernet packets because of the skbuff allocation
 204 limit of 4K.
 205 */
 206 
 207 /* This table drives the PCI probe routines.  It's mostly boilerplate in all
 208    of the drivers, and will likely be provided by some future kernel.
 209 */
 210 enum pci_flags_bit {
 211         PCI_USES_MASTER=4,
 212 };
 213 
 214 enum {  IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
 215         EEPROM_8BIT=0x10,       /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
 216         HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
 217         INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
 218         EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
 219         EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
 220 
 221 enum vortex_chips {
 222         CH_3C590 = 0,
 223         CH_3C592,
 224         CH_3C597,
 225         CH_3C595_1,
 226         CH_3C595_2,
 227 
 228         CH_3C595_3,
 229         CH_3C900_1,
 230         CH_3C900_2,
 231         CH_3C900_3,
 232         CH_3C900_4,
 233 
 234         CH_3C900_5,
 235         CH_3C900B_FL,
 236         CH_3C905_1,
 237         CH_3C905_2,
 238         CH_3C905B_TX,
 239         CH_3C905B_1,
 240 
 241         CH_3C905B_2,
 242         CH_3C905B_FX,
 243         CH_3C905C,
 244         CH_3C9202,
 245         CH_3C980,
 246         CH_3C9805,
 247 
 248         CH_3CSOHO100_TX,
 249         CH_3C555,
 250         CH_3C556,
 251         CH_3C556B,
 252         CH_3C575,
 253 
 254         CH_3C575_1,
 255         CH_3CCFE575,
 256         CH_3CCFE575CT,
 257         CH_3CCFE656,
 258         CH_3CCFEM656,
 259 
 260         CH_3CCFEM656_1,
 261         CH_3C450,
 262         CH_3C920,
 263         CH_3C982A,
 264         CH_3C982B,
 265 
 266         CH_905BT4,
 267         CH_920B_EMB_WNM,
 268 };
 269 
 270 
 271 /* note: this array directly indexed by above enums, and MUST
 272  * be kept in sync with both the enums above, and the PCI device
 273  * table below
 274  */
 275 static struct vortex_chip_info {
 276         const char *name;
 277         int flags;
 278         int drv_flags;
 279         int io_size;
 280 } vortex_info_tbl[] = {
 281         {"3c590 Vortex 10Mbps",
 282          PCI_USES_MASTER, IS_VORTEX, 32, },
 283         {"3c592 EISA 10Mbps Demon/Vortex",                                      /* AKPM: from Don's 3c59x_cb.c 0.49H */
 284          PCI_USES_MASTER, IS_VORTEX, 32, },
 285         {"3c597 EISA Fast Demon/Vortex",                                        /* AKPM: from Don's 3c59x_cb.c 0.49H */
 286          PCI_USES_MASTER, IS_VORTEX, 32, },
 287         {"3c595 Vortex 100baseTx",
 288          PCI_USES_MASTER, IS_VORTEX, 32, },
 289         {"3c595 Vortex 100baseT4",
 290          PCI_USES_MASTER, IS_VORTEX, 32, },
 291 
 292         {"3c595 Vortex 100base-MII",
 293          PCI_USES_MASTER, IS_VORTEX, 32, },
 294         {"3c900 Boomerang 10baseT",
 295          PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
 296         {"3c900 Boomerang 10Mbps Combo",
 297          PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
 298         {"3c900 Cyclone 10Mbps TPO",                                            /* AKPM: from Don's 0.99M */
 299          PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 300         {"3c900 Cyclone 10Mbps Combo",
 301          PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 302 
 303         {"3c900 Cyclone 10Mbps TPC",                                            /* AKPM: from Don's 0.99M */
 304          PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 305         {"3c900B-FL Cyclone 10base-FL",
 306          PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 307         {"3c905 Boomerang 100baseTx",
 308          PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
 309         {"3c905 Boomerang 100baseT4",
 310          PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
 311         {"3C905B-TX Fast Etherlink XL PCI",
 312          PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 313         {"3c905B Cyclone 100baseTx",
 314          PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 315 
 316         {"3c905B Cyclone 10/100/BNC",
 317          PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
 318         {"3c905B-FX Cyclone 100baseFx",
 319          PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 320         {"3c905C Tornado",
 321         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 322         {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
 323          PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
 324         {"3c980 Cyclone",
 325          PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 326 
 327         {"3c980C Python-T",
 328          PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
 329         {"3cSOHO100-TX Hurricane",
 330          PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 331         {"3c555 Laptop Hurricane",
 332          PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
 333         {"3c556 Laptop Tornado",
 334          PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
 335                                                                         HAS_HWCKSM, 128, },
 336         {"3c556B Laptop Hurricane",
 337          PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
 338                                         WNO_XCVR_PWR|HAS_HWCKSM, 128, },
 339 
 340         {"3c575 [Megahertz] 10/100 LAN  CardBus",
 341         PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
 342         {"3c575 Boomerang CardBus",
 343          PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
 344         {"3CCFE575BT Cyclone CardBus",
 345          PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
 346                                                                         INVERT_LED_PWR|HAS_HWCKSM, 128, },
 347         {"3CCFE575CT Tornado CardBus",
 348          PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 349                                                                         MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
 350         {"3CCFE656 Cyclone CardBus",
 351          PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 352                                                                         INVERT_LED_PWR|HAS_HWCKSM, 128, },
 353 
 354         {"3CCFEM656B Cyclone+Winmodem CardBus",
 355          PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 356                                                                         INVERT_LED_PWR|HAS_HWCKSM, 128, },
 357         {"3CXFEM656C Tornado+Winmodem CardBus",                 /* From pcmcia-cs-3.1.5 */
 358          PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 359                                                                         MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
 360         {"3c450 HomePNA Tornado",                                               /* AKPM: from Don's 0.99Q */
 361          PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 362         {"3c920 Tornado",
 363          PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 364         {"3c982 Hydra Dual Port A",
 365          PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
 366 
 367         {"3c982 Hydra Dual Port B",
 368          PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
 369         {"3c905B-T4",
 370          PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 371         {"3c920B-EMB-WNM Tornado",
 372          PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 373 
 374         {NULL,}, /* NULL terminated list. */
 375 };
 376 
 377 
 378 static const struct pci_device_id vortex_pci_tbl[] = {
 379         { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
 380         { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
 381         { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
 382         { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
 383         { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
 384 
 385         { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
 386         { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
 387         { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
 388         { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
 389         { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
 390 
 391         { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
 392         { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
 393         { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
 394         { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
 395         { 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
 396         { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
 397 
 398         { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
 399         { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
 400         { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
 401         { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
 402         { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
 403         { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
 404 
 405         { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
 406         { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
 407         { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
 408         { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
 409         { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
 410 
 411         { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
 412         { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
 413         { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
 414         { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
 415         { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
 416 
 417         { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
 418         { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
 419         { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
 420         { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
 421         { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
 422 
 423         { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
 424         { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
 425 
 426         {0,}                                            /* 0 terminated list. */
 427 };
 428 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
 429 
 430 
 431 /* Operational definitions.
 432    These are not used by other compilation units and thus are not
 433    exported in a ".h" file.
 434 
 435    First the windows.  There are eight register windows, with the command
 436    and status registers available in each.
 437    */
 438 #define EL3_CMD 0x0e
 439 #define EL3_STATUS 0x0e
 440 
 441 /* The top five bits written to EL3_CMD are a command, the lower
 442    11 bits are the parameter, if applicable.
 443    Note that 11 parameters bits was fine for ethernet, but the new chip
 444    can handle FDDI length frames (~4500 octets) and now parameters count
 445    32-bit 'Dwords' rather than octets. */
 446 
 447 enum vortex_cmd {
 448         TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
 449         RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
 450         UpStall = 6<<11, UpUnstall = (6<<11)+1,
 451         DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
 452         RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
 453         FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
 454         SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
 455         SetTxThreshold = 18<<11, SetTxStart = 19<<11,
 456         StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
 457         StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
 458 
 459 /* The SetRxFilter command accepts the following classes: */
 460 enum RxFilter {
 461         RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
 462 
 463 /* Bits in the general status register. */
 464 enum vortex_status {
 465         IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
 466         TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
 467         IntReq = 0x0040, StatsFull = 0x0080,
 468         DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
 469         DMAInProgress = 1<<11,                  /* DMA controller is still busy.*/
 470         CmdInProgress = 1<<12,                  /* EL3_CMD is still busy.*/
 471 };
 472 
 473 /* Register window 1 offsets, the window used in normal operation.
 474    On the Vortex this window is always mapped at offsets 0x10-0x1f. */
 475 enum Window1 {
 476         TX_FIFO = 0x10,  RX_FIFO = 0x10,  RxErrors = 0x14,
 477         RxStatus = 0x18,  Timer=0x1A, TxStatus = 0x1B,
 478         TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
 479 };
 480 enum Window0 {
 481         Wn0EepromCmd = 10,              /* Window 0: EEPROM command register. */
 482         Wn0EepromData = 12,             /* Window 0: EEPROM results register. */
 483         IntrStatus=0x0E,                /* Valid in all windows. */
 484 };
 485 enum Win0_EEPROM_bits {
 486         EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
 487         EEPROM_EWENB = 0x30,            /* Enable erasing/writing for 10 msec. */
 488         EEPROM_EWDIS = 0x00,            /* Disable EWENB before 10 msec timeout. */
 489 };
 490 /* EEPROM locations. */
 491 enum eeprom_offset {
 492         PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
 493         EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
 494         NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
 495         DriverTune=13, Checksum=15};
 496 
 497 enum Window2 {                  /* Window 2. */
 498         Wn2_ResetOptions=12,
 499 };
 500 enum Window3 {                  /* Window 3: MAC/config bits. */
 501         Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
 502 };
 503 
 504 #define BFEXT(value, offset, bitcount)  \
 505     ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
 506 
 507 #define BFINS(lhs, rhs, offset, bitcount)                                       \
 508         (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) |   \
 509         (((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
 510 
 511 #define RAM_SIZE(v)             BFEXT(v, 0, 3)
 512 #define RAM_WIDTH(v)    BFEXT(v, 3, 1)
 513 #define RAM_SPEED(v)    BFEXT(v, 4, 2)
 514 #define ROM_SIZE(v)             BFEXT(v, 6, 2)
 515 #define RAM_SPLIT(v)    BFEXT(v, 16, 2)
 516 #define XCVR(v)                 BFEXT(v, 20, 4)
 517 #define AUTOSELECT(v)   BFEXT(v, 24, 1)
 518 
 519 enum Window4 {          /* Window 4: Xcvr/media bits. */
 520         Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
 521 };
 522 enum Win4_Media_bits {
 523         Media_SQE = 0x0008,             /* Enable SQE error counting for AUI. */
 524         Media_10TP = 0x00C0,    /* Enable link beat and jabber for 10baseT. */
 525         Media_Lnk = 0x0080,             /* Enable just link beat for 100TX/100FX. */
 526         Media_LnkBeat = 0x0800,
 527 };
 528 enum Window7 {                                  /* Window 7: Bus Master control. */
 529         Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
 530         Wn7_MasterStatus = 12,
 531 };
 532 /* Boomerang bus master control registers. */
 533 enum MasterCtrl {
 534         PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
 535         TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
 536 };
 537 
 538 /* The Rx and Tx descriptor lists.
 539    Caution Alpha hackers: these types are 32 bits!  Note also the 8 byte
 540    alignment contraint on tx_ring[] and rx_ring[]. */
 541 #define LAST_FRAG       0x80000000                      /* Last Addr/Len pair in descriptor. */
 542 #define DN_COMPLETE     0x00010000                      /* This packet has been downloaded */
 543 struct boom_rx_desc {
 544         __le32 next;                                    /* Last entry points to 0.   */
 545         __le32 status;
 546         __le32 addr;                                    /* Up to 63 addr/len pairs possible. */
 547         __le32 length;                                  /* Set LAST_FRAG to indicate last pair. */
 548 };
 549 /* Values for the Rx status entry. */
 550 enum rx_desc_status {
 551         RxDComplete=0x00008000, RxDError=0x4000,
 552         /* See boomerang_rx() for actual error bits */
 553         IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
 554         IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
 555 };
 556 
 557 #ifdef MAX_SKB_FRAGS
 558 #define DO_ZEROCOPY 1
 559 #else
 560 #define DO_ZEROCOPY 0
 561 #endif
 562 
 563 struct boom_tx_desc {
 564         __le32 next;                                    /* Last entry points to 0.   */
 565         __le32 status;                                  /* bits 0:12 length, others see below.  */
 566 #if DO_ZEROCOPY
 567         struct {
 568                 __le32 addr;
 569                 __le32 length;
 570         } frag[1+MAX_SKB_FRAGS];
 571 #else
 572                 __le32 addr;
 573                 __le32 length;
 574 #endif
 575 };
 576 
 577 /* Values for the Tx status entry. */
 578 enum tx_desc_status {
 579         CRCDisable=0x2000, TxDComplete=0x8000,
 580         AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
 581         TxIntrUploaded=0x80000000,              /* IRQ when in FIFO, but maybe not sent. */
 582 };
 583 
 584 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
 585 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
 586 
 587 struct vortex_extra_stats {
 588         unsigned long tx_deferred;
 589         unsigned long tx_max_collisions;
 590         unsigned long tx_multiple_collisions;
 591         unsigned long tx_single_collisions;
 592         unsigned long rx_bad_ssd;
 593 };
 594 
 595 struct vortex_private {
 596         /* The Rx and Tx rings should be quad-word-aligned. */
 597         struct boom_rx_desc* rx_ring;
 598         struct boom_tx_desc* tx_ring;
 599         dma_addr_t rx_ring_dma;
 600         dma_addr_t tx_ring_dma;
 601         /* The addresses of transmit- and receive-in-place skbuffs. */
 602         struct sk_buff* rx_skbuff[RX_RING_SIZE];
 603         struct sk_buff* tx_skbuff[TX_RING_SIZE];
 604         unsigned int cur_rx, cur_tx;            /* The next free ring entry */
 605         unsigned int dirty_tx;  /* The ring entries to be free()ed. */
 606         struct vortex_extra_stats xstats;       /* NIC-specific extra stats */
 607         struct sk_buff *tx_skb;                         /* Packet being eaten by bus master ctrl.  */
 608         dma_addr_t tx_skb_dma;                          /* Allocated DMA address for bus master ctrl DMA.   */
 609 
 610         /* PCI configuration space information. */
 611         struct device *gendev;
 612         void __iomem *ioaddr;                   /* IO address space */
 613         void __iomem *cb_fn_base;               /* CardBus function status addr space. */
 614 
 615         /* Some values here only for performance evaluation and path-coverage */
 616         int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
 617         int card_idx;
 618 
 619         /* The remainder are related to chip state, mostly media selection. */
 620         struct timer_list timer;                        /* Media selection timer. */
 621         int options;                                            /* User-settable misc. driver options. */
 622         unsigned int media_override:4,          /* Passed-in media type. */
 623                 default_media:4,                                /* Read from the EEPROM/Wn3_Config. */
 624                 full_duplex:1, autoselect:1,
 625                 bus_master:1,                                   /* Vortex can only do a fragment bus-m. */
 626                 full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang  */
 627                 flow_ctrl:1,                                    /* Use 802.3x flow control (PAUSE only) */
 628                 partner_flow_ctrl:1,                    /* Partner supports flow control */
 629                 has_nway:1,
 630                 enable_wol:1,                                   /* Wake-on-LAN is enabled */
 631                 pm_state_valid:1,                               /* pci_dev->saved_config_space has sane contents */
 632                 open:1,
 633                 medialock:1,
 634                 large_frames:1,                 /* accept large frames */
 635                 handling_irq:1;                 /* private in_irq indicator */
 636         /* {get|set}_wol operations are already serialized by rtnl.
