This source file includes following definitions.
- fill_v2_desc_hw
- fill_v2_desc
- fill_desc
- unfill_desc
- hns_nic_maybe_stop_tx
- hns_nic_maybe_stop_tso
- fill_tso_desc
- hns_nic_net_xmit_hw
- hns_nic_reuse_page
- get_v2rx_desc_bnum
- get_rx_desc_bnum
- hns_nic_rx_checksum
- hns_nic_poll_rx_skb
- hns_nic_alloc_rx_buffers
- hns_nic_rx_up_pro
- hns_desc_unused
- hns_coal_rx_bdnum
- hns_update_rx_rate
- smooth_alg
- hns_nic_adpt_coalesce
- hns_nic_rx_poll_one
- hns_nic_rx_fini_pro
- hns_nic_rx_fini_pro_v2
- hns_nic_reclaim_one_desc
- is_valid_clean_head
- hns_nic_tx_poll_one
- hns_nic_tx_fini_pro
- hns_nic_tx_fini_pro_v2
- hns_nic_tx_clr_all_bufs
- hns_nic_common_poll
- hns_irq_handle
- hns_nic_adjust_link
- hns_nic_init_phy
- hns_nic_ring_open
- hns_nic_net_set_mac_address
- hns_nic_update_stats
- hns_init_mac_addr
- hns_nic_ring_close
- hns_nic_init_affinity_mask
- hns_nic_free_irq
- hns_nic_init_irq
- hns_nic_net_up
- hns_nic_net_down
- hns_nic_net_reset
- hns_nic_net_reinit
- hns_nic_net_open
- hns_nic_net_stop
- hns_nic_net_timeout
- hns_nic_do_ioctl
- hns_nic_net_xmit
- hns_nic_drop_rx_fetch
- hns_assemble_skb
- hns_enable_serdes_lb
- hns_disable_serdes_lb
- hns_nic_clear_all_rx_fetch
- hns_nic_change_mtu
- hns_nic_set_features
- hns_nic_fix_features
- hns_nic_uc_sync
- hns_nic_uc_unsync
- hns_set_multicast_list
- hns_nic_set_rx_mode
- hns_nic_get_stats64
- hns_nic_select_queue
- hns_nic_update_link_status
- hns_nic_dump
- hns_nic_reset_subtask
- hns_nic_service_event_complete
- hns_nic_service_task
- hns_nic_task_schedule
- hns_nic_service_timer
- hns_tx_timeout_reset
- hns_nic_init_ring_data
- hns_nic_uninit_ring_data
- hns_nic_set_priv_ops
- hns_nic_try_get_ae
- hns_nic_notifier_action
- hns_nic_dev_probe
- hns_nic_dev_remove
1
2
3
4
5
6 #include <linux/clk.h>
7 #include <linux/cpumask.h>
8 #include <linux/etherdevice.h>
9 #include <linux/if_vlan.h>
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/module.h>
15 #include <linux/phy.h>
16 #include <linux/platform_device.h>
17 #include <linux/skbuff.h>
18
19 #include "hnae.h"
20 #include "hns_enet.h"
21 #include "hns_dsaf_mac.h"
22
23 #define NIC_MAX_Q_PER_VF 16
24 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
25
26 #define SERVICE_TIMER_HZ (1 * HZ)
27
28 #define RCB_IRQ_NOT_INITED 0
29 #define RCB_IRQ_INITED 1
30 #define HNS_BUFFER_SIZE_2048 2048
31
32 #define BD_MAX_SEND_SIZE 8191
33 #define SKB_TMP_LEN(SKB) \
34 (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
35
36 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size,
37 int send_sz, dma_addr_t dma, int frag_end,
38 int buf_num, enum hns_desc_type type, int mtu)
39 {
40 struct hnae_desc *desc = &ring->desc[ring->next_to_use];
41 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
42 struct iphdr *iphdr;
43 struct ipv6hdr *ipv6hdr;
44 struct sk_buff *skb;
45 __be16 protocol;
46 u8 bn_pid = 0;
47 u8 rrcfv = 0;
48 u8 ip_offset = 0;
49 u8 tvsvsn = 0;
50 u16 mss = 0;
51 u8 l4_len = 0;
52 u16 paylen = 0;
53
54 desc_cb->priv = priv;
55 desc_cb->length = size;
56 desc_cb->dma = dma;
57 desc_cb->type = type;
58
59 desc->addr = cpu_to_le64(dma);
60 desc->tx.send_size = cpu_to_le16((u16)send_sz);
61
62
63 hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
64 hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
65
66
67 hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
68 HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
69
70 if (type == DESC_TYPE_SKB) {
71 skb = (struct sk_buff *)priv;
72
73 if (skb->ip_summed == CHECKSUM_PARTIAL) {
74 skb_reset_mac_len(skb);
75 protocol = skb->protocol;
76 ip_offset = ETH_HLEN;
77
78 if (protocol == htons(ETH_P_8021Q)) {
79 ip_offset += VLAN_HLEN;
80 protocol = vlan_get_protocol(skb);
81 skb->protocol = protocol;
82 }
83
84 if (skb->protocol == htons(ETH_P_IP)) {
85 iphdr = ip_hdr(skb);
86 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
87 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
88
89
90 if (iphdr->protocol == IPPROTO_TCP &&
91 skb_is_gso(skb)) {
92 hnae_set_bit(tvsvsn,
93 HNSV2_TXD_TSE_B, 1);
94 l4_len = tcp_hdrlen(skb);
95 mss = skb_shinfo(skb)->gso_size;
96 paylen = skb->len - SKB_TMP_LEN(skb);
97 }
98 } else if (skb->protocol == htons(ETH_P_IPV6)) {
99 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
100 ipv6hdr = ipv6_hdr(skb);
101 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
102
103
104 if (ipv6hdr->nexthdr == IPPROTO_TCP &&
105 skb_is_gso(skb) && skb_is_gso_v6(skb)) {
106 hnae_set_bit(tvsvsn,
107 HNSV2_TXD_TSE_B, 1);
108 l4_len = tcp_hdrlen(skb);
109 mss = skb_shinfo(skb)->gso_size;
110 paylen = skb->len - SKB_TMP_LEN(skb);
111 }
112 }
113 desc->tx.ip_offset = ip_offset;
114 desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
115 desc->tx.mss = cpu_to_le16(mss);
116 desc->tx.l4_len = l4_len;
117 desc->tx.paylen = cpu_to_le16(paylen);
118 }
119 }
120
121 hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
122
123 desc->tx.bn_pid = bn_pid;
124 desc->tx.ra_ri_cs_fe_vld = rrcfv;
125
126 ring_ptr_move_fw(ring, next_to_use);
127 }
128
129 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
130 int size, dma_addr_t dma, int frag_end,
131 int buf_num, enum hns_desc_type type, int mtu)
132 {
133 fill_v2_desc_hw(ring, priv, size, size, dma, frag_end,
134 buf_num, type, mtu);
135 }
136
137 static const struct acpi_device_id hns_enet_acpi_match[] = {
138 { "HISI00C1", 0 },
139 { "HISI00C2", 0 },
140 { },
141 };
142 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
143
144 static void fill_desc(struct hnae_ring *ring, void *priv,
145 int size, dma_addr_t dma, int frag_end,
146 int buf_num, enum hns_desc_type type, int mtu)
147 {
148 struct hnae_desc *desc = &ring->desc[ring->next_to_use];
149 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
150 struct sk_buff *skb;
151 __be16 protocol;
152 u32 ip_offset;
153 u32 asid_bufnum_pid = 0;
154 u32 flag_ipoffset = 0;
155
156 desc_cb->priv = priv;
157 desc_cb->length = size;
158 desc_cb->dma = dma;
159 desc_cb->type = type;
160
161 desc->addr = cpu_to_le64(dma);
162 desc->tx.send_size = cpu_to_le16((u16)size);
163
164
165 flag_ipoffset |= 1 << HNS_TXD_VLD_B;
166
167 asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
168
169 if (type == DESC_TYPE_SKB) {
170 skb = (struct sk_buff *)priv;
171
172 if (skb->ip_summed == CHECKSUM_PARTIAL) {
173 protocol = skb->protocol;
174 ip_offset = ETH_HLEN;
175
176
177 if (protocol == htons(ETH_P_8021Q)) {
178 ip_offset += VLAN_HLEN;
179 protocol = vlan_get_protocol(skb);
180 skb->protocol = protocol;
181 }
182
183 if (skb->protocol == htons(ETH_P_IP)) {
184 flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
185
186 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
187
188 } else if (skb->protocol == htons(ETH_P_IPV6)) {
189
190 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
191 }
192
193 flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
194 }
195 }
196
197 flag_ipoffset |= frag_end << HNS_TXD_FE_B;
198
199 desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
200 desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
201
202 ring_ptr_move_fw(ring, next_to_use);
203 }
204
205 static void unfill_desc(struct hnae_ring *ring)
206 {
207 ring_ptr_move_bw(ring, next_to_use);
208 }
209
210 static int hns_nic_maybe_stop_tx(
211 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
212 {
213 struct sk_buff *skb = *out_skb;
214 struct sk_buff *new_skb = NULL;
215 int buf_num;
216
217
218 buf_num = skb_shinfo(skb)->nr_frags + 1;
219
220 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
221 if (ring_space(ring) < 1)
222 return -EBUSY;
223
224 new_skb = skb_copy(skb, GFP_ATOMIC);
225 if (!new_skb)
226 return -ENOMEM;
227
228 dev_kfree_skb_any(skb);
229 *out_skb = new_skb;
230 buf_num = 1;
231 } else if (buf_num > ring_space(ring)) {
232 return -EBUSY;
233 }
234
235 *bnum = buf_num;
236 return 0;
237 }
238
239 static int hns_nic_maybe_stop_tso(
240 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
241 {
242 int i;
243 int size;
244 int buf_num;
245 int frag_num;
246 struct sk_buff *skb = *out_skb;
247 struct sk_buff *new_skb = NULL;
248 skb_frag_t *frag;
249
250 size = skb_headlen(skb);
251 buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
252
253 frag_num = skb_shinfo(skb)->nr_frags;
254 for (i = 0; i < frag_num; i++) {
255 frag = &skb_shinfo(skb)->frags[i];
256 size = skb_frag_size(frag);
257 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
258 }
259
260 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
261 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
262 if (ring_space(ring) < buf_num)
263 return -EBUSY;
264
265 new_skb = skb_copy(skb, GFP_ATOMIC);
266 if (!new_skb)
267 return -ENOMEM;
268 dev_kfree_skb_any(skb);
269 *out_skb = new_skb;
270
271 } else if (ring_space(ring) < buf_num) {
272 return -EBUSY;
273 }
274
275 *bnum = buf_num;
276 return 0;
277 }
278
279 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
280 int size, dma_addr_t dma, int frag_end,
281 int buf_num, enum hns_desc_type type, int mtu)
282 {
283 int frag_buf_num;
284 int sizeoflast;
285 int k;
286
287 frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
288 sizeoflast = size % BD_MAX_SEND_SIZE;
289 sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
290
291
292 for (k = 0; k < frag_buf_num; k++)
293 fill_v2_desc_hw(ring, priv, k == 0 ? size : 0,
294 (k == frag_buf_num - 1) ?
