root/drivers/net/ethernet/marvell/skge.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. is_genesis
  2. skge_get_regs_len
  3. skge_get_regs
  4. wol_supported
  5. skge_wol_init
  6. skge_get_wol
  7. skge_set_wol
  8. skge_supported_modes
  9. skge_get_link_ksettings
  10. skge_set_link_ksettings
  11. skge_get_drvinfo
  12. skge_get_sset_count
  13. skge_get_ethtool_stats
  14. skge_get_stats
  15. skge_get_strings
  16. skge_get_ring_param
  17. skge_set_ring_param
  18. skge_get_msglevel
  19. skge_set_msglevel
  20. skge_nway_reset
  21. skge_get_pauseparam
  22. skge_set_pauseparam
  23. hwkhz
  24. skge_clk2usec
  25. skge_usecs2clk
  26. skge_get_coalesce
  27. skge_set_coalesce
  28. skge_led
  29. skge_set_phys_id
  30. skge_get_eeprom_len
  31. skge_vpd_read
  32. skge_vpd_write
  33. skge_get_eeprom
  34. skge_set_eeprom
  35. skge_ring_alloc
  36. skge_rx_setup
  37. skge_rx_reuse
  38. skge_rx_clean
  39. skge_rx_fill
  40. skge_pause
  41. skge_link_up
  42. skge_link_down
  43. xm_link_down
  44. __xm_phy_read
  45. xm_phy_read
  46. xm_phy_write
  47. genesis_init
  48. genesis_reset
  49. bcom_check_link
  50. bcom_phy_init
  51. xm_phy_init
  52. xm_check_link
  53. xm_link_timer
  54. genesis_mac_init
  55. genesis_stop
  56. genesis_get_stats
  57. genesis_mac_intr
  58. genesis_link_up
  59. bcom_phy_intr
  60. gm_phy_write
  61. __gm_phy_read
  62. gm_phy_read
  63. yukon_init
  64. yukon_reset
  65. is_yukon_lite_a0
  66. yukon_mac_init
  67. yukon_suspend
  68. yukon_stop
  69. yukon_get_stats
  70. yukon_mac_intr
  71. yukon_speed
  72. yukon_link_up
  73. yukon_link_down
  74. yukon_phy_intr
  75. skge_phy_reset
  76. skge_ioctl
  77. skge_ramset
  78. skge_qset
  79. skge_up
  80. skge_rx_stop
  81. skge_down
  82. skge_avail
  83. skge_xmit_frame
  84. skge_tx_unmap
  85. skge_tx_clean
  86. skge_tx_timeout
  87. skge_change_mtu
  88. genesis_add_filter
  89. genesis_set_multicast
  90. yukon_add_filter
  91. yukon_set_multicast
  92. phy_length
  93. bad_phy_status
  94. skge_set_multicast
  95. skge_rx_get
  96. skge_tx_done
  97. skge_poll
  98. skge_mac_parity
  99. skge_mac_intr
  100. skge_error_irq
  101. skge_extirq
  102. skge_intr
  103. skge_netpoll
  104. skge_set_mac_address
  105. skge_board_name
  106. skge_reset
  107. skge_debug_show
  108. skge_device_event
  109. skge_debug_init
  110. skge_debug_cleanup
  111. skge_devinit
  112. skge_show_addr
  113. skge_probe
  114. skge_remove
  115. skge_suspend
  116. skge_resume
  117. skge_shutdown
  118. skge_init_module
  119. skge_cleanup_module

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * New driver for Marvell Yukon chipset and SysKonnect Gigabit
   4  * Ethernet adapters. Based on earlier sk98lin, e100 and
   5  * FreeBSD if_sk drivers.
   6  *
   7  * This driver intentionally does not support all the features
   8  * of the original driver such as link fail-over and link management because
   9  * those should be done at higher levels.
  10  *
  11  * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  12  */
  13 
  14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15 
  16 #include <linux/in.h>
  17 #include <linux/kernel.h>
  18 #include <linux/module.h>
  19 #include <linux/moduleparam.h>
  20 #include <linux/netdevice.h>
  21 #include <linux/etherdevice.h>
  22 #include <linux/ethtool.h>
  23 #include <linux/pci.h>
  24 #include <linux/if_vlan.h>
  25 #include <linux/ip.h>
  26 #include <linux/delay.h>
  27 #include <linux/crc32.h>
  28 #include <linux/dma-mapping.h>
  29 #include <linux/debugfs.h>
  30 #include <linux/sched.h>
  31 #include <linux/seq_file.h>
  32 #include <linux/mii.h>
  33 #include <linux/slab.h>
  34 #include <linux/dmi.h>
  35 #include <linux/prefetch.h>
  36 #include <asm/irq.h>
  37 
  38 #include "skge.h"
  39 
  40 #define DRV_NAME                "skge"
  41 #define DRV_VERSION             "1.14"
  42 
  43 #define DEFAULT_TX_RING_SIZE    128
  44 #define DEFAULT_RX_RING_SIZE    512
  45 #define MAX_TX_RING_SIZE        1024
  46 #define TX_LOW_WATER            (MAX_SKB_FRAGS + 1)
  47 #define MAX_RX_RING_SIZE        4096
  48 #define RX_COPY_THRESHOLD       128
  49 #define RX_BUF_SIZE             1536
  50 #define PHY_RETRIES             1000
  51 #define ETH_JUMBO_MTU           9000
  52 #define TX_WATCHDOG             (5 * HZ)
  53 #define NAPI_WEIGHT             64
  54 #define BLINK_MS                250
  55 #define LINK_HZ                 HZ
  56 
  57 #define SKGE_EEPROM_MAGIC       0x9933aabb
  58 
  59 
  60 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  61 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
  62 MODULE_LICENSE("GPL");
  63 MODULE_VERSION(DRV_VERSION);
  64 
  65 static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  66                                 NETIF_MSG_LINK | NETIF_MSG_IFUP |
  67                                 NETIF_MSG_IFDOWN);
  68 
  69 static int debug = -1;  /* defaults above */
  70 module_param(debug, int, 0);
  71 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  72 
  73 static const struct pci_device_id skge_id_table[] = {
  74         { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) },       /* 3Com 3C940 */
  75         { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) },       /* 3Com 3C940B */
  76 #ifdef CONFIG_SKGE_GENESIS
  77         { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
  78 #endif
  79         { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
  80         { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },      /* D-Link DGE-530T (rev.B) */
  81         { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) },      /* D-Link DGE-530T */
  82         { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) },      /* D-Link DGE-530T Rev C1 */
  83         { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },    /* Marvell Yukon 88E8001/8003/8010 */
  84         { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) },    /* Belkin */
  85         { PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) },       /* CNet PowerG-2000 */
  86         { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) },    /* Linksys EG1064 v2 */
  87         { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
  88         { 0 }
  89 };
  90 MODULE_DEVICE_TABLE(pci, skge_id_table);
  91 
  92 static int skge_up(struct net_device *dev);
  93 static int skge_down(struct net_device *dev);
  94 static void skge_phy_reset(struct skge_port *skge);
  95 static void skge_tx_clean(struct net_device *dev);
  96 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  97 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  98 static void genesis_get_stats(struct skge_port *skge, u64 *data);
  99 static void yukon_get_stats(struct skge_port *skge, u64 *data);
 100 static void yukon_init(struct skge_hw *hw, int port);
 101 static void genesis_mac_init(struct skge_hw *hw, int port);
 102 static void genesis_link_up(struct skge_port *skge);
 103 static void skge_set_multicast(struct net_device *dev);
 104 static irqreturn_t skge_intr(int irq, void *dev_id);
 105 
 106 /* Avoid conditionals by using array */
 107 static const int txqaddr[] = { Q_XA1, Q_XA2 };
 108 static const int rxqaddr[] = { Q_R1, Q_R2 };
 109 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
 110 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
 111 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
 112 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
 113 
 114 static inline bool is_genesis(const struct skge_hw *hw)
 115 {
 116 #ifdef CONFIG_SKGE_GENESIS
 117         return hw->chip_id == CHIP_ID_GENESIS;
 118 #else
 119         return false;
 120 #endif
 121 }
 122 
 123 static int skge_get_regs_len(struct net_device *dev)
 124 {
 125         return 0x4000;
 126 }
 127 
 128 /*
 129  * Returns copy of whole control register region
 130  * Note: skip RAM address register because accessing it will
 131  *       cause bus hangs!
