root/drivers/net/ethernet/altera/altera_tse_main.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. tse_tx_avail
  2. sgmii_pcs_read
  3. sgmii_pcs_write
  4. sgmii_pcs_scratch_test
  5. altera_tse_mdio_read
  6. altera_tse_mdio_write
  7. altera_tse_mdio_create
  8. altera_tse_mdio_destroy
  9. tse_init_rx_buffer
  10. tse_free_rx_buffer
  11. tse_free_tx_buffer
  12. alloc_init_skbufs
  13. free_skbufs
  14. tse_rx_refill
  15. tse_rx_vlan
  16. tse_rx
  17. tse_tx_complete
  18. tse_poll
  19. altera_isr
  20. tse_start_xmit
  21. altera_tse_adjust_link
  22. connect_local_phy
  23. altera_tse_phy_get_addr_mdio_create
  24. init_phy
  25. tse_update_mac_addr
  26. reset_mac
  27. init_mac
  28. tse_set_mac
  29. tse_change_mtu
  30. altera_tse_set_mcfilter
  31. altera_tse_set_mcfilterall
  32. tse_set_rx_mode_hashfilter
  33. tse_set_rx_mode
  34. init_sgmii_pcs
  35. tse_open
  36. tse_shutdown
  37. request_and_map
  38. altera_tse_probe
  39. altera_tse_remove

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /* Altera Triple-Speed Ethernet MAC driver
   3  * Copyright (C) 2008-2014 Altera Corporation. All rights reserved
   4  *
   5  * Contributors:
   6  *   Dalon Westergreen
   7  *   Thomas Chou
   8  *   Ian Abbott
   9  *   Yuriy Kozlov
  10  *   Tobias Klauser
  11  *   Andriy Smolskyy
  12  *   Roman Bulgakov
  13  *   Dmytro Mytarchuk
  14  *   Matthew Gerlach
  15  *
  16  * Original driver contributed by SLS.
  17  * Major updates contributed by GlobalLogic
  18  */
  19 
  20 #include <linux/atomic.h>
  21 #include <linux/delay.h>
  22 #include <linux/etherdevice.h>
  23 #include <linux/if_vlan.h>
  24 #include <linux/init.h>
  25 #include <linux/interrupt.h>
  26 #include <linux/io.h>
  27 #include <linux/kernel.h>
  28 #include <linux/module.h>
  29 #include <linux/mii.h>
  30 #include <linux/netdevice.h>
  31 #include <linux/of_device.h>
  32 #include <linux/of_mdio.h>
  33 #include <linux/of_net.h>
  34 #include <linux/of_platform.h>
  35 #include <linux/phy.h>
  36 #include <linux/platform_device.h>
  37 #include <linux/skbuff.h>
  38 #include <asm/cacheflush.h>
  39 
  40 #include "altera_utils.h"
  41 #include "altera_tse.h"
  42 #include "altera_sgdma.h"
  43 #include "altera_msgdma.h"
  44 
  45 static atomic_t instance_count = ATOMIC_INIT(~0);
  46 /* Module parameters */
  47 static int debug = -1;
  48 module_param(debug, int, 0644);
  49 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
  50 
  51 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  52                                         NETIF_MSG_LINK | NETIF_MSG_IFUP |
  53                                         NETIF_MSG_IFDOWN);
  54 
  55 #define RX_DESCRIPTORS 64
  56 static int dma_rx_num = RX_DESCRIPTORS;
  57 module_param(dma_rx_num, int, 0644);
  58 MODULE_PARM_DESC(dma_rx_num, "Number of descriptors in the RX list");
  59 
  60 #define TX_DESCRIPTORS 64
  61 static int dma_tx_num = TX_DESCRIPTORS;
  62 module_param(dma_tx_num, int, 0644);
  63 MODULE_PARM_DESC(dma_tx_num, "Number of descriptors in the TX list");
  64 
  65 
  66 #define POLL_PHY (-1)
  67 
  68 /* Make sure DMA buffer size is larger than the max frame size
  69  * plus some alignment offset and a VLAN header. If the max frame size is
  70  * 1518, a VLAN header would be additional 4 bytes and additional
  71  * headroom for alignment is 2 bytes, 2048 is just fine.
  72  */
  73 #define ALTERA_RXDMABUFFER_SIZE 2048
  74 
  75 /* Allow network stack to resume queueing packets after we've
  76  * finished transmitting at least 1/4 of the packets in the queue.
  77  */
  78 #define TSE_TX_THRESH(x)        (x->tx_ring_size / 4)
  79 
  80 #define TXQUEUESTOP_THRESHHOLD  2
  81 
  82 static const struct of_device_id altera_tse_ids[];
  83 
  84 static inline u32 tse_tx_avail(struct altera_tse_private *priv)
  85 {
  86         return priv->tx_cons + priv->tx_ring_size - priv->tx_prod - 1;
  87 }
  88 
  89 /* PCS Register read/write functions
  90  */
  91 static u16 sgmii_pcs_read(struct altera_tse_private *priv, int regnum)
  92 {
  93         return csrrd32(priv->mac_dev,
  94                        tse_csroffs(mdio_phy0) + regnum * 4) & 0xffff;
  95 }
  96 
  97 static void sgmii_pcs_write(struct altera_tse_private *priv, int regnum,
  98                                 u16 value)
  99 {
 100         csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy0) + regnum * 4);
 101 }
 102 
 103 /* Check PCS scratch memory */
 104 static int sgmii_pcs_scratch_test(struct altera_tse_private *priv, u16 value)
 105 {
 106         sgmii_pcs_write(priv, SGMII_PCS_SCRATCH, value);
 107         return (sgmii_pcs_read(priv, SGMII_PCS_SCRATCH) == value);
 108 }
 109 
 110 /* MDIO specific functions
 111  */
 112 static int altera_tse_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
 113 {
 114         struct net_device *ndev = bus->priv;
 115         struct altera_tse_private *priv = netdev_priv(ndev);
 116 
 117         /* set MDIO address */
 118         csrwr32((mii_id & 0x1f), priv->mac_dev,
 119                 tse_csroffs(mdio_phy1_addr));
 120 
 121         /* get the data */
 122         return csrrd32(priv->mac_dev,
 123                        tse_csroffs(mdio_phy1) + regnum * 4) & 0xffff;
 124 }
 125 
 126 static int altera_tse_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
 127                                  u16 value)
 128 {
 129         struct net_device *ndev = bus->priv;
 130         struct altera_tse_private *priv = netdev_priv(ndev);
 131 
 132         /* set MDIO address */
 133         csrwr32((mii_id & 0x1f), priv->mac_dev,
 134                 tse_csroffs(mdio_phy1_addr));
 135 
 136         /* write the data */
 137         csrwr32(value, priv->mac_dev, tse_csroffs(mdio_phy1) + regnum * 4);
 138         return 0;
 139 }
 140 
 141 static int altera_tse_mdio_create(struct net_device *dev, unsigned int id)
 142 {
 143         struct altera_tse_private *priv = netdev_priv(dev);
 144         int ret;
 145         struct device_node *mdio_node = NULL;
 146         struct mii_bus *mdio = NULL;
 147         struct device_node *child_node = NULL;
 148 
 149         for_each_child_of_node(priv->device->of_node, child_node) {
 150                 if (of_device_is_compatible(child_node, "altr,tse-mdio")) {
 151                         mdio_node = child_node;
 152                         break;
 153                 }
 154         }
 155 
 156         if (mdio_node) {
 157                 netdev_dbg(dev, "FOUND MDIO subnode\n");
 158         } else {
 159                 netdev_dbg(dev, "NO MDIO subnode\n");
 160                 return 0;
 161         }
 162 
 163         mdio = mdiobus_alloc();
 164         if (mdio == NULL) {
 165                 netdev_err(dev, "Error allocating MDIO bus\n");
 166                 return -ENOMEM;
 167         }
 168 
 169         mdio->name = ALTERA_TSE_RESOURCE_NAME;
 170         mdio->read = &altera_tse_mdio_read;
 171         mdio->write = &altera_tse_mdio_write;
 172         snprintf(mdio->id, MII_BUS_ID_SIZE, "%s-%u", mdio->name, id);
 173 
 174         mdio->priv = dev;
 175         mdio->parent = priv->device;
 176 
 177         ret = of_mdiobus_register(mdio, mdio_node);
 178         if (ret != 0) {
 179                 netdev_err(dev, "Cannot register MDIO bus %s\n",
 180                            mdio->id);
 181                 goto out_free_mdio;
 182         }
 183 
 184         if (netif_msg_drv(priv))
 185                 netdev_info(dev, "MDIO bus %s: created\n", mdio->id);
 186 
 187         priv->mdio = mdio;
 188         return 0;
 189 out_free_mdio:
 190         mdiobus_free(mdio);
 191         mdio = NULL;
 192         return ret;
 193 }
 194 
 195 static void altera_tse_mdio_destroy(struct net_device *dev)
 196 {