295 sizeoflast : BD_MAX_SEND_SIZE,
296 dma + BD_MAX_SEND_SIZE * k,
297 frag_end && (k == frag_buf_num - 1) ? 1 : 0,
298 buf_num,
299 (type == DESC_TYPE_SKB && !k) ?
300 DESC_TYPE_SKB : DESC_TYPE_PAGE,
301 mtu);
302 }
303
304 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev,
305 struct sk_buff *skb,
306 struct hns_nic_ring_data *ring_data)
307 {
308 struct hns_nic_priv *priv = netdev_priv(ndev);
309 struct hnae_ring *ring = ring_data->ring;
310 struct device *dev = ring_to_dev(ring);
311 struct netdev_queue *dev_queue;
312 skb_frag_t *frag;
313 int buf_num;
314 int seg_num;
315 dma_addr_t dma;
316 int size, next_to_use;
317 int i;
318
319 switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
320 case -EBUSY:
321 ring->stats.tx_busy++;
322 goto out_net_tx_busy;
323 case -ENOMEM:
324 ring->stats.sw_err_cnt++;
325 netdev_err(ndev, "no memory to xmit!\n");
326 goto out_err_tx_ok;
327 default:
328 break;
329 }
330
331
332 seg_num = skb_shinfo(skb)->nr_frags + 1;
333 next_to_use = ring->next_to_use;
334
335
336 size = skb_headlen(skb);
337 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
338 if (dma_mapping_error(dev, dma)) {
339 netdev_err(ndev, "TX head DMA map failed\n");
340 ring->stats.sw_err_cnt++;
341 goto out_err_tx_ok;
342 }
343 priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
344 buf_num, DESC_TYPE_SKB, ndev->mtu);
345
346
347 for (i = 1; i < seg_num; i++) {
348 frag = &skb_shinfo(skb)->frags[i - 1];
349 size = skb_frag_size(frag);
350 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
351 if (dma_mapping_error(dev, dma)) {
352 netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
353 ring->stats.sw_err_cnt++;
354 goto out_map_frag_fail;
355 }
356 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
357 seg_num - 1 == i ? 1 : 0, buf_num,
358 DESC_TYPE_PAGE, ndev->mtu);
359 }
360
361
362 dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
363 netdev_tx_sent_queue(dev_queue, skb->len);
364
365 netif_trans_update(ndev);
366 ndev->stats.tx_bytes += skb->len;
367 ndev->stats.tx_packets++;
368
369 wmb();
370 assert(skb->queue_mapping < priv->ae_handle->q_num);
371 hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
372
373 return NETDEV_TX_OK;
374
375 out_map_frag_fail:
376
377 while (ring->next_to_use != next_to_use) {
378 unfill_desc(ring);
379 if (ring->next_to_use != next_to_use)
380 dma_unmap_page(dev,
381 ring->desc_cb[ring->next_to_use].dma,
382 ring->desc_cb[ring->next_to_use].length,
383 DMA_TO_DEVICE);
384 else
385 dma_unmap_single(dev,
386 ring->desc_cb[next_to_use].dma,
387 ring->desc_cb[next_to_use].length,
388 DMA_TO_DEVICE);
389 }
390
391 out_err_tx_ok:
392
393 dev_kfree_skb_any(skb);
394 return NETDEV_TX_OK;
395
396 out_net_tx_busy:
397
398 netif_stop_subqueue(ndev, skb->queue_mapping);
399
400
401
402
403
404 smp_mb();
405 return NETDEV_TX_BUSY;
406 }
407
408 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
409 struct hnae_ring *ring, int pull_len,
410 struct hnae_desc_cb *desc_cb)
411 {
412 struct hnae_desc *desc;
413 u32 truesize;
414 int size;
415 int last_offset;
416 bool twobufs;
417
418 twobufs = ((PAGE_SIZE < 8192) &&
419 hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
420
421 desc = &ring->desc[ring->next_to_clean];
422 size = le16_to_cpu(desc->rx.size);
423
424 if (twobufs) {
425 truesize = hnae_buf_size(ring);
426 } else {
427 truesize = ALIGN(size, L1_CACHE_BYTES);
428 last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
429 }
430
431 skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
432 size - pull_len, truesize);
433
434
435 if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
436 return;
437
438 if (twobufs) {
439
440 if (likely(page_count(desc_cb->priv) == 1)) {
441
442 desc_cb->page_offset ^= truesize;
443
444 desc_cb->reuse_flag = 1;
445
446 get_page(desc_cb->priv);
447 }
448 return;
449 }
450
451
452 desc_cb->page_offset += truesize;
453
454 if (desc_cb->page_offset <= last_offset) {
455 desc_cb->reuse_flag = 1;
456
457 get_page(desc_cb->priv);
458 }
459 }
460
461 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
462 {
463 *out_bnum = hnae_get_field(bnum_flag,
464 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
465 }
466
467 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
468 {
469 *out_bnum = hnae_get_field(bnum_flag,
470 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
471 }
472
473 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
474 struct sk_buff *skb, u32 flag)
475 {
476 struct net_device *netdev = ring_data->napi.dev;
477 u32 l3id;
478 u32 l4id;
479
480
481 if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
482 return;
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509 l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
510 l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);
511
512
513 if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
514 return;
515
516
517 if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
518 return;
519
520
521 if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
522 return;
523
524
525 if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
526 (l4id != HNS_RX_FLAG_L4ID_UDP) &&
527 (l4id != HNS_RX_FLAG_L4ID_SCTP))
528 return;
529
530
531 if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
532 return;
533
534
535 skb->ip_summed = CHECKSUM_UNNECESSARY;
536 }
537
538 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
539 struct sk_buff **out_skb, int *out_bnum)
540 {
541 struct hnae_ring *ring = ring_data->ring;
542 struct net_device *ndev = ring_data->napi.dev;
543 struct hns_nic_priv *priv = netdev_priv(ndev);
544 struct sk_buff *skb;
545 struct hnae_desc *desc;
546 struct hnae_desc_cb *desc_cb;
547 unsigned char *va;
548 int bnum, length, i;
549 int pull_len;
550 u32 bnum_flag;
551
552 desc = &ring->desc[ring->next_to_clean];
553 desc_cb = &ring->desc_cb[ring->next_to_clean];
554
555 prefetch(desc);
556
557 va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
558
559
560 prefetch(va);
561 #if L1_CACHE_BYTES < 128
562 prefetch(va + L1_CACHE_BYTES);
563 #endif
564
565 skb = *out_skb = napi_alloc_skb(&ring_data->napi,
566 HNS_RX_HEAD_SIZE);
567 if (unlikely(!skb)) {
568 ring->stats.sw_err_cnt++;
569 return -ENOMEM;
570 }
571
572 prefetchw(skb->data);
573 length = le16_to_cpu(desc->rx.pkt_len);
574 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
575 priv->ops.get_rxd_bnum(bnum_flag, &bnum);
576 *out_bnum = bnum;
577
578 if (length <= HNS_RX_HEAD_SIZE) {
579 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
580
581
582 if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
583 desc_cb->reuse_flag = 1;
584 else
585 put_page(desc_cb->priv);
586
587 ring_ptr_move_fw(ring, next_to_clean);
588
589 if (unlikely(bnum != 1)) {
590 *out_bnum = 1;
591 goto out_bnum_err;
592 }
593 } else {
594 ring->stats.seg_pkt_cnt++;
595
596 pull_len = eth_get_headlen(ndev, va, HNS_RX_HEAD_SIZE);
597 memcpy(__skb_put(skb, pull_len), va,
598 ALIGN(pull_len, sizeof(long)));
599
600 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
601 ring_ptr_move_fw(ring, next_to_clean);
602
603 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) {
604 *out_bnum = 1;
605 goto out_bnum_err;
606 }
607 for (i = 1; i < bnum; i++) {
608 desc = &ring->desc[ring->next_to_clean];
609 desc_cb = &ring->desc_cb[ring->next_to_clean];
610
611 hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
612 ring_ptr_move_fw(ring, next_to_clean);
613 }
614 }
615
616
617 if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
618 out_bnum_err:
619 *out_bnum = *out_bnum ? *out_bnum : 1;
620 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
621 bnum, ring->max_desc_num_per_pkt,
622 length, (int)MAX_SKB_FRAGS,
623 ((u64 *)desc)[0], ((u64 *)desc)[1]);
624 ring->stats.err_bd_num++;
625 dev_kfree_skb_any(skb);
626 return -EDOM;
627 }
628
629 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
630
631 if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