 132  */
 133 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
 134                           void *p)
 135 {
 136         const struct skge_port *skge = netdev_priv(dev);
 137         const void __iomem *io = skge->hw->regs;
 138 
 139         regs->version = 1;
 140         memset(p, 0, regs->len);
 141         memcpy_fromio(p, io, B3_RAM_ADDR);
 142 
 143         if (regs->len > B3_RI_WTO_R1) {
 144                 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
 145                               regs->len - B3_RI_WTO_R1);
 146         }
 147 }
 148 
 149 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
 150 static u32 wol_supported(const struct skge_hw *hw)
 151 {
 152         if (is_genesis(hw))
 153                 return 0;
 154 
 155         if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
 156                 return 0;
 157 
 158         return WAKE_MAGIC | WAKE_PHY;
 159 }
 160 
 161 static void skge_wol_init(struct skge_port *skge)
 162 {
 163         struct skge_hw *hw = skge->hw;
 164         int port = skge->port;
 165         u16 ctrl;
 166 
 167         skge_write16(hw, B0_CTST, CS_RST_CLR);
 168         skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
 169 
 170         /* Turn on Vaux */
 171         skge_write8(hw, B0_POWER_CTRL,
 172                     PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
 173 
 174         /* WA code for COMA mode -- clear PHY reset */
 175         if (hw->chip_id == CHIP_ID_YUKON_LITE &&
 176             hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
 177                 u32 reg = skge_read32(hw, B2_GP_IO);
 178                 reg |= GP_DIR_9;
 179                 reg &= ~GP_IO_9;
 180                 skge_write32(hw, B2_GP_IO, reg);
 181         }
 182 
 183         skge_write32(hw, SK_REG(port, GPHY_CTRL),
 184                      GPC_DIS_SLEEP |
 185                      GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
 186                      GPC_ANEG_1 | GPC_RST_SET);
 187 
 188         skge_write32(hw, SK_REG(port, GPHY_CTRL),
 189                      GPC_DIS_SLEEP |
 190                      GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
 191                      GPC_ANEG_1 | GPC_RST_CLR);
 192 
 193         skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
 194 
 195         /* Force to 10/100 skge_reset will re-enable on resume   */
 196         gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
 197                      (PHY_AN_100FULL | PHY_AN_100HALF |
 198                       PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
 199         /* no 1000 HD/FD */
 200         gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
 201         gm_phy_write(hw, port, PHY_MARV_CTRL,
 202                      PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
 203                      PHY_CT_RE_CFG | PHY_CT_DUP_MD);
 204 
 205 
 206         /* Set GMAC to no flow control and auto update for speed/duplex */
 207         gma_write16(hw, port, GM_GP_CTRL,
 208                     GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
 209                     GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
 210 
 211         /* Set WOL address */
 212         memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
 213                     skge->netdev->dev_addr, ETH_ALEN);
 214 
 215         /* Turn on appropriate WOL control bits */
 216         skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
 217         ctrl = 0;
 218         if (skge->wol & WAKE_PHY)
 219                 ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
 220         else
 221                 ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
 222 
 223         if (skge->wol & WAKE_MAGIC)
 224                 ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
 225         else
 226                 ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
 227 
 228         ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
 229         skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
 230 
 231         /* block receiver */
 232         skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
 233 }
 234 
 235 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
 236 {
 237         struct skge_port *skge = netdev_priv(dev);
 238 
 239         wol->supported = wol_supported(skge->hw);
 240         wol->wolopts = skge->wol;
 241 }
 242 
 243 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
 244 {
 245         struct skge_port *skge = netdev_priv(dev);
 246         struct skge_hw *hw = skge->hw;
 247 
 248         if ((wol->wolopts & ~wol_supported(hw)) ||
 249             !device_can_wakeup(&hw->pdev->dev))
 250                 return -EOPNOTSUPP;
 251 
 252         skge->wol = wol->wolopts;
 253 
 254         device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
 255 
 256         return 0;
 257 }
 258 
 259 /* Determine supported/advertised modes based on hardware.
 260  * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
 261  */
 262 static u32 skge_supported_modes(const struct skge_hw *hw)
 263 {
 264         u32 supported;
 265 
 266         if (hw->copper) {
 267                 supported = (SUPPORTED_10baseT_Half |
 268                              SUPPORTED_10baseT_Full |
 269                              SUPPORTED_100baseT_Half |
 270                              SUPPORTED_100baseT_Full |
 271                              SUPPORTED_1000baseT_Half |
 272                              SUPPORTED_1000baseT_Full |
 273                              SUPPORTED_Autoneg |
 274                              SUPPORTED_TP);
 275 
 276                 if (is_genesis(hw))
 277                         supported &= ~(SUPPORTED_10baseT_Half |
 278                                        SUPPORTED_10baseT_Full |
 279                                        SUPPORTED_100baseT_Half |
 280                                        SUPPORTED_100baseT_Full);
 281 
 282                 else if (hw->chip_id == CHIP_ID_YUKON)
 283                         supported &= ~SUPPORTED_1000baseT_Half;
 284         } else
 285                 supported = (SUPPORTED_1000baseT_Full |
 286                              SUPPORTED_1000baseT_Half |
 287                              SUPPORTED_FIBRE |
 288                              SUPPORTED_Autoneg);
 289 
 290         return supported;
 291 }
 292 
 293 static int skge_get_link_ksettings(struct net_device *dev,
 294                                    struct ethtool_link_ksettings *cmd)
 295 {
 296         struct skge_port *skge = netdev_priv(dev);
 297         struct skge_hw *hw = skge->hw;
 298         u32 supported, advertising;
 299 
 300         supported = skge_supported_modes(hw);
 301 
 302         if (hw->copper) {
 303                 cmd->base.port = PORT_TP;
 304                 cmd->base.phy_address = hw->phy_addr;
 305         } else
 306                 cmd->base.port = PORT_FIBRE;
 307 
 308         advertising = skge->advertising;
 309         cmd->base.autoneg = skge->autoneg;
 310         cmd->base.speed = skge->speed;
 311         cmd->base.duplex = skge->duplex;
 312 
 313         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
 314                                                 supported);
 315         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
 316                                                 advertising);
 317 
 318         return 0;
 319 }
 320 
 321 static int skge_set_link_ksettings(struct net_device *dev,
 322                                    const struct ethtool_link_ksettings *cmd)
 323 {
 324         struct skge_port *skge = netdev_priv(dev);
 325         const struct skge_hw *hw = skge->hw;
 326         u32 supported = skge_supported_modes(hw);
 327         int err = 0;
 328         u32 advertising;
 329 
 330         ethtool_convert_link_mode_to_legacy_u32(&advertising,
 331                                                 cmd->link_modes.advertising);
 332 
 333         if (cmd->base.autoneg == AUTONEG_ENABLE) {
 334                 advertising = supported;
 335                 skge->duplex = -1;
 336                 skge->speed = -1;
 337         } else {
 338                 u32 setting;
 339                 u32 speed = cmd->base.speed;
 340 
 341                 switch (speed) {