 197         struct altera_tse_private *priv = netdev_priv(dev);
 198 
 199         if (priv->mdio == NULL)
 200                 return;
 201 
 202         if (netif_msg_drv(priv))
 203                 netdev_info(dev, "MDIO bus %s: removed\n",
 204                             priv->mdio->id);
 205 
 206         mdiobus_unregister(priv->mdio);
 207         mdiobus_free(priv->mdio);
 208         priv->mdio = NULL;
 209 }
 210 
 211 static int tse_init_rx_buffer(struct altera_tse_private *priv,
 212                               struct tse_buffer *rxbuffer, int len)
 213 {
 214         rxbuffer->skb = netdev_alloc_skb_ip_align(priv->dev, len);
 215         if (!rxbuffer->skb)
 216                 return -ENOMEM;
 217 
 218         rxbuffer->dma_addr = dma_map_single(priv->device, rxbuffer->skb->data,
 219                                                 len,
 220                                                 DMA_FROM_DEVICE);
 221 
 222         if (dma_mapping_error(priv->device, rxbuffer->dma_addr)) {
 223                 netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
 224                 dev_kfree_skb_any(rxbuffer->skb);
 225                 return -EINVAL;
 226         }
 227         rxbuffer->dma_addr &= (dma_addr_t)~3;
 228         rxbuffer->len = len;
 229         return 0;
 230 }
 231 
 232 static void tse_free_rx_buffer(struct altera_tse_private *priv,
 233                                struct tse_buffer *rxbuffer)
 234 {
 235         struct sk_buff *skb = rxbuffer->skb;
 236         dma_addr_t dma_addr = rxbuffer->dma_addr;
 237 
 238         if (skb != NULL) {
 239                 if (dma_addr)
 240                         dma_unmap_single(priv->device, dma_addr,
 241                                          rxbuffer->len,
 242                                          DMA_FROM_DEVICE);
 243                 dev_kfree_skb_any(skb);
 244                 rxbuffer->skb = NULL;
 245                 rxbuffer->dma_addr = 0;
 246         }
 247 }
 248 
 249 /* Unmap and free Tx buffer resources
 250  */
 251 static void tse_free_tx_buffer(struct altera_tse_private *priv,
 252                                struct tse_buffer *buffer)
 253 {
 254         if (buffer->dma_addr) {
 255                 if (buffer->mapped_as_page)
 256                         dma_unmap_page(priv->device, buffer->dma_addr,
 257                                        buffer->len, DMA_TO_DEVICE);
 258                 else
 259                         dma_unmap_single(priv->device, buffer->dma_addr,
 260                                          buffer->len, DMA_TO_DEVICE);
 261                 buffer->dma_addr = 0;
 262         }
 263         if (buffer->skb) {
 264                 dev_kfree_skb_any(buffer->skb);
 265                 buffer->skb = NULL;
 266         }
 267 }
 268 
 269 static int alloc_init_skbufs(struct altera_tse_private *priv)
 270 {
 271         unsigned int rx_descs = priv->rx_ring_size;
 272         unsigned int tx_descs = priv->tx_ring_size;
 273         int ret = -ENOMEM;
 274         int i;
 275 
 276         /* Create Rx ring buffer */
 277         priv->rx_ring = kcalloc(rx_descs, sizeof(struct tse_buffer),
 278                                 GFP_KERNEL);
 279         if (!priv->rx_ring)
 280                 goto err_rx_ring;
 281 
 282         /* Create Tx ring buffer */
 283         priv->tx_ring = kcalloc(tx_descs, sizeof(struct tse_buffer),
 284                                 GFP_KERNEL);
 285         if (!priv->tx_ring)
 286                 goto err_tx_ring;
 287 
 288         priv->tx_cons = 0;
 289         priv->tx_prod = 0;
 290 
 291         /* Init Rx ring */
 292         for (i = 0; i < rx_descs; i++) {
 293                 ret = tse_init_rx_buffer(priv, &priv->rx_ring[i],
 294                                          priv->rx_dma_buf_sz);
 295                 if (ret)
 296                         goto err_init_rx_buffers;
 297         }
 298 
 299         priv->rx_cons = 0;
 300         priv->rx_prod = 0;
 301 
 302         return 0;
 303 err_init_rx_buffers:
 304         while (--i >= 0)
 305                 tse_free_rx_buffer(priv, &priv->rx_ring[i]);
 306         kfree(priv->tx_ring);
 307 err_tx_ring:
 308         kfree(priv->rx_ring);
 309 err_rx_ring:
 310         return ret;
 311 }
 312 
 313 static void free_skbufs(struct net_device *dev)
 314 {
 315         struct altera_tse_private *priv = netdev_priv(dev);
 316         unsigned int rx_descs = priv->rx_ring_size;
 317         unsigned int tx_descs = priv->tx_ring_size;
 318         int i;
 319 
 320         /* Release the DMA TX/RX socket buffers */
 321         for (i = 0; i < rx_descs; i++)
 322                 tse_free_rx_buffer(priv, &priv->rx_ring[i]);
 323         for (i = 0; i < tx_descs; i++)
 324                 tse_free_tx_buffer(priv, &priv->tx_ring[i]);
 325 
 326 
 327         kfree(priv->tx_ring);
 328 }
 329 
 330 /* Reallocate the skb for the reception process
 331  */
 332 static inline void tse_rx_refill(struct altera_tse_private *priv)
 333 {
 334         unsigned int rxsize = priv->rx_ring_size;
 335         unsigned int entry;
 336         int ret;
 337 
 338         for (; priv->rx_cons - priv->rx_prod > 0;
 339                         priv->rx_prod++) {
 340                 entry = priv->rx_prod % rxsize;
 341                 if (likely(priv->rx_ring[entry].skb == NULL)) {
 342                         ret = tse_init_rx_buffer(priv, &priv->rx_ring[entry],
 343                                 priv->rx_dma_buf_sz);
 344                         if (unlikely(ret != 0))
 345                                 break;
 346                         priv->dmaops->add_rx_desc(priv, &priv->rx_ring[entry]);
 347                 }
 348         }
 349 }
 350 
 351 /* Pull out the VLAN tag and fix up the packet
 352  */
 353 static inline void tse_rx_vlan(struct net_device *dev, struct sk_buff *skb)
 354 {
 355         struct ethhdr *eth_hdr;
 356         u16 vid;
 357         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
 358             !__vlan_get_tag(skb, &vid)) {
 359                 eth_hdr = (struct ethhdr *)skb->data;
 360                 memmove(skb->data + VLAN_HLEN, eth_hdr, ETH_ALEN * 2);
 361                 skb_pull(skb, VLAN_HLEN);
 362                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
 363         }
 364 }
 365 
 366 /* Receive a packet: retrieve and pass over to upper levels
 367  */
 368 static int tse_rx(struct altera_tse_private *priv, int limit)
 369 {
 370         unsigned int count = 0;
 371         unsigned int next_entry;
 372         struct sk_buff *skb;
 373         unsigned int entry = priv->rx_cons % priv->rx_ring_size;
 374         u32 rxstatus;
 375         u16 pktlength;
 376         u16 pktstatus;
 377 
 378         /* Check for count < limit first as get_rx_status is changing
 379         * the response-fifo so we must process the next packet
 380         * after calling get_rx_status if a response is pending.
 381         * (reading the last byte of the response pops the value from the fifo.)
 382         */
 383         while ((count < limit) &&
 384                ((rxstatus = priv->dmaops->get_rx_status(priv)) != 0)) {
 385                 pktstatus = rxstatus >> 16;
 386                 pktlength = rxstatus & 0xffff;
 387 
 388                 if ((pktstatus & 0xFF) || (pktlength == 0))
 389                         netdev_err(priv->dev,
 390                                    "RCV pktstatus %08X pktlength %08X\n",
 391                                    pktstatus, pktlength);
 392 
 393                 /* DMA trasfer from TSE starts with 2 aditional bytes for
 394                  * IP payload alignment. Status returned by get_rx_status()
 395                  * contains DMA transfer length. Packet is 2 bytes shorter.