632 netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
633 ((u64 *)desc)[0], ((u64 *)desc)[1]);
634 ring->stats.non_vld_descs++;
635 dev_kfree_skb_any(skb);
636 return -EINVAL;
637 }
638
639 if (unlikely((!desc->rx.pkt_len) ||
640 hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
641 ring->stats.err_pkt_len++;
642 dev_kfree_skb_any(skb);
643 return -EFAULT;
644 }
645
646 if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
647 ring->stats.l2_err++;
648 dev_kfree_skb_any(skb);
649 return -EFAULT;
650 }
651
652 ring->stats.rx_pkts++;
653 ring->stats.rx_bytes += skb->len;
654
655
656
657
658 hns_nic_rx_checksum(ring_data, skb, bnum_flag);
659
660 return 0;
661 }
662
663 static void
664 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
665 {
666 int i, ret;
667 struct hnae_desc_cb res_cbs;
668 struct hnae_desc_cb *desc_cb;
669 struct hnae_ring *ring = ring_data->ring;
670 struct net_device *ndev = ring_data->napi.dev;
671
672 for (i = 0; i < cleand_count; i++) {
673 desc_cb = &ring->desc_cb[ring->next_to_use];
674 if (desc_cb->reuse_flag) {
675 ring->stats.reuse_pg_cnt++;
676 hnae_reuse_buffer(ring, ring->next_to_use);
677 } else {
678 ret = hnae_reserve_buffer_map(ring, &res_cbs);
679 if (ret) {
680 ring->stats.sw_err_cnt++;
681 netdev_err(ndev, "hnae reserve buffer map failed.\n");
682 break;
683 }
684 hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
685 }
686
687 ring_ptr_move_fw(ring, next_to_use);
688 }
689
690 wmb();
691 writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
692 }
693
694
695
696 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
697 struct sk_buff *skb)
698 {
699 struct net_device *ndev = ring_data->napi.dev;
700
701 skb->protocol = eth_type_trans(skb, ndev);
702 (void)napi_gro_receive(&ring_data->napi, skb);
703 }
704
705 static int hns_desc_unused(struct hnae_ring *ring)
706 {
707 int ntc = ring->next_to_clean;
708 int ntu = ring->next_to_use;
709
710 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
711 }
712
713 #define HNS_LOWEST_LATENCY_RATE 27
714 #define HNS_LOW_LATENCY_RATE 80
715
716 #define HNS_COAL_BDNUM 3
717
718 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring)
719 {
720 bool coal_enable = ring->q->handle->coal_adapt_en;
721
722 if (coal_enable &&
723 ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE)
724 return HNS_COAL_BDNUM;
725 else
726 return 0;
727 }
728
729 static void hns_update_rx_rate(struct hnae_ring *ring)
730 {
731 bool coal_enable = ring->q->handle->coal_adapt_en;
732 u32 time_passed_ms;
733 u64 total_bytes;
734
735 if (!coal_enable ||
736 time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4)))
737 return;
738
739
740 if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) {
741 ring->coal_last_rx_bytes = ring->stats.rx_bytes;
742 ring->coal_last_jiffies = jiffies;
743 return;
744 }
745
746 total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes;
747 time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies);
748 do_div(total_bytes, time_passed_ms);
749 ring->coal_rx_rate = total_bytes >> 10;
750
751 ring->coal_last_rx_bytes = ring->stats.rx_bytes;
752 ring->coal_last_jiffies = jiffies;
753 }
754
755
756
757
758 static u32 smooth_alg(u32 new_param, u32 old_param)
759 {
760 u32 gap = (new_param > old_param) ? new_param - old_param
761 : old_param - new_param;
762
763 if (gap > 8)
764 gap >>= 3;
765
766 if (new_param > old_param)
767 return old_param + gap;
768 else
769 return old_param - gap;
770 }
771
772
773
774
775
776 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data)
777 {
778 struct hnae_ring *ring = ring_data->ring;
779 struct hnae_handle *handle = ring->q->handle;
780 u32 new_coal_param, old_coal_param = ring->coal_param;
781
782 if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE)
783 new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM;
784 else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE)
785 new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM;
786 else
787 new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM;
788
789 if (new_coal_param == old_coal_param &&
790 new_coal_param == handle->coal_param)
791 return;
792
793 new_coal_param = smooth_alg(new_coal_param, old_coal_param);
794 ring->coal_param = new_coal_param;
795
796
797
798
799
800
801
802
803
804 if (new_coal_param == handle->coal_param) {
805 handle->coal_last_jiffies = jiffies;
806 handle->coal_ring_idx = ring_data->queue_index;
807 } else if (new_coal_param > handle->coal_param ||
808 handle->coal_ring_idx == ring_data->queue_index ||
809 time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) {
810 handle->dev->ops->set_coalesce_usecs(handle,
811 new_coal_param);
812 handle->dev->ops->set_coalesce_frames(handle,
813 1, new_coal_param);
814 handle->coal_param = new_coal_param;
815 handle->coal_ring_idx = ring_data->queue_index;
816 handle->coal_last_jiffies = jiffies;
817 }
818 }
819
820 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
821 int budget, void *v)
822 {
823 struct hnae_ring *ring = ring_data->ring;
824 struct sk_buff *skb;
825 int num, bnum;
826 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
827 int recv_pkts, recv_bds, clean_count, err;
828 int unused_count = hns_desc_unused(ring);
829
830 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
831 rmb();
832
833 recv_pkts = 0, recv_bds = 0, clean_count = 0;
834 num -= unused_count;
835
836 while (recv_pkts < budget && recv_bds < num) {
837
838 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
839 hns_nic_alloc_rx_buffers(ring_data,
840 clean_count + unused_count);
841 clean_count = 0;
842 unused_count = hns_desc_unused(ring);
843 }
844
845
846 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
847 if (unlikely(!skb))
848 goto out;
849
850 recv_bds += bnum;
851 clean_count += bnum;
852 if (unlikely(err)) {
853 recv_pkts++;
854 continue;
855 }
856
857
858 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
859 ring_data, skb);
860 recv_pkts++;
861 }
862
863 out:
864
865 if (clean_count + unused_count > 0)
866 hns_nic_alloc_rx_buffers(ring_data,
867 clean_count + unused_count);
868
869 return recv_pkts;
870 }
871
872 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
873 {
874 struct hnae_ring *ring = ring_data->ring;
875 int num = 0;
876 bool rx_stopped;
877
878 hns_update_rx_rate(ring);
879
880
881 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
882 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
883
884 if (num <= hns_coal_rx_bdnum(ring)) {
885 if (ring->q->handle->coal_adapt_en)
886 hns_nic_adpt_coalesce(ring_data);
887
888 rx_stopped = true;
889 } else {
890 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
891 ring_data->ring, 1);
892
893 rx_stopped = false;
894 }
895
896 return rx_stopped;
897 }
898
899 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
900 {
901 struct hnae_ring *ring = ring_data->ring;
902 int num;
903
904 hns_update_rx_rate(ring);
905 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
906
907 if (num <= hns_coal_rx_bdnum(ring)) {
908 if (ring->q->handle->coal_adapt_en)
909 hns_nic_adpt_coalesce(ring_data);
910
911 return true;
912 }
913
914 return false;
915 }
916
917 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
918 int *bytes, int *pkts)
919 {
920 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
921
922 (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
923 (*bytes) += desc_cb->length;
924
925 hnae_free_buffer_detach(ring, ring->next_to_clean);
926
927 ring_ptr_move_fw(ring, next_to_clean);
928 }
929
930 static int is_valid_clean_head(struct hnae_ring *ring, int h)
931 {
932 int u = ring->next_to_use;
933 int c = ring->next_to_clean;
934
935 if (unlikely(h > ring->desc_num))
936 return 0;
937
938 assert(u > 0 && u < ring->desc_num);
939 assert(c > 0 && c < ring->desc_num);
940 assert(u != c && h != c);
941
942 return u > c ? (h > c && h <= u) : (h > c || h <= u);
943 }
944
945
946
947
948 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