 342                 case SPEED_1000:
 343                         if (cmd->base.duplex == DUPLEX_FULL)
 344                                 setting = SUPPORTED_1000baseT_Full;
 345                         else if (cmd->base.duplex == DUPLEX_HALF)
 346                                 setting = SUPPORTED_1000baseT_Half;
 347                         else
 348                                 return -EINVAL;
 349                         break;
 350                 case SPEED_100:
 351                         if (cmd->base.duplex == DUPLEX_FULL)
 352                                 setting = SUPPORTED_100baseT_Full;
 353                         else if (cmd->base.duplex == DUPLEX_HALF)
 354                                 setting = SUPPORTED_100baseT_Half;
 355                         else
 356                                 return -EINVAL;
 357                         break;
 358 
 359                 case SPEED_10:
 360                         if (cmd->base.duplex == DUPLEX_FULL)
 361                                 setting = SUPPORTED_10baseT_Full;
 362                         else if (cmd->base.duplex == DUPLEX_HALF)
 363                                 setting = SUPPORTED_10baseT_Half;
 364                         else
 365                                 return -EINVAL;
 366                         break;
 367                 default:
 368                         return -EINVAL;
 369                 }
 370 
 371                 if ((setting & supported) == 0)
 372                         return -EINVAL;
 373 
 374                 skge->speed = speed;
 375                 skge->duplex = cmd->base.duplex;
 376         }
 377 
 378         skge->autoneg = cmd->base.autoneg;
 379         skge->advertising = advertising;
 380 
 381         if (netif_running(dev)) {
 382                 skge_down(dev);
 383                 err = skge_up(dev);
 384                 if (err) {
 385                         dev_close(dev);
 386                         return err;
 387                 }
 388         }
 389 
 390         return 0;
 391 }
 392 
 393 static void skge_get_drvinfo(struct net_device *dev,
 394                              struct ethtool_drvinfo *info)
 395 {
 396         struct skge_port *skge = netdev_priv(dev);
 397 
 398         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
 399         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
 400         strlcpy(info->bus_info, pci_name(skge->hw->pdev),
 401                 sizeof(info->bus_info));
 402 }
 403 
 404 static const struct skge_stat {
 405         char       name[ETH_GSTRING_LEN];
 406         u16        xmac_offset;
 407         u16        gma_offset;
 408 } skge_stats[] = {
 409         { "tx_bytes",           XM_TXO_OK_HI,  GM_TXO_OK_HI },
 410         { "rx_bytes",           XM_RXO_OK_HI,  GM_RXO_OK_HI },
 411 
 412         { "tx_broadcast",       XM_TXF_BC_OK,  GM_TXF_BC_OK },
 413         { "rx_broadcast",       XM_RXF_BC_OK,  GM_RXF_BC_OK },
 414         { "tx_multicast",       XM_TXF_MC_OK,  GM_TXF_MC_OK },
 415         { "rx_multicast",       XM_RXF_MC_OK,  GM_RXF_MC_OK },
 416         { "tx_unicast",         XM_TXF_UC_OK,  GM_TXF_UC_OK },
 417         { "rx_unicast",         XM_RXF_UC_OK,  GM_RXF_UC_OK },
 418         { "tx_mac_pause",       XM_TXF_MPAUSE, GM_TXF_MPAUSE },
 419         { "rx_mac_pause",       XM_RXF_MPAUSE, GM_RXF_MPAUSE },
 420 
 421         { "collisions",         XM_TXF_SNG_COL, GM_TXF_SNG_COL },
 422         { "multi_collisions",   XM_TXF_MUL_COL, GM_TXF_MUL_COL },
 423         { "aborted",            XM_TXF_ABO_COL, GM_TXF_ABO_COL },
 424         { "late_collision",     XM_TXF_LAT_COL, GM_TXF_LAT_COL },
 425         { "fifo_underrun",      XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
 426         { "fifo_overflow",      XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
 427 
 428         { "rx_toolong",         XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
 429         { "rx_jabber",          XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
 430         { "rx_runt",            XM_RXE_RUNT,    GM_RXE_FRAG },
 431         { "rx_too_long",        XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
 432         { "rx_fcs_error",       XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
 433 };
 434 
 435 static int skge_get_sset_count(struct net_device *dev, int sset)
 436 {
 437         switch (sset) {
 438         case ETH_SS_STATS:
 439                 return ARRAY_SIZE(skge_stats);
 440         default:
 441                 return -EOPNOTSUPP;
 442         }
 443 }
 444 
 445 static void skge_get_ethtool_stats(struct net_device *dev,
 446                                    struct ethtool_stats *stats, u64 *data)
 447 {
 448         struct skge_port *skge = netdev_priv(dev);
 449 
 450         if (is_genesis(skge->hw))
 451                 genesis_get_stats(skge, data);
 452         else
 453                 yukon_get_stats(skge, data);
 454 }
 455 
 456 /* Use hardware MIB variables for critical path statistics and
 457  * transmit feedback not reported at interrupt.
 458  * Other errors are accounted for in interrupt handler.
 459  */
 460 static struct net_device_stats *skge_get_stats(struct net_device *dev)
 461 {
 462         struct skge_port *skge = netdev_priv(dev);
 463         u64 data[ARRAY_SIZE(skge_stats)];
 464 
 465         if (is_genesis(skge->hw))
 466                 genesis_get_stats(skge, data);
 467         else
 468                 yukon_get_stats(skge, data);
 469 
 470         dev->stats.tx_bytes = data[0];
 471         dev->stats.rx_bytes = data[1];
 472         dev->stats.tx_packets = data[2] + data[4] + data[6];
 473         dev->stats.rx_packets = data[3] + data[5] + data[7];
 474         dev->stats.multicast = data[3] + data[5];
 475         dev->stats.collisions = data[10];
 476         dev->stats.tx_aborted_errors = data[12];
 477 
 478         return &dev->stats;
 479 }
 480 
 481 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
 482 {
 483         int i;
 484 
 485         switch (stringset) {
 486         case ETH_SS_STATS:
 487                 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
 488                         memcpy(data + i * ETH_GSTRING_LEN,
 489                                skge_stats[i].name, ETH_GSTRING_LEN);
 490                 break;
 491         }
 492 }
 493 
 494 static void skge_get_ring_param(struct net_device *dev,
 495                                 struct ethtool_ringparam *p)
 496 {
 497         struct skge_port *skge = netdev_priv(dev);
 498 
 499         p->rx_max_pending = MAX_RX_RING_SIZE;
 500         p->tx_max_pending = MAX_TX_RING_SIZE;
 501 
 502         p->rx_pending = skge->rx_ring.count;
 503         p->tx_pending = skge->tx_ring.count;
 504 }
 505 
 506 static int skge_set_ring_param(struct net_device *dev,
 507                                struct ethtool_ringparam *p)
 508 {
 509         struct skge_port *skge = netdev_priv(dev);
 510         int err = 0;
 511 
 512         if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
 513             p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
 514                 return -EINVAL;
 515 
 516         skge->rx_ring.count = p->rx_pending;
 517         skge->tx_ring.count = p->tx_pending;
 518 
 519         if (netif_running(dev)) {
 520                 skge_down(dev);
 521                 err = skge_up(dev);
 522                 if (err)
 523                         dev_close(dev);
 524         }
 525 
 526         return err;
 527 }
 528 
 529 static u32 skge_get_msglevel(struct net_device *netdev)
 530 {
 531         struct skge_port *skge = netdev_priv(netdev);
 532         return skge->msg_enable;
 533 }
 534 
 535 static void skge_set_msglevel(struct net_device *netdev, u32 value)
 536 {
 537         struct skge_port *skge = netdev_priv(netdev);
 538         skge->msg_enable = value;
 539 }
 540 
 541 static int skge_nway_reset(struct net_device *dev)
 542 {
 543         struct skge_port *skge = netdev_priv(dev);
 544 
 545         if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
 546                 return -EINVAL;
 547 
 548         skge_phy_reset(skge);
 549         return 0;
 550 }
 551 
 552 static void skge_get_pauseparam(struct net_device *dev,