 396                  */
 397                 pktlength -= 2;
 398 
 399                 count++;
 400                 next_entry = (++priv->rx_cons) % priv->rx_ring_size;
 401 
 402                 skb = priv->rx_ring[entry].skb;
 403                 if (unlikely(!skb)) {
 404                         netdev_err(priv->dev,
 405                                    "%s: Inconsistent Rx descriptor chain\n",
 406                                    __func__);
 407                         priv->dev->stats.rx_dropped++;
 408                         break;
 409                 }
 410                 priv->rx_ring[entry].skb = NULL;
 411 
 412                 skb_put(skb, pktlength);
 413 
 414                 dma_unmap_single(priv->device, priv->rx_ring[entry].dma_addr,
 415                                  priv->rx_ring[entry].len, DMA_FROM_DEVICE);
 416 
 417                 if (netif_msg_pktdata(priv)) {
 418                         netdev_info(priv->dev, "frame received %d bytes\n",
 419                                     pktlength);
 420                         print_hex_dump(KERN_ERR, "data: ", DUMP_PREFIX_OFFSET,
 421                                        16, 1, skb->data, pktlength, true);
 422                 }
 423 
 424                 tse_rx_vlan(priv->dev, skb);
 425 
 426                 skb->protocol = eth_type_trans(skb, priv->dev);
 427                 skb_checksum_none_assert(skb);
 428 
 429                 napi_gro_receive(&priv->napi, skb);
 430 
 431                 priv->dev->stats.rx_packets++;
 432                 priv->dev->stats.rx_bytes += pktlength;
 433 
 434                 entry = next_entry;
 435 
 436                 tse_rx_refill(priv);
 437         }
 438 
 439         return count;
 440 }
 441 
 442 /* Reclaim resources after transmission completes
 443  */
 444 static int tse_tx_complete(struct altera_tse_private *priv)
 445 {
 446         unsigned int txsize = priv->tx_ring_size;
 447         u32 ready;
 448         unsigned int entry;
 449         struct tse_buffer *tx_buff;
 450         int txcomplete = 0;
 451 
 452         spin_lock(&priv->tx_lock);
 453 
 454         ready = priv->dmaops->tx_completions(priv);
 455 
 456         /* Free sent buffers */
 457         while (ready && (priv->tx_cons != priv->tx_prod)) {
 458                 entry = priv->tx_cons % txsize;
 459                 tx_buff = &priv->tx_ring[entry];
 460 
 461                 if (netif_msg_tx_done(priv))
 462                         netdev_dbg(priv->dev, "%s: curr %d, dirty %d\n",
 463                                    __func__, priv->tx_prod, priv->tx_cons);
 464 
 465                 if (likely(tx_buff->skb))
 466                         priv->dev->stats.tx_packets++;
 467 
 468                 tse_free_tx_buffer(priv, tx_buff);
 469                 priv->tx_cons++;
 470 
 471                 txcomplete++;
 472                 ready--;
 473         }
 474 
 475         if (unlikely(netif_queue_stopped(priv->dev) &&
 476                      tse_tx_avail(priv) > TSE_TX_THRESH(priv))) {
 477                 if (netif_queue_stopped(priv->dev) &&
 478                     tse_tx_avail(priv) > TSE_TX_THRESH(priv)) {
 479                         if (netif_msg_tx_done(priv))
 480                                 netdev_dbg(priv->dev, "%s: restart transmit\n",
 481                                            __func__);
 482                         netif_wake_queue(priv->dev);
 483                 }
 484         }
 485 
 486         spin_unlock(&priv->tx_lock);
 487         return txcomplete;
 488 }
 489 
 490 /* NAPI polling function
 491  */
 492 static int tse_poll(struct napi_struct *napi, int budget)
 493 {
 494         struct altera_tse_private *priv =
 495                         container_of(napi, struct altera_tse_private, napi);
 496         int rxcomplete = 0;
 497         unsigned long int flags;
 498 
 499         tse_tx_complete(priv);
 500 
 501         rxcomplete = tse_rx(priv, budget);
 502 
 503         if (rxcomplete < budget) {
 504 
 505                 napi_complete_done(napi, rxcomplete);
 506 
 507                 netdev_dbg(priv->dev,
 508                            "NAPI Complete, did %d packets with budget %d\n",
 509                            rxcomplete, budget);
 510 
 511                 spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
 512                 priv->dmaops->enable_rxirq(priv);
 513                 priv->dmaops->enable_txirq(priv);
 514                 spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
 515         }
 516         return rxcomplete;
 517 }
 518 
 519 /* DMA TX & RX FIFO interrupt routing
 520  */
 521 static irqreturn_t altera_isr(int irq, void *dev_id)
 522 {
 523         struct net_device *dev = dev_id;
 524         struct altera_tse_private *priv;
 525 
 526         if (unlikely(!dev)) {
 527                 pr_err("%s: invalid dev pointer\n", __func__);
 528                 return IRQ_NONE;
 529         }
 530         priv = netdev_priv(dev);
 531 
 532         spin_lock(&priv->rxdma_irq_lock);
 533         /* reset IRQs */
 534         priv->dmaops->clear_rxirq(priv);
 535         priv->dmaops->clear_txirq(priv);
 536         spin_unlock(&priv->rxdma_irq_lock);
 537 
 538         if (likely(napi_schedule_prep(&priv->napi))) {
 539                 spin_lock(&priv->rxdma_irq_lock);
 540                 priv->dmaops->disable_rxirq(priv);
 541                 priv->dmaops->disable_txirq(priv);
 542                 spin_unlock(&priv->rxdma_irq_lock);
 543                 __napi_schedule(&priv->napi);
 544         }
 545 
 546 
 547         return IRQ_HANDLED;
 548 }
 549 
 550 /* Transmit a packet (called by the kernel). Dispatches
 551  * either the SGDMA method for transmitting or the
 552  * MSGDMA method, assumes no scatter/gather support,
 553  * implying an assumption that there's only one
 554  * physically contiguous fragment starting at
 555  * skb->data, for length of skb_headlen(skb).
 556  */
 557 static int tse_start_xmit(struct sk_buff *skb, struct net_device *dev)
 558 {
 559         struct altera_tse_private *priv = netdev_priv(dev);
 560         unsigned int txsize = priv->tx_ring_size;
 561         unsigned int entry;
 562         struct tse_buffer *buffer = NULL;
 563         int nfrags = skb_shinfo(skb)->nr_frags;
 564         unsigned int nopaged_len = skb_headlen(skb);
 565         enum netdev_tx ret = NETDEV_TX_OK;
 566         dma_addr_t dma_addr;
 567 
 568         spin_lock_bh(&priv->tx_lock);
 569 
 570         if (unlikely(tse_tx_avail(priv) < nfrags + 1)) {
 571                 if (!netif_queue_stopped(dev)) {
 572                         netif_stop_queue(dev);
 573                         /* This is a hard error, log it. */
 574                         netdev_err(priv->dev,
 575                                    "%s: Tx list full when queue awake\n",
 576                                    __func__);
 577                 }
 578                 ret = NETDEV_TX_BUSY;
 579                 goto out;
 580         }
 581 
 582         /* Map the first skb fragment */
 583         entry = priv->tx_prod % txsize;
 584         buffer = &priv->tx_ring[entry];
 585 
 586         dma_addr = dma_map_single(priv->device, skb->data, nopaged_len,
 587                                   DMA_TO_DEVICE);
 588         if (dma_mapping_error(priv->device, dma_addr)) {
 589                 netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
 590                 ret = NETDEV_TX_OK;
 591                 goto out;
 592         }
 593 
 594         buffer->skb = skb;
 595         buffer->dma_addr = dma_addr;
 596         buffer->len = nopaged_len;
 597 
 598         priv->dmaops->tx_buffer(priv, buffer);
 599 
 600         skb_tx_timestamp(skb);
 601 
 602         priv->tx_prod++;
 603         dev->stats.tx_bytes += skb->len;
 604 
 605         if (unlikely(tse_tx_avail(priv) <= TXQUEUESTOP_THRESHHOLD)) {
 606                 if (netif_msg_hw(priv))
 607                         netdev_dbg(priv->dev, "%s: stop transmitted packets\n",
 608                                    __func__);
 609                 netif_stop_queue(dev);
 610         }
 611 
 612 out:
 613         spin_unlock_bh(&priv->tx_lock);
 614 
 615         return ret;
 616 }
 617 
 618 /* Called every time the controller might need to be made
 619  * aware of new link state.  The PHY code conveys this
 620  * information through variables in the phydev structure, and this
 621  * function converts those variables into the appropriate
 622  * register values, and can bring down the device if needed.