949 int budget, void *v)
950 {
951 struct hnae_ring *ring = ring_data->ring;
952 struct net_device *ndev = ring_data->napi.dev;
953 struct netdev_queue *dev_queue;
954 struct hns_nic_priv *priv = netdev_priv(ndev);
955 int head;
956 int bytes, pkts;
957
958 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
959 rmb();
960
961 if (is_ring_empty(ring) || head == ring->next_to_clean)
962 return 0;
963
964 if (!is_valid_clean_head(ring, head)) {
965 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
966 ring->next_to_use, ring->next_to_clean);
967 ring->stats.io_err_cnt++;
968 return -EIO;
969 }
970
971 bytes = 0;
972 pkts = 0;
973 while (head != ring->next_to_clean) {
974 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
975
976 prefetch(&ring->desc_cb[ring->next_to_clean]);
977 }
978
979 ring->stats.tx_pkts += pkts;
980 ring->stats.tx_bytes += bytes;
981
982 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
983 netdev_tx_completed_queue(dev_queue, pkts, bytes);
984
985 if (unlikely(priv->link && !netif_carrier_ok(ndev)))
986 netif_carrier_on(ndev);
987
988 if (unlikely(pkts && netif_carrier_ok(ndev) &&
989 (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
990
991
992
993 smp_mb();
994 if (netif_tx_queue_stopped(dev_queue) &&
995 !test_bit(NIC_STATE_DOWN, &priv->state)) {
996 netif_tx_wake_queue(dev_queue);
997 ring->stats.restart_queue++;
998 }
999 }
1000 return 0;
1001 }
1002
1003 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
1004 {
1005 struct hnae_ring *ring = ring_data->ring;
1006 int head;
1007
1008 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1009
1010 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1011
1012 if (head != ring->next_to_clean) {
1013 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1014 ring_data->ring, 1);
1015
1016 return false;
1017 } else {
1018 return true;
1019 }
1020 }
1021
1022 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1023 {
1024 struct hnae_ring *ring = ring_data->ring;
1025 int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1026
1027 if (head == ring->next_to_clean)
1028 return true;
1029 else
1030 return false;
1031 }
1032
1033 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
1034 {
1035 struct hnae_ring *ring = ring_data->ring;
1036 struct net_device *ndev = ring_data->napi.dev;
1037 struct netdev_queue *dev_queue;
1038 int head;
1039 int bytes, pkts;
1040
1041 head = ring->next_to_use;
1042 bytes = 0;
1043 pkts = 0;
1044 while (head != ring->next_to_clean)
1045 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1046
1047 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1048 netdev_tx_reset_queue(dev_queue);
1049 }
1050
1051 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
1052 {
1053 int clean_complete = 0;
1054 struct hns_nic_ring_data *ring_data =
1055 container_of(napi, struct hns_nic_ring_data, napi);
1056 struct hnae_ring *ring = ring_data->ring;
1057
1058 clean_complete += ring_data->poll_one(
1059 ring_data, budget - clean_complete,
1060 ring_data->ex_process);
1061
1062 if (clean_complete < budget) {
1063 if (ring_data->fini_process(ring_data)) {
1064 napi_complete(napi);
1065 ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1066 } else {
1067 return budget;
1068 }
1069 }
1070
1071 return clean_complete;
1072 }
1073
1074 static irqreturn_t hns_irq_handle(int irq, void *dev)
1075 {
1076 struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1077
1078 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1079 ring_data->ring, 1);
1080 napi_schedule(&ring_data->napi);
1081
1082 return IRQ_HANDLED;
1083 }
1084
1085
1086
1087
1088
1089 static void hns_nic_adjust_link(struct net_device *ndev)
1090 {
1091 struct hns_nic_priv *priv = netdev_priv(ndev);
1092 struct hnae_handle *h = priv->ae_handle;
1093 int state = 1;
1094
1095
1096 if (ndev->phydev) {
1097
1098 if (ndev->phydev->link == 0)
1099 return;
1100
1101 if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed,
1102 ndev->phydev->duplex)) {
1103
1104
1105
1106
1107 netif_carrier_off(ndev);
1108 msleep(200);
1109 h->dev->ops->adjust_link(h, ndev->phydev->speed,
1110 ndev->phydev->duplex);
1111 netif_carrier_on(ndev);
1112 }
1113 }
1114
1115 state = state && h->dev->ops->get_status(h);
1116
1117 if (state != priv->link) {
1118 if (state) {
1119 netif_carrier_on(ndev);
1120 netif_tx_wake_all_queues(ndev);
1121 netdev_info(ndev, "link up\n");
1122 } else {
1123 netif_carrier_off(ndev);
1124 netdev_info(ndev, "link down\n");
1125 }
1126 priv->link = state;
1127 }
1128 }
1129
1130
1131
1132
1133
1134
1135
1136 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1137 {
1138 __ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = { 0, };
1139 struct phy_device *phy_dev = h->phy_dev;
1140 int ret;
1141
1142 if (!h->phy_dev)
1143 return 0;
1144
1145 ethtool_convert_legacy_u32_to_link_mode(supported, h->if_support);
1146 linkmode_and(phy_dev->supported, phy_dev->supported, supported);
1147 linkmode_copy(phy_dev->advertising, phy_dev->supported);
1148
1149 if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1150 phy_dev->autoneg = false;
1151
1152 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1153 phy_dev->dev_flags = 0;
1154
1155 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1156 h->phy_if);
1157 } else {
1158 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1159 }
1160 if (unlikely(ret))
1161 return -ENODEV;
1162
1163 phy_attached_info(phy_dev);
1164
1165 return 0;
1166 }
1167
1168 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1169 {
1170 struct hns_nic_priv *priv = netdev_priv(netdev);
1171 struct hnae_handle *h = priv->ae_handle;
1172
1173 napi_enable(&priv->ring_data[idx].napi);
1174
1175 enable_irq(priv->ring_data[idx].ring->irq);
1176 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1177
1178 return 0;
1179 }
1180
1181 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1182 {
1183 struct hns_nic_priv *priv = netdev_priv(ndev);
1184 struct hnae_handle *h = priv->ae_handle;
1185 struct sockaddr *mac_addr = p;
1186 int ret;
1187
1188 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1189 return -EADDRNOTAVAIL;
1190
1191 ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1192 if (ret) {
1193 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1194 return ret;
1195 }
1196
1197 memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1198
1199 return 0;
1200 }
1201
1202 static void hns_nic_update_stats(struct net_device *netdev)
1203 {
1204 struct hns_nic_priv *priv = netdev_priv(netdev);
1205 struct hnae_handle *h = priv->ae_handle;
1206
1207 h->dev->ops->update_stats(h, &netdev->stats);
1208 }
1209
1210
1211 static void hns_init_mac_addr(struct net_device *ndev)
1212 {
1213 struct hns_nic_priv *priv = netdev_priv(ndev);
1214
1215 if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
1216 eth_hw_addr_random(ndev);
1217 dev_warn(priv->dev, "No valid mac, use random mac %pM",
1218 ndev->dev_addr);
1219 }
1220 }
1221
1222 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1223 {
1224 struct hns_nic_priv *priv = netdev_priv(netdev);
1225 struct hnae_handle *h = priv->ae_handle;
1226
1227 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1228 disable_irq(priv->ring_data[idx].ring->irq);
1229
1230 napi_disable(&priv->ring_data[idx].napi);
1231 }
1232
1233 static int hns_nic_init_affinity_mask(int q_num, int ring_idx,
1234 struct hnae_ring *ring, cpumask_t *mask)
1235 {
1236 int cpu;
1237
1238
1239
1240
1241
1242 if (q_num == num_possible_cpus()) {
1243 if (is_tx_ring(ring))
1244 cpu = ring_idx;
1245 else
1246 cpu = ring_idx - q_num;
1247 } else {
1248 if (is_tx_ring(ring))
1249 cpu = ring_idx * 2;
1250 else
1251 cpu = (ring_idx - q_num) * 2 + 1;
1252 }
1253
1254 cpumask_clear(mask);
1255 cpumask_set_cpu(cpu, mask);
1256
1257 return cpu;
1258 }
1259
1260 static void hns_nic_free_irq(int q_num, struct hns_nic_priv *priv)
1261 {
1262 int i;
1263
1264 for (i = 0; i < q_num * 2; i++) {