 553                                 struct ethtool_pauseparam *ecmd)
 554 {
 555         struct skge_port *skge = netdev_priv(dev);
 556 
 557         ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
 558                           (skge->flow_control == FLOW_MODE_SYM_OR_REM));
 559         ecmd->tx_pause = (ecmd->rx_pause ||
 560                           (skge->flow_control == FLOW_MODE_LOC_SEND));
 561 
 562         ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
 563 }
 564 
 565 static int skge_set_pauseparam(struct net_device *dev,
 566                                struct ethtool_pauseparam *ecmd)
 567 {
 568         struct skge_port *skge = netdev_priv(dev);
 569         struct ethtool_pauseparam old;
 570         int err = 0;
 571 
 572         skge_get_pauseparam(dev, &old);
 573 
 574         if (ecmd->autoneg != old.autoneg)
 575                 skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
 576         else {
 577                 if (ecmd->rx_pause && ecmd->tx_pause)
 578                         skge->flow_control = FLOW_MODE_SYMMETRIC;
 579                 else if (ecmd->rx_pause && !ecmd->tx_pause)
 580                         skge->flow_control = FLOW_MODE_SYM_OR_REM;
 581                 else if (!ecmd->rx_pause && ecmd->tx_pause)
 582                         skge->flow_control = FLOW_MODE_LOC_SEND;
 583                 else
 584                         skge->flow_control = FLOW_MODE_NONE;
 585         }
 586 
 587         if (netif_running(dev)) {
 588                 skge_down(dev);
 589                 err = skge_up(dev);
 590                 if (err) {
 591                         dev_close(dev);
 592                         return err;
 593                 }
 594         }
 595 
 596         return 0;
 597 }
 598 
 599 /* Chip internal frequency for clock calculations */
 600 static inline u32 hwkhz(const struct skge_hw *hw)
 601 {
 602         return is_genesis(hw) ? 53125 : 78125;
 603 }
 604 
 605 /* Chip HZ to microseconds */
 606 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
 607 {
 608         return (ticks * 1000) / hwkhz(hw);
 609 }
 610 
 611 /* Microseconds to chip HZ */
 612 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
 613 {
 614         return hwkhz(hw) * usec / 1000;
 615 }
 616 
 617 static int skge_get_coalesce(struct net_device *dev,
 618                              struct ethtool_coalesce *ecmd)
 619 {
 620         struct skge_port *skge = netdev_priv(dev);
 621         struct skge_hw *hw = skge->hw;
 622         int port = skge->port;
 623 
 624         ecmd->rx_coalesce_usecs = 0;
 625         ecmd->tx_coalesce_usecs = 0;
 626 
 627         if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
 628                 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
 629                 u32 msk = skge_read32(hw, B2_IRQM_MSK);
 630 
 631                 if (msk & rxirqmask[port])
 632                         ecmd->rx_coalesce_usecs = delay;
 633                 if (msk & txirqmask[port])
 634                         ecmd->tx_coalesce_usecs = delay;
 635         }
 636 
 637         return 0;
 638 }
 639 
 640 /* Note: interrupt timer is per board, but can turn on/off per port */
 641 static int skge_set_coalesce(struct net_device *dev,
 642                              struct ethtool_coalesce *ecmd)
 643 {
 644         struct skge_port *skge = netdev_priv(dev);
 645         struct skge_hw *hw = skge->hw;
 646         int port = skge->port;
 647         u32 msk = skge_read32(hw, B2_IRQM_MSK);
 648         u32 delay = 25;
 649 
 650         if (ecmd->rx_coalesce_usecs == 0)
 651                 msk &= ~rxirqmask[port];
 652         else if (ecmd->rx_coalesce_usecs < 25 ||
 653                  ecmd->rx_coalesce_usecs > 33333)
 654                 return -EINVAL;
 655         else {
 656                 msk |= rxirqmask[port];
 657                 delay = ecmd->rx_coalesce_usecs;
 658         }
 659 
 660         if (ecmd->tx_coalesce_usecs == 0)
 661                 msk &= ~txirqmask[port];
 662         else if (ecmd->tx_coalesce_usecs < 25 ||
 663                  ecmd->tx_coalesce_usecs > 33333)
 664                 return -EINVAL;
 665         else {
 666                 msk |= txirqmask[port];
 667                 delay = min(delay, ecmd->rx_coalesce_usecs);
 668         }
 669 
 670         skge_write32(hw, B2_IRQM_MSK, msk);
 671         if (msk == 0)
 672                 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
 673         else {
 674                 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
 675                 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
 676         }
 677         return 0;
 678 }
 679 
 680 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
 681 static void skge_led(struct skge_port *skge, enum led_mode mode)
 682 {
 683         struct skge_hw *hw = skge->hw;
 684         int port = skge->port;
 685 
 686         spin_lock_bh(&hw->phy_lock);
 687         if (is_genesis(hw)) {
 688                 switch (mode) {
 689                 case LED_MODE_OFF:
 690                         if (hw->phy_type == SK_PHY_BCOM)
 691                                 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
 692                         else {
 693                                 skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
 694                                 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
 695                         }
 696                         skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
 697                         skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
 698                         skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
 699                         break;
 700 
 701                 case LED_MODE_ON:
 702                         skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
 703                         skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
 704 
 705                         skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
 706                         skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
 707 
 708                         break;
 709 
 710                 case LED_MODE_TST:
 711                         skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
 712                         skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
 713                         skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
 714 
 715                         if (hw->phy_type == SK_PHY_BCOM)
 716                                 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
 717                         else {
 718                                 skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
 719                                 skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
 720                                 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
 721                         }
 722 
 723                 }
 724         } else {
 725                 switch (mode) {
 726                 case LED_MODE_OFF:
 727                         gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
 728                         gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 729                                      PHY_M_LED_MO_DUP(MO_LED_OFF)  |
 730                                      PHY_M_LED_MO_10(MO_LED_OFF)   |
 731                                      PHY_M_LED_MO_100(MO_LED_OFF)  |
 732                                      PHY_M_LED_MO_1000(MO_LED_OFF) |
 733                                      PHY_M_LED_MO_RX(MO_LED_OFF));
 734                         break;
 735                 case LED_MODE_ON:
 736                         gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
 737                                      PHY_M_LED_PULS_DUR(PULS_170MS) |
 738                                      PHY_M_LED_BLINK_RT(BLINK_84MS) |
 739                                      PHY_M_LEDC_TX_CTRL |
 740                                      PHY_M_LEDC_DP_CTRL);
 741 
 742                         gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 743                                      PHY_M_LED_MO_RX(MO_LED_OFF) |
 744                                      (skge->speed == SPEED_100 ?