 623  */
 624 static void altera_tse_adjust_link(struct net_device *dev)
 625 {
 626         struct altera_tse_private *priv = netdev_priv(dev);
 627         struct phy_device *phydev = dev->phydev;
 628         int new_state = 0;
 629 
 630         /* only change config if there is a link */
 631         spin_lock(&priv->mac_cfg_lock);
 632         if (phydev->link) {
 633                 /* Read old config */
 634                 u32 cfg_reg = ioread32(&priv->mac_dev->command_config);
 635 
 636                 /* Check duplex */
 637                 if (phydev->duplex != priv->oldduplex) {
 638                         new_state = 1;
 639                         if (!(phydev->duplex))
 640                                 cfg_reg |= MAC_CMDCFG_HD_ENA;
 641                         else
 642                                 cfg_reg &= ~MAC_CMDCFG_HD_ENA;
 643 
 644                         netdev_dbg(priv->dev, "%s: Link duplex = 0x%x\n",
 645                                    dev->name, phydev->duplex);
 646 
 647                         priv->oldduplex = phydev->duplex;
 648                 }
 649 
 650                 /* Check speed */
 651                 if (phydev->speed != priv->oldspeed) {
 652                         new_state = 1;
 653                         switch (phydev->speed) {
 654                         case 1000:
 655                                 cfg_reg |= MAC_CMDCFG_ETH_SPEED;
 656                                 cfg_reg &= ~MAC_CMDCFG_ENA_10;
 657                                 break;
 658                         case 100:
 659                                 cfg_reg &= ~MAC_CMDCFG_ETH_SPEED;
 660                                 cfg_reg &= ~MAC_CMDCFG_ENA_10;
 661                                 break;
 662                         case 10:
 663                                 cfg_reg &= ~MAC_CMDCFG_ETH_SPEED;
 664                                 cfg_reg |= MAC_CMDCFG_ENA_10;
 665                                 break;
 666                         default:
 667                                 if (netif_msg_link(priv))
 668                                         netdev_warn(dev, "Speed (%d) is not 10/100/1000!\n",
 669                                                     phydev->speed);
 670                                 break;
 671                         }
 672                         priv->oldspeed = phydev->speed;
 673                 }
 674                 iowrite32(cfg_reg, &priv->mac_dev->command_config);
 675 
 676                 if (!priv->oldlink) {
 677                         new_state = 1;
 678                         priv->oldlink = 1;
 679                 }
 680         } else if (priv->oldlink) {
 681                 new_state = 1;
 682                 priv->oldlink = 0;
 683                 priv->oldspeed = 0;
 684                 priv->oldduplex = -1;
 685         }
 686 
 687         if (new_state && netif_msg_link(priv))
 688                 phy_print_status(phydev);
 689 
 690         spin_unlock(&priv->mac_cfg_lock);
 691 }
 692 static struct phy_device *connect_local_phy(struct net_device *dev)
 693 {
 694         struct altera_tse_private *priv = netdev_priv(dev);
 695         struct phy_device *phydev = NULL;
 696         char phy_id_fmt[MII_BUS_ID_SIZE + 3];
 697 
 698         if (priv->phy_addr != POLL_PHY) {
 699                 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT,
 700                          priv->mdio->id, priv->phy_addr);
 701 
 702                 netdev_dbg(dev, "trying to attach to %s\n", phy_id_fmt);
 703 
 704                 phydev = phy_connect(dev, phy_id_fmt, &altera_tse_adjust_link,
 705                                      priv->phy_iface);
 706                 if (IS_ERR(phydev)) {
 707                         netdev_err(dev, "Could not attach to PHY\n");
 708                         phydev = NULL;
 709                 }
 710 
 711         } else {
 712                 int ret;
 713                 phydev = phy_find_first(priv->mdio);
 714                 if (phydev == NULL) {
 715                         netdev_err(dev, "No PHY found\n");
 716                         return phydev;
 717                 }
 718 
 719                 ret = phy_connect_direct(dev, phydev, &altera_tse_adjust_link,
 720                                 priv->phy_iface);
 721                 if (ret != 0) {
 722                         netdev_err(dev, "Could not attach to PHY\n");
 723                         phydev = NULL;
 724                 }
 725         }
 726         return phydev;
 727 }
 728 
 729 static int altera_tse_phy_get_addr_mdio_create(struct net_device *dev)
 730 {
 731         struct altera_tse_private *priv = netdev_priv(dev);
 732         struct device_node *np = priv->device->of_node;
 733         int ret = 0;
 734 
 735         priv->phy_iface = of_get_phy_mode(np);
 736 
 737         /* Avoid get phy addr and create mdio if no phy is present */
 738         if (!priv->phy_iface)
 739                 return 0;
 740 
 741         /* try to get PHY address from device tree, use PHY autodetection if
 742          * no valid address is given
 743          */
 744 
 745         if (of_property_read_u32(priv->device->of_node, "phy-addr",
 746                          &priv->phy_addr)) {
 747                 priv->phy_addr = POLL_PHY;
 748         }
 749 
 750         if (!((priv->phy_addr == POLL_PHY) ||
 751                   ((priv->phy_addr >= 0) && (priv->phy_addr < PHY_MAX_ADDR)))) {
 752                 netdev_err(dev, "invalid phy-addr specified %d\n",
 753                         priv->phy_addr);
 754                 return -ENODEV;
 755         }
 756 
 757         /* Create/attach to MDIO bus */
 758         ret = altera_tse_mdio_create(dev,
 759                                          atomic_add_return(1, &instance_count));
 760 
 761         if (ret)
 762                 return -ENODEV;
 763 
 764         return 0;
 765 }
 766 
 767 /* Initialize driver's PHY state, and attach to the PHY
 768  */
 769 static int init_phy(struct net_device *dev)
 770 {
 771         struct altera_tse_private *priv = netdev_priv(dev);
 772         struct phy_device *phydev;
 773         struct device_node *phynode;
 774         bool fixed_link = false;
 775         int rc = 0;
 776 
 777         /* Avoid init phy in case of no phy present */
 778         if (!priv->phy_iface)
 779                 return 0;
 780 
 781         priv->oldlink = 0;
 782         priv->oldspeed = 0;
 783         priv->oldduplex = -1;
 784 
 785         phynode = of_parse_phandle(priv->device->of_node, "phy-handle", 0);
 786 
 787         if (!phynode) {
 788                 /* check if a fixed-link is defined in device-tree */
 789                 if (of_phy_is_fixed_link(priv->device->of_node)) {
 790                         rc = of_phy_register_fixed_link(priv->device->of_node);
 791                         if (rc < 0) {
 792                                 netdev_err(dev, "cannot register fixed PHY\n");
 793                                 return rc;
 794                         }
 795 
 796                         /* In the case of a fixed PHY, the DT node associated
 797                          * to the PHY is the Ethernet MAC DT node.
 798                          */
 799                         phynode = of_node_get(priv->device->of_node);
 800                         fixed_link = true;
 801 
 802                         netdev_dbg(dev, "fixed-link detected\n");
 803                         phydev = of_phy_connect(dev, phynode,
 804                                                 &altera_tse_adjust_link,
 805                                                 0, priv->phy_iface);
 806                 } else {
 807                         netdev_dbg(dev, "no phy-handle found\n");
 808                         if (!priv->mdio) {
 809                                 netdev_err(dev, "No phy-handle nor local mdio specified\n");
 810                                 return -ENODEV;
 811                         }
 812                         phydev = connect_local_phy(dev);
 813                 }
 814         } else {
 815                 netdev_dbg(dev, "phy-handle found\n");
 816                 phydev = of_phy_connect(dev, phynode,
 817                         &altera_tse_adjust_link, 0, priv->phy_iface);
 818         }
 819         of_node_put(phynode);
 820 
 821         if (!phydev) {
 822                 netdev_err(dev, "Could not find the PHY\n");
 823                 if (fixed_link)
 824                         of_phy_deregister_fixed_link(priv->device->of_node);
 825                 return -ENODEV;
 826         }
 827 
 828         /* Stop Advertising 1000BASE Capability if interface is not GMII
 829          */
 830         if ((priv->phy_iface == PHY_INTERFACE_MODE_MII) ||
 831             (priv->phy_iface == PHY_INTERFACE_MODE_RMII))
 832                 phy_set_max_speed(phydev, SPEED_100);
 833 
 834         /* Broken HW is sometimes missing the pull-up resistor on the
 835          * MDIO line, which results in reads to non-existent devices returning
 836          * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
 837          * device as well. If a fixed-link is used the phy_id is always 0.
 838          * Note: phydev->phy_id is the result of reading the UID PHY registers.
 839          */
 840         if ((phydev->phy_id == 0) && !fixed_link) {
 841                 netdev_err(dev, "Bad PHY UID 0x%08x\n", phydev->phy_id);
 842                 phy_disconnect(phydev);
 843                 return -ENODEV;
 844         }
 845 
 846         netdev_dbg(dev, "attached to PHY %d UID 0x%08x Link = %d\n",
 847                    phydev->mdio.addr, phydev->phy_id, phydev->link);
 848 
 849         return 0;
 850 }
 851 
 852 static void tse_update_mac_addr(struct altera_tse_private *priv, u8 *addr)
 853 {
 854         u32 msb;
 855         u32 lsb;
 856 
 857         msb = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
 858         lsb = ((addr[5] << 8) | addr[4]) & 0xffff;
 859 
 860         /* Set primary MAC address */
 861         csrwr32(msb, priv->mac_dev, tse_csroffs(mac_addr_0));
 862         csrwr32(lsb, priv->mac_dev, tse_csroffs(mac_addr_1));
 863 }
 864 
 865 /* MAC software reset.