1265 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1266 irq_set_affinity_hint(priv->ring_data[i].ring->irq,
1267 NULL);
1268 free_irq(priv->ring_data[i].ring->irq,
1269 &priv->ring_data[i]);
1270 priv->ring_data[i].ring->irq_init_flag =
1271 RCB_IRQ_NOT_INITED;
1272 }
1273 }
1274 }
1275
1276 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1277 {
1278 struct hnae_handle *h = priv->ae_handle;
1279 struct hns_nic_ring_data *rd;
1280 int i;
1281 int ret;
1282 int cpu;
1283
1284 for (i = 0; i < h->q_num * 2; i++) {
1285 rd = &priv->ring_data[i];
1286
1287 if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1288 break;
1289
1290 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1291 "%s-%s%d", priv->netdev->name,
1292 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index);
1293
1294 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1295
1296 ret = request_irq(rd->ring->irq,
1297 hns_irq_handle, 0, rd->ring->ring_name, rd);
1298 if (ret) {
1299 netdev_err(priv->netdev, "request irq(%d) fail\n",
1300 rd->ring->irq);
1301 goto out_free_irq;
1302 }
1303 disable_irq(rd->ring->irq);
1304
1305 cpu = hns_nic_init_affinity_mask(h->q_num, i,
1306 rd->ring, &rd->mask);
1307
1308 if (cpu_online(cpu))
1309 irq_set_affinity_hint(rd->ring->irq,
1310 &rd->mask);
1311
1312 rd->ring->irq_init_flag = RCB_IRQ_INITED;
1313 }
1314
1315 return 0;
1316
1317 out_free_irq:
1318 hns_nic_free_irq(h->q_num, priv);
1319 return ret;
1320 }
1321
1322 static int hns_nic_net_up(struct net_device *ndev)
1323 {
1324 struct hns_nic_priv *priv = netdev_priv(ndev);
1325 struct hnae_handle *h = priv->ae_handle;
1326 int i, j;
1327 int ret;
1328
1329 if (!test_bit(NIC_STATE_DOWN, &priv->state))
1330 return 0;
1331
1332 ret = hns_nic_init_irq(priv);
1333 if (ret != 0) {
1334 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1335 return ret;
1336 }
1337
1338 for (i = 0; i < h->q_num * 2; i++) {
1339 ret = hns_nic_ring_open(ndev, i);
1340 if (ret)
1341 goto out_has_some_queues;
1342 }
1343
1344 ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1345 if (ret)
1346 goto out_set_mac_addr_err;
1347
1348 ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1349 if (ret)
1350 goto out_start_err;
1351
1352 if (ndev->phydev)
1353 phy_start(ndev->phydev);
1354
1355 clear_bit(NIC_STATE_DOWN, &priv->state);
1356 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1357
1358 return 0;
1359
1360 out_start_err:
1361 netif_stop_queue(ndev);
1362 out_set_mac_addr_err:
1363 out_has_some_queues:
1364 for (j = i - 1; j >= 0; j--)
1365 hns_nic_ring_close(ndev, j);
1366
1367 hns_nic_free_irq(h->q_num, priv);
1368 set_bit(NIC_STATE_DOWN, &priv->state);
1369
1370 return ret;
1371 }
1372
1373 static void hns_nic_net_down(struct net_device *ndev)
1374 {
1375 int i;
1376 struct hnae_ae_ops *ops;
1377 struct hns_nic_priv *priv = netdev_priv(ndev);
1378
1379 if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1380 return;
1381
1382 (void)del_timer_sync(&priv->service_timer);
1383 netif_tx_stop_all_queues(ndev);
1384 netif_carrier_off(ndev);
1385 netif_tx_disable(ndev);
1386 priv->link = 0;
1387
1388 if (ndev->phydev)
1389 phy_stop(ndev->phydev);
1390
1391 ops = priv->ae_handle->dev->ops;
1392
1393 if (ops->stop)
1394 ops->stop(priv->ae_handle);
1395
1396 netif_tx_stop_all_queues(ndev);
1397
1398 for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1399 hns_nic_ring_close(ndev, i);
1400 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1401
1402
1403 hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1404 }
1405 }
1406
1407 void hns_nic_net_reset(struct net_device *ndev)
1408 {
1409 struct hns_nic_priv *priv = netdev_priv(ndev);
1410 struct hnae_handle *handle = priv->ae_handle;
1411
1412 while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1413 usleep_range(1000, 2000);
1414
1415 (void)hnae_reinit_handle(handle);
1416
1417 clear_bit(NIC_STATE_RESETTING, &priv->state);
1418 }
1419
1420 void hns_nic_net_reinit(struct net_device *netdev)
1421 {
1422 struct hns_nic_priv *priv = netdev_priv(netdev);
1423 enum hnae_port_type type = priv->ae_handle->port_type;
1424
1425 netif_trans_update(priv->netdev);
1426 while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1427 usleep_range(1000, 2000);
1428
1429 hns_nic_net_down(netdev);
1430
1431
1432
1433
1434 if (type == HNAE_PORT_DEBUG)
1435 hns_nic_net_reset(netdev);
1436
1437 (void)hns_nic_net_up(netdev);
1438 clear_bit(NIC_STATE_REINITING, &priv->state);
1439 }
1440
1441 static int hns_nic_net_open(struct net_device *ndev)
1442 {
1443 struct hns_nic_priv *priv = netdev_priv(ndev);
1444 struct hnae_handle *h = priv->ae_handle;
1445 int ret;
1446
1447 if (test_bit(NIC_STATE_TESTING, &priv->state))
1448 return -EBUSY;
1449
1450 priv->link = 0;
1451 netif_carrier_off(ndev);
1452
1453 ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1454 if (ret < 0) {
1455 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1456 ret);
1457 return ret;
1458 }
1459
1460 ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1461 if (ret < 0) {
1462 netdev_err(ndev,
1463 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1464 return ret;
1465 }
1466
1467 ret = hns_nic_net_up(ndev);
1468 if (ret) {
1469 netdev_err(ndev,
1470 "hns net up fail, ret=%d!\n", ret);
1471 return ret;
1472 }
1473
1474 return 0;
1475 }
1476
1477 static int hns_nic_net_stop(struct net_device *ndev)
1478 {
1479 hns_nic_net_down(ndev);
1480
1481 return 0;
1482 }
1483
1484 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1485 #define HNS_TX_TIMEO_LIMIT (40 * HZ)
1486 static void hns_nic_net_timeout(struct net_device *ndev)
1487 {
1488 struct hns_nic_priv *priv = netdev_priv(ndev);
1489
1490 if (ndev->watchdog_timeo < HNS_TX_TIMEO_LIMIT) {
1491 ndev->watchdog_timeo *= 2;
1492 netdev_info(ndev, "watchdog_timo changed to %d.\n",
1493 ndev->watchdog_timeo);
1494 } else {
1495 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1496 hns_tx_timeout_reset(priv);
1497 }
1498 }
1499
1500 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1501 int cmd)
1502 {
1503 struct phy_device *phy_dev = netdev->phydev;
1504
1505 if (!netif_running(netdev))
1506 return -EINVAL;
1507
1508 if (!phy_dev)
1509 return -ENOTSUPP;
1510
1511 return phy_mii_ioctl(phy_dev, ifr, cmd);
1512 }
1513
1514 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1515 struct net_device *ndev)
1516 {
1517 struct hns_nic_priv *priv = netdev_priv(ndev);
1518
1519 assert(skb->queue_mapping < ndev->ae_handle->q_num);
1520
1521 return hns_nic_net_xmit_hw(ndev, skb,
1522 &tx_ring_data(priv, skb->queue_mapping));
1523 }
1524
1525 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data,
1526 struct sk_buff *skb)
1527 {
1528 dev_kfree_skb_any(skb);
1529 }
1530
1531 #define HNS_LB_TX_RING 0
1532 static struct sk_buff *hns_assemble_skb(struct net_device *ndev)
1533 {
1534 struct sk_buff *skb;
1535 struct ethhdr *ethhdr;
1536 int frame_len;
1537
1538
1539 skb = alloc_skb(64, GFP_KERNEL);
1540 if (!skb)
1541 return NULL;
1542
1543 skb_put(skb, 64);
1544 skb->dev = ndev;
1545 memset(skb->data, 0xFF, skb->len);
1546
1547
1548 ethhdr = (struct ethhdr *)skb->data;
1549 ethhdr->h_proto = htons(ETH_P_IP);
1550
1551 frame_len = skb->len & (~1ul);
1552 memset(&skb->data[frame_len / 2], 0xAA,
1553 frame_len / 2 - 1);
1554
1555 skb->queue_mapping = HNS_LB_TX_RING;
1556
1557 return skb;
1558 }
1559
1560 static int hns_enable_serdes_lb(struct net_device *ndev)
1561 {
1562 struct hns_nic_priv *priv = netdev_priv(ndev);
1563 struct hnae_handle *h = priv->ae_handle;
1564 struct hnae_ae_ops *ops = h->dev->ops;
1565 int speed, duplex;
1566 int ret;
1567
1568 ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1);
1569 if (ret)
1570 return ret;
1571
1572 ret = ops->start ? ops->start(h) : 0;
1573 if (ret)
1574 return ret;
1575
1576
1577 if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1578 speed = 1000;
1579 else
1580 speed = 10000;
1581 duplex = 1;
1582
1583 ops->adjust_link(h, speed, duplex);