 745                                       PHY_M_LED_MO_100(MO_LED_ON) : 0));
 746                         break;
 747                 case LED_MODE_TST:
 748                         gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
 749                         gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 750                                      PHY_M_LED_MO_DUP(MO_LED_ON)  |
 751                                      PHY_M_LED_MO_10(MO_LED_ON)   |
 752                                      PHY_M_LED_MO_100(MO_LED_ON)  |
 753                                      PHY_M_LED_MO_1000(MO_LED_ON) |
 754                                      PHY_M_LED_MO_RX(MO_LED_ON));
 755                 }
 756         }
 757         spin_unlock_bh(&hw->phy_lock);
 758 }
 759 
 760 /* blink LED's for finding board */
 761 static int skge_set_phys_id(struct net_device *dev,
 762                             enum ethtool_phys_id_state state)
 763 {
 764         struct skge_port *skge = netdev_priv(dev);
 765 
 766         switch (state) {
 767         case ETHTOOL_ID_ACTIVE:
 768                 return 2;       /* cycle on/off twice per second */
 769 
 770         case ETHTOOL_ID_ON:
 771                 skge_led(skge, LED_MODE_TST);
 772                 break;
 773 
 774         case ETHTOOL_ID_OFF:
 775                 skge_led(skge, LED_MODE_OFF);
 776                 break;
 777 
 778         case ETHTOOL_ID_INACTIVE:
 779                 /* back to regular LED state */
 780                 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
 781         }
 782 
 783         return 0;
 784 }
 785 
 786 static int skge_get_eeprom_len(struct net_device *dev)
 787 {
 788         struct skge_port *skge = netdev_priv(dev);
 789         u32 reg2;
 790 
 791         pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
 792         return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
 793 }
 794 
 795 static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
 796 {
 797         u32 val;
 798 
 799         pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
 800 
 801         do {
 802                 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
 803         } while (!(offset & PCI_VPD_ADDR_F));
 804 
 805         pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
 806         return val;
 807 }
 808 
 809 static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
 810 {
 811         pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
 812         pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
 813                               offset | PCI_VPD_ADDR_F);
 814 
 815         do {
 816                 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
 817         } while (offset & PCI_VPD_ADDR_F);
 818 }
 819 
 820 static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
 821                            u8 *data)
 822 {
 823         struct skge_port *skge = netdev_priv(dev);
 824         struct pci_dev *pdev = skge->hw->pdev;
 825         int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
 826         int length = eeprom->len;
 827         u16 offset = eeprom->offset;
 828 
 829         if (!cap)
 830                 return -EINVAL;
 831 
 832         eeprom->magic = SKGE_EEPROM_MAGIC;
 833 
 834         while (length > 0) {
 835                 u32 val = skge_vpd_read(pdev, cap, offset);
 836                 int n = min_t(int, length, sizeof(val));
 837 
 838                 memcpy(data, &val, n);
 839                 length -= n;
 840                 data += n;
 841                 offset += n;
 842         }
 843         return 0;
 844 }
 845 
 846 static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
 847                            u8 *data)
 848 {
 849         struct skge_port *skge = netdev_priv(dev);
 850         struct pci_dev *pdev = skge->hw->pdev;
 851         int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
 852         int length = eeprom->len;
 853         u16 offset = eeprom->offset;
 854 
 855         if (!cap)
 856                 return -EINVAL;
 857 
 858         if (eeprom->magic != SKGE_EEPROM_MAGIC)
 859                 return -EINVAL;
 860 
 861         while (length > 0) {
 862                 u32 val;
 863                 int n = min_t(int, length, sizeof(val));
 864 
 865                 if (n < sizeof(val))
 866                         val = skge_vpd_read(pdev, cap, offset);
 867                 memcpy(&val, data, n);
 868 
 869                 skge_vpd_write(pdev, cap, offset, val);
 870 
 871                 length -= n;
 872                 data += n;
 873                 offset += n;
 874         }
 875         return 0;
 876 }
 877 
 878 static const struct ethtool_ops skge_ethtool_ops = {
 879         .get_drvinfo    = skge_get_drvinfo,
 880         .get_regs_len   = skge_get_regs_len,
 881         .get_regs       = skge_get_regs,
 882         .get_wol        = skge_get_wol,
 883         .set_wol        = skge_set_wol,
 884         .get_msglevel   = skge_get_msglevel,
 885         .set_msglevel   = skge_set_msglevel,
 886         .nway_reset     = skge_nway_reset,
 887         .get_link       = ethtool_op_get_link,
 888         .get_eeprom_len = skge_get_eeprom_len,
 889         .get_eeprom     = skge_get_eeprom,
 890         .set_eeprom     = skge_set_eeprom,
 891         .get_ringparam  = skge_get_ring_param,
 892         .set_ringparam  = skge_set_ring_param,
 893         .get_pauseparam = skge_get_pauseparam,
 894         .set_pauseparam = skge_set_pauseparam,
 895         .get_coalesce   = skge_get_coalesce,
 896         .set_coalesce   = skge_set_coalesce,
 897         .get_strings    = skge_get_strings,
 898         .set_phys_id    = skge_set_phys_id,
 899         .get_sset_count = skge_get_sset_count,
 900         .get_ethtool_stats = skge_get_ethtool_stats,
 901         .get_link_ksettings = skge_get_link_ksettings,
 902         .set_link_ksettings = skge_set_link_ksettings,
 903 };
 904 
 905 /*
 906  * Allocate ring elements and chain them together
 907  * One-to-one association of board descriptors with ring elements
 908  */
 909 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
 910 {
 911         struct skge_tx_desc *d;
 912         struct skge_element *e;
 913         int i;
 914 
 915         ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
 916         if (!ring->start)
 917                 return -ENOMEM;
 918 
 919         for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
 920                 e->desc = d;
 921                 if (i == ring->count - 1) {
 922                         e->next = ring->start;
 923                         d->next_offset = base;
 924                 } else {
 925                         e->next = e + 1;
 926                         d->next_offset = base + (i+1) * sizeof(*d);
 927                 }
 928         }
 929         ring->to_use = ring->to_clean = ring->start;
 930 
 931         return 0;
 932 }
 933 
 934 /* Allocate and setup a new buffer for receiving */
 935 static int skge_rx_setup(struct skge_port *skge, struct skge_element *e,
 936                          struct sk_buff *skb, unsigned int bufsize)
 937 {
 938         struct skge_rx_desc *rd = e->desc;
 939         dma_addr_t map;
 940 
 941         map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
 942                              PCI_DMA_FROMDEVICE);
 943 
 944         if (pci_dma_mapping_error(skge->hw->pdev, map))
 945                 return -1;
 946 
 947         rd->dma_lo = lower_32_bits(map);
 948         rd->dma_hi = upper_32_bits(map);
 949         e->skb = skb;
 950         rd->csum1_start = ETH_HLEN;
 951         rd->csum2_start = ETH_HLEN;
 952         rd->csum1 = 0;
 953         rd->csum2 = 0;
 954 
 955         wmb();
 956 
 957         rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
 958         dma_unmap_addr_set(e, mapaddr, map);
 959         dma_unmap_len_set(e, maplen, bufsize);
 960         return 0;
 961 }
 962 
 963 /* Resume receiving using existing skb,
 964  * Note: DMA address is not changed by chip.
 965  *       MTU not changed while receiver active.
 966  */
 967 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
 968 {
 969         struct skge_rx_desc *rd = e->desc;
 970 
 971         rd->csum2 = 0;
 972         rd->csum2_start = ETH_HLEN;
 973 
 974         wmb();
 975 
 976         rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
 977 }
 978 
 979 
 980 /* Free all  buffers in receive ring, assumes receiver stopped */
 981 static void skge_rx_clean(struct skge_port *skge)
 982 {
 983         struct skge_hw *hw = skge->hw;
 984         struct skge_ring *ring = &skge->rx_ring;
 985         struct skge_element *e;
 986 
 987         e = ring->start;
 988         do {
 989                 struct skge_rx_desc *rd = e->desc;
 990                 rd->control = 0;
 991                 if (e->skb) {
 992                         pci_unmap_single(hw->pdev,
 993                                          dma_unmap_addr(e, mapaddr),
 994                                          dma_unmap_len(e, maplen),
 995                                          PCI_DMA_FROMDEVICE);
 996                         dev_kfree_skb(e->skb);
 997                         e->skb = NULL;
 998                 }
 999         } while ((e = e->next) != ring->start);
1000 }
1001 
1002 
1003 /* Allocate buffers for receive ring
1004  * For receive:  to_clean is next received frame.