 637          * no additional locking is required for the enable_wol and acpi_set_WOL()
 638          */
 639         int drv_flags;
 640         u16 status_enable;
 641         u16 intr_enable;
 642         u16 available_media;                            /* From Wn3_Options. */
 643         u16 capabilities, info1, info2;         /* Various, from EEPROM. */
 644         u16 advertising;                                        /* NWay media advertisement */
 645         unsigned char phys[2];                          /* MII device addresses. */
 646         u16 deferred;                                           /* Resend these interrupts when we
 647                                                                                  * bale from the ISR */
 648         u16 io_size;                                            /* Size of PCI region (for release_region) */
 649 
 650         /* Serialises access to hardware other than MII and variables below.
 651          * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */
 652         spinlock_t lock;
 653 
 654         spinlock_t mii_lock;            /* Serialises access to MII */
 655         struct mii_if_info mii;         /* MII lib hooks/info */
 656         spinlock_t window_lock;         /* Serialises access to windowed regs */
 657         int window;                     /* Register window */
 658 };
 659 
 660 static void window_set(struct vortex_private *vp, int window)
 661 {
 662         if (window != vp->window) {
 663                 iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD);
 664                 vp->window = window;
 665         }
 666 }
 667 
 668 #define DEFINE_WINDOW_IO(size)                                          \
 669 static u ## size                                                        \
 670 window_read ## size(struct vortex_private *vp, int window, int addr)    \
 671 {                                                                       \
 672         unsigned long flags;                                            \
 673         u ## size ret;                                                  \
 674         spin_lock_irqsave(&vp->window_lock, flags);                     \
 675         window_set(vp, window);                                         \
 676         ret = ioread ## size(vp->ioaddr + addr);                        \
 677         spin_unlock_irqrestore(&vp->window_lock, flags);                \
 678         return ret;                                                     \
 679 }                                                                       \
 680 static void                                                             \
 681 window_write ## size(struct vortex_private *vp, u ## size value,        \
 682                      int window, int addr)                              \
 683 {                                                                       \
 684         unsigned long flags;                                            \
 685         spin_lock_irqsave(&vp->window_lock, flags);                     \
 686         window_set(vp, window);                                         \
 687         iowrite ## size(value, vp->ioaddr + addr);                      \
 688         spin_unlock_irqrestore(&vp->window_lock, flags);                \
 689 }
 690 DEFINE_WINDOW_IO(8)
 691 DEFINE_WINDOW_IO(16)
 692 DEFINE_WINDOW_IO(32)
 693 
 694 #ifdef CONFIG_PCI
 695 #define DEVICE_PCI(dev) ((dev_is_pci(dev)) ? to_pci_dev((dev)) : NULL)
 696 #else
 697 #define DEVICE_PCI(dev) NULL
 698 #endif
 699 
 700 #define VORTEX_PCI(vp)                                                  \
 701         ((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL))
 702 
 703 #ifdef CONFIG_EISA
 704 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
 705 #else
 706 #define DEVICE_EISA(dev) NULL
 707 #endif
 708 
 709 #define VORTEX_EISA(vp)                                                 \
 710         ((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL))
 711 
 712 /* The action to take with a media selection timer tick.
 713    Note that we deviate from the 3Com order by checking 10base2 before AUI.
 714  */
 715 enum xcvr_types {
 716         XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
 717         XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
 718 };
 719 
 720 static const struct media_table {
 721         char *name;
 722         unsigned int media_bits:16,             /* Bits to set in Wn4_Media register. */
 723                 mask:8,                                         /* The transceiver-present bit in Wn3_Config.*/
 724                 next:8;                                         /* The media type to try next. */
 725         int wait;                                               /* Time before we check media status. */
 726 } media_tbl[] = {
 727   {     "10baseT",   Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
 728   { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
 729   { "undefined", 0,                     0x80, XCVR_10baseT, 10000},
 730   { "10base2",   0,                     0x10, XCVR_AUI,         (1*HZ)/10},
 731   { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
 732   { "100baseFX", Media_Lnk, 0x04, XCVR_MII,             (14*HZ)/10},
 733   { "MII",               0,                     0x41, XCVR_10baseT, 3*HZ },
 734   { "undefined", 0,                     0x01, XCVR_10baseT, 10000},
 735   { "Autonegotiate", 0,         0x41, XCVR_10baseT, 3*HZ},
 736   { "MII-External",      0,             0x41, XCVR_10baseT, 3*HZ },
 737   { "Default",   0,                     0xFF, XCVR_10baseT, 10000},
 738 };
 739 
 740 static struct {
 741         const char str[ETH_GSTRING_LEN];
 742 } ethtool_stats_keys[] = {
 743         { "tx_deferred" },
 744         { "tx_max_collisions" },
 745         { "tx_multiple_collisions" },
 746         { "tx_single_collisions" },
 747         { "rx_bad_ssd" },
 748 };
 749 
 750 /* number of ETHTOOL_GSTATS u64's */
 751 #define VORTEX_NUM_STATS    5
 752 
 753 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
 754                                    int chip_idx, int card_idx);
 755 static int vortex_up(struct net_device *dev);
 756 static void vortex_down(struct net_device *dev, int final);
 757 static int vortex_open(struct net_device *dev);
 758 static void mdio_sync(struct vortex_private *vp, int bits);
 759 static int mdio_read(struct net_device *dev, int phy_id, int location);
 760 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
 761 static void vortex_timer(struct timer_list *t);
 762 static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
 763                                      struct net_device *dev);
 764 static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
 765                                         struct net_device *dev);
 766 static int vortex_rx(struct net_device *dev);
 767 static int boomerang_rx(struct net_device *dev);
 768 static irqreturn_t vortex_boomerang_interrupt(int irq, void *dev_id);
 769 static irqreturn_t _vortex_interrupt(int irq, struct net_device *dev);
 770 static irqreturn_t _boomerang_interrupt(int irq, struct net_device *dev);
 771 static int vortex_close(struct net_device *dev);
 772 static void dump_tx_ring(struct net_device *dev);
 773 static void update_stats(void __iomem *ioaddr, struct net_device *dev);
 774 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
 775 static void set_rx_mode(struct net_device *dev);
 776 #ifdef CONFIG_PCI
 777 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 778 #endif
 779 static void vortex_tx_timeout(struct net_device *dev);
 780 static void acpi_set_WOL(struct net_device *dev);
 781 static const struct ethtool_ops vortex_ethtool_ops;
 782 static void set_8021q_mode(struct net_device *dev, int enable);
 783 
 784 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
 785 /* Option count limit only -- unlimited interfaces are supported. */
 786 #define MAX_UNITS 8
 787 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
 788 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 789 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 790 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 791 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 792 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 793 static int global_options = -1;
 794 static int global_full_duplex = -1;
 795 static int global_enable_wol = -1;
 796 static int global_use_mmio = -1;
 797 
 798 /* Variables to work-around the Compaq PCI BIOS32 problem. */
 799 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
 800 static struct net_device *compaq_net_device;
 801 
 802 static int vortex_cards_found;
 803 
 804 module_param(debug, int, 0);
 805 module_param(global_options, int, 0);
 806 module_param_array(options, int, NULL, 0);
 807 module_param(global_full_duplex, int, 0);
 808 module_param_array(full_duplex, int, NULL, 0);
 809 module_param_array(hw_checksums, int, NULL, 0);
 810 module_param_array(flow_ctrl, int, NULL, 0);
 811 module_param(global_enable_wol, int, 0);
 812 module_param_array(enable_wol, int, NULL, 0);
 813 module_param(rx_copybreak, int, 0);
 814 module_param(max_interrupt_work, int, 0);
 815 module_param_hw(compaq_ioaddr, int, ioport, 0);
 816 module_param_hw(compaq_irq, int, irq, 0);
 817 module_param(compaq_device_id, int, 0);
 818 module_param(watchdog, int, 0);
 819 module_param(global_use_mmio, int, 0);
 820 module_param_array(use_mmio, int, NULL, 0);
 821 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
 822 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
 823 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
 824 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
 825 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
 826 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
 827 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
 828 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
 829 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
 830 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
 831 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
 832 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
 833 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
 834 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
 835 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
 836 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
 837 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
 838 
 839 #ifdef CONFIG_NET_POLL_CONTROLLER
 840 static void poll_vortex(struct net_device *dev)
 841 {
 842         vortex_boomerang_interrupt(dev->irq, dev);
 843 }
 844 #endif
 845 
 846 #ifdef CONFIG_PM
 847 
 848 static int vortex_suspend(struct device *dev)
 849 {
 850         struct net_device *ndev = dev_get_drvdata(dev);
 851 
 852         if (!ndev || !netif_running(ndev))
 853                 return 0;
 854 
 855         netif_device_detach(ndev);
 856         vortex_down(ndev, 1);
 857 
 858         return 0;
 859 }
 860 
 861 static int vortex_resume(struct device *dev)
 862 {
 863         struct net_device *ndev = dev_get_drvdata(dev);
 864         int err;
 865 
 866         if (!ndev || !netif_running(ndev))
 867                 return 0;
 868 
 869         err = vortex_up(ndev);
 870         if (err)
 871                 return err;
 872 
 873         netif_device_attach(ndev);
 874 
 875         return 0;
 876 }
 877 
 878 static const struct dev_pm_ops vortex_pm_ops = {
 879         .suspend = vortex_suspend,
 880         .resume = vortex_resume,
 881         .freeze = vortex_suspend,
 882         .thaw = vortex_resume,
 883         .poweroff = vortex_suspend,
 884         .restore = vortex_resume,
 885 };
 886 
 887 #define VORTEX_PM_OPS (&vortex_pm_ops)
 888 
 889 #else /* !CONFIG_PM */
 890 
 891 #define VORTEX_PM_OPS NULL
 892 
 893 #endif /* !CONFIG_PM */
 894 
 895 #ifdef CONFIG_EISA
 896 static const struct eisa_device_id vortex_eisa_ids[] = {
 897         { "TCM5920", CH_3C592 },
 898         { "TCM5970", CH_3C597 },
 899         { "" }
 900 };
 901 MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
 902 
 903 static int vortex_eisa_probe(struct device *device)
 904 {
 905         void __iomem *ioaddr;
 906         struct eisa_device *edev;
 907 
 908         edev = to_eisa_device(device);
 909 
 910         if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
 911                 return -EBUSY;
 912 
 913         ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
 914 
 915         if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
 916                                           edev->id.driver_data, vortex_cards_found)) {
 917                 release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
 918                 return -ENODEV;
 919         }
 920 
 921         vortex_cards_found++;
 922 
 923         return 0;
 924 }
 925 
 926 static int vortex_eisa_remove(struct device *device)
 927 {
 928         struct eisa_device *edev;
 929         struct net_device *dev;
 930         struct vortex_private *vp;
 931         void __iomem *ioaddr;
 932 
 933         edev = to_eisa_device(device);
 934         dev = eisa_get_drvdata(edev);
 935 
 936         if (!dev) {
 937                 pr_err("vortex_eisa_remove called for Compaq device!\n");
 938                 BUG();
 939         }
 940 
 941         vp = netdev_priv(dev);
 942         ioaddr = vp->ioaddr;
 943 
 944         unregister_netdev(dev);
 945         iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
 946         release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
 947 
 948         free_netdev(dev);
 949         return 0;
 950 }
 951 
 952 static struct eisa_driver vortex_eisa_driver = {
 953         .id_table = vortex_eisa_ids,
 954         .driver   = {
 955                 .name    = "3c59x",
 956                 .probe   = vortex_eisa_probe,
 957                 .remove  = vortex_eisa_remove
 958         }
 959 };
 960 
 961 #endif /* CONFIG_EISA */
 962 
 963 /* returns count found (>= 0), or negative on error */
 964 static int __init vortex_eisa_init(void)
 965 {
 966         int eisa_found = 0;
 967         int orig_cards_found = vortex_cards_found;
 968 
 969 #ifdef CONFIG_EISA
 970         int err;
 971 
 972         err = eisa_driver_register (&vortex_eisa_driver);
 973         if (!err) {
 974                 /*
 975                  * Because of the way EISA bus is probed, we cannot assume
 976                  * any device have been found when we exit from
 977                  * eisa_driver_register (the bus root driver may not be
 978                  * initialized yet). So we blindly assume something was
 979                  * found, and let the sysfs magic happened...