1584
1585
1586 mdelay(300);
1587
1588 return 0;
1589 }
1590
1591 static void hns_disable_serdes_lb(struct net_device *ndev)
1592 {
1593 struct hns_nic_priv *priv = netdev_priv(ndev);
1594 struct hnae_handle *h = priv->ae_handle;
1595 struct hnae_ae_ops *ops = h->dev->ops;
1596
1597 ops->stop(h);
1598 ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0);
1599 }
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev)
1615 {
1616 struct hns_nic_priv *priv = netdev_priv(ndev);
1617 struct hnae_handle *h = priv->ae_handle;
1618 struct hnae_ae_ops *ops = h->dev->ops;
1619 struct hns_nic_ring_data *rd;
1620 struct hnae_ring *ring;
1621 struct sk_buff *skb;
1622 u32 *org_indir;
1623 u32 *cur_indir;
1624 int indir_size;
1625 int head, tail;
1626 int fetch_num;
1627 int i, j;
1628 bool found;
1629 int retry_times;
1630 int ret = 0;
1631
1632
1633 indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir);
1634 org_indir = kzalloc(indir_size, GFP_KERNEL);
1635 if (!org_indir)
1636 return -ENOMEM;
1637
1638
1639 ops->get_rss(h, org_indir, NULL, NULL);
1640
1641 cur_indir = kzalloc(indir_size, GFP_KERNEL);
1642 if (!cur_indir) {
1643 ret = -ENOMEM;
1644 goto cur_indir_alloc_err;
1645 }
1646
1647
1648 if (hns_enable_serdes_lb(ndev)) {
1649 ret = -EINVAL;
1650 goto enable_serdes_lb_err;
1651 }
1652
1653
1654 for (i = 0; i < h->q_num; i++) {
1655 ring = &h->qs[i]->rx_ring;
1656 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1657 tail = readl_relaxed(ring->io_base + RCB_REG_TAIL);
1658 found = false;
1659 fetch_num = ring_dist(ring, head, tail);
1660
1661 while (head != tail) {
1662 if (ring->desc_cb[head].page_offset != 0) {
1663 found = true;
1664 break;
1665 }
1666
1667 head++;
1668 if (head == ring->desc_num)
1669 head = 0;
1670 }
1671
1672 if (found) {
1673 for (j = 0; j < indir_size / sizeof(*org_indir); j++)
1674 cur_indir[j] = i;
1675 ops->set_rss(h, cur_indir, NULL, 0);
1676
1677 for (j = 0; j < fetch_num; j++) {
1678
1679 skb = hns_assemble_skb(ndev);
1680 if (!skb)
1681 goto out;
1682 rd = &tx_ring_data(priv, skb->queue_mapping);
1683 hns_nic_net_xmit_hw(ndev, skb, rd);
1684
1685 retry_times = 0;
1686 while (retry_times++ < 10) {
1687 mdelay(10);
1688
1689 rd = &rx_ring_data(priv, i);
1690 if (rd->poll_one(rd, fetch_num,
1691 hns_nic_drop_rx_fetch))
1692 break;
1693 }
1694
1695 retry_times = 0;
1696 while (retry_times++ < 10) {
1697 mdelay(10);
1698
1699 rd = &tx_ring_data(priv,
1700 HNS_LB_TX_RING);
1701 if (rd->poll_one(rd, fetch_num, NULL))
1702 break;
1703 }
1704 }
1705 }
1706 }
1707
1708 out:
1709
1710 ops->set_rss(h, org_indir, NULL, 0);
1711 hns_disable_serdes_lb(ndev);
1712 enable_serdes_lb_err:
1713 kfree(cur_indir);
1714 cur_indir_alloc_err:
1715 kfree(org_indir);
1716
1717 return ret;
1718 }
1719
1720 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1721 {
1722 struct hns_nic_priv *priv = netdev_priv(ndev);
1723 struct hnae_handle *h = priv->ae_handle;
1724 bool if_running = netif_running(ndev);
1725 int ret;
1726
1727
1728 if (new_mtu < 68)
1729 return -EINVAL;
1730
1731
1732 if (new_mtu == ndev->mtu)
1733 return 0;
1734
1735 if (!h->dev->ops->set_mtu)
1736 return -ENOTSUPP;
1737
1738 if (if_running) {
1739 (void)hns_nic_net_stop(ndev);
1740 msleep(100);
1741 }
1742
1743 if (priv->enet_ver != AE_VERSION_1 &&
1744 ndev->mtu <= BD_SIZE_2048_MAX_MTU &&
1745 new_mtu > BD_SIZE_2048_MAX_MTU) {
1746
1747 hnae_reinit_all_ring_desc(h);
1748
1749
1750 ret = hns_nic_clear_all_rx_fetch(ndev);
1751
1752
1753 hnae_reinit_all_ring_page_off(h);
1754
1755 if (ret) {
1756 netdev_err(ndev, "clear the fetched desc fail\n");
1757 goto out;
1758 }
1759 }
1760
1761 ret = h->dev->ops->set_mtu(h, new_mtu);
1762 if (ret) {
1763 netdev_err(ndev, "set mtu fail, return value %d\n",
1764 ret);
1765 goto out;
1766 }
1767
1768
1769 ndev->mtu = new_mtu;
1770
1771 out:
1772 if (if_running) {
1773 if (hns_nic_net_open(ndev)) {
1774 netdev_err(ndev, "hns net open fail\n");
1775 ret = -EINVAL;
1776 }
1777 }
1778
1779 return ret;
1780 }
1781
1782 static int hns_nic_set_features(struct net_device *netdev,
1783 netdev_features_t features)
1784 {
1785 struct hns_nic_priv *priv = netdev_priv(netdev);
1786
1787 switch (priv->enet_ver) {
1788 case AE_VERSION_1:
1789 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1790 netdev_info(netdev, "enet v1 do not support tso!\n");
1791 break;
1792 default:
1793 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1794 priv->ops.fill_desc = fill_tso_desc;
1795 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1796
1797 netif_set_gso_max_size(netdev, 7 * 4096);
1798 } else {
1799 priv->ops.fill_desc = fill_v2_desc;
1800 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1801 }
1802 break;
1803 }
1804 netdev->features = features;
1805 return 0;
1806 }
1807
1808 static netdev_features_t hns_nic_fix_features(
1809 struct net_device *netdev, netdev_features_t features)
1810 {
1811 struct hns_nic_priv *priv = netdev_priv(netdev);
1812
1813 switch (priv->enet_ver) {
1814 case AE_VERSION_1:
1815 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1816 NETIF_F_HW_VLAN_CTAG_FILTER);
1817 break;
1818 default:
1819 break;
1820 }
1821 return features;
1822 }
1823
1824 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
1825 {
1826 struct hns_nic_priv *priv = netdev_priv(netdev);
1827 struct hnae_handle *h = priv->ae_handle;
1828
1829 if (h->dev->ops->add_uc_addr)
1830 return h->dev->ops->add_uc_addr(h, addr);
1831
1832 return 0;
1833 }
1834
1835 static int hns_nic_uc_unsync(struct net_device *netdev,
1836 const unsigned char *addr)
1837 {
1838 struct hns_nic_priv *priv = netdev_priv(netdev);
1839 struct hnae_handle *h = priv->ae_handle;
1840
1841 if (h->dev->ops->rm_uc_addr)
1842 return h->dev->ops->rm_uc_addr(h, addr);
1843
1844 return 0;
1845 }
1846
1847
1848
1849
1850
1851
1852
1853
1854 static void hns_set_multicast_list(struct net_device *ndev)
1855 {
1856 struct hns_nic_priv *priv = netdev_priv(ndev);
1857 struct hnae_handle *h = priv->ae_handle;
1858 struct netdev_hw_addr *ha = NULL;
1859
1860 if (!h) {
1861 netdev_err(ndev, "hnae handle is null\n");
1862 return;
1863 }
1864
1865 if (h->dev->ops->clr_mc_addr)
1866 if (h->dev->ops->clr_mc_addr(h))
1867 netdev_err(ndev, "clear multicast address fail\n");
1868
1869 if (h->dev->ops->set_mc_addr) {
1870 netdev_for_each_mc_addr(ha, ndev)
1871 if (h->dev->ops->set_mc_addr(h, ha->addr))
1872 netdev_err(ndev, "set multicast fail\n");
1873 }
1874 }
1875
1876 static void hns_nic_set_rx_mode(struct net_device *ndev)
1877 {
1878 struct hns_nic_priv *priv = netdev_priv(ndev);
1879 struct hnae_handle *h = priv->ae_handle;
1880
1881 if (h->dev->ops->set_promisc_mode) {
1882 if (ndev->flags & IFF_PROMISC)
1883 h->dev->ops->set_promisc_mode(h, 1);
1884 else
1885 h->dev->ops->set_promisc_mode(h, 0);
1886 }
1887
1888 hns_set_multicast_list(ndev);
1889
1890 if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
1891 netdev_err(ndev, "sync uc address fail\n");
1892 }
1893
1894 static void hns_nic_get_stats64(struct net_device *ndev,
1895 struct rtnl_link_stats64 *stats)
1896 {
1897 int idx = 0;
1898 u64 tx_bytes = 0;
1899 u64 rx_bytes = 0;
1900 u64 tx_pkts = 0;
1901 u64 rx_pkts = 0;
1902 struct hns_nic_priv *priv = netdev_priv(ndev);
1903 struct hnae_handle *h = priv->ae_handle;
1904
1905 for (idx = 0; idx < h->q_num; idx++) {
1906 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1907 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1908 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1909 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1910 }
1911
1912 stats->tx_bytes = tx_bytes;
1913 stats->tx_packets = tx_pkts;
1914 stats->rx_bytes = rx_bytes;
1915 stats->rx_packets = rx_pkts;
1916
1917 stats->rx_errors = ndev->stats.rx_errors;
1918 stats->multicast = ndev->stats.multicast;
1919 stats->rx_length_errors = ndev->stats.rx_length_errors;
1920 stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1921 stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1922