1005  */
1006 static int skge_rx_fill(struct net_device *dev)
1007 {
1008         struct skge_port *skge = netdev_priv(dev);
1009         struct skge_ring *ring = &skge->rx_ring;
1010         struct skge_element *e;
1011 
1012         e = ring->start;
1013         do {
1014                 struct sk_buff *skb;
1015 
1016                 skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1017                                          GFP_KERNEL);
1018                 if (!skb)
1019                         return -ENOMEM;
1020 
1021                 skb_reserve(skb, NET_IP_ALIGN);
1022                 if (skge_rx_setup(skge, e, skb, skge->rx_buf_size) < 0) {
1023                         dev_kfree_skb(skb);
1024                         return -EIO;
1025                 }
1026         } while ((e = e->next) != ring->start);
1027 
1028         ring->to_clean = ring->start;
1029         return 0;
1030 }
1031 
1032 static const char *skge_pause(enum pause_status status)
1033 {
1034         switch (status) {
1035         case FLOW_STAT_NONE:
1036                 return "none";
1037         case FLOW_STAT_REM_SEND:
1038                 return "rx only";
1039         case FLOW_STAT_LOC_SEND:
1040                 return "tx_only";
1041         case FLOW_STAT_SYMMETRIC:               /* Both station may send PAUSE */
1042                 return "both";
1043         default:
1044                 return "indeterminated";
1045         }
1046 }
1047 
1048 
1049 static void skge_link_up(struct skge_port *skge)
1050 {
1051         skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1052                     LED_BLK_OFF|LED_SYNC_OFF|LED_REG_ON);
1053 
1054         netif_carrier_on(skge->netdev);
1055         netif_wake_queue(skge->netdev);
1056 
1057         netif_info(skge, link, skge->netdev,
1058                    "Link is up at %d Mbps, %s duplex, flow control %s\n",
1059                    skge->speed,
1060                    skge->duplex == DUPLEX_FULL ? "full" : "half",
1061                    skge_pause(skge->flow_status));
1062 }
1063 
1064 static void skge_link_down(struct skge_port *skge)
1065 {
1066         skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
1067         netif_carrier_off(skge->netdev);
1068         netif_stop_queue(skge->netdev);
1069 
1070         netif_info(skge, link, skge->netdev, "Link is down\n");
1071 }
1072 
1073 static void xm_link_down(struct skge_hw *hw, int port)
1074 {
1075         struct net_device *dev = hw->dev[port];
1076         struct skge_port *skge = netdev_priv(dev);
1077 
1078         xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1079 
1080         if (netif_carrier_ok(dev))
1081                 skge_link_down(skge);
1082 }
1083 
1084 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1085 {
1086         int i;
1087 
1088         xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1089         *val = xm_read16(hw, port, XM_PHY_DATA);
1090 
1091         if (hw->phy_type == SK_PHY_XMAC)
1092                 goto ready;
1093 
1094         for (i = 0; i < PHY_RETRIES; i++) {
1095                 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1096                         goto ready;
1097                 udelay(1);
1098         }
1099 
1100         return -ETIMEDOUT;
1101  ready:
1102         *val = xm_read16(hw, port, XM_PHY_DATA);
1103 
1104         return 0;
1105 }
1106 
1107 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1108 {
1109         u16 v = 0;
1110         if (__xm_phy_read(hw, port, reg, &v))
1111                 pr_warn("%s: phy read timed out\n", hw->dev[port]->name);
1112         return v;
1113 }
1114 
1115 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1116 {
1117         int i;
1118 
1119         xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1120         for (i = 0; i < PHY_RETRIES; i++) {
1121                 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1122                         goto ready;
1123                 udelay(1);
1124         }
1125         return -EIO;
1126 
1127  ready:
1128         xm_write16(hw, port, XM_PHY_DATA, val);
1129         for (i = 0; i < PHY_RETRIES; i++) {
1130                 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1131                         return 0;
1132                 udelay(1);
1133         }
1134         return -ETIMEDOUT;
1135 }
1136 
1137 static void genesis_init(struct skge_hw *hw)
1138 {
1139         /* set blink source counter */
1140         skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1141         skge_write8(hw, B2_BSC_CTRL, BSC_START);
1142 
1143         /* configure mac arbiter */
1144         skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1145 
1146         /* configure mac arbiter timeout values */
1147         skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1148         skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1149         skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1150         skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1151 
1152         skge_write8(hw, B3_MA_RCINI_RX1, 0);
1153         skge_write8(hw, B3_MA_RCINI_RX2, 0);
1154         skge_write8(hw, B3_MA_RCINI_TX1, 0);
1155         skge_write8(hw, B3_MA_RCINI_TX2, 0);
1156 
1157         /* configure packet arbiter timeout */
1158         skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1159         skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1160         skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1161         skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1162         skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1163 }
1164 
1165 static void genesis_reset(struct skge_hw *hw, int port)
1166 {
1167         static const u8 zero[8]  = { 0 };
1168         u32 reg;
1169 
1170         skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1171 
1172         /* reset the statistics module */
1173         xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1174         xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1175         xm_write32(hw, port, XM_MODE, 0);               /* clear Mode Reg */
1176         xm_write16(hw, port, XM_TX_CMD, 0);     /* reset TX CMD Reg */
1177         xm_write16(hw, port, XM_RX_CMD, 0);     /* reset RX CMD Reg */
1178 
1179         /* disable Broadcom PHY IRQ */
1180         if (hw->phy_type == SK_PHY_BCOM)
1181                 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1182 
1183         xm_outhash(hw, port, XM_HSM, zero);
1184 
1185         /* Flush TX and RX fifo */
1186         reg = xm_read32(hw, port, XM_MODE);
1187         xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1188         xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1189 }
1190 
1191 /* Convert mode to MII values  */
1192 static const u16 phy_pause_map[] = {
1193         [FLOW_MODE_NONE] =      0,
1194         [FLOW_MODE_LOC_SEND] =  PHY_AN_PAUSE_ASYM,
1195         [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1196         [FLOW_MODE_SYM_OR_REM]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1197 };
1198 
1199 /* special defines for FIBER (88E1011S only) */
1200 static const u16 fiber_pause_map[] = {
1201         [FLOW_MODE_NONE]        = PHY_X_P_NO_PAUSE,
1202         [FLOW_MODE_LOC_SEND]    = PHY_X_P_ASYM_MD,
1203         [FLOW_MODE_SYMMETRIC]   = PHY_X_P_SYM_MD,
1204         [FLOW_MODE_SYM_OR_REM]  = PHY_X_P_BOTH_MD,
1205 };
1206 
1207 
1208 /* Check status of Broadcom phy link */
1209 static void bcom_check_link(struct skge_hw *hw, int port)
1210 {
1211         struct net_device *dev = hw->dev[port];
1212         struct skge_port *skge = netdev_priv(dev);
1213         u16 status;
1214 
1215         /* read twice because of latch */
1216         xm_phy_read(hw, port, PHY_BCOM_STAT);
1217         status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1218 
1219         if ((status & PHY_ST_LSYNC) == 0) {
1220                 xm_link_down(hw, port);
1221                 return;
1222         }
1223 
1224         if (skge->autoneg == AUTONEG_ENABLE) {
1225                 u16 lpa, aux;
1226 
1227                 if (!(status & PHY_ST_AN_OVER))
1228                         return;
1229 
1230                 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1231                 if (lpa & PHY_B_AN_RF) {
1232                         netdev_notice(dev, "remote fault\n");
1233                         return;
1234                 }
1235 
1236                 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1237 
1238                 /* Check Duplex mismatch */
1239                 switch (aux & PHY_B_AS_AN_RES_MSK) {
1240                 case PHY_B_RES_1000FD:
1241                         skge->duplex = DUPLEX_FULL;
1242                         break;
1243                 case PHY_B_RES_1000HD:
1244                         skge->duplex = DUPLEX_HALF;
1245                         break;
1246                 default:
1247                         netdev_notice(dev, "duplex mismatch\n");
1248                         return;
1249                 }
1250 
1251                 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1252                 switch (aux & PHY_B_AS_PAUSE_MSK) {
1253                 case PHY_B_AS_PAUSE_MSK:
1254                         skge->flow_status = FLOW_STAT_SYMMETRIC;
1255                         break;
1256                 case PHY_B_AS_PRR:
1257                         skge->flow_status = FLOW_STAT_REM_SEND;
1258                         break;
1259                 case PHY_B_AS_PRT:
1260                         skge->flow_status = FLOW_STAT_LOC_SEND;
1261                         break;
1262                 default:
1263                         skge->flow_status = FLOW_STAT_NONE;
1264                 }
1265                 skge->speed = SPEED_1000;
1266         }
1267 
1268         if (!netif_carrier_ok(dev))
1269                 genesis_link_up(skge);
1270 }
1271 
1272 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1273  * Phy on for 100 or 10Mbit operation
1274  */
1275 static void bcom_phy_init(struct skge_port *skge)
1276 {
1277         struct skge_hw *hw = skge->hw;
1278         int port = skge->port;
1279         int i;
1280         u16 id1, r, ext, ctl;
1281 
1282         /* magic workaround patterns for Broadcom */
1283         static const struct {
1284                 u16 reg;
1285                 u16 val;
1286         } A1hack[] = {
1287                 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1288                 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1289                 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1290                 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1291         }, C0hack[] = {
1292                 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1293                 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1294         };
1295 
1296         /* read Id from external PHY (all have the same address) */
1297         id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1298 
1299         /* Optimize MDIO transfer by suppressing preamble. */
1300         r = xm_read16(hw, port, XM_MMU_CMD);
1301         r |=  XM_MMU_NO_PRE;
1302         xm_write16(hw, port, XM_MMU_CMD, r);
1303 
1304         switch (id1) {
1305         case PHY_BCOM_ID1_C0:
1306                 /*
1307                  * Workaround BCOM Errata for the C0 type.