 866  * When reset is triggered, the MAC function completes the current
 867  * transmission or reception, and subsequently disables the transmit and
 868  * receive logic, flushes the receive FIFO buffer, and resets the statistics
 869  * counters.
 870  */
 871 static int reset_mac(struct altera_tse_private *priv)
 872 {
 873         int counter;
 874         u32 dat;
 875 
 876         dat = csrrd32(priv->mac_dev, tse_csroffs(command_config));
 877         dat &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
 878         dat |= MAC_CMDCFG_SW_RESET | MAC_CMDCFG_CNT_RESET;
 879         csrwr32(dat, priv->mac_dev, tse_csroffs(command_config));
 880 
 881         counter = 0;
 882         while (counter++ < ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
 883                 if (tse_bit_is_clear(priv->mac_dev, tse_csroffs(command_config),
 884                                      MAC_CMDCFG_SW_RESET))
 885                         break;
 886                 udelay(1);
 887         }
 888 
 889         if (counter >= ALTERA_TSE_SW_RESET_WATCHDOG_CNTR) {
 890                 dat = csrrd32(priv->mac_dev, tse_csroffs(command_config));
 891                 dat &= ~MAC_CMDCFG_SW_RESET;
 892                 csrwr32(dat, priv->mac_dev, tse_csroffs(command_config));
 893                 return -1;
 894         }
 895         return 0;
 896 }
 897 
 898 /* Initialize MAC core registers
 899 */
 900 static int init_mac(struct altera_tse_private *priv)
 901 {
 902         unsigned int cmd = 0;
 903         u32 frm_length;
 904 
 905         /* Setup Rx FIFO */
 906         csrwr32(priv->rx_fifo_depth - ALTERA_TSE_RX_SECTION_EMPTY,
 907                 priv->mac_dev, tse_csroffs(rx_section_empty));
 908 
 909         csrwr32(ALTERA_TSE_RX_SECTION_FULL, priv->mac_dev,
 910                 tse_csroffs(rx_section_full));
 911 
 912         csrwr32(ALTERA_TSE_RX_ALMOST_EMPTY, priv->mac_dev,
 913                 tse_csroffs(rx_almost_empty));
 914 
 915         csrwr32(ALTERA_TSE_RX_ALMOST_FULL, priv->mac_dev,
 916                 tse_csroffs(rx_almost_full));
 917 
 918         /* Setup Tx FIFO */
 919         csrwr32(priv->tx_fifo_depth - ALTERA_TSE_TX_SECTION_EMPTY,
 920                 priv->mac_dev, tse_csroffs(tx_section_empty));
 921 
 922         csrwr32(ALTERA_TSE_TX_SECTION_FULL, priv->mac_dev,
 923                 tse_csroffs(tx_section_full));
 924 
 925         csrwr32(ALTERA_TSE_TX_ALMOST_EMPTY, priv->mac_dev,
 926                 tse_csroffs(tx_almost_empty));
 927 
 928         csrwr32(ALTERA_TSE_TX_ALMOST_FULL, priv->mac_dev,
 929                 tse_csroffs(tx_almost_full));
 930 
 931         /* MAC Address Configuration */
 932         tse_update_mac_addr(priv, priv->dev->dev_addr);
 933 
 934         /* MAC Function Configuration */
 935         frm_length = ETH_HLEN + priv->dev->mtu + ETH_FCS_LEN;
 936         csrwr32(frm_length, priv->mac_dev, tse_csroffs(frm_length));
 937 
 938         csrwr32(ALTERA_TSE_TX_IPG_LENGTH, priv->mac_dev,
 939                 tse_csroffs(tx_ipg_length));
 940 
 941         /* Disable RX/TX shift 16 for alignment of all received frames on 16-bit
 942          * start address
 943          */
 944         tse_set_bit(priv->mac_dev, tse_csroffs(rx_cmd_stat),
 945                     ALTERA_TSE_RX_CMD_STAT_RX_SHIFT16);
 946 
 947         tse_clear_bit(priv->mac_dev, tse_csroffs(tx_cmd_stat),
 948                       ALTERA_TSE_TX_CMD_STAT_TX_SHIFT16 |
 949                       ALTERA_TSE_TX_CMD_STAT_OMIT_CRC);
 950 
 951         /* Set the MAC options */
 952         cmd = csrrd32(priv->mac_dev, tse_csroffs(command_config));
 953         cmd &= ~MAC_CMDCFG_PAD_EN;      /* No padding Removal on Receive */
 954         cmd &= ~MAC_CMDCFG_CRC_FWD;     /* CRC Removal */
 955         cmd |= MAC_CMDCFG_RX_ERR_DISC;  /* Automatically discard frames
 956                                          * with CRC errors
 957                                          */
 958         cmd |= MAC_CMDCFG_CNTL_FRM_ENA;
 959         cmd &= ~MAC_CMDCFG_TX_ENA;
 960         cmd &= ~MAC_CMDCFG_RX_ENA;
 961 
 962         /* Default speed and duplex setting, full/100 */
 963         cmd &= ~MAC_CMDCFG_HD_ENA;
 964         cmd &= ~MAC_CMDCFG_ETH_SPEED;
 965         cmd &= ~MAC_CMDCFG_ENA_10;
 966 
 967         csrwr32(cmd, priv->mac_dev, tse_csroffs(command_config));
 968 
 969         csrwr32(ALTERA_TSE_PAUSE_QUANTA, priv->mac_dev,
 970                 tse_csroffs(pause_quanta));
 971 
 972         if (netif_msg_hw(priv))
 973                 dev_dbg(priv->device,
 974                         "MAC post-initialization: CMD_CONFIG = 0x%08x\n", cmd);
 975 
 976         return 0;
 977 }
 978 
 979 /* Start/stop MAC transmission logic
 980  */
 981 static void tse_set_mac(struct altera_tse_private *priv, bool enable)
 982 {
 983         u32 value = csrrd32(priv->mac_dev, tse_csroffs(command_config));
 984 
 985         if (enable)
 986                 value |= MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA;
 987         else
 988                 value &= ~(MAC_CMDCFG_TX_ENA | MAC_CMDCFG_RX_ENA);
 989 
 990         csrwr32(value, priv->mac_dev, tse_csroffs(command_config));
 991 }
 992 
 993 /* Change the MTU
 994  */
 995 static int tse_change_mtu(struct net_device *dev, int new_mtu)
 996 {
 997         if (netif_running(dev)) {
 998                 netdev_err(dev, "must be stopped to change its MTU\n");
 999                 return -EBUSY;
1000         }
1001 
1002         dev->mtu = new_mtu;
1003         netdev_update_features(dev);
1004 
1005         return 0;
1006 }
1007 
1008 static void altera_tse_set_mcfilter(struct net_device *dev)
1009 {
1010         struct altera_tse_private *priv = netdev_priv(dev);
1011         int i;
1012         struct netdev_hw_addr *ha;
1013 
1014         /* clear the hash filter */
1015         for (i = 0; i < 64; i++)
1016                 csrwr32(0, priv->mac_dev, tse_csroffs(hash_table) + i * 4);
1017 
1018         netdev_for_each_mc_addr(ha, dev) {
1019                 unsigned int hash = 0;
1020                 int mac_octet;
1021 
1022                 for (mac_octet = 5; mac_octet >= 0; mac_octet--) {
1023                         unsigned char xor_bit = 0;
1024                         unsigned char octet = ha->addr[mac_octet];
1025                         unsigned int bitshift;
1026 
1027                         for (bitshift = 0; bitshift < 8; bitshift++)
1028                                 xor_bit ^= ((octet >> bitshift) & 0x01);
1029 
1030                         hash = (hash << 1) | xor_bit;
1031                 }
1032                 csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + hash * 4);
1033         }
1034 }
1035 
1036 
1037 static void altera_tse_set_mcfilterall(struct net_device *dev)
1038 {
1039         struct altera_tse_private *priv = netdev_priv(dev);
1040         int i;
1041 
1042         /* set the hash filter */
1043         for (i = 0; i < 64; i++)
1044                 csrwr32(1, priv->mac_dev, tse_csroffs(hash_table) + i * 4);
1045 }
1046 
1047 /* Set or clear the multicast filter for this adaptor
1048  */
1049 static void tse_set_rx_mode_hashfilter(struct net_device *dev)
1050 {
1051         struct altera_tse_private *priv = netdev_priv(dev);
1052 
1053         spin_lock(&priv->mac_cfg_lock);
1054 
1055         if (dev->flags & IFF_PROMISC)
1056                 tse_set_bit(priv->mac_dev, tse_csroffs(command_config),
1057                             MAC_CMDCFG_PROMIS_EN);
1058 
1059         if (dev->flags & IFF_ALLMULTI)
1060                 altera_tse_set_mcfilterall(dev);
1061         else
1062                 altera_tse_set_mcfilter(dev);
1063 
1064         spin_unlock(&priv->mac_cfg_lock);
1065 }
1066 
1067 /* Set or clear the multicast filter for this adaptor
1068  */
1069 static void tse_set_rx_mode(struct net_device *dev)
1070 {
1071         struct altera_tse_private *priv = netdev_priv(dev);
1072 
1073         spin_lock(&priv->mac_cfg_lock);
1074 
1075         if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI) ||
1076             !netdev_mc_empty(dev) || !netdev_uc_empty(dev))
1077                 tse_set_bit(priv->mac_dev, tse_csroffs(command_config),
1078                             MAC_CMDCFG_PROMIS_EN);
1079         else
1080                 tse_clear_bit(priv->mac_dev, tse_csroffs(command_config),
1081                               MAC_CMDCFG_PROMIS_EN);
1082 
1083         spin_unlock(&priv->mac_cfg_lock);
1084 }
1085 
1086 /* Initialise (if necessary) the SGMII PCS component
1087  */
1088 static int init_sgmii_pcs(struct net_device *dev)
1089 {
1090         struct altera_tse_private *priv = netdev_priv(dev);
1091         int n;
1092         unsigned int tmp_reg = 0;
1093 
1094         if (priv->phy_iface != PHY_INTERFACE_MODE_SGMII)
1095                 return 0; /* Nothing to do, not in SGMII mode */
1096 
1097         /* The TSE SGMII PCS block looks a little like a PHY, it is
1098          * mapped into the zeroth MDIO space of the MAC and it has
1099          * ID registers like a PHY would.  Sadly this is often
1100          * configured to zeroes, so don't be surprised if it does
1101          * show 0x00000000.