1923 stats->tx_errors = ndev->stats.tx_errors;
1924 stats->rx_dropped = ndev->stats.rx_dropped;
1925 stats->tx_dropped = ndev->stats.tx_dropped;
1926 stats->collisions = ndev->stats.collisions;
1927 stats->rx_over_errors = ndev->stats.rx_over_errors;
1928 stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1929 stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1930 stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1931 stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1932 stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1933 stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1934 stats->tx_window_errors = ndev->stats.tx_window_errors;
1935 stats->rx_compressed = ndev->stats.rx_compressed;
1936 stats->tx_compressed = ndev->stats.tx_compressed;
1937 }
1938
1939 static u16
1940 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
1941 struct net_device *sb_dev)
1942 {
1943 struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
1944 struct hns_nic_priv *priv = netdev_priv(ndev);
1945
1946
1947 if (!AE_IS_VER1(priv->enet_ver) &&
1948 is_multicast_ether_addr(eth_hdr->h_dest))
1949 return 0;
1950 else
1951 return netdev_pick_tx(ndev, skb, NULL);
1952 }
1953
1954 static const struct net_device_ops hns_nic_netdev_ops = {
1955 .ndo_open = hns_nic_net_open,
1956 .ndo_stop = hns_nic_net_stop,
1957 .ndo_start_xmit = hns_nic_net_xmit,
1958 .ndo_tx_timeout = hns_nic_net_timeout,
1959 .ndo_set_mac_address = hns_nic_net_set_mac_address,
1960 .ndo_change_mtu = hns_nic_change_mtu,
1961 .ndo_do_ioctl = hns_nic_do_ioctl,
1962 .ndo_set_features = hns_nic_set_features,
1963 .ndo_fix_features = hns_nic_fix_features,
1964 .ndo_get_stats64 = hns_nic_get_stats64,
1965 .ndo_set_rx_mode = hns_nic_set_rx_mode,
1966 .ndo_select_queue = hns_nic_select_queue,
1967 };
1968
1969 static void hns_nic_update_link_status(struct net_device *netdev)
1970 {
1971 struct hns_nic_priv *priv = netdev_priv(netdev);
1972
1973 struct hnae_handle *h = priv->ae_handle;
1974
1975 if (h->phy_dev) {
1976 if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1977 return;
1978
1979 (void)genphy_read_status(h->phy_dev);
1980 }
1981 hns_nic_adjust_link(netdev);
1982 }
1983
1984
1985 static void hns_nic_dump(struct hns_nic_priv *priv)
1986 {
1987 struct hnae_handle *h = priv->ae_handle;
1988 struct hnae_ae_ops *ops = h->dev->ops;
1989 u32 *data, reg_num, i;
1990
1991 if (ops->get_regs_len && ops->get_regs) {
1992 reg_num = ops->get_regs_len(priv->ae_handle);
1993 reg_num = (reg_num + 3ul) & ~3ul;
1994 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
1995 if (data) {
1996 ops->get_regs(priv->ae_handle, data);
1997 for (i = 0; i < reg_num; i += 4)
1998 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1999 i, data[i], data[i + 1],
2000 data[i + 2], data[i + 3]);
2001 kfree(data);
2002 }
2003 }
2004
2005 for (i = 0; i < h->q_num; i++) {
2006 pr_info("tx_queue%d_next_to_clean:%d\n",
2007 i, h->qs[i]->tx_ring.next_to_clean);
2008 pr_info("tx_queue%d_next_to_use:%d\n",
2009 i, h->qs[i]->tx_ring.next_to_use);
2010 pr_info("rx_queue%d_next_to_clean:%d\n",
2011 i, h->qs[i]->rx_ring.next_to_clean);
2012 pr_info("rx_queue%d_next_to_use:%d\n",
2013 i, h->qs[i]->rx_ring.next_to_use);
2014 }
2015 }
2016
2017
2018 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
2019 {
2020 enum hnae_port_type type = priv->ae_handle->port_type;
2021
2022 if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
2023 return;
2024 clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2025
2026
2027 if (test_bit(NIC_STATE_DOWN, &priv->state) ||
2028 test_bit(NIC_STATE_REMOVING, &priv->state) ||
2029 test_bit(NIC_STATE_RESETTING, &priv->state))
2030 return;
2031
2032 hns_nic_dump(priv);
2033 netdev_info(priv->netdev, "try to reset %s port!\n",
2034 (type == HNAE_PORT_DEBUG ? "debug" : "service"));
2035
2036 rtnl_lock();
2037
2038 netif_trans_update(priv->netdev);
2039 hns_nic_net_reinit(priv->netdev);
2040
2041 rtnl_unlock();
2042 }
2043
2044
2045 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
2046 {
2047 WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
2048
2049 smp_mb__before_atomic();
2050 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2051 }
2052
2053 static void hns_nic_service_task(struct work_struct *work)
2054 {
2055 struct hns_nic_priv *priv
2056 = container_of(work, struct hns_nic_priv, service_task);
2057 struct hnae_handle *h = priv->ae_handle;
2058
2059 hns_nic_reset_subtask(priv);
2060 hns_nic_update_link_status(priv->netdev);
2061 h->dev->ops->update_led_status(h);
2062 hns_nic_update_stats(priv->netdev);
2063
2064 hns_nic_service_event_complete(priv);
2065 }
2066
2067 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
2068 {
2069 if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
2070 !test_bit(NIC_STATE_REMOVING, &priv->state) &&
2071 !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
2072 (void)schedule_work(&priv->service_task);
2073 }
2074
2075 static void hns_nic_service_timer(struct timer_list *t)
2076 {
2077 struct hns_nic_priv *priv = from_timer(priv, t, service_timer);
2078
2079 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
2080
2081 hns_nic_task_schedule(priv);
2082 }
2083
2084
2085
2086
2087
2088 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
2089 {
2090
2091 if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
2092 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2093 netdev_warn(priv->netdev,
2094 "initiating reset due to tx timeout(%llu,0x%lx)\n",
2095 priv->tx_timeout_count, priv->state);
2096 priv->tx_timeout_count++;
2097 hns_nic_task_schedule(priv);
2098 }
2099 }
2100
2101 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
2102 {
2103 struct hnae_handle *h = priv->ae_handle;
2104 struct hns_nic_ring_data *rd;
2105 bool is_ver1 = AE_IS_VER1(priv->enet_ver);
2106 int i;
2107
2108 if (h->q_num > NIC_MAX_Q_PER_VF) {
2109 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
2110 return -EINVAL;
2111 }
2112
2113 priv->ring_data = kzalloc(array3_size(h->q_num,
2114 sizeof(*priv->ring_data), 2),
2115 GFP_KERNEL);
2116 if (!priv->ring_data)
2117 return -ENOMEM;
2118
2119 for (i = 0; i < h->q_num; i++) {
2120 rd = &priv->ring_data[i];
2121 rd->queue_index = i;
2122 rd->ring = &h->qs[i]->tx_ring;
2123 rd->poll_one = hns_nic_tx_poll_one;
2124 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
2125 hns_nic_tx_fini_pro_v2;
2126
2127 netif_napi_add(priv->netdev, &rd->napi,
2128 hns_nic_common_poll, NAPI_POLL_WEIGHT);
2129 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2130 }
2131 for (i = h->q_num; i < h->q_num * 2; i++) {
2132 rd = &priv->ring_data[i];
2133 rd->queue_index = i - h->q_num;
2134 rd->ring = &h->qs[i - h->q_num]->rx_ring;
2135 rd->poll_one = hns_nic_rx_poll_one;
2136 rd->ex_process = hns_nic_rx_up_pro;
2137 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
2138 hns_nic_rx_fini_pro_v2;
2139
2140 netif_napi_add(priv->netdev, &rd->napi,
2141 hns_nic_common_poll, NAPI_POLL_WEIGHT);
2142 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2143 }
2144
2145 return 0;
2146 }
2147
2148 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
2149 {
2150 struct hnae_handle *h = priv->ae_handle;
2151 int i;
2152
2153 for (i = 0; i < h->q_num * 2; i++) {
2154 netif_napi_del(&priv->ring_data[i].napi);
2155 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
2156 (void)irq_set_affinity_hint(
2157 priv->ring_data[i].ring->irq,
2158 NULL);
2159 free_irq(priv->ring_data[i].ring->irq,
2160 &priv->ring_data[i]);
2161 }
2162
2163 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2164 }
2165 kfree(priv->ring_data);
2166 }
2167
2168 static void hns_nic_set_priv_ops(struct net_device *netdev)
2169 {
2170 struct hns_nic_priv *priv = netdev_priv(netdev);
2171 struct hnae_handle *h = priv->ae_handle;
2172
2173 if (AE_IS_VER1(priv->enet_ver)) {
2174 priv->ops.fill_desc = fill_desc;
2175 priv->ops.get_rxd_bnum = get_rx_desc_bnum;