1308                  * Write magic patterns to reserved registers.
1309                  */
1310                 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1311                         xm_phy_write(hw, port,
1312                                      C0hack[i].reg, C0hack[i].val);
1313 
1314                 break;
1315         case PHY_BCOM_ID1_A1:
1316                 /*
1317                  * Workaround BCOM Errata for the A1 type.
1318                  * Write magic patterns to reserved registers.
1319                  */
1320                 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1321                         xm_phy_write(hw, port,
1322                                      A1hack[i].reg, A1hack[i].val);
1323                 break;
1324         }
1325 
1326         /*
1327          * Workaround BCOM Errata (#10523) for all BCom PHYs.
1328          * Disable Power Management after reset.
1329          */
1330         r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1331         r |= PHY_B_AC_DIS_PM;
1332         xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1333 
1334         /* Dummy read */
1335         xm_read16(hw, port, XM_ISRC);
1336 
1337         ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1338         ctl = PHY_CT_SP1000;    /* always 1000mbit */
1339 
1340         if (skge->autoneg == AUTONEG_ENABLE) {
1341                 /*
1342                  * Workaround BCOM Errata #1 for the C5 type.
1343                  * 1000Base-T Link Acquisition Failure in Slave Mode
1344                  * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1345                  */
1346                 u16 adv = PHY_B_1000C_RD;
1347                 if (skge->advertising & ADVERTISED_1000baseT_Half)
1348                         adv |= PHY_B_1000C_AHD;
1349                 if (skge->advertising & ADVERTISED_1000baseT_Full)
1350                         adv |= PHY_B_1000C_AFD;
1351                 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1352 
1353                 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1354         } else {
1355                 if (skge->duplex == DUPLEX_FULL)
1356                         ctl |= PHY_CT_DUP_MD;
1357                 /* Force to slave */
1358                 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1359         }
1360 
1361         /* Set autonegotiation pause parameters */
1362         xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1363                      phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1364 
1365         /* Handle Jumbo frames */
1366         if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1367                 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1368                              PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1369 
1370                 ext |= PHY_B_PEC_HIGH_LA;
1371 
1372         }
1373 
1374         xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1375         xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1376 
1377         /* Use link status change interrupt */
1378         xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1379 }
1380 
1381 static void xm_phy_init(struct skge_port *skge)
1382 {
1383         struct skge_hw *hw = skge->hw;
1384         int port = skge->port;
1385         u16 ctrl = 0;
1386 
1387         if (skge->autoneg == AUTONEG_ENABLE) {
1388                 if (skge->advertising & ADVERTISED_1000baseT_Half)
1389                         ctrl |= PHY_X_AN_HD;
1390                 if (skge->advertising & ADVERTISED_1000baseT_Full)
1391                         ctrl |= PHY_X_AN_FD;
1392 
1393                 ctrl |= fiber_pause_map[skge->flow_control];
1394 
1395                 xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1396 
1397                 /* Restart Auto-negotiation */
1398                 ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1399         } else {
1400                 /* Set DuplexMode in Config register */
1401                 if (skge->duplex == DUPLEX_FULL)
1402                         ctrl |= PHY_CT_DUP_MD;
1403                 /*
1404                  * Do NOT enable Auto-negotiation here. This would hold
1405                  * the link down because no IDLEs are transmitted
1406                  */
1407         }
1408 
1409         xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1410 
1411         /* Poll PHY for status changes */
1412         mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1413 }
1414 
1415 static int xm_check_link(struct net_device *dev)
1416 {
1417         struct skge_port *skge = netdev_priv(dev);
1418         struct skge_hw *hw = skge->hw;
1419         int port = skge->port;
1420         u16 status;
1421 
1422         /* read twice because of latch */
1423         xm_phy_read(hw, port, PHY_XMAC_STAT);
1424         status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1425 
1426         if ((status & PHY_ST_LSYNC) == 0) {
1427                 xm_link_down(hw, port);
1428                 return 0;
1429         }
1430 
1431         if (skge->autoneg == AUTONEG_ENABLE) {
1432                 u16 lpa, res;
1433 
1434                 if (!(status & PHY_ST_AN_OVER))
1435                         return 0;
1436 
1437                 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1438                 if (lpa & PHY_B_AN_RF) {
1439                         netdev_notice(dev, "remote fault\n");
1440                         return 0;
1441                 }
1442 
1443                 res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1444 
1445                 /* Check Duplex mismatch */
1446                 switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1447                 case PHY_X_RS_FD:
1448                         skge->duplex = DUPLEX_FULL;
1449                         break;
1450                 case PHY_X_RS_HD:
1451                         skge->duplex = DUPLEX_HALF;
1452                         break;
1453                 default:
1454                         netdev_notice(dev, "duplex mismatch\n");
1455                         return 0;
1456                 }
1457 
1458                 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1459                 if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1460                      skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1461                     (lpa & PHY_X_P_SYM_MD))
1462                         skge->flow_status = FLOW_STAT_SYMMETRIC;
1463                 else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1464                          (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1465                         /* Enable PAUSE receive, disable PAUSE transmit */
1466                         skge->flow_status  = FLOW_STAT_REM_SEND;
1467                 else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1468                          (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1469                         /* Disable PAUSE receive, enable PAUSE transmit */
1470                         skge->flow_status = FLOW_STAT_LOC_SEND;
1471                 else
1472                         skge->flow_status = FLOW_STAT_NONE;
1473 
1474                 skge->speed = SPEED_1000;
1475         }
1476 
1477         if (!netif_carrier_ok(dev))
1478                 genesis_link_up(skge);
1479         return 1;
1480 }
1481 
1482 /* Poll to check for link coming up.