 980                  */
 981                 eisa_found = 1;
 982         }
 983 #endif
 984 
 985         /* Special code to work-around the Compaq PCI BIOS32 problem. */
 986         if (compaq_ioaddr) {
 987                 vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
 988                               compaq_irq, compaq_device_id, vortex_cards_found++);
 989         }
 990 
 991         return vortex_cards_found - orig_cards_found + eisa_found;
 992 }
 993 
 994 /* returns count (>= 0), or negative on error */
 995 static int vortex_init_one(struct pci_dev *pdev,
 996                            const struct pci_device_id *ent)
 997 {
 998         int rc, unit, pci_bar;
 999         struct vortex_chip_info *vci;
1000         void __iomem *ioaddr;
1001 
1002         /* wake up and enable device */
1003         rc = pci_enable_device(pdev);
1004         if (rc < 0)
1005                 goto out;
1006 
1007         rc = pci_request_regions(pdev, DRV_NAME);
1008         if (rc < 0)
1009                 goto out_disable;
1010 
1011         unit = vortex_cards_found;
1012 
1013         if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1014                 /* Determine the default if the user didn't override us */
1015                 vci = &vortex_info_tbl[ent->driver_data];
1016                 pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1017         } else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1018                 pci_bar = use_mmio[unit] ? 1 : 0;
1019         else
1020                 pci_bar = global_use_mmio ? 1 : 0;
1021 
1022         ioaddr = pci_iomap(pdev, pci_bar, 0);
1023         if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1024                 ioaddr = pci_iomap(pdev, 0, 0);
1025         if (!ioaddr) {
1026                 rc = -ENOMEM;
1027                 goto out_release;
1028         }
1029 
1030         rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1031                            ent->driver_data, unit);
1032         if (rc < 0)
1033                 goto out_iounmap;
1034 
1035         vortex_cards_found++;
1036         goto out;
1037 
1038 out_iounmap:
1039         pci_iounmap(pdev, ioaddr);
1040 out_release:
1041         pci_release_regions(pdev);
1042 out_disable:
1043         pci_disable_device(pdev);
1044 out:
1045         return rc;
1046 }
1047 
1048 static const struct net_device_ops boomrang_netdev_ops = {
1049         .ndo_open               = vortex_open,
1050         .ndo_stop               = vortex_close,
1051         .ndo_start_xmit         = boomerang_start_xmit,
1052         .ndo_tx_timeout         = vortex_tx_timeout,
1053         .ndo_get_stats          = vortex_get_stats,
1054 #ifdef CONFIG_PCI
1055         .ndo_do_ioctl           = vortex_ioctl,
1056 #endif
1057         .ndo_set_rx_mode        = set_rx_mode,
1058         .ndo_set_mac_address    = eth_mac_addr,
1059         .ndo_validate_addr      = eth_validate_addr,
1060 #ifdef CONFIG_NET_POLL_CONTROLLER
1061         .ndo_poll_controller    = poll_vortex,
1062 #endif
1063 };
1064 
1065 static const struct net_device_ops vortex_netdev_ops = {
1066         .ndo_open               = vortex_open,
1067         .ndo_stop               = vortex_close,
1068         .ndo_start_xmit         = vortex_start_xmit,
1069         .ndo_tx_timeout         = vortex_tx_timeout,
1070         .ndo_get_stats          = vortex_get_stats,
1071 #ifdef CONFIG_PCI
1072         .ndo_do_ioctl           = vortex_ioctl,
1073 #endif
1074         .ndo_set_rx_mode        = set_rx_mode,
1075         .ndo_set_mac_address    = eth_mac_addr,
1076         .ndo_validate_addr      = eth_validate_addr,
1077 #ifdef CONFIG_NET_POLL_CONTROLLER
1078         .ndo_poll_controller    = poll_vortex,
1079 #endif
1080 };
1081 
1082 /*
1083  * Start up the PCI/EISA device which is described by *gendev.
1084  * Return 0 on success.
1085  *
1086  * NOTE: pdev can be NULL, for the case of a Compaq device
1087  */
1088 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
1089                          int chip_idx, int card_idx)
1090 {
1091         struct vortex_private *vp;
1092         int option;
1093         unsigned int eeprom[0x40], checksum = 0;                /* EEPROM contents */
1094         int i, step;
1095         struct net_device *dev;
1096         static int printed_version;
1097         int retval, print_info;
1098         struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1099         const char *print_name = "3c59x";
1100         struct pci_dev *pdev = NULL;
1101         struct eisa_device *edev = NULL;
1102 
1103         if (!printed_version) {
1104                 pr_info("%s", version);
1105                 printed_version = 1;
1106         }
1107 
1108         if (gendev) {
1109                 if ((pdev = DEVICE_PCI(gendev))) {
1110                         print_name = pci_name(pdev);
1111                 }
1112 
1113                 if ((edev = DEVICE_EISA(gendev))) {
1114                         print_name = dev_name(&edev->dev);
1115                 }
1116         }
1117 
1118         dev = alloc_etherdev(sizeof(*vp));
1119         retval = -ENOMEM;
1120         if (!dev)
1121                 goto out;
1122 
1123         SET_NETDEV_DEV(dev, gendev);
1124         vp = netdev_priv(dev);
1125 
1126         option = global_options;
1127 
1128         /* The lower four bits are the media type. */
1129         if (dev->mem_start) {
1130                 /*
1131                  * The 'options' param is passed in as the third arg to the
1132                  * LILO 'ether=' argument for non-modular use
1133                  */
1134                 option = dev->mem_start;
1135         }
1136         else if (card_idx < MAX_UNITS) {
1137                 if (options[card_idx] >= 0)
1138                         option = options[card_idx];
1139         }
1140 
1141         if (option > 0) {
1142                 if (option & 0x8000)
1143                         vortex_debug = 7;
1144                 if (option & 0x4000)
1145                         vortex_debug = 2;
1146                 if (option & 0x0400)
1147                         vp->enable_wol = 1;
1148         }
1149 
1150         print_info = (vortex_debug > 1);
1151         if (print_info)
1152                 pr_info("See Documentation/networking/device_drivers/3com/vortex.txt\n");
1153 
1154         pr_info("%s: 3Com %s %s at %p.\n",
1155                print_name,
1156                pdev ? "PCI" : "EISA",
1157                vci->name,
1158                ioaddr);
1159 
1160         dev->base_addr = (unsigned long)ioaddr;
1161         dev->irq = irq;
1162         dev->mtu = mtu;
1163         vp->ioaddr = ioaddr;
1164         vp->large_frames = mtu > 1500;
1165         vp->drv_flags = vci->drv_flags;
1166         vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1167         vp->io_size = vci->io_size;
1168         vp->card_idx = card_idx;
1169         vp->window = -1;
1170 
1171         /* module list only for Compaq device */
1172         if (gendev == NULL) {
1173                 compaq_net_device = dev;
1174         }
1175 
1176         /* PCI-only startup logic */
1177         if (pdev) {
1178                 /* enable bus-mastering if necessary */
1179                 if (vci->flags & PCI_USES_MASTER)
1180                         pci_set_master(pdev);
1181 
1182                 if (vci->drv_flags & IS_VORTEX) {
1183                         u8 pci_latency;
1184                         u8 new_latency = 248;
1185 
1186                         /* Check the PCI latency value.  On the 3c590 series the latency timer
1187                            must be set to the maximum value to avoid data corruption that occurs
1188                            when the timer expires during a transfer.  This bug exists the Vortex
1189                            chip only. */
1190                         pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1191                         if (pci_latency < new_latency) {
1192                                 pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1193                                         print_name, pci_latency, new_latency);
1194                                 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1195                         }
1196                 }
1197         }
1198 
1199         spin_lock_init(&vp->lock);
1200         spin_lock_init(&vp->mii_lock);
1201         spin_lock_init(&vp->window_lock);
1202         vp->gendev = gendev;
1203         vp->mii.dev = dev;
1204         vp->mii.mdio_read = mdio_read;
1205         vp->mii.mdio_write = mdio_write;
1206         vp->mii.phy_id_mask = 0x1f;
1207         vp->mii.reg_num_mask = 0x1f;
1208 
1209         /* Makes sure rings are at least 16 byte aligned. */
1210         vp->rx_ring = dma_alloc_coherent(gendev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1211                                            + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1212                                            &vp->rx_ring_dma, GFP_KERNEL);
1213         retval = -ENOMEM;
1214         if (!vp->rx_ring)
1215                 goto free_device;
1216 
1217         vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1218         vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1219 
1220         /* if we are a PCI driver, we store info in pdev->driver_data
1221          * instead of a module list */
1222         if (pdev)
1223                 pci_set_drvdata(pdev, dev);
1224         if (edev)
1225                 eisa_set_drvdata(edev, dev);
1226 
1227         vp->media_override = 7;
1228         if (option >= 0) {
1229                 vp->media_override = ((option & 7) == 2)  ?  0  :  option & 15;
1230                 if (vp->media_override != 7)
1231                         vp->medialock = 1;
1232                 vp->full_duplex = (option & 0x200) ? 1 : 0;
1233                 vp->bus_master = (option & 16) ? 1 : 0;
1234         }
1235 
1236         if (global_full_duplex > 0)
1237                 vp->full_duplex = 1;
1238         if (global_enable_wol > 0)
1239                 vp->enable_wol = 1;
1240 
1241         if (card_idx < MAX_UNITS) {
1242                 if (full_duplex[card_idx] > 0)
1243                         vp->full_duplex = 1;
1244                 if (flow_ctrl[card_idx] > 0)
1245                         vp->flow_ctrl = 1;
1246                 if (enable_wol[card_idx] > 0)
1247                         vp->enable_wol = 1;
1248         }
1249 
1250         vp->mii.force_media = vp->full_duplex;
1251         vp->options = option;
1252         /* Read the station address from the EEPROM. */
1253         {
1254                 int base;
1255 
1256                 if (vci->drv_flags & EEPROM_8BIT)
1257                         base = 0x230;
1258                 else if (vci->drv_flags & EEPROM_OFFSET)
1259                         base = EEPROM_Read + 0x30;
1260                 else
1261                         base = EEPROM_Read;
1262 
1263                 for (i = 0; i < 0x40; i++) {
1264                         int timer;
1265                         window_write16(vp, base + i, 0, Wn0EepromCmd);
1266                         /* Pause for at least 162 us. for the read to take place. */
1267                         for (timer = 10; timer >= 0; timer--) {
1268                                 udelay(162);
1269                                 if ((window_read16(vp, 0, Wn0EepromCmd) &
1270                                      0x8000) == 0)
1271                                         break;
1272                         }
1273                         eeprom[i] = window_read16(vp, 0, Wn0EepromData);
1274                 }
1275         }
1276         for (i = 0; i < 0x18; i++)
1277                 checksum ^= eeprom[i];
1278         checksum = (checksum ^ (checksum >> 8)) & 0xff;
1279         if (checksum != 0x00) {         /* Grrr, needless incompatible change 3Com. */
1280                 while (i < 0x21)
1281                         checksum ^= eeprom[i++];
1282                 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1283         }
1284         if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1285                 pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1286         for (i = 0; i < 3; i++)
1287                 ((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1288         if (print_info)
1289                 pr_cont(" %pM", dev->dev_addr);
1290         /* Unfortunately an all zero eeprom passes the checksum and this
1291            gets found in the wild in failure cases. Crypto is hard 8) */
1292         if (!is_valid_ether_addr(dev->dev_addr)) {
1293                 retval = -EINVAL;
1294                 pr_err("*** EEPROM MAC address is invalid.\n");
1295                 goto free_ring; /* With every pack */
1296         }
1297         for (i = 0; i < 6; i++)
1298                 window_write8(vp, dev->dev_addr[i], 2, i);
1299 
1300         if (print_info)
1301                 pr_cont(", IRQ %d\n", dev->irq);
1302         /* Tell them about an invalid IRQ. */
1303         if (dev->irq <= 0 || dev->irq >= nr_irqs)
1304                 pr_warn(" *** Warning: IRQ %d is unlikely to work! ***\n",
1305                         dev->irq);
1306 
1307         step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1;
1308         if (print_info) {
1309                 pr_info("  product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1310                         eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1311                         step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1312         }
1313 
1314 
1315         if (pdev && vci->drv_flags & HAS_CB_FNS) {
1316                 unsigned short n;
1317 
1318                 vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1319                 if (!vp->cb_fn_base) {
1320                         retval = -ENOMEM;
1321                         goto free_ring;
1322                 }
1323 
1324                 if (print_info) {
1325                         pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1326                                 print_name,
1327                                 (unsigned long long)pci_resource_start(pdev, 2),
1328                                 vp->cb_fn_base);
1329                 }
1330 
1331                 n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1332                 if (vp->drv_flags & INVERT_LED_PWR)
1333                         n |= 0x10;
1334                 if (vp->drv_flags & INVERT_MII_PWR)
1335                         n |= 0x4000;
1336                 window_write16(vp, n, 2, Wn2_ResetOptions);
1337                 if (vp->drv_flags & WNO_XCVR_PWR) {
1338                         window_write16(vp, 0x0800, 0, 0);
1339                 }
1340         }
1341 
1342         /* Extract our information from the EEPROM data. */
1343         vp->info1 = eeprom[13];
1344         vp->info2 = eeprom[15];
1345         vp->capabilities = eeprom[16];
1346 
1347         if (vp->info1 & 0x8000) {
1348                 vp->full_duplex = 1;
1349                 if (print_info)
1350                         pr_info("Full duplex capable\n");
1351         }
1352 
1353         {
1354                 static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1355                 unsigned int config;
1356                 vp->available_media = window_read16(vp, 3, Wn3_Options);
1357                 if ((vp->available_media & 0xff) == 0)          /* Broken 3c916 */
1358                         vp->available_media = 0x40;
1359                 config = window_read32(vp, 3, Wn3_Config);
1360                 if (print_info) {
1361                         pr_debug("  Internal config register is %4.4x, transceivers %#x.\n",
1362                                 config, window_read16(vp, 3, Wn3_Options));
1363                         pr_info("  %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1364                                    8 << RAM_SIZE(config),
1365                                    RAM_WIDTH(config) ? "word" : "byte",
1366                                    ram_split[RAM_SPLIT(config)],
1367                                    AUTOSELECT(config) ? "autoselect/" : "",
1368                                    XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1369                                    media_tbl[XCVR(config)].name);
1370                 }
1371                 vp->default_media = XCVR(config);
1372                 if (vp->default_media == XCVR_NWAY)
1373                         vp->has_nway = 1;
1374                 vp->autoselect = AUTOSELECT(config);
1375         }
1376 
1377         if (vp->media_override != 7) {
1378                 pr_info("%s:  Media override to transceiver type %d (%s).\n",
1379                                 print_name, vp->media_override,
1380                                 media_tbl[vp->media_override].name);
1381                 dev->if_port = vp->media_override;
1382         } else
1383                 dev->if_port = vp->default_media;
1384 
1385         if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1386                 dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1387                 int phy, phy_idx = 0;
1388                 mii_preamble_required++;
1389                 if (vp->drv_flags & EXTRA_PREAMBLE)
1390                         mii_preamble_required++;
1391                 mdio_sync(vp, 32);
1392                 mdio_read(dev, 24, MII_BMSR);
1393                 for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1394                         int mii_status, phyx;
1395 
1396                         /*
1397                          * For the 3c905CX we look at index 24 first, because it bogusly
1398                          * reports an external PHY at all indices
1399                          */
1400                         if (phy == 0)
1401                                 phyx = 24;
1402                         else if (phy <= 24)
1403                                 phyx = phy - 1;
1404                         else
1405                                 phyx = phy;
1406                         mii_status = mdio_read(dev, phyx, MII_BMSR);
1407                         if (mii_status  &&  mii_status != 0xffff) {
1408                                 vp->phys[phy_idx++] = phyx;
1409                                 if (print_info) {
1410                                         pr_info("  MII transceiver found at address %d, status %4x.\n",
1411                                                 phyx, mii_status);
1412                                 }
1413                                 if ((mii_status & 0x0040) == 0)
1414                                         mii_preamble_required++;
1415                         }
1416                 }
1417                 mii_preamble_required--;
1418                 if (phy_idx == 0) {
1419                         pr_warn("  ***WARNING*** No MII transceivers found!\n");
1420                         vp->phys[0] = 24;
1421                 } else {
1422                         vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1423                         if (vp->full_duplex) {
1424                                 /* Only advertise the FD media types. */