2176 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2177 } else {
2178 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
2179 if ((netdev->features & NETIF_F_TSO) ||
2180 (netdev->features & NETIF_F_TSO6)) {
2181 priv->ops.fill_desc = fill_tso_desc;
2182 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
2183
2184 netif_set_gso_max_size(netdev, 7 * 4096);
2185 } else {
2186 priv->ops.fill_desc = fill_v2_desc;
2187 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2188 }
2189
2190
2191
2192 h->dev->ops->set_tso_stats(h, 1);
2193 }
2194 }
2195
2196 static int hns_nic_try_get_ae(struct net_device *ndev)
2197 {
2198 struct hns_nic_priv *priv = netdev_priv(ndev);
2199 struct hnae_handle *h;
2200 int ret;
2201
2202 h = hnae_get_handle(&priv->netdev->dev,
2203 priv->fwnode, priv->port_id, NULL);
2204 if (IS_ERR_OR_NULL(h)) {
2205 ret = -ENODEV;
2206 dev_dbg(priv->dev, "has not handle, register notifier!\n");
2207 goto out;
2208 }
2209 priv->ae_handle = h;
2210
2211 ret = hns_nic_init_phy(ndev, h);
2212 if (ret) {
2213 dev_err(priv->dev, "probe phy device fail!\n");
2214 goto out_init_phy;
2215 }
2216
2217 ret = hns_nic_init_ring_data(priv);
2218 if (ret) {
2219 ret = -ENOMEM;
2220 goto out_init_ring_data;
2221 }
2222
2223 hns_nic_set_priv_ops(ndev);
2224
2225 ret = register_netdev(ndev);
2226 if (ret) {
2227 dev_err(priv->dev, "probe register netdev fail!\n");
2228 goto out_reg_ndev_fail;
2229 }
2230 return 0;
2231
2232 out_reg_ndev_fail:
2233 hns_nic_uninit_ring_data(priv);
2234 priv->ring_data = NULL;
2235 out_init_phy:
2236 out_init_ring_data:
2237 hnae_put_handle(priv->ae_handle);
2238 priv->ae_handle = NULL;
2239 out:
2240 return ret;
2241 }
2242
2243 static int hns_nic_notifier_action(struct notifier_block *nb,
2244 unsigned long action, void *data)
2245 {
2246 struct hns_nic_priv *priv =
2247 container_of(nb, struct hns_nic_priv, notifier_block);
2248
2249 assert(action == HNAE_AE_REGISTER);
2250
2251 if (!hns_nic_try_get_ae(priv->netdev)) {
2252 hnae_unregister_notifier(&priv->notifier_block);
2253 priv->notifier_block.notifier_call = NULL;
2254 }
2255 return 0;
2256 }
2257
2258 static int hns_nic_dev_probe(struct platform_device *pdev)
2259 {
2260 struct device *dev = &pdev->dev;
2261 struct net_device *ndev;
2262 struct hns_nic_priv *priv;
2263 u32 port_id;
2264 int ret;
2265
2266 ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
2267 if (!ndev)
2268 return -ENOMEM;
2269
2270 platform_set_drvdata(pdev, ndev);
2271
2272 priv = netdev_priv(ndev);
2273 priv->dev = dev;
2274 priv->netdev = ndev;
2275
2276 if (dev_of_node(dev)) {
2277 struct device_node *ae_node;
2278
2279 if (of_device_is_compatible(dev->of_node,
2280 "hisilicon,hns-nic-v1"))
2281 priv->enet_ver = AE_VERSION_1;
2282 else
2283 priv->enet_ver = AE_VERSION_2;
2284
2285 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
2286 if (!ae_node) {
2287 ret = -ENODEV;
2288 dev_err(dev, "not find ae-handle\n");
2289 goto out_read_prop_fail;
2290 }
2291 priv->fwnode = &ae_node->fwnode;
2292 } else if (is_acpi_node(dev->fwnode)) {
2293 struct fwnode_reference_args args;
2294
2295 if (acpi_dev_found(hns_enet_acpi_match[0].id))
2296 priv->enet_ver = AE_VERSION_1;
2297 else if (acpi_dev_found(hns_enet_acpi_match[1].id))
2298 priv->enet_ver = AE_VERSION_2;
2299 else
2300 return -ENXIO;
2301
2302
2303 ret = acpi_node_get_property_reference(dev->fwnode,
2304 "ae-handle", 0, &args);
2305 if (ret) {
2306 dev_err(dev, "not find ae-handle\n");
2307 goto out_read_prop_fail;
2308 }
2309 if (!is_acpi_device_node(args.fwnode)) {
2310 ret = -EINVAL;
2311 goto out_read_prop_fail;
2312 }
2313 priv->fwnode = args.fwnode;
2314 } else {
2315 dev_err(dev, "cannot read cfg data from OF or acpi\n");
2316 return -ENXIO;
2317 }
2318
2319 ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
2320 if (ret) {
2321
2322 ret = device_property_read_u32(dev, "port-id", &port_id);
2323 if (ret)
2324 goto out_read_prop_fail;
2325
2326 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
2327 : port_id - HNS_SRV_OFFSET;
2328 }
2329 priv->port_id = port_id;
2330
2331 hns_init_mac_addr(ndev);
2332
2333 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
2334 ndev->priv_flags |= IFF_UNICAST_FLT;
2335 ndev->netdev_ops = &hns_nic_netdev_ops;
2336 hns_ethtool_set_ops(ndev);
2337
2338 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2339 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2340 NETIF_F_GRO;
2341 ndev->vlan_features |=
2342 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2343 ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
2344
2345
2346 ndev->min_mtu = MAC_MIN_MTU;
2347 switch (priv->enet_ver) {
2348 case AE_VERSION_2:
2349 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_NTUPLE;
2350 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2351 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2352 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2353 ndev->vlan_features |= NETIF_F_TSO | NETIF_F_TSO6;
2354 ndev->max_mtu = MAC_MAX_MTU_V2 -
2355 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2356 break;
2357 default:
2358 ndev->max_mtu = MAC_MAX_MTU -
2359 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2360 break;
2361 }
2362
2363 SET_NETDEV_DEV(ndev, dev);
2364
2365 if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2366 dev_dbg(dev, "set mask to 64bit\n");
2367 else
2368 dev_err(dev, "set mask to 64bit fail!\n");
2369
2370
2371 netif_carrier_off(ndev);
2372
2373 timer_setup(&priv->service_timer, hns_nic_service_timer, 0);
2374 INIT_WORK(&priv->service_task, hns_nic_service_task);
2375
2376 set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2377 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2378 set_bit(NIC_STATE_DOWN, &priv->state);
2379
2380 if (hns_nic_try_get_ae(priv->netdev)) {
2381 priv->notifier_block.notifier_call = hns_nic_notifier_action;
2382 ret = hnae_register_notifier(&priv->notifier_block);
2383 if (ret) {
2384 dev_err(dev, "register notifier fail!\n");
2385 goto out_notify_fail;
2386 }
2387 dev_dbg(dev, "has not handle, register notifier!\n");
2388 }
2389
2390 return 0;
2391
2392 out_notify_fail:
2393 (void)cancel_work_sync(&priv->service_task);
2394 out_read_prop_fail:
2395
2396 of_node_put(to_of_node(priv->fwnode));
2397 free_netdev(ndev);
2398 return ret;
2399 }
2400
2401 static int hns_nic_dev_remove(struct platform_device *pdev)
2402 {
2403 struct net_device *ndev = platform_get_drvdata(pdev);
2404 struct hns_nic_priv *priv = netdev_priv(ndev);
2405
2406 if (ndev->reg_state != NETREG_UNINITIALIZED)
2407 unregister_netdev(ndev);
2408
2409 if (priv->ring_data)
2410 hns_nic_uninit_ring_data(priv);
2411 priv->ring_data = NULL;
2412
2413 if (ndev->phydev)
2414 phy_disconnect(ndev->phydev);
2415
2416 if (!IS_ERR_OR_NULL(priv->ae_handle))
2417 hnae_put_handle(priv->ae_handle);
2418 priv->ae_handle = NULL;
2419 if (priv->notifier_block.notifier_call)
2420 hnae_unregister_notifier(&priv->notifier_block);
2421 priv->notifier_block.notifier_call = NULL;
2422
2423 set_bit(NIC_STATE_REMOVING, &priv->state);
2424 (void)cancel_work_sync(&priv->service_task);
2425
2426
2427 of_node_put(to_of_node(priv->fwnode));
2428
2429 free_netdev(ndev);
2430 return 0;
2431 }
2432
2433 static const struct of_device_id hns_enet_of_match[] = {
2434 {.compatible = "hisilicon,hns-nic-v1",},
2435 {.compatible = "hisilicon,hns-nic-v2",},
2436 {},
2437 };
2438
2439 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2440
2441 static struct platform_driver hns_nic_dev_driver = {
2442 .driver = {
2443 .name = "hns-nic",
2444 .of_match_table = hns_enet_of_match,
2445 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2446 },
2447 .probe = hns_nic_dev_probe,
2448 .remove = hns_nic_dev_remove,
2449 };
2450
2451 module_platform_driver(hns_nic_dev_driver);
2452
2453 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2454 MODULE_AUTHOR("Hisilicon, Inc.");
2455 MODULE_LICENSE("GPL");
2456 MODULE_ALIAS("platform:hns-nic");