1102          */
1103 
1104         if (sgmii_pcs_scratch_test(priv, 0x0000) &&
1105                 sgmii_pcs_scratch_test(priv, 0xffff) &&
1106                 sgmii_pcs_scratch_test(priv, 0xa5a5) &&
1107                 sgmii_pcs_scratch_test(priv, 0x5a5a)) {
1108                 netdev_info(dev, "PCS PHY ID: 0x%04x%04x\n",
1109                                 sgmii_pcs_read(priv, MII_PHYSID1),
1110                                 sgmii_pcs_read(priv, MII_PHYSID2));
1111         } else {
1112                 netdev_err(dev, "SGMII PCS Scratch memory test failed.\n");
1113                 return -ENOMEM;
1114         }
1115 
1116         /* Starting on page 5-29 of the MegaCore Function User Guide
1117          * Set SGMII Link timer to 1.6ms
1118          */
1119         sgmii_pcs_write(priv, SGMII_PCS_LINK_TIMER_0, 0x0D40);
1120         sgmii_pcs_write(priv, SGMII_PCS_LINK_TIMER_1, 0x03);
1121 
1122         /* Enable SGMII Interface and Enable SGMII Auto Negotiation */
1123         sgmii_pcs_write(priv, SGMII_PCS_IF_MODE, 0x3);
1124 
1125         /* Enable Autonegotiation */
1126         tmp_reg = sgmii_pcs_read(priv, MII_BMCR);
1127         tmp_reg |= (BMCR_SPEED1000 | BMCR_FULLDPLX | BMCR_ANENABLE);
1128         sgmii_pcs_write(priv, MII_BMCR, tmp_reg);
1129 
1130         /* Reset PCS block */
1131         tmp_reg |= BMCR_RESET;
1132         sgmii_pcs_write(priv, MII_BMCR, tmp_reg);
1133         for (n = 0; n < SGMII_PCS_SW_RESET_TIMEOUT; n++) {
1134                 if (!(sgmii_pcs_read(priv, MII_BMCR) & BMCR_RESET)) {
1135                         netdev_info(dev, "SGMII PCS block initialised OK\n");
1136                         return 0;
1137                 }
1138                 udelay(1);
1139         }
1140 
1141         /* We failed to reset the block, return a timeout */
1142         netdev_err(dev, "SGMII PCS block reset failed.\n");
1143         return -ETIMEDOUT;
1144 }
1145 
1146 /* Open and initialize the interface
1147  */
1148 static int tse_open(struct net_device *dev)
1149 {
1150         struct altera_tse_private *priv = netdev_priv(dev);
1151         int ret = 0;
1152         int i;
1153         unsigned long int flags;
1154 
1155         /* Reset and configure TSE MAC and probe associated PHY */
1156         ret = priv->dmaops->init_dma(priv);
1157         if (ret != 0) {
1158                 netdev_err(dev, "Cannot initialize DMA\n");
1159                 goto phy_error;
1160         }
1161 
1162         if (netif_msg_ifup(priv))
1163                 netdev_warn(dev, "device MAC address %pM\n",
1164                             dev->dev_addr);
1165 
1166         if ((priv->revision < 0xd00) || (priv->revision > 0xe00))
1167                 netdev_warn(dev, "TSE revision %x\n", priv->revision);
1168 
1169         spin_lock(&priv->mac_cfg_lock);
1170         /* no-op if MAC not operating in SGMII mode*/
1171         ret = init_sgmii_pcs(dev);
1172         if (ret) {
1173                 netdev_err(dev,
1174                            "Cannot init the SGMII PCS (error: %d)\n", ret);
1175                 spin_unlock(&priv->mac_cfg_lock);
1176                 goto phy_error;
1177         }
1178 
1179         ret = reset_mac(priv);
1180         /* Note that reset_mac will fail if the clocks are gated by the PHY
1181          * due to the PHY being put into isolation or power down mode.
1182          * This is not an error if reset fails due to no clock.
1183          */
1184         if (ret)
1185                 netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret);
1186 
1187         ret = init_mac(priv);
1188         spin_unlock(&priv->mac_cfg_lock);
1189         if (ret) {
1190                 netdev_err(dev, "Cannot init MAC core (error: %d)\n", ret);
1191                 goto alloc_skbuf_error;
1192         }
1193 
1194         priv->dmaops->reset_dma(priv);
1195 
1196         /* Create and initialize the TX/RX descriptors chains. */
1197         priv->rx_ring_size = dma_rx_num;
1198         priv->tx_ring_size = dma_tx_num;
1199         ret = alloc_init_skbufs(priv);
1200         if (ret) {
1201                 netdev_err(dev, "DMA descriptors initialization failed\n");
1202                 goto alloc_skbuf_error;
1203         }
1204 
1205 
1206         /* Register RX interrupt */
1207         ret = request_irq(priv->rx_irq, altera_isr, IRQF_SHARED,
1208                           dev->name, dev);
1209         if (ret) {
1210                 netdev_err(dev, "Unable to register RX interrupt %d\n",
1211                            priv->rx_irq);
1212                 goto init_error;
1213         }
1214 
1215         /* Register TX interrupt */
1216         ret = request_irq(priv->tx_irq, altera_isr, IRQF_SHARED,
1217                           dev->name, dev);
1218         if (ret) {
1219                 netdev_err(dev, "Unable to register TX interrupt %d\n",
1220                            priv->tx_irq);
1221                 goto tx_request_irq_error;
1222         }
1223 
1224         /* Enable DMA interrupts */
1225         spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
1226         priv->dmaops->enable_rxirq(priv);
1227         priv->dmaops->enable_txirq(priv);
1228 
1229         /* Setup RX descriptor chain */
1230         for (i = 0; i < priv->rx_ring_size; i++)
1231                 priv->dmaops->add_rx_desc(priv, &priv->rx_ring[i]);
1232 
1233         spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
1234 
1235         if (dev->phydev)
1236                 phy_start(dev->phydev);
1237 
1238         napi_enable(&priv->napi);
1239         netif_start_queue(dev);
1240 
1241         priv->dmaops->start_rxdma(priv);
1242 
1243         /* Start MAC Rx/Tx */
1244         spin_lock(&priv->mac_cfg_lock);
1245         tse_set_mac(priv, true);
1246         spin_unlock(&priv->mac_cfg_lock);
1247 
1248         return 0;
1249 
1250 tx_request_irq_error:
1251         free_irq(priv->rx_irq, dev);
1252 init_error:
1253         free_skbufs(dev);
1254 alloc_skbuf_error:
1255 phy_error:
1256         return ret;
1257 }
1258 
1259 /* Stop TSE MAC interface and put the device in an inactive state
1260  */
1261 static int tse_shutdown(struct net_device *dev)
1262 {
1263         struct altera_tse_private *priv = netdev_priv(dev);
1264         int ret;
1265         unsigned long int flags;
1266 
1267         /* Stop the PHY */
1268         if (dev->phydev)
1269                 phy_stop(dev->phydev);
1270 
1271         netif_stop_queue(dev);
1272         napi_disable(&priv->napi);
1273 
1274         /* Disable DMA interrupts */
1275         spin_lock_irqsave(&priv->rxdma_irq_lock, flags);
1276         priv->dmaops->disable_rxirq(priv);
1277         priv->dmaops->disable_txirq(priv);
1278         spin_unlock_irqrestore(&priv->rxdma_irq_lock, flags);
1279 
1280         /* Free the IRQ lines */
1281         free_irq(priv->rx_irq, dev);
1282         free_irq(priv->tx_irq, dev);
1283 
1284         /* disable and reset the MAC, empties fifo */
1285         spin_lock(&priv->mac_cfg_lock);
1286         spin_lock(&priv->tx_lock);
1287 
1288         ret = reset_mac(priv);
1289         /* Note that reset_mac will fail if the clocks are gated by the PHY
1290          * due to the PHY being put into isolation or power down mode.