1425                                 vp->advertising &= ~0x02A0;
1426                                 mdio_write(dev, vp->phys[0], 4, vp->advertising);
1427                         }
1428                 }
1429                 vp->mii.phy_id = vp->phys[0];
1430         }
1431 
1432         if (vp->capabilities & CapBusMaster) {
1433                 vp->full_bus_master_tx = 1;
1434                 if (print_info) {
1435                         pr_info("  Enabling bus-master transmits and %s receives.\n",
1436                         (vp->info2 & 1) ? "early" : "whole-frame" );
1437                 }
1438                 vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1439                 vp->bus_master = 0;             /* AKPM: vortex only */
1440         }
1441 
1442         /* The 3c59x-specific entries in the device structure. */
1443         if (vp->full_bus_master_tx) {
1444                 dev->netdev_ops = &boomrang_netdev_ops;
1445                 /* Actually, it still should work with iommu. */
1446                 if (card_idx < MAX_UNITS &&
1447                     ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1448                                 hw_checksums[card_idx] == 1)) {
1449                         dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1450                 }
1451         } else
1452                 dev->netdev_ops =  &vortex_netdev_ops;
1453 
1454         if (print_info) {
1455                 pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1456                                 print_name,
1457                                 (dev->features & NETIF_F_SG) ? "en":"dis",
1458                                 (dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1459         }
1460 
1461         dev->ethtool_ops = &vortex_ethtool_ops;
1462         dev->watchdog_timeo = (watchdog * HZ) / 1000;
1463 
1464         if (pdev) {
1465                 vp->pm_state_valid = 1;
1466                 pci_save_state(pdev);
1467                 acpi_set_WOL(dev);
1468         }
1469         retval = register_netdev(dev);
1470         if (retval == 0)
1471                 return 0;
1472 
1473 free_ring:
1474         dma_free_coherent(&pdev->dev,
1475                 sizeof(struct boom_rx_desc) * RX_RING_SIZE +
1476                 sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1477                 vp->rx_ring, vp->rx_ring_dma);
1478 free_device:
1479         free_netdev(dev);
1480         pr_err(PFX "vortex_probe1 fails.  Returns %d\n", retval);
1481 out:
1482         return retval;
1483 }
1484 
1485 static void
1486 issue_and_wait(struct net_device *dev, int cmd)
1487 {
1488         struct vortex_private *vp = netdev_priv(dev);
1489         void __iomem *ioaddr = vp->ioaddr;
1490         int i;
1491 
1492         iowrite16(cmd, ioaddr + EL3_CMD);
1493         for (i = 0; i < 2000; i++) {
1494                 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1495                         return;
1496         }
1497 
1498         /* OK, that didn't work.  Do it the slow way.  One second */
1499         for (i = 0; i < 100000; i++) {
1500                 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1501                         if (vortex_debug > 1)
1502                                 pr_info("%s: command 0x%04x took %d usecs\n",
1503                                            dev->name, cmd, i * 10);
1504                         return;
1505                 }
1506                 udelay(10);
1507         }
1508         pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1509                            dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1510 }
1511 
1512 static void
1513 vortex_set_duplex(struct net_device *dev)
1514 {
1515         struct vortex_private *vp = netdev_priv(dev);
1516 
1517         pr_info("%s:  setting %s-duplex.\n",
1518                 dev->name, (vp->full_duplex) ? "full" : "half");
1519 
1520         /* Set the full-duplex bit. */
1521         window_write16(vp,
1522                        ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1523                        (vp->large_frames ? 0x40 : 0) |
1524                        ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1525                         0x100 : 0),
1526                        3, Wn3_MAC_Ctrl);
1527 }
1528 
1529 static void vortex_check_media(struct net_device *dev, unsigned int init)
1530 {
1531         struct vortex_private *vp = netdev_priv(dev);
1532         unsigned int ok_to_print = 0;
1533 
1534         if (vortex_debug > 3)
1535                 ok_to_print = 1;
1536 
1537         if (mii_check_media(&vp->mii, ok_to_print, init)) {
1538                 vp->full_duplex = vp->mii.full_duplex;
1539                 vortex_set_duplex(dev);
1540         } else if (init) {
1541                 vortex_set_duplex(dev);
1542         }
1543 }
1544 
1545 static int
1546 vortex_up(struct net_device *dev)
1547 {
1548         struct vortex_private *vp = netdev_priv(dev);
1549         void __iomem *ioaddr = vp->ioaddr;
1550         unsigned int config;
1551         int i, mii_reg1, mii_reg5, err = 0;
1552 
1553         if (VORTEX_PCI(vp)) {
1554                 pci_set_power_state(VORTEX_PCI(vp), PCI_D0);    /* Go active */
1555                 if (vp->pm_state_valid)
1556                         pci_restore_state(VORTEX_PCI(vp));
1557                 err = pci_enable_device(VORTEX_PCI(vp));
1558                 if (err) {
1559                         pr_warn("%s: Could not enable device\n", dev->name);
1560                         goto err_out;
1561                 }
1562         }
1563 
1564         /* Before initializing select the active media port. */
1565         config = window_read32(vp, 3, Wn3_Config);
1566 
1567         if (vp->media_override != 7) {
1568                 pr_info("%s: Media override to transceiver %d (%s).\n",
1569                            dev->name, vp->media_override,
1570                            media_tbl[vp->media_override].name);
1571                 dev->if_port = vp->media_override;
1572         } else if (vp->autoselect) {
1573                 if (vp->has_nway) {
1574                         if (vortex_debug > 1)
1575                                 pr_info("%s: using NWAY device table, not %d\n",
1576                                                                 dev->name, dev->if_port);
1577                         dev->if_port = XCVR_NWAY;
1578                 } else {
1579                         /* Find first available media type, starting with 100baseTx. */
1580                         dev->if_port = XCVR_100baseTx;
1581                         while (! (vp->available_media & media_tbl[dev->if_port].mask))
1582                                 dev->if_port = media_tbl[dev->if_port].next;
1583                         if (vortex_debug > 1)
1584                                 pr_info("%s: first available media type: %s\n",
1585                                         dev->name, media_tbl[dev->if_port].name);
1586                 }
1587         } else {
1588                 dev->if_port = vp->default_media;
1589                 if (vortex_debug > 1)
1590                         pr_info("%s: using default media %s\n",
1591                                 dev->name, media_tbl[dev->if_port].name);
1592         }
1593 
1594         timer_setup(&vp->timer, vortex_timer, 0);
1595         mod_timer(&vp->timer, RUN_AT(media_tbl[dev->if_port].wait));
1596 
1597         if (vortex_debug > 1)
1598                 pr_debug("%s: Initial media type %s.\n",
1599                            dev->name, media_tbl[dev->if_port].name);
1600 
1601         vp->full_duplex = vp->mii.force_media;
1602         config = BFINS(config, dev->if_port, 20, 4);
1603         if (vortex_debug > 6)
1604                 pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1605         window_write32(vp, config, 3, Wn3_Config);
1606 
1607         if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1608                 mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1609                 mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1610                 vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1611                 vp->mii.full_duplex = vp->full_duplex;
1612 
1613                 vortex_check_media(dev, 1);
1614         }
1615         else
1616                 vortex_set_duplex(dev);
1617 
1618         issue_and_wait(dev, TxReset);
1619         /*
1620          * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1621          */
1622         issue_and_wait(dev, RxReset|0x04);
1623 
1624 
1625         iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1626 
1627         if (vortex_debug > 1) {
1628                 pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1629                            dev->name, dev->irq, window_read16(vp, 4, Wn4_Media));
1630         }
1631 
1632         /* Set the station address and mask in window 2 each time opened. */
1633         for (i = 0; i < 6; i++)
1634                 window_write8(vp, dev->dev_addr[i], 2, i);
1635         for (; i < 12; i+=2)
1636                 window_write16(vp, 0, 2, i);
1637 
1638         if (vp->cb_fn_base) {
1639                 unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1640                 if (vp->drv_flags & INVERT_LED_PWR)
1641                         n |= 0x10;
1642                 if (vp->drv_flags & INVERT_MII_PWR)
1643                         n |= 0x4000;
1644                 window_write16(vp, n, 2, Wn2_ResetOptions);
1645         }
1646 
1647         if (dev->if_port == XCVR_10base2)
1648                 /* Start the thinnet transceiver. We should really wait 50ms...*/
1649                 iowrite16(StartCoax, ioaddr + EL3_CMD);
1650         if (dev->if_port != XCVR_NWAY) {
1651                 window_write16(vp,
1652                                (window_read16(vp, 4, Wn4_Media) &
1653                                 ~(Media_10TP|Media_SQE)) |
1654                                media_tbl[dev->if_port].media_bits,
1655                                4, Wn4_Media);
1656         }
1657 
1658         /* Switch to the stats window, and clear all stats by reading. */
1659         iowrite16(StatsDisable, ioaddr + EL3_CMD);
1660         for (i = 0; i < 10; i++)
1661                 window_read8(vp, 6, i);
1662         window_read16(vp, 6, 10);
1663         window_read16(vp, 6, 12);
1664         /* New: On the Vortex we must also clear the BadSSD counter. */
1665         window_read8(vp, 4, 12);
1666         /* ..and on the Boomerang we enable the extra statistics bits. */
1667         window_write16(vp, 0x0040, 4, Wn4_NetDiag);
1668 
1669         if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1670                 vp->cur_rx = 0;
1671                 /* Initialize the RxEarly register as recommended. */
1672                 iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1673                 iowrite32(0x0020, ioaddr + PktStatus);
1674                 iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1675         }
1676         if (vp->full_bus_master_tx) {           /* Boomerang bus master Tx. */
1677                 vp->cur_tx = vp->dirty_tx = 0;
1678                 if (vp->drv_flags & IS_BOOMERANG)
1679                         iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1680                 /* Clear the Rx, Tx rings. */
1681                 for (i = 0; i < RX_RING_SIZE; i++)      /* AKPM: this is done in vortex_open, too */
1682                         vp->rx_ring[i].status = 0;
1683                 for (i = 0; i < TX_RING_SIZE; i++)
1684                         vp->tx_skbuff[i] = NULL;
1685                 iowrite32(0, ioaddr + DownListPtr);
1686         }
1687         /* Set receiver mode: presumably accept b-case and phys addr only. */
1688         set_rx_mode(dev);
1689         /* enable 802.1q tagged frames */
1690         set_8021q_mode(dev, 1);
1691         iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1692 
1693         iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1694         iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1695         /* Allow status bits to be seen. */
1696         vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1697                 (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1698                 (vp->full_bus_master_rx ? UpComplete : RxComplete) |
1699                 (vp->bus_master ? DMADone : 0);
1700         vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1701                 (vp->full_bus_master_rx ? 0 : RxComplete) |
1702                 StatsFull | HostError | TxComplete | IntReq
1703                 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1704         iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1705         /* Ack all pending events, and set active indicator mask. */
1706         iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1707                  ioaddr + EL3_CMD);
1708         iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1709         if (vp->cb_fn_base)                     /* The PCMCIA people are idiots.  */
1710                 iowrite32(0x8000, vp->cb_fn_base + 4);
1711         netif_start_queue (dev);
1712         netdev_reset_queue(dev);
1713 err_out:
1714         return err;
1715 }
1716 
1717 static int
1718 vortex_open(struct net_device *dev)
1719 {
1720         struct vortex_private *vp = netdev_priv(dev);
1721         int i;
1722         int retval;
1723         dma_addr_t dma;
1724 
1725         /* Use the now-standard shared IRQ implementation. */
1726         if ((retval = request_irq(dev->irq, vortex_boomerang_interrupt, IRQF_SHARED, dev->name, dev))) {
1727                 pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1728                 goto err;
1729         }
1730 
1731         if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1732                 if (vortex_debug > 2)
1733                         pr_debug("%s:  Filling in the Rx ring.\n", dev->name);
1734                 for (i = 0; i < RX_RING_SIZE; i++) {
1735                         struct sk_buff *skb;
1736                         vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1737                         vp->rx_ring[i].status = 0;      /* Clear complete bit. */
1738                         vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1739 
1740                         skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1741                                                  GFP_KERNEL);
1742                         vp->rx_skbuff[i] = skb;
1743                         if (skb == NULL)
1744                                 break;                  /* Bad news!  */
1745 
1746                         skb_reserve(skb, NET_IP_ALIGN); /* Align IP on 16 byte boundaries */
1747                         dma = dma_map_single(vp->gendev, skb->data,
1748                                              PKT_BUF_SZ, DMA_FROM_DEVICE);
1749                         if (dma_mapping_error(vp->gendev, dma))
1750                                 break;
1751                         vp->rx_ring[i].addr = cpu_to_le32(dma);
1752                 }
1753                 if (i != RX_RING_SIZE) {
1754                         pr_emerg("%s: no memory for rx ring\n", dev->name);
1755                         retval = -ENOMEM;
1756                         goto err_free_skb;
1757                 }
1758                 /* Wrap the ring. */
1759                 vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1760         }
1761 
1762         retval = vortex_up(dev);
1763         if (!retval)
1764                 goto out;
1765 
1766 err_free_skb:
1767         for (i = 0; i < RX_RING_SIZE; i++) {
1768                 if (vp->rx_skbuff[i]) {
1769                         dev_kfree_skb(vp->rx_skbuff[i]);
1770                         vp->rx_skbuff[i] = NULL;
1771                 }
1772         }
1773         free_irq(dev->irq, dev);
1774 err:
1775         if (vortex_debug > 1)
1776                 pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1777 out:
1778         return retval;
1779 }
1780 
1781 static void
1782 vortex_timer(struct timer_list *t)
1783 {
1784         struct vortex_private *vp = from_timer(vp, t, timer);
1785         struct net_device *dev = vp->mii.dev;
1786         void __iomem *ioaddr = vp->ioaddr;
1787         int next_tick = 60*HZ;
1788         int ok = 0;
1789         int media_status;
1790 
1791         if (vortex_debug > 2) {
1792                 pr_debug("%s: Media selection timer tick happened, %s.\n",
1793                            dev->name, media_tbl[dev->if_port].name);
1794                 pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1795         }
1796 
1797         media_status = window_read16(vp, 4, Wn4_Media);
1798         switch (dev->if_port) {
1799         case XCVR_10baseT:  case XCVR_100baseTx:  case XCVR_100baseFx:
1800                 if (media_status & Media_LnkBeat) {
1801                         netif_carrier_on(dev);
1802                         ok = 1;
1803                         if (vortex_debug > 1)
1804                                 pr_debug("%s: Media %s has link beat, %x.\n",
1805                                            dev->name, media_tbl[dev->if_port].name, media_status);
1806                 } else {
1807                         netif_carrier_off(dev);
1808                         if (vortex_debug > 1) {
1809                                 pr_debug("%s: Media %s has no link beat, %x.\n",
1810                                            dev->name, media_tbl[dev->if_port].name, media_status);
1811                         }
1812                 }
1813                 break;
1814         case XCVR_MII: case XCVR_NWAY:
1815                 {
1816                         ok = 1;
1817                         vortex_check_media(dev, 0);
1818                 }
1819                 break;
1820           default:                                      /* Other media types handled by Tx timeouts. */
1821                 if (vortex_debug > 1)
1822                   pr_debug("%s: Media %s has no indication, %x.\n",
1823                                  dev->name, media_tbl[dev->if_port].name, media_status);
1824                 ok = 1;
1825         }
1826 
1827         if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev))
1828                 next_tick = 5*HZ;
1829 
1830         if (vp->medialock)
1831                 goto leave_media_alone;
1832 
1833         if (!ok) {
1834                 unsigned int config;
1835 
1836                 spin_lock_irq(&vp->lock);
1837 
1838                 do {
1839                         dev->if_port = media_tbl[dev->if_port].next;
1840                 } while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1841                 if (dev->if_port == XCVR_Default) { /* Go back to default. */
1842                   dev->if_port = vp->default_media;
1843                   if (vortex_debug > 1)
1844                         pr_debug("%s: Media selection failing, using default %s port.\n",
1845                                    dev->name, media_tbl[dev->if_port].name);
1846                 } else {
1847                         if (vortex_debug > 1)
1848                                 pr_debug("%s: Media selection failed, now trying %s port.\n",