1291          * This is not an error if reset fails due to no clock.
1292          */
1293         if (ret)
1294                 netdev_dbg(dev, "Cannot reset MAC core (error: %d)\n", ret);
1295         priv->dmaops->reset_dma(priv);
1296         free_skbufs(dev);
1297 
1298         spin_unlock(&priv->tx_lock);
1299         spin_unlock(&priv->mac_cfg_lock);
1300 
1301         priv->dmaops->uninit_dma(priv);
1302 
1303         return 0;
1304 }
1305 
1306 static struct net_device_ops altera_tse_netdev_ops = {
1307         .ndo_open               = tse_open,
1308         .ndo_stop               = tse_shutdown,
1309         .ndo_start_xmit         = tse_start_xmit,
1310         .ndo_set_mac_address    = eth_mac_addr,
1311         .ndo_set_rx_mode        = tse_set_rx_mode,
1312         .ndo_change_mtu         = tse_change_mtu,
1313         .ndo_validate_addr      = eth_validate_addr,
1314 };
1315 
1316 static int request_and_map(struct platform_device *pdev, const char *name,
1317                            struct resource **res, void __iomem **ptr)
1318 {
1319         struct resource *region;
1320         struct device *device = &pdev->dev;
1321 
1322         *res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name);
1323         if (*res == NULL) {
1324                 dev_err(device, "resource %s not defined\n", name);
1325                 return -ENODEV;
1326         }
1327 
1328         region = devm_request_mem_region(device, (*res)->start,
1329                                          resource_size(*res), dev_name(device));
1330         if (region == NULL) {
1331                 dev_err(device, "unable to request %s\n", name);
1332                 return -EBUSY;
1333         }
1334 
1335         *ptr = devm_ioremap_nocache(device, region->start,
1336                                     resource_size(region));
1337         if (*ptr == NULL) {
1338                 dev_err(device, "ioremap_nocache of %s failed!", name);
1339                 return -ENOMEM;
1340         }
1341 
1342         return 0;
1343 }
1344 
1345 /* Probe Altera TSE MAC device
1346  */
1347 static int altera_tse_probe(struct platform_device *pdev)
1348 {
1349         struct net_device *ndev;
1350         int ret = -ENODEV;
1351         struct resource *control_port;
1352         struct resource *dma_res;
1353         struct altera_tse_private *priv;
1354         const unsigned char *macaddr;
1355         void __iomem *descmap;
1356         const struct of_device_id *of_id = NULL;
1357 
1358         ndev = alloc_etherdev(sizeof(struct altera_tse_private));
1359         if (!ndev) {
1360                 dev_err(&pdev->dev, "Could not allocate network device\n");
1361                 return -ENODEV;
1362         }
1363 
1364         SET_NETDEV_DEV(ndev, &pdev->dev);
1365 
1366         priv = netdev_priv(ndev);
1367         priv->device = &pdev->dev;
1368         priv->dev = ndev;
1369         priv->msg_enable = netif_msg_init(debug, default_msg_level);
1370 
1371         of_id = of_match_device(altera_tse_ids, &pdev->dev);
1372 
1373         if (of_id)
1374                 priv->dmaops = (struct altera_dmaops *)of_id->data;
1375 
1376 
1377         if (priv->dmaops &&
1378             priv->dmaops->altera_dtype == ALTERA_DTYPE_SGDMA) {
1379                 /* Get the mapped address to the SGDMA descriptor memory */
1380                 ret = request_and_map(pdev, "s1", &dma_res, &descmap);
1381                 if (ret)
1382                         goto err_free_netdev;
1383 
1384                 /* Start of that memory is for transmit descriptors */
1385                 priv->tx_dma_desc = descmap;
1386 
1387                 /* First half is for tx descriptors, other half for tx */
1388                 priv->txdescmem = resource_size(dma_res)/2;
1389 
1390                 priv->txdescmem_busaddr = (dma_addr_t)dma_res->start;
1391 
1392                 priv->rx_dma_desc = (void __iomem *)((uintptr_t)(descmap +
1393                                                      priv->txdescmem));
1394                 priv->rxdescmem = resource_size(dma_res)/2;
1395                 priv->rxdescmem_busaddr = dma_res->start;
1396                 priv->rxdescmem_busaddr += priv->txdescmem;
1397 
1398                 if (upper_32_bits(priv->rxdescmem_busaddr)) {
1399                         dev_dbg(priv->device,
1400                                 "SGDMA bus addresses greater than 32-bits\n");
1401                         ret = -EINVAL;
1402                         goto err_free_netdev;
1403                 }
1404                 if (upper_32_bits(priv->txdescmem_busaddr)) {
1405                         dev_dbg(priv->device,
1406                                 "SGDMA bus addresses greater than 32-bits\n");
1407                         ret = -EINVAL;
1408                         goto err_free_netdev;
1409                 }
1410         } else if (priv->dmaops &&
1411                    priv->dmaops->altera_dtype == ALTERA_DTYPE_MSGDMA) {
1412                 ret = request_and_map(pdev, "rx_resp", &dma_res,
1413                                       &priv->rx_dma_resp);
1414                 if (ret)
1415                         goto err_free_netdev;
1416 
1417                 ret = request_and_map(pdev, "tx_desc", &dma_res,
1418                                       &priv->tx_dma_desc);
1419                 if (ret)
1420                         goto err_free_netdev;
1421 
1422                 priv->txdescmem = resource_size(dma_res);
1423                 priv->txdescmem_busaddr = dma_res->start;
1424 
1425                 ret = request_and_map(pdev, "rx_desc", &dma_res,
1426                                       &priv->rx_dma_desc);
1427                 if (ret)
1428                         goto err_free_netdev;
1429 
1430                 priv->rxdescmem = resource_size(dma_res);
1431                 priv->rxdescmem_busaddr = dma_res->start;
1432 
1433         } else {
1434                 goto err_free_netdev;
1435         }
1436 
1437         if (!dma_set_mask(priv->device, DMA_BIT_MASK(priv->dmaops->dmamask)))
1438                 dma_set_coherent_mask(priv->device,
1439                                       DMA_BIT_MASK(priv->dmaops->dmamask));
1440         else if (!dma_set_mask(priv->device, DMA_BIT_MASK(32)))
1441                 dma_set_coherent_mask(priv->device, DMA_BIT_MASK(32));
1442         else
1443                 goto err_free_netdev;
1444 
1445         /* MAC address space */
1446         ret = request_and_map(pdev, "control_port", &control_port,
1447                               (void __iomem **)&priv->mac_dev);
1448         if (ret)
1449                 goto err_free_netdev;
1450 
1451         /* xSGDMA Rx Dispatcher address space */
1452         ret = request_and_map(pdev, "rx_csr", &dma_res,
1453                               &priv->rx_dma_csr);
1454         if (ret)
1455                 goto err_free_netdev;
1456 
1457 
1458         /* xSGDMA Tx Dispatcher address space */
1459         ret = request_and_map(pdev, "tx_csr", &dma_res,
1460                               &priv->tx_dma_csr);
1461         if (ret)
1462                 goto err_free_netdev;
1463 
1464 
1465         /* Rx IRQ */
1466         priv->rx_irq = platform_get_irq_byname(pdev, "rx_irq");
1467         if (priv->rx_irq == -ENXIO) {
1468                 dev_err(&pdev->dev, "cannot obtain Rx IRQ\n");
1469                 ret = -ENXIO;
1470                 goto err_free_netdev;
1471         }
1472 
1473         /* Tx IRQ */
1474         priv->tx_irq = platform_get_irq_byname(pdev, "tx_irq");
1475         if (priv->tx_irq == -ENXIO) {
1476                 dev_err(&pdev->dev, "cannot obtain Tx IRQ\n");
1477                 ret = -ENXIO;
1478                 goto err_free_netdev;
1479         }
1480 
1481         /* get FIFO depths from device tree */
1482         if (of_property_read_u32(pdev->dev.of_node, "rx-fifo-depth",
1483                                  &priv->rx_fifo_depth)) {
1484                 dev_err(&pdev->dev, "cannot obtain rx-fifo-depth\n");
1485                 ret = -ENXIO;
1486                 goto err_free_netdev;
1487         }
1488 
1489         if (of_property_read_u32(pdev->dev.of_node, "tx-fifo-depth",
1490                                  &priv->tx_fifo_depth)) {
1491                 dev_err(&pdev->dev, "cannot obtain tx-fifo-depth\n");
1492                 ret = -ENXIO;
1493                 goto err_free_netdev;
1494         }
1495 
1496         /* get hash filter settings for this instance */
1497         priv->hash_filter =
1498                 of_property_read_bool(pdev->dev.of_node,
1499                                       "altr,has-hash-multicast-filter");
1500 
1501         /* Set hash filter to not set for now until the
1502          * multicast filter receive issue is debugged
1503          */
1504         priv->hash_filter = 0;
1505 
1506         /* get supplemental address settings for this instance */
1507         priv->added_unicast =
1508                 of_property_read_bool(pdev->dev.of_node,
1509                                       "altr,has-supplementary-unicast");
1510 
1511         priv->dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN;
1512         /* Max MTU is 1500, ETH_DATA_LEN */
1513         priv->dev->max_mtu = ETH_DATA_LEN;
1514 
1515         /* Get the max mtu from the device tree. Note that the
1516          * "max-frame-size" parameter is actually max mtu. Definition
1517          * in the ePAPR v1.1 spec and usage differ, so go with usage.