1849                                            dev->name, media_tbl[dev->if_port].name);
1850                         next_tick = media_tbl[dev->if_port].wait;
1851                 }
1852                 window_write16(vp,
1853                                (media_status & ~(Media_10TP|Media_SQE)) |
1854                                media_tbl[dev->if_port].media_bits,
1855                                4, Wn4_Media);
1856 
1857                 config = window_read32(vp, 3, Wn3_Config);
1858                 config = BFINS(config, dev->if_port, 20, 4);
1859                 window_write32(vp, config, 3, Wn3_Config);
1860 
1861                 iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1862                          ioaddr + EL3_CMD);
1863                 if (vortex_debug > 1)
1864                         pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1865                 /* AKPM: FIXME: Should reset Rx & Tx here.  P60 of 3c90xc.pdf */
1866 
1867                 spin_unlock_irq(&vp->lock);
1868         }
1869 
1870 leave_media_alone:
1871         if (vortex_debug > 2)
1872           pr_debug("%s: Media selection timer finished, %s.\n",
1873                          dev->name, media_tbl[dev->if_port].name);
1874 
1875         mod_timer(&vp->timer, RUN_AT(next_tick));
1876         if (vp->deferred)
1877                 iowrite16(FakeIntr, ioaddr + EL3_CMD);
1878 }
1879 
1880 static void vortex_tx_timeout(struct net_device *dev)
1881 {
1882         struct vortex_private *vp = netdev_priv(dev);
1883         void __iomem *ioaddr = vp->ioaddr;
1884 
1885         pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1886                    dev->name, ioread8(ioaddr + TxStatus),
1887                    ioread16(ioaddr + EL3_STATUS));
1888         pr_err("  diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1889                         window_read16(vp, 4, Wn4_NetDiag),
1890                         window_read16(vp, 4, Wn4_Media),
1891                         ioread32(ioaddr + PktStatus),
1892                         window_read16(vp, 4, Wn4_FIFODiag));
1893         /* Slight code bloat to be user friendly. */
1894         if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1895                 pr_err("%s: Transmitter encountered 16 collisions --"
1896                            " network cable problem?\n", dev->name);
1897         if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1898                 pr_err("%s: Interrupt posted but not delivered --"
1899                            " IRQ blocked by another device?\n", dev->name);
1900                 /* Bad idea here.. but we might as well handle a few events. */
1901                 vortex_boomerang_interrupt(dev->irq, dev);
1902         }
1903 
1904         if (vortex_debug > 0)
1905                 dump_tx_ring(dev);
1906 
1907         issue_and_wait(dev, TxReset);
1908 
1909         dev->stats.tx_errors++;
1910         if (vp->full_bus_master_tx) {
1911                 pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1912                 if (vp->cur_tx - vp->dirty_tx > 0  &&  ioread32(ioaddr + DownListPtr) == 0)
1913                         iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1914                                  ioaddr + DownListPtr);
1915                 if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE) {
1916                         netif_wake_queue (dev);
1917                         netdev_reset_queue (dev);
1918                 }
1919                 if (vp->drv_flags & IS_BOOMERANG)
1920                         iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1921                 iowrite16(DownUnstall, ioaddr + EL3_CMD);
1922         } else {
1923                 dev->stats.tx_dropped++;
1924                 netif_wake_queue(dev);
1925                 netdev_reset_queue(dev);
1926         }
1927         /* Issue Tx Enable */
1928         iowrite16(TxEnable, ioaddr + EL3_CMD);
1929         netif_trans_update(dev); /* prevent tx timeout */
1930 }
1931 
1932 /*
1933  * Handle uncommon interrupt sources.  This is a separate routine to minimize
1934  * the cache impact.
1935  */
1936 static void
1937 vortex_error(struct net_device *dev, int status)
1938 {
1939         struct vortex_private *vp = netdev_priv(dev);
1940         void __iomem *ioaddr = vp->ioaddr;
1941         int do_tx_reset = 0, reset_mask = 0;
1942         unsigned char tx_status = 0;
1943 
1944         if (vortex_debug > 2) {
1945                 pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1946         }
1947 
1948         if (status & TxComplete) {                      /* Really "TxError" for us. */
1949                 tx_status = ioread8(ioaddr + TxStatus);
1950                 /* Presumably a tx-timeout. We must merely re-enable. */
1951                 if (vortex_debug > 2 ||
1952                     (tx_status != 0x88 && vortex_debug > 0)) {
1953                         pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1954                                    dev->name, tx_status);
1955                         if (tx_status == 0x82) {
1956                                 pr_err("Probably a duplex mismatch.  See "
1957                                                 "Documentation/networking/device_drivers/3com/vortex.txt\n");
1958                         }
1959                         dump_tx_ring(dev);
1960                 }
1961                 if (tx_status & 0x14)  dev->stats.tx_fifo_errors++;
1962                 if (tx_status & 0x38)  dev->stats.tx_aborted_errors++;
1963                 if (tx_status & 0x08)  vp->xstats.tx_max_collisions++;
1964                 iowrite8(0, ioaddr + TxStatus);
1965                 if (tx_status & 0x30) {                 /* txJabber or txUnderrun */
1966                         do_tx_reset = 1;
1967                 } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET))  {      /* maxCollisions */
1968                         do_tx_reset = 1;
1969                         reset_mask = 0x0108;            /* Reset interface logic, but not download logic */
1970                 } else {                                /* Merely re-enable the transmitter. */
1971                         iowrite16(TxEnable, ioaddr + EL3_CMD);
1972                 }
1973         }
1974 
1975         if (status & RxEarly)                           /* Rx early is unused. */
1976                 iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
1977 
1978         if (status & StatsFull) {                       /* Empty statistics. */
1979                 static int DoneDidThat;
1980                 if (vortex_debug > 4)
1981                         pr_debug("%s: Updating stats.\n", dev->name);
1982                 update_stats(ioaddr, dev);
1983                 /* HACK: Disable statistics as an interrupt source. */
1984                 /* This occurs when we have the wrong media type! */
1985                 if (DoneDidThat == 0  &&
1986                         ioread16(ioaddr + EL3_STATUS) & StatsFull) {
1987                         pr_warn("%s: Updating statistics failed, disabling stats as an interrupt source\n",
1988                                 dev->name);
1989                         iowrite16(SetIntrEnb |
1990                                   (window_read16(vp, 5, 10) & ~StatsFull),
1991                                   ioaddr + EL3_CMD);
1992                         vp->intr_enable &= ~StatsFull;
1993                         DoneDidThat++;
1994                 }
1995         }
1996         if (status & IntReq) {          /* Restore all interrupt sources.  */
1997                 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1998                 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1999         }
2000         if (status & HostError) {
2001                 u16 fifo_diag;
2002                 fifo_diag = window_read16(vp, 4, Wn4_FIFODiag);
2003                 pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2004                            dev->name, fifo_diag);
2005                 /* Adapter failure requires Tx/Rx reset and reinit. */
2006                 if (vp->full_bus_master_tx) {
2007                         int bus_status = ioread32(ioaddr + PktStatus);
2008                         /* 0x80000000 PCI master abort. */
2009                         /* 0x40000000 PCI target abort. */
2010                         if (vortex_debug)
2011                                 pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2012 
2013                         /* In this case, blow the card away */
2014                         /* Must not enter D3 or we can't legally issue the reset! */
2015                         vortex_down(dev, 0);
2016                         issue_and_wait(dev, TotalReset | 0xff);
2017                         vortex_up(dev);         /* AKPM: bug.  vortex_up() assumes that the rx ring is full. It may not be. */
2018                 } else if (fifo_diag & 0x0400)
2019                         do_tx_reset = 1;
2020                 if (fifo_diag & 0x3000) {
2021                         /* Reset Rx fifo and upload logic */
2022                         issue_and_wait(dev, RxReset|0x07);
2023                         /* Set the Rx filter to the current state. */
2024                         set_rx_mode(dev);
2025                         /* enable 802.1q VLAN tagged frames */
2026                         set_8021q_mode(dev, 1);
2027                         iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2028                         iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2029                 }
2030         }
2031 
2032         if (do_tx_reset) {
2033                 issue_and_wait(dev, TxReset|reset_mask);
2034                 iowrite16(TxEnable, ioaddr + EL3_CMD);
2035                 if (!vp->full_bus_master_tx)
2036                         netif_wake_queue(dev);
2037         }
2038 }
2039 
2040 static netdev_tx_t
2041 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2042 {
2043         struct vortex_private *vp = netdev_priv(dev);
2044         void __iomem *ioaddr = vp->ioaddr;
2045         int skblen = skb->len;
2046 
2047         /* Put out the doubleword header... */
2048         iowrite32(skb->len, ioaddr + TX_FIFO);
2049         if (vp->bus_master) {
2050                 /* Set the bus-master controller to transfer the packet. */
2051                 int len = (skb->len + 3) & ~3;
2052                 vp->tx_skb_dma = dma_map_single(vp->gendev, skb->data, len,
2053                                                 DMA_TO_DEVICE);
2054                 if (dma_mapping_error(vp->gendev, vp->tx_skb_dma)) {
2055                         dev_kfree_skb_any(skb);
2056                         dev->stats.tx_dropped++;
2057                         return NETDEV_TX_OK;
2058                 }
2059 
2060                 spin_lock_irq(&vp->window_lock);
2061                 window_set(vp, 7);
2062                 iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr);
2063                 iowrite16(len, ioaddr + Wn7_MasterLen);
2064                 spin_unlock_irq(&vp->window_lock);
2065                 vp->tx_skb = skb;
2066                 skb_tx_timestamp(skb);
2067                 iowrite16(StartDMADown, ioaddr + EL3_CMD);
2068                 /* netif_wake_queue() will be called at the DMADone interrupt. */
2069         } else {
2070                 /* ... and the packet rounded to a doubleword. */
2071                 skb_tx_timestamp(skb);
2072                 iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2073                 dev_consume_skb_any (skb);
2074                 if (ioread16(ioaddr + TxFree) > 1536) {
2075                         netif_start_queue (dev);        /* AKPM: redundant? */
2076                 } else {
2077                         /* Interrupt us when the FIFO has room for max-sized packet. */
2078                         netif_stop_queue(dev);
2079                         iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2080                 }
2081         }
2082 
2083         netdev_sent_queue(dev, skblen);
2084 
2085         /* Clear the Tx status stack. */
2086         {
2087                 int tx_status;
2088                 int i = 32;
2089 
2090                 while (--i > 0  &&      (tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2091                         if (tx_status & 0x3C) {         /* A Tx-disabling error occurred.  */
2092                                 if (vortex_debug > 2)
2093                                   pr_debug("%s: Tx error, status %2.2x.\n",
2094                                                  dev->name, tx_status);
2095                                 if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2096                                 if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2097                                 if (tx_status & 0x30) {
2098                                         issue_and_wait(dev, TxReset);
2099                                 }
2100                                 iowrite16(TxEnable, ioaddr + EL3_CMD);
2101                         }
2102                         iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2103                 }
2104         }
2105         return NETDEV_TX_OK;
2106 }
2107 
2108 static netdev_tx_t
2109 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2110 {
2111         struct vortex_private *vp = netdev_priv(dev);
2112         void __iomem *ioaddr = vp->ioaddr;
2113         /* Calculate the next Tx descriptor entry. */
2114         int entry = vp->cur_tx % TX_RING_SIZE;
2115         int skblen = skb->len;
2116         struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2117         unsigned long flags;
2118         dma_addr_t dma_addr;
2119 
2120         if (vortex_debug > 6) {
2121                 pr_debug("boomerang_start_xmit()\n");
2122                 pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2123                            dev->name, vp->cur_tx);
2124         }
2125 
2126         /*
2127          * We can't allow a recursion from our interrupt handler back into the
2128          * tx routine, as they take the same spin lock, and that causes
2129          * deadlock.  Just return NETDEV_TX_BUSY and let the stack try again in
2130          * a bit
2131          */
2132         if (vp->handling_irq)
2133                 return NETDEV_TX_BUSY;
2134 
2135         if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2136                 if (vortex_debug > 0)
2137                         pr_warn("%s: BUG! Tx Ring full, refusing to send buffer\n",
2138                                 dev->name);
2139                 netif_stop_queue(dev);
2140                 return NETDEV_TX_BUSY;
2141         }
2142 
2143         vp->tx_skbuff[entry] = skb;
2144 
2145         vp->tx_ring[entry].next = 0;
2146 #if DO_ZEROCOPY
2147         if (skb->ip_summed != CHECKSUM_PARTIAL)
2148                         vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2149         else
2150                         vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2151 
2152         if (!skb_shinfo(skb)->nr_frags) {
2153                 dma_addr = dma_map_single(vp->gendev, skb->data, skb->len,
2154                                           DMA_TO_DEVICE);
2155                 if (dma_mapping_error(vp->gendev, dma_addr))
2156                         goto out_dma_err;
2157 
2158                 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2159                 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2160         } else {
2161                 int i;
2162 
2163                 dma_addr = dma_map_single(vp->gendev, skb->data,
2164                                           skb_headlen(skb), DMA_TO_DEVICE);
2165                 if (dma_mapping_error(vp->gendev, dma_addr))
2166                         goto out_dma_err;
2167 
2168                 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2169                 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb));
2170 
2171                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2172                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2173 
2174                         dma_addr = skb_frag_dma_map(vp->gendev, frag,
2175                                                     0,
2176                                                     skb_frag_size(frag),
2177                                                     DMA_TO_DEVICE);
2178                         if (dma_mapping_error(vp->gendev, dma_addr)) {
2179                                 for(i = i-1; i >= 0; i--)
2180                                         dma_unmap_page(vp->gendev,
2181                                                        le32_to_cpu(vp->tx_ring[entry].frag[i+1].addr),
2182                                                        le32_to_cpu(vp->tx_ring[entry].frag[i+1].length),
2183                                                        DMA_TO_DEVICE);
2184 
2185                                 dma_unmap_single(vp->gendev,
2186                                                  le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2187                                                  le32_to_cpu(vp->tx_ring[entry].frag[0].length),
2188                                                  DMA_TO_DEVICE);
2189 
2190                                 goto out_dma_err;
2191                         }
2192 
2193                         vp->tx_ring[entry].frag[i+1].addr =
2194                                                 cpu_to_le32(dma_addr);
2195 
2196                         if (i == skb_shinfo(skb)->nr_frags-1)
2197                                         vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG);
2198                         else
2199                                         vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag));
2200                 }
2201         }
2202 #else
2203         dma_addr = dma_map_single(vp->gendev, skb->data, skb->len, DMA_TO_DEVICE);
2204         if (dma_mapping_error(vp->gendev, dma_addr))
2205                 goto out_dma_err;
2206         vp->tx_ring[entry].addr = cpu_to_le32(dma_addr);
2207         vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2208         vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2209 #endif
2210 
2211         spin_lock_irqsave(&vp->lock, flags);
2212         /* Wait for the stall to complete. */
2213         issue_and_wait(dev, DownStall);
2214         prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2215         if (ioread32(ioaddr + DownListPtr) == 0) {
2216                 iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2217                 vp->queued_packet++;
2218         }
2219 
2220         vp->cur_tx++;
2221         netdev_sent_queue(dev, skblen);
2222 
2223         if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2224                 netif_stop_queue (dev);
2225         } else {                                        /* Clear previous interrupt enable. */
2226 #if defined(tx_interrupt_mitigation)
2227                 /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2228                  * were selected, this would corrupt DN_COMPLETE. No?
2229                  */
2230                 prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2231 #endif
2232         }
2233         skb_tx_timestamp(skb);
2234         iowrite16(DownUnstall, ioaddr + EL3_CMD);
2235         spin_unlock_irqrestore(&vp->lock, flags);
2236 out:
2237         return NETDEV_TX_OK;
2238 out_dma_err:
2239         dev_err(vp->gendev, "Error mapping dma buffer\n");
2240         goto out;
2241 }
2242 
2243 /* The interrupt handler does all of the Rx thread work and cleans up
2244    after the Tx thread. */
2245 
2246 /*
2247  * This is the ISR for the vortex series chips.
2248  * full_bus_master_tx == 0 && full_bus_master_rx == 0
2249  */
2250 
2251 static irqreturn_t
2252 _vortex_interrupt(int irq, struct net_device *dev)
2253 {
2254         struct vortex_private *vp = netdev_priv(dev);
2255         void __iomem *ioaddr;
2256         int status;
2257         int work_done = max_interrupt_work;
2258         int handled = 0;
2259         unsigned int bytes_compl = 0, pkts_compl = 0;
2260 
2261         ioaddr = vp->ioaddr;
2262 
2263         status = ioread16(ioaddr + EL3_STATUS);
2264 
2265         if (vortex_debug > 6)
2266                 pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2267 
2268         if ((status & IntLatch) == 0)
2269                 goto handler_exit;              /* No interrupt: shared IRQs cause this */
2270         handled = 1;
2271 
2272         if (status & IntReq) {
2273                 status |= vp->deferred;
2274                 vp->deferred = 0;
2275         }
2276 
2277         if (status == 0xffff)           /* h/w no longer present (hotplug)? */
2278                 goto handler_exit;
2279 
2280         if (vortex_debug > 4)
2281                 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2282                            dev->name, status, ioread8(ioaddr + Timer));
2283 
2284         spin_lock(&vp->window_lock);
2285         window_set(vp, 7);
2286 
2287         do {
2288                 if (vortex_debug > 5)
2289                                 pr_debug("%s: In interrupt loop, status %4.4x.\n",
2290                                            dev->name, status);
2291                 if (status & RxComplete)
2292                         vortex_rx(dev);
2293 
2294                 if (status & TxAvailable) {
2295                         if (vortex_debug > 5)
2296                                 pr_debug("      TX room bit was handled.\n");
2297                         /* There's room in the FIFO for a full-sized packet. */
2298                         iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2299                         netif_wake_queue (dev);
2300                 }
2301 
2302                 if (status & DMADone) {
2303                         if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2304                                 iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2305                                 dma_unmap_single(vp->gendev, vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, DMA_TO_DEVICE);
2306                                 pkts_compl++;
2307                                 bytes_compl += vp->tx_skb->len;
2308                                 dev_consume_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2309                                 if (ioread16(ioaddr + TxFree) > 1536) {
2310                                         /*
2311                                          * AKPM: FIXME: I don't think we need this.  If the queue was stopped due to
2312                                          * insufficient FIFO room, the TxAvailable test will succeed and call
2313                                          * netif_wake_queue()
2314                                          */
2315                                         netif_wake_queue(dev);
2316                                 } else { /* Interrupt when FIFO has room for max-sized packet. */
2317                                         iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2318                                         netif_stop_queue(dev);
2319                                 }
2320                         }
2321                 }
2322                 /* Check for all uncommon interrupts at once. */
2323                 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2324                         if (status == 0xffff)
2325                                 break;
2326                         if (status & RxEarly)
2327                                 vortex_rx(dev);
2328                         spin_unlock(&vp->window_lock);
2329                         vortex_error(dev, status);
2330                         spin_lock(&vp->window_lock);
2331                         window_set(vp, 7);
2332                 }
2333 
2334                 if (--work_done < 0) {
2335                         pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2336                                 dev->name, status);
2337                         /* Disable all pending interrupts. */
2338                         do {
2339                                 vp->deferred |= status;
2340                                 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2341                                          ioaddr + EL3_CMD);
2342                                 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2343                         } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2344                         /* The timer will reenable interrupts. */
2345                         mod_timer(&vp->timer, jiffies + 1*HZ);
2346                         break;
2347                 }
2348                 /* Acknowledge the IRQ. */
2349                 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2350         } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2351 
2352         netdev_completed_queue(dev, pkts_compl, bytes_compl);
2353         spin_unlock(&vp->window_lock);
2354 
2355         if (vortex_debug > 4)
2356                 pr_debug("%s: exiting interrupt, status %4.4x.\n",
2357                            dev->name, status);
2358 handler_exit:
2359         return IRQ_RETVAL(handled);
2360 }
2361 
2362 /*
2363  * This is the ISR for the boomerang series chips.
2364  * full_bus_master_tx == 1 && full_bus_master_rx == 1
2365  */
2366 
2367 static irqreturn_t
2368 _boomerang_interrupt(int irq, struct net_device *dev)
2369 {
2370         struct vortex_private *vp = netdev_priv(dev);
2371         void __iomem *ioaddr;
2372         int status;
2373         int work_done = max_interrupt_work;
2374         int handled = 0;
2375         unsigned int bytes_compl = 0, pkts_compl = 0;
2376 
2377         ioaddr = vp->ioaddr;
2378 
2379         vp->handling_irq = 1;
2380 
2381         status = ioread16(ioaddr + EL3_STATUS);
2382 
2383         if (vortex_debug > 6)
2384                 pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2385 
2386         if ((status & IntLatch) == 0)
2387                 goto handler_exit;              /* No interrupt: shared IRQs can cause this */
2388         handled = 1;
2389 
2390         if (status == 0xffff) {         /* h/w no longer present (hotplug)? */
2391                 if (vortex_debug > 1)
2392                         pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2393                 goto handler_exit;
2394         }
2395 
2396         if (status & IntReq) {
2397                 status |= vp->deferred;
2398                 vp->deferred = 0;
2399         }
2400 
2401         if (vortex_debug > 4)
2402                 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2403                            dev->name, status, ioread8(ioaddr + Timer));
2404         do {
2405                 if (vortex_debug > 5)
2406                                 pr_debug("%s: In interrupt loop, status %4.4x.\n",
2407                                            dev->name, status);
2408                 if (status & UpComplete) {
2409                         iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2410                         if (vortex_debug > 5)
2411                                 pr_debug("boomerang_interrupt->boomerang_rx\n");
2412                         boomerang_rx(dev);
2413                 }
2414 
2415                 if (status & DownComplete) {
2416                         unsigned int dirty_tx = vp->dirty_tx;
2417 
2418                         iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2419                         while (vp->cur_tx - dirty_tx > 0) {
2420                                 int entry = dirty_tx % TX_RING_SIZE;
2421 #if 1   /* AKPM: the latter is faster, but cyclone-only */
2422                                 if (ioread32(ioaddr + DownListPtr) ==
2423                                         vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2424                                         break;                  /* It still hasn't been processed. */
2425 #else
2426                                 if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2427                                         break;                  /* It still hasn't been processed. */
2428 #endif
2429 
2430                                 if (vp->tx_skbuff[entry]) {
2431                                         struct sk_buff *skb = vp->tx_skbuff[entry];
2432 #if DO_ZEROCOPY
2433                                         int i;
2434                                         dma_unmap_single(vp->gendev,
2435                                                         le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2436                                                         le32_to_cpu(vp->tx_ring[entry].frag[0].length)&0xFFF,
2437                                                         DMA_TO_DEVICE);
2438 
2439                                         for (i=1; i<=skb_shinfo(skb)->nr_frags; i++)
2440                                                         dma_unmap_page(vp->gendev,
2441                                                                                          le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2442                                                                                          le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2443                                                                                          DMA_TO_DEVICE);
2444 #else
2445                                         dma_unmap_single(vp->gendev,
2446                                                 le32_to_cpu(vp->tx_ring[entry].addr), skb->len, DMA_TO_DEVICE);
2447 #endif
2448                                         pkts_compl++;
2449                                         bytes_compl += skb->len;
2450                                         dev_consume_skb_irq(skb);
2451                                         vp->tx_skbuff[entry] = NULL;
2452                                 } else {
2453                                         pr_debug("boomerang_interrupt: no skb!\n");
2454                                 }
2455                                 /* dev->stats.tx_packets++;  Counted below. */
2456                                 dirty_tx++;
2457                         }
2458                         vp->dirty_tx = dirty_tx;
2459                         if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2460                                 if (vortex_debug > 6)
2461                                         pr_debug("boomerang_interrupt: wake queue\n");
2462                                 netif_wake_queue (dev);
2463                         }
2464                 }
2465 
2466                 /* Check for all uncommon interrupts at once. */
2467                 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2468                         vortex_error(dev, status);
2469 
2470                 if (--work_done < 0) {
2471                         pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2472                                 dev->name, status);
2473                         /* Disable all pending interrupts. */
2474                         do {
2475                                 vp->deferred |= status;
2476                                 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2477                                          ioaddr + EL3_CMD);
2478                                 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2479                         } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2480                         /* The timer will reenable interrupts. */
2481                         mod_timer(&vp->timer, jiffies + 1*HZ);
2482                         break;
2483                 }
2484                 /* Acknowledge the IRQ. */
2485                 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2486                 if (vp->cb_fn_base)                     /* The PCMCIA people are idiots.  */
2487                         iowrite32(0x8000, vp->cb_fn_base + 4);
2488 
2489         } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2490         netdev_completed_queue(dev, pkts_compl, bytes_compl);
2491 
2492         if (vortex_debug > 4)
2493                 pr_debug("%s: exiting interrupt, status %4.4x.\n",
2494                            dev->name, status);
2495 handler_exit:
2496         vp->handling_irq = 0;
2497         return IRQ_RETVAL(handled);
2498 }
2499 
2500 static irqreturn_t
2501 vortex_boomerang_interrupt(int irq, void *dev_id)
2502 {
2503         struct net_device *dev = dev_id;
2504         struct vortex_private *vp = netdev_priv(dev);
2505         unsigned long flags;
2506         irqreturn_t ret;
2507 
2508         spin_lock_irqsave(&vp->lock, flags);
2509 
2510         if (vp->full_bus_master_rx)
2511                 ret = _boomerang_interrupt(dev->irq, dev);
2512         else
2513                 ret = _vortex_interrupt(dev->irq, dev);
2514 
2515         spin_unlock_irqrestore(&vp->lock, flags);
2516 
2517         return ret;
2518 }
2519 
2520 static int vortex_rx(struct net_device *dev)
2521 {
2522         struct vortex_private *vp = netdev_priv(dev);
2523         void __iomem *ioaddr = vp->ioaddr;
2524         int i;
2525         short rx_status;
2526 
2527         if (vortex_debug > 5)
2528                 pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2529                            ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2530         while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2531                 if (rx_status & 0x4000) { /* Error, update stats. */
2532                         unsigned char rx_error = ioread8(ioaddr + RxErrors);
2533                         if (vortex_debug > 2)
2534                                 pr_debug(" Rx error: status %2.2x.\n", rx_error);
2535                         dev->stats.rx_errors++;
2536                         if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2537                         if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2538                         if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2539                         if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2540                         if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2541                 } else {
2542                         /* The packet length: up to 4.5K!. */
2543                         int pkt_len = rx_status & 0x1fff;
2544                         struct sk_buff *skb;
2545 
2546                         skb = netdev_alloc_skb(dev, pkt_len + 5);
2547                         if (vortex_debug > 4)
2548                                 pr_debug("Receiving packet size %d status %4.4x.\n",
2549                                            pkt_len, rx_status);
2550                         if (skb != NULL) {
2551                                 skb_reserve(skb, 2);    /* Align IP on 16 byte boundaries */
2552                                 /* 'skb_put()' points to the start of sk_buff data area. */
2553                                 if (vp->bus_master &&