1518          */
1519         of_property_read_u32(pdev->dev.of_node, "max-frame-size",
1520                              &priv->dev->max_mtu);
1521 
1522         /* The DMA buffer size already accounts for an alignment bias
1523          * to avoid unaligned access exceptions for the NIOS processor,
1524          */
1525         priv->rx_dma_buf_sz = ALTERA_RXDMABUFFER_SIZE;
1526 
1527         /* get default MAC address from device tree */
1528         macaddr = of_get_mac_address(pdev->dev.of_node);
1529         if (!IS_ERR(macaddr))
1530                 ether_addr_copy(ndev->dev_addr, macaddr);
1531         else
1532                 eth_hw_addr_random(ndev);
1533 
1534         /* get phy addr and create mdio */
1535         ret = altera_tse_phy_get_addr_mdio_create(ndev);
1536 
1537         if (ret)
1538                 goto err_free_netdev;
1539 
1540         /* initialize netdev */
1541         ndev->mem_start = control_port->start;
1542         ndev->mem_end = control_port->end;
1543         ndev->netdev_ops = &altera_tse_netdev_ops;
1544         altera_tse_set_ethtool_ops(ndev);
1545 
1546         altera_tse_netdev_ops.ndo_set_rx_mode = tse_set_rx_mode;
1547 
1548         if (priv->hash_filter)
1549                 altera_tse_netdev_ops.ndo_set_rx_mode =
1550                         tse_set_rx_mode_hashfilter;
1551 
1552         /* Scatter/gather IO is not supported,
1553          * so it is turned off
1554          */
1555         ndev->hw_features &= ~NETIF_F_SG;
1556         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
1557 
1558         /* VLAN offloading of tagging, stripping and filtering is not
1559          * supported by hardware, but driver will accommodate the
1560          * extra 4-byte VLAN tag for processing by upper layers
1561          */
1562         ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1563 
1564         /* setup NAPI interface */
1565         netif_napi_add(ndev, &priv->napi, tse_poll, NAPI_POLL_WEIGHT);
1566 
1567         spin_lock_init(&priv->mac_cfg_lock);
1568         spin_lock_init(&priv->tx_lock);
1569         spin_lock_init(&priv->rxdma_irq_lock);
1570 
1571         netif_carrier_off(ndev);
1572         ret = register_netdev(ndev);
1573         if (ret) {
1574                 dev_err(&pdev->dev, "failed to register TSE net device\n");
1575                 goto err_register_netdev;
1576         }
1577 
1578         platform_set_drvdata(pdev, ndev);
1579 
1580         priv->revision = ioread32(&priv->mac_dev->megacore_revision);
1581 
1582         if (netif_msg_probe(priv))
1583                 dev_info(&pdev->dev, "Altera TSE MAC version %d.%d at 0x%08lx irq %d/%d\n",
1584                          (priv->revision >> 8) & 0xff,
1585                          priv->revision & 0xff,
1586                          (unsigned long) control_port->start, priv->rx_irq,
1587                          priv->tx_irq);
1588 
1589         ret = init_phy(ndev);
1590         if (ret != 0) {
1591                 netdev_err(ndev, "Cannot attach to PHY (error: %d)\n", ret);
1592                 goto err_init_phy;
1593         }
1594         return 0;
1595 
1596 err_init_phy:
1597         unregister_netdev(ndev);
1598 err_register_netdev:
1599         netif_napi_del(&priv->napi);
1600         altera_tse_mdio_destroy(ndev);
1601 err_free_netdev:
1602         free_netdev(ndev);
1603         return ret;
1604 }
1605 
1606 /* Remove Altera TSE MAC device
1607  */
1608 static int altera_tse_remove(struct platform_device *pdev)
1609 {
1610         struct net_device *ndev = platform_get_drvdata(pdev);
1611         struct altera_tse_private *priv = netdev_priv(ndev);
1612 
1613         if (ndev->phydev) {
1614                 phy_disconnect(ndev->phydev);
1615 
1616                 if (of_phy_is_fixed_link(priv->device->of_node))
1617                         of_phy_deregister_fixed_link(priv->device->of_node);
1618         }
1619 
1620         platform_set_drvdata(pdev, NULL);
1621         altera_tse_mdio_destroy(ndev);
1622         unregister_netdev(ndev);
1623         free_netdev(ndev);
1624 
1625         return 0;
1626 }
1627 
1628 static const struct altera_dmaops altera_dtype_sgdma = {
1629         .altera_dtype = ALTERA_DTYPE_SGDMA,
1630         .dmamask = 32,
1631         .reset_dma = sgdma_reset,
1632         .enable_txirq = sgdma_enable_txirq,
1633         .enable_rxirq = sgdma_enable_rxirq,
1634         .disable_txirq = sgdma_disable_txirq,
1635         .disable_rxirq = sgdma_disable_rxirq,
1636         .clear_txirq = sgdma_clear_txirq,
1637         .clear_rxirq = sgdma_clear_rxirq,
1638         .tx_buffer = sgdma_tx_buffer,
1639         .tx_completions = sgdma_tx_completions,
1640         .add_rx_desc = sgdma_add_rx_desc,
1641         .get_rx_status = sgdma_rx_status,
1642         .init_dma = sgdma_initialize,
1643         .uninit_dma = sgdma_uninitialize,
1644         .start_rxdma = sgdma_start_rxdma,
1645 };
1646 
1647 static const struct altera_dmaops altera_dtype_msgdma = {
1648         .altera_dtype = ALTERA_DTYPE_MSGDMA,
1649         .dmamask = 64,
1650         .reset_dma = msgdma_reset,
1651         .enable_txirq = msgdma_enable_txirq,
1652         .enable_rxirq = msgdma_enable_rxirq,
1653         .disable_txirq = msgdma_disable_txirq,
1654         .disable_rxirq = msgdma_disable_rxirq,
1655         .clear_txirq = msgdma_clear_txirq,
1656         .clear_rxirq = msgdma_clear_rxirq,
1657         .tx_buffer = msgdma_tx_buffer,
1658         .tx_completions = msgdma_tx_completions,
1659         .add_rx_desc = msgdma_add_rx_desc,
1660         .get_rx_status = msgdma_rx_status,
1661         .init_dma = msgdma_initialize,
1662         .uninit_dma = msgdma_uninitialize,
1663         .start_rxdma = msgdma_start_rxdma,
1664 };
1665 
1666 static const struct of_device_id altera_tse_ids[] = {
1667         { .compatible = "altr,tse-msgdma-1.0", .data = &altera_dtype_msgdma, },
1668         { .compatible = "altr,tse-1.0", .data = &altera_dtype_sgdma, },
1669         { .compatible = "ALTR,tse-1.0", .data = &altera_dtype_sgdma, },
1670         {},
1671 };
1672 MODULE_DEVICE_TABLE(of, altera_tse_ids);
1673 
1674 static struct platform_driver altera_tse_driver = {
1675         .probe          = altera_tse_probe,
1676         .remove         = altera_tse_remove,
1677         .suspend        = NULL,
1678         .resume         = NULL,
1679         .driver         = {
1680                 .name   = ALTERA_TSE_RESOURCE_NAME,
1681                 .of_match_table = altera_tse_ids,
1682         },
1683 };
1684 
1685 module_platform_driver(altera_tse_driver);
1686 
1687 MODULE_AUTHOR("Altera Corporation");
1688 MODULE_DESCRIPTION("Altera Triple Speed Ethernet MAC driver");
1689 MODULE_LICENSE("GPL v2");

/* [<][>][^][v][top][bottom][index][help] */