2554                                         ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2555                                         dma_addr_t dma = dma_map_single(vp->gendev, skb_put(skb, pkt_len),
2556                                                                            pkt_len, DMA_FROM_DEVICE);
2557                                         iowrite32(dma, ioaddr + Wn7_MasterAddr);
2558                                         iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2559                                         iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2560                                         while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2561                                                 ;
2562                                         dma_unmap_single(vp->gendev, dma, pkt_len, DMA_FROM_DEVICE);
2563                                 } else {
2564                                         ioread32_rep(ioaddr + RX_FIFO,
2565                                                      skb_put(skb, pkt_len),
2566                                                      (pkt_len + 3) >> 2);
2567                                 }
2568                                 iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2569                                 skb->protocol = eth_type_trans(skb, dev);
2570                                 netif_rx(skb);
2571                                 dev->stats.rx_packets++;
2572                                 /* Wait a limited time to go to next packet. */
2573                                 for (i = 200; i >= 0; i--)
2574                                         if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2575                                                 break;
2576                                 continue;
2577                         } else if (vortex_debug > 0)
2578                                 pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2579                                         dev->name, pkt_len);
2580                         dev->stats.rx_dropped++;
2581                 }
2582                 issue_and_wait(dev, RxDiscard);
2583         }
2584 
2585         return 0;
2586 }
2587 
2588 static int
2589 boomerang_rx(struct net_device *dev)
2590 {
2591         struct vortex_private *vp = netdev_priv(dev);
2592         int entry = vp->cur_rx % RX_RING_SIZE;
2593         void __iomem *ioaddr = vp->ioaddr;
2594         int rx_status;
2595         int rx_work_limit = RX_RING_SIZE;
2596 
2597         if (vortex_debug > 5)
2598                 pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2599 
2600         while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2601                 if (--rx_work_limit < 0)
2602                         break;
2603                 if (rx_status & RxDError) { /* Error, update stats. */
2604                         unsigned char rx_error = rx_status >> 16;
2605                         if (vortex_debug > 2)
2606                                 pr_debug(" Rx error: status %2.2x.\n", rx_error);
2607                         dev->stats.rx_errors++;
2608                         if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2609                         if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2610                         if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2611                         if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2612                         if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2613                 } else {
2614                         /* The packet length: up to 4.5K!. */
2615                         int pkt_len = rx_status & 0x1fff;
2616                         struct sk_buff *skb, *newskb;
2617                         dma_addr_t newdma;
2618                         dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2619 
2620                         if (vortex_debug > 4)
2621                                 pr_debug("Receiving packet size %d status %4.4x.\n",
2622                                            pkt_len, rx_status);
2623 
2624                         /* Check if the packet is long enough to just accept without
2625                            copying to a properly sized skbuff. */
2626                         if (pkt_len < rx_copybreak &&
2627                             (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
2628                                 skb_reserve(skb, 2);    /* Align IP on 16 byte boundaries */
2629                                 dma_sync_single_for_cpu(vp->gendev, dma, PKT_BUF_SZ, DMA_FROM_DEVICE);
2630                                 /* 'skb_put()' points to the start of sk_buff data area. */
2631                                 skb_put_data(skb, vp->rx_skbuff[entry]->data,
2632                                              pkt_len);
2633                                 dma_sync_single_for_device(vp->gendev, dma, PKT_BUF_SZ, DMA_FROM_DEVICE);
2634                                 vp->rx_copy++;
2635                         } else {
2636                                 /* Pre-allocate the replacement skb.  If it or its
2637                                  * mapping fails then recycle the buffer thats already
2638                                  * in place
2639                                  */
2640                                 newskb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2641                                 if (!newskb) {
2642                                         dev->stats.rx_dropped++;
2643                                         goto clear_complete;
2644                                 }
2645                                 newdma = dma_map_single(vp->gendev, newskb->data,
2646                                                         PKT_BUF_SZ, DMA_FROM_DEVICE);
2647                                 if (dma_mapping_error(vp->gendev, newdma)) {
2648                                         dev->stats.rx_dropped++;
2649                                         consume_skb(newskb);
2650                                         goto clear_complete;
2651                                 }
2652 
2653                                 /* Pass up the skbuff already on the Rx ring. */
2654                                 skb = vp->rx_skbuff[entry];
2655                                 vp->rx_skbuff[entry] = newskb;
2656                                 vp->rx_ring[entry].addr = cpu_to_le32(newdma);
2657                                 skb_put(skb, pkt_len);
2658                                 dma_unmap_single(vp->gendev, dma, PKT_BUF_SZ, DMA_FROM_DEVICE);
2659                                 vp->rx_nocopy++;
2660                         }
2661                         skb->protocol = eth_type_trans(skb, dev);
2662                         {                                       /* Use hardware checksum info. */
2663                                 int csum_bits = rx_status & 0xee000000;
2664                                 if (csum_bits &&
2665                                         (csum_bits == (IPChksumValid | TCPChksumValid) ||
2666                                          csum_bits == (IPChksumValid | UDPChksumValid))) {
2667                                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2668                                         vp->rx_csumhits++;
2669                                 }
2670                         }
2671                         netif_rx(skb);
2672                         dev->stats.rx_packets++;
2673                 }
2674 
2675 clear_complete:
2676                 vp->rx_ring[entry].status = 0;  /* Clear complete bit. */
2677                 iowrite16(UpUnstall, ioaddr + EL3_CMD);
2678                 entry = (++vp->cur_rx) % RX_RING_SIZE;
2679         }
2680         return 0;
2681 }
2682 
2683 static void
2684 vortex_down(struct net_device *dev, int final_down)
2685 {
2686         struct vortex_private *vp = netdev_priv(dev);
2687         void __iomem *ioaddr = vp->ioaddr;
2688 
2689         netdev_reset_queue(dev);
2690         netif_stop_queue(dev);
2691 
2692         del_timer_sync(&vp->timer);
2693 
2694         /* Turn off statistics ASAP.  We update dev->stats below. */
2695         iowrite16(StatsDisable, ioaddr + EL3_CMD);
2696 
2697         /* Disable the receiver and transmitter. */
2698         iowrite16(RxDisable, ioaddr + EL3_CMD);
2699         iowrite16(TxDisable, ioaddr + EL3_CMD);
2700 
2701         /* Disable receiving 802.1q tagged frames */
2702         set_8021q_mode(dev, 0);
2703 
2704         if (dev->if_port == XCVR_10base2)
2705                 /* Turn off thinnet power.  Green! */
2706                 iowrite16(StopCoax, ioaddr + EL3_CMD);
2707 
2708         iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2709 
2710         update_stats(ioaddr, dev);
2711         if (vp->full_bus_master_rx)
2712                 iowrite32(0, ioaddr + UpListPtr);
2713         if (vp->full_bus_master_tx)
2714                 iowrite32(0, ioaddr + DownListPtr);
2715 
2716         if (final_down && VORTEX_PCI(vp)) {
2717                 vp->pm_state_valid = 1;
2718                 pci_save_state(VORTEX_PCI(vp));
2719                 acpi_set_WOL(dev);
2720         }
2721 }
2722 
2723 static int
2724 vortex_close(struct net_device *dev)
2725 {
2726         struct vortex_private *vp = netdev_priv(dev);
2727         void __iomem *ioaddr = vp->ioaddr;
2728         int i;
2729 
2730         if (netif_device_present(dev))
2731                 vortex_down(dev, 1);
2732 
2733         if (vortex_debug > 1) {
2734                 pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2735                            dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2736                 pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2737                            " tx_queued %d Rx pre-checksummed %d.\n",
2738                            dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2739         }
2740 
2741 #if DO_ZEROCOPY
2742         if (vp->rx_csumhits &&
2743             (vp->drv_flags & HAS_HWCKSM) == 0 &&
2744             (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2745                 pr_warn("%s supports hardware checksums, and we're not using them!\n",
2746                         dev->name);
2747         }
2748 #endif
2749 
2750         free_irq(dev->irq, dev);
2751 
2752         if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2753                 for (i = 0; i < RX_RING_SIZE; i++)
2754                         if (vp->rx_skbuff[i]) {
2755                                 dma_unmap_single(vp->gendev, le32_to_cpu(vp->rx_ring[i].addr),
2756                                                                         PKT_BUF_SZ, DMA_FROM_DEVICE);
2757                                 dev_kfree_skb(vp->rx_skbuff[i]);
2758                                 vp->rx_skbuff[i] = NULL;
2759                         }
2760         }
2761         if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2762                 for (i = 0; i < TX_RING_SIZE; i++) {
2763                         if (vp->tx_skbuff[i]) {
2764                                 struct sk_buff *skb = vp->tx_skbuff[i];
2765 #if DO_ZEROCOPY
2766                                 int k;
2767 
2768                                 for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2769                                                 dma_unmap_single(vp->gendev,
2770                                                                                  le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2771                                                                                  le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2772                                                                                  DMA_TO_DEVICE);
2773 #else
2774                                 dma_unmap_single(vp->gendev, le32_to_cpu(vp->tx_ring[i].addr), skb->len, DMA_TO_DEVICE);
2775 #endif
2776                                 dev_kfree_skb(skb);
2777                                 vp->tx_skbuff[i] = NULL;
2778                         }
2779                 }
2780         }
2781 
2782         return 0;
2783 }
2784 
2785 static void
2786 dump_tx_ring(struct net_device *dev)
2787 {
2788         if (vortex_debug > 0) {
2789         struct vortex_private *vp = netdev_priv(dev);
2790                 void __iomem *ioaddr = vp->ioaddr;
2791 
2792                 if (vp->full_bus_master_tx) {
2793                         int i;
2794                         int stalled = ioread32(ioaddr + PktStatus) & 0x04;      /* Possible racy. But it's only debug stuff */
2795 
2796                         pr_err("  Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2797                                         vp->full_bus_master_tx,
2798                                         vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2799                                         vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2800                         pr_err("  Transmit list %8.8x vs. %p.\n",
2801                                    ioread32(ioaddr + DownListPtr),
2802                                    &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2803                         issue_and_wait(dev, DownStall);
2804                         for (i = 0; i < TX_RING_SIZE; i++) {
2805                                 unsigned int length;
2806 
2807 #if DO_ZEROCOPY
2808                                 length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2809 #else
2810                                 length = le32_to_cpu(vp->tx_ring[i].length);
2811 #endif
2812                                 pr_err("  %d: @%p  length %8.8x status %8.8x\n",
2813                                            i, &vp->tx_ring[i], length,
2814                                            le32_to_cpu(vp->tx_ring[i].status));
2815                         }
2816                         if (!stalled)
2817                                 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2818                 }
2819         }
2820 }
2821 
2822 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2823 {
2824         struct vortex_private *vp = netdev_priv(dev);
2825         void __iomem *ioaddr = vp->ioaddr;
2826         unsigned long flags;
2827 
2828         if (netif_device_present(dev)) {        /* AKPM: Used to be netif_running */
2829                 spin_lock_irqsave (&vp->lock, flags);
2830                 update_stats(ioaddr, dev);
2831                 spin_unlock_irqrestore (&vp->lock, flags);
2832         }
2833         return &dev->stats;
2834 }
2835 
2836 /*  Update statistics.
2837         Unlike with the EL3 we need not worry about interrupts changing
2838         the window setting from underneath us, but we must still guard
2839         against a race condition with a StatsUpdate interrupt updating the
2840         table.  This is done by checking that the ASM (!) code generated uses
2841         atomic updates with '+='.
2842         */
2843 static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2844 {
2845         struct vortex_private *vp = netdev_priv(dev);
2846 
2847         /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2848         /* Switch to the stats window, and read everything. */
2849         dev->stats.tx_carrier_errors            += window_read8(vp, 6, 0);
2850         dev->stats.tx_heartbeat_errors          += window_read8(vp, 6, 1);
2851         dev->stats.tx_window_errors             += window_read8(vp, 6, 4);
2852         dev->stats.rx_fifo_errors               += window_read8(vp, 6, 5);
2853         dev->stats.tx_packets                   += window_read8(vp, 6, 6);
2854         dev->stats.tx_packets                   += (window_read8(vp, 6, 9) &
2855                                                     0x30) << 4;
2856         /* Rx packets   */                      window_read8(vp, 6, 7);   /* Must read to clear */
2857         /* Don't bother with register 9, an extension of registers 6&7.
2858            If we do use the 6&7 values the atomic update assumption above
2859            is invalid. */
2860         dev->stats.rx_bytes                     += window_read16(vp, 6, 10);
2861         dev->stats.tx_bytes                     += window_read16(vp, 6, 12);
2862         /* Extra stats for get_ethtool_stats() */
2863         vp->xstats.tx_multiple_collisions       += window_read8(vp, 6, 2);
2864         vp->xstats.tx_single_collisions         += window_read8(vp, 6, 3);
2865         vp->xstats.tx_deferred                  += window_read8(vp, 6, 8);
2866         vp->xstats.rx_bad_ssd                   += window_read8(vp, 4, 12);
2867 
2868         dev->stats.collisions = vp->xstats.tx_multiple_collisions
2869                 + vp->xstats.tx_single_collisions
2870                 + vp->xstats.tx_max_collisions;
2871 
2872         {
2873                 u8 up = window_read8(vp, 4, 13);
2874                 dev->stats.rx_bytes += (up & 0x0f) << 16;
2875                 dev->stats.tx_bytes += (up & 0xf0) << 12;
2876         }
2877 }
2878 
2879 static int vortex_nway_reset(struct net_device *dev)
2880 {
2881         struct vortex_private *vp = netdev_priv(dev);
2882 
2883         return mii_nway_restart(&vp->mii);
2884 }
2885 
2886 static int vortex_get_link_ksettings(struct net_device *dev,
2887                                      struct ethtool_link_ksettings *cmd)
2888 {
2889         struct vortex_private *vp = netdev_priv(dev);
2890 
2891         mii_ethtool_get_link_ksettings(&vp->mii, cmd);
2892 
2893         return 0;
2894 }
2895 
2896 static int vortex_set_link_ksettings(struct net_device *dev,
2897                                      const struct ethtool_link_ksettings *cmd)
2898 {
2899         struct vortex_private *vp = netdev_priv(dev);
2900 
2901         return mii_ethtool_set_link_ksettings(&vp->mii, cmd);
2902 }
2903 
2904 static u32 vortex_get_msglevel(struct net_device *dev)
2905 {
2906         return vortex_debug;
2907 }
2908 
2909 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2910 {
2911         vortex_debug = dbg;
2912 }
2913 
2914 static int vortex_get_sset_count(struct net_device *dev, int sset)
2915 {
2916         switch (sset) {
2917         case ETH_SS_STATS:
2918                 return VORTEX_NUM_STATS;
2919         default:
2920                 return -EOPNOTSUPP;
2921         }
2922 }
2923 
2924 static void vortex_get_ethtool_stats(struct net_device *dev,
2925         struct ethtool_stats *stats, u64 *data)
2926 {
2927         struct vortex_private *vp = netdev_priv(dev);
2928         void __iomem *ioaddr = vp->ioaddr;
2929         unsigned long flags;
2930 
2931         spin_lock_irqsave(&vp->lock, flags);
2932         update_stats(ioaddr, dev);
2933         spin_unlock_irqrestore(&vp->lock, flags);
2934 
2935         data[0] = vp->xstats.tx_deferred;
2936         data[1] = vp->xstats.tx_max_collisions;
2937         data[2] = vp->xstats.tx_multiple_collisions;
2938         data[3] = vp->xstats.tx_single_collisions;
2939         data[4] = vp->xstats.rx_bad_ssd;
2940 }
2941 
2942 
2943 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2944 {
2945         switch (stringset) {
2946         case ETH_SS_STATS:
2947                 memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2948                 break;
2949         default:
2950                 WARN_ON(1);
2951                 break;
2952         }
2953 }
2954 
2955 static void vortex_get_drvinfo(struct net_device *dev,
2956                                         struct ethtool_drvinfo *info)
2957 {
2958         struct vortex_private *vp = netdev_priv(dev);
2959 
2960         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2961         if (VORTEX_PCI(vp)) {
2962                 strlcpy(info->bus_info, pci_name(VORTEX_PCI(vp)),
2963                         sizeof(info->bus_info));
2964         } else {
2965                 if (VORTEX_EISA(vp))
2966                         strlcpy(info->bus_info, dev_name(vp->gendev),
2967                                 sizeof(info->bus_info));
2968                 else
2969                         snprintf(info->bus_info, sizeof(info->bus_info),
2970                                 "EISA 0x%lx %d", dev->base_addr, dev->irq);
2971         }
2972 }
2973 
2974 static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2975 {
2976         struct vortex_private *vp = netdev_priv(dev);
2977 
2978         if (!VORTEX_PCI(vp))
2979                 return;
2980 
2981         wol->supported = WAKE_MAGIC;
2982 
2983         wol->wolopts = 0;
2984         if (vp->enable_wol)
2985                 wol->wolopts |= WAKE_MAGIC;
2986 }
2987 
2988 static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2989 {
2990         struct vortex_private *vp = netdev_priv(dev);
2991 
2992         if (!VORTEX_PCI(vp))
2993                 return -EOPNOTSUPP;
2994 
2995         if (wol->wolopts & ~WAKE_MAGIC)
2996                 return -EINVAL;
2997 
2998         if (wol->wolopts & WAKE_MAGIC)
2999                 vp->enable_wol = 1;
3000         else
3001                 vp->enable_wol = 0;
3002         acpi_set_WOL(dev);
3003 
3004         return 0;
3005 }
3006 
3007 static const struct ethtool_ops vortex_ethtool_ops = {
3008         .get_drvinfo            = vortex_get_drvinfo,
3009         .get_strings            = vortex_get_strings,
3010         .get_msglevel           = vortex_get_msglevel,
3011         .set_msglevel           = vortex_set_msglevel,
3012         .get_ethtool_stats      = vortex_get_ethtool_stats,
3013         .get_sset_count         = vortex_get_sset_count,
3014         .get_link               = ethtool_op_get_link,
3015         .nway_reset             = vortex_nway_reset,
3016         .get_wol                = vortex_get_wol,
3017         .set_wol                = vortex_set_wol,
3018         .get_ts_info            = ethtool_op_get_ts_info,
3019         .get_link_ksettings     = vortex_get_link_ksettings,
3020         .set_link_ksettings     = vortex_set_link_ksettings,
3021 };
3022 
3023 #ifdef CONFIG_PCI
3024 /*
3025  *      Must power the device up to do MDIO operations
3026  */
3027 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3028 {
3029         int err;
3030         struct vortex_private *vp = netdev_priv(dev);
3031         pci_power_t state = 0;
3032 
3033         if(VORTEX_PCI(vp))
3034                 state = VORTEX_PCI(vp)->current_state;
3035 
3036         /* The kernel core really should have pci_get_power_state() */
3037 
3038         if(state != 0)
3039                 pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3040         err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3041         if(state != 0)
3042                 pci_set_power_state(VORTEX_PCI(vp), state);
3043 
3044         return err;
3045 }
3046 #endif
3047 
3048 
3049 /* Pre-Cyclone chips have no documented multicast filter, so the only
3050    multicast setting is to receive all multicast frames.  At least
3051    the chip has a very clean way to set the mode, unlike many others. */
3052 static void set_rx_mode(struct net_device *dev)
3053 {
3054         struct vortex_private *vp = netdev_priv(dev);
3055         void __iomem *ioaddr = vp->ioaddr;
3056         int new_mode;
3057 
3058         if (dev->flags & IFF_PROMISC) {
3059                 if (vortex_debug > 3)
3060                         pr_notice("%s: Setting promiscuous mode.\n", dev->name);
3061                 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3062         } else  if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
3063                 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3064         } else
3065                 new_mode = SetRxFilter | RxStation | RxBroadcast;
3066 
3067         iowrite16(new_mode, ioaddr + EL3_CMD);
3068 }
3069 
3070 #if IS_ENABLED(CONFIG_VLAN_8021Q)
3071 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3072    Note that this must be done after each RxReset due to some backwards
3073    compatibility logic in the Cyclone and Tornado ASICs */
3074 
3075 /* The Ethernet Type used for 802.1q tagged frames */
3076 #define VLAN_ETHER_TYPE 0x8100
3077 
3078 static void set_8021q_mode(struct net_device *dev, int enable)
3079 {
3080         struct vortex_private *vp = netdev_priv(dev);
3081         int mac_ctrl;
3082 
3083         if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3084                 /* cyclone and tornado chipsets can recognize 802.1q
3085                  * tagged frames and treat them correctly */
3086 
3087                 int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */
3088                 if (enable)
3089                         max_pkt_size += 4;      /* 802.1Q VLAN tag */
3090 
3091                 window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize);
3092 
3093                 /* set VlanEtherType to let the hardware checksumming
3094                    treat tagged frames correctly */
3095                 window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType);
3096         } else {
3097                 /* on older cards we have to enable large frames */
3098 
3099                 vp->large_frames = dev->mtu > 1500 || enable;
3100 
3101                 mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl);
3102                 if (vp->large_frames)
3103                         mac_ctrl |= 0x40;
3104                 else
3105                         mac_ctrl &= ~0x40;
3106                 window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl);
3107         }
3108 }
3109 #else
3110 
3111 static void set_8021q_mode(struct net_device *dev, int enable)
3112 {
3113 }
3114 
3115 
3116 #endif
3117 
3118 /* MII transceiver control section.
3119    Read and write the MII registers using software-generated serial
3120    MDIO protocol.  See the MII specifications or DP83840A data sheet
3121    for details. */
3122 
3123 /* The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
3124    met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3125    "overclocking" issues. */
3126 static void mdio_delay(struct vortex_private *vp)
3127 {
3128         window_read32(vp, 4, Wn4_PhysicalMgmt);
3129 }
3130 
3131 #define MDIO_SHIFT_CLK  0x01
3132 #define MDIO_DIR_WRITE  0x04
3133 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3134 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3135 #define MDIO_DATA_READ  0x02
3136 #define MDIO_ENB_IN             0x00
3137 
3138 /* Generate the preamble required for initial synchronization and
3139    a few older transceivers. */
3140 static void mdio_sync(struct vortex_private *vp, int bits)
3141 {
3142         /* Establish sync by sending at least 32 logic ones. */
3143         while (-- bits >= 0) {
3144                 window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt);
3145                 mdio_delay(vp);
3146                 window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK,
3147                                4, Wn4_PhysicalMgmt);
3148                 mdio_delay(vp);
3149         }
3150 }
3151 
3152 static int mdio_read(struct net_device *dev, int phy_id, int location)
3153 {
3154         int i;
3155         struct vortex_private *vp = netdev_priv(dev);
3156         int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3157         unsigned int retval = 0;
3158 
3159         spin_lock_bh(&vp->mii_lock);
3160 
3161         if (mii_preamble_required)
3162                 mdio_sync(vp, 32);
3163 
3164         /* Shift the read command bits out. */
3165         for (i = 14; i >= 0; i--) {
3166                 int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3167                 window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3168                 mdio_delay(vp);
3169                 window_write16(vp, dataval | MDIO_SHIFT_CLK,
3170                                4, Wn4_PhysicalMgmt);
3171                 mdio_delay(vp);
3172         }
3173         /* Read the two transition, 16 data, and wire-idle bits. */
3174         for (i = 19; i > 0; i--) {
3175                 window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3176                 mdio_delay(vp);
3177                 retval = (retval << 1) |
3178                         ((window_read16(vp, 4, Wn4_PhysicalMgmt) &
3179                           MDIO_DATA_READ) ? 1 : 0);
3180                 window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3181                                4, Wn4_PhysicalMgmt);
3182                 mdio_delay(vp);
3183         }
3184 
3185         spin_unlock_bh(&vp->mii_lock);
3186 
3187         return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3188 }
3189 
3190 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3191 {
3192         struct vortex_private *vp = netdev_priv(dev);
3193         int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3194         int i;
3195 
3196         spin_lock_bh(&vp->mii_lock);
3197 
3198         if (mii_preamble_required)
3199                 mdio_sync(vp, 32);
3200 
3201         /* Shift the command bits out. */
3202         for (i = 31; i >= 0; i--) {
3203                 int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3204                 window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3205                 mdio_delay(vp);
3206                 window_write16(vp, dataval | MDIO_SHIFT_CLK,
3207                                4, Wn4_PhysicalMgmt);
3208                 mdio_delay(vp);
3209         }
3210         /* Leave the interface idle. */
3211         for (i = 1; i >= 0; i--) {
3212                 window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3213                 mdio_delay(vp);
3214                 window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3215                                4, Wn4_PhysicalMgmt);
3216                 mdio_delay(vp);
3217         }
3218 
3219         spin_unlock_bh(&vp->mii_lock);
3220 }
3221 
3222 /* ACPI: Advanced Configuration and Power Interface. */
3223 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3224 static void acpi_set_WOL(struct net_device *dev)
3225 {
3226         struct vortex_private *vp = netdev_priv(dev);
3227         void __iomem *ioaddr = vp->ioaddr;
3228 
3229         device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3230 
3231         if (vp->enable_wol) {
3232                 /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3233                 window_write16(vp, 2, 7, 0x0c);
3234                 /* The RxFilter must accept the WOL frames. */
3235                 iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3236                 iowrite16(RxEnable, ioaddr + EL3_CMD);
3237 
3238                 if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3239                         pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3240 
3241                         vp->enable_wol = 0;
3242                         return;
3243                 }
3244 
3245                 if (VORTEX_PCI(vp)->current_state < PCI_D3hot)
3246                         return;
3247 
3248                 /* Change the power state to D3; RxEnable doesn't take effect. */
3249                 pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3250         }
3251 }
3252 
3253 
3254 static void vortex_remove_one(struct pci_dev *pdev)
3255 {
3256         struct net_device *dev = pci_get_drvdata(pdev);
3257         struct vortex_private *vp;
3258 
3259         if (!dev) {
3260                 pr_err("vortex_remove_one called for Compaq device!\n");
3261                 BUG();
3262         }
3263 
3264         vp = netdev_priv(dev);
3265 
3266         if (vp->cb_fn_base)
3267                 pci_iounmap(pdev, vp->cb_fn_base);
3268 
3269         unregister_netdev(dev);
3270 
3271         pci_set_power_state(pdev, PCI_D0);      /* Go active */
3272         if (vp->pm_state_valid)
3273                 pci_restore_state(pdev);
3274         pci_disable_device(pdev);
3275 
3276         /* Should really use issue_and_wait() here */
3277         iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3278              vp->ioaddr + EL3_CMD);
3279 
3280         pci_iounmap(pdev, vp->ioaddr);
3281 
3282         dma_free_coherent(&pdev->dev,
3283                         sizeof(struct boom_rx_desc) * RX_RING_SIZE +
3284                         sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3285                         vp->rx_ring, vp->rx_ring_dma);
3286 
3287         pci_release_regions(pdev);
3288 
3289         free_netdev(dev);
3290 }
3291 
3292 
3293 static struct pci_driver vortex_driver = {
3294         .name           = "3c59x",
3295         .probe          = vortex_init_one,
3296         .remove         = vortex_remove_one,
3297         .id_table       = vortex_pci_tbl,
3298         .driver.pm      = VORTEX_PM_OPS,
3299 };
3300 
3301 
3302 static int vortex_have_pci;
3303 static int vortex_have_eisa;
3304 
3305 
3306 static int __init vortex_init(void)
3307 {
3308         int pci_rc, eisa_rc;
3309 
3310         pci_rc = pci_register_driver(&vortex_driver);
3311         eisa_rc = vortex_eisa_init();
3312 
3313         if (pci_rc == 0)
3314                 vortex_have_pci = 1;
3315         if (eisa_rc > 0)
3316                 vortex_have_eisa = 1;
3317 
3318         return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3319 }
3320 
3321 
3322 static void __exit vortex_eisa_cleanup(void)
3323 {
3324         void __iomem *ioaddr;
3325 
3326 #ifdef CONFIG_EISA
3327         /* Take care of the EISA devices */
3328         eisa_driver_unregister(&vortex_eisa_driver);
3329 #endif
3330 
3331         if (compaq_net_device) {
3332                 ioaddr = ioport_map(compaq_net_device->base_addr,
3333                                     VORTEX_TOTAL_SIZE);
3334 
3335                 unregister_netdev(compaq_net_device);
3336                 iowrite16(TotalReset, ioaddr + EL3_CMD);
3337                 release_region(compaq_net_device->base_addr,
3338                                VORTEX_TOTAL_SIZE);
3339 
3340                 free_netdev(compaq_net_device);
3341         }
3342 }
3343 
3344 
3345 static void __exit vortex_cleanup(void)
3346 {
3347         if (vortex_have_pci)
3348                 pci_unregister_driver(&vortex_driver);
3349         if (vortex_have_eisa)
3350                 vortex_eisa_cleanup();
3351 }
3352 
3353 
3354 module_init(vortex_init);
3355 module_exit(vortex_cleanup);

/* [<][>][^][v][top][bottom][index][help] */