1483  *
1484  * Since internal PHY is wired to a level triggered pin, can't
1485  * get an interrupt when carrier is detected, need to poll for
1486  * link coming up.
1487  */
1488 static void xm_link_timer(struct timer_list *t)
1489 {
1490         struct skge_port *skge = from_timer(skge, t, link_timer);
1491         struct net_device *dev = skge->netdev;
1492         struct skge_hw *hw = skge->hw;
1493         int port = skge->port;
1494         int i;
1495         unsigned long flags;
1496 
1497         if (!netif_running(dev))
1498                 return;
1499 
1500         spin_lock_irqsave(&hw->phy_lock, flags);
1501 
1502         /*
1503          * Verify that the link by checking GPIO register three times.
1504          * This pin has the signal from the link_sync pin connected to it.
1505          */
1506         for (i = 0; i < 3; i++) {
1507                 if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1508                         goto link_down;
1509         }
1510 
1511         /* Re-enable interrupt to detect link down */
1512         if (xm_check_link(dev)) {
1513                 u16 msk = xm_read16(hw, port, XM_IMSK);
1514                 msk &= ~XM_IS_INP_ASS;
1515                 xm_write16(hw, port, XM_IMSK, msk);
1516                 xm_read16(hw, port, XM_ISRC);
1517         } else {
1518 link_down:
1519                 mod_timer(&skge->link_timer,
1520                           round_jiffies(jiffies + LINK_HZ));
1521         }
1522         spin_unlock_irqrestore(&hw->phy_lock, flags);
1523 }
1524 
1525 static void genesis_mac_init(struct skge_hw *hw, int port)
1526 {
1527         struct net_device *dev = hw->dev[port];
1528         struct skge_port *skge = netdev_priv(dev);
1529         int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1530         int i;
1531         u32 r;
1532         static const u8 zero[6]  = { 0 };
1533 
1534         for (i = 0; i < 10; i++) {
1535                 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1536                              MFF_SET_MAC_RST);
1537                 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1538                         goto reset_ok;
1539                 udelay(1);
1540         }
1541 
1542         netdev_warn(dev, "genesis reset failed\n");
1543 
1544  reset_ok:
1545         /* Unreset the XMAC. */
1546         skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1547 
1548         /*
1549          * Perform additional initialization for external PHYs,
1550          * namely for the 1000baseTX cards that use the XMAC's
1551          * GMII mode.
1552          */
1553         if (hw->phy_type != SK_PHY_XMAC) {
1554                 /* Take external Phy out of reset */
1555                 r = skge_read32(hw, B2_GP_IO);
1556                 if (port == 0)
1557                         r |= GP_DIR_0|GP_IO_0;
1558                 else
1559                         r |= GP_DIR_2|GP_IO_2;
1560 
1561                 skge_write32(hw, B2_GP_IO, r);
1562 
1563                 /* Enable GMII interface */
1564                 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1565         }
1566 
1567 
1568         switch (hw->phy_type) {
1569         case SK_PHY_XMAC:
1570                 xm_phy_init(skge);
1571                 break;
1572         case SK_PHY_BCOM:
1573                 bcom_phy_init(skge);
1574                 bcom_check_link(hw, port);
1575         }
1576 
1577         /* Set Station Address */
1578         xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1579 
1580         /* We don't use match addresses so clear */
1581         for (i = 1; i < 16; i++)
1582                 xm_outaddr(hw, port, XM_EXM(i), zero);
1583 
1584         /* Clear MIB counters */
1585         xm_write16(hw, port, XM_STAT_CMD,
1586                         XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1587         /* Clear two times according to Errata #3 */
1588         xm_write16(hw, port, XM_STAT_CMD,
1589                         XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1590 
1591         /* configure Rx High Water Mark (XM_RX_HI_WM) */
1592         xm_write16(hw, port, XM_RX_HI_WM, 1450);
1593 
1594         /* We don't need the FCS appended to the packet. */
1595         r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1596         if (jumbo)
1597                 r |= XM_RX_BIG_PK_OK;
1598 
1599         if (skge->duplex == DUPLEX_HALF) {
1600                 /*
1601                  * If in manual half duplex mode the other side might be in
1602                  * full duplex mode, so ignore if a carrier extension is not seen
1603                  * on frames received
1604                  */
1605                 r |= XM_RX_DIS_CEXT;
1606         }
1607         xm_write16(hw, port, XM_RX_CMD, r);
1608 
1609         /* We want short frames padded to 60 bytes. */
1610         xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1611 
1612         /* Increase threshold for jumbo frames on dual port */
1613         if (hw->ports > 1 && jumbo)
1614                 xm_write16(hw, port, XM_TX_THR, 1020);
1615         else
1616                 xm_write16(hw, port, XM_TX_THR, 512);
1617 
1618         /*
1619          * Enable the reception of all error frames. This is is
1620          * a necessary evil due to the design of the XMAC. The
1621          * XMAC's receive FIFO is only 8K in size, however jumbo
1622          * frames can be up to 9000 bytes in length. When bad
1623          * frame filtering is enabled, the XMAC's RX FIFO operates
1624          * in 'store and forward' mode. For this to work, the
1625          * entire frame has to fit into the FIFO, but that means
1626          * that jumbo frames larger than 8192 bytes will be
1627          * truncated. Disabling all bad frame filtering causes
1628          * the RX FIFO to operate in streaming mode, in which
1629          * case the XMAC will start transferring frames out of the
1630          * RX FIFO as soon as the FIFO threshold is reached.
1631          */
1632         xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1633 
1634 
1635         /*
1636          * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1637          *      - Enable all bits excepting 'Octets Rx OK Low CntOv'
1638          *        and 'Octets Rx OK Hi Cnt Ov'.
1639          */
1640         xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1641 
1642         /*
1643          * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1644          *      - Enable all bits excepting 'Octets Tx OK Low CntOv'
1645          *        and 'Octets Tx OK Hi Cnt Ov'.
1646          */
1647         xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1648 
1649         /* Configure MAC arbiter */
1650         skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1651 
1652         /* configure timeout values */
1653         skge_write8(hw, B3_MA_TOINI_RX1, 72);
1654         skge_write8(hw, B3_MA_TOINI_RX2, 72);
1655         skge_write8(hw, B3_MA_TOINI_TX1, 72);
1656         skge_write8(hw, B3_MA_TOINI_TX2, 72);
1657 
1658         skge_write8(hw, B3_MA_RCINI_RX1, 0);
1659         skge_write8(hw, B3_MA_RCINI_RX2, 0);
1660         skge_write8(hw, B3_MA_RCINI_TX1, 0);
1661         skge_write8(hw, B3_MA_RCINI_TX2, 0);
1662 
1663         /* Configure Rx MAC FIFO */
1664         skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1665         skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1666         skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1667 
1668         /* Configure Tx MAC FIFO */
1669         skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1670         skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1671         skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1672 
1673         if (jumbo) {
1674                 /* Enable frame flushing if jumbo frames used */
1675                 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1676         } else {
1677                 /* enable timeout timers if normal frames */
1678                 skge_write16(hw, B3_PA_CTRL,
1679                              (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1680         }
1681 }
1682 
1683 static void genesis_stop(struct skge_port *skge)
1684 {
1685         struct skge_hw *hw = skge->hw;
1686         int port = skge->port;
1687         unsigned retries = 1000;
1688         u16 cmd;
1689 
1690         /* Disable Tx and Rx */
1691         cmd = xm_read16(hw, port, XM_MMU_CMD);
1692         cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1693         xm_write16(hw, port, XM_MMU_CMD, cmd);
1694 
1695         genesis_reset(hw, port);
1696 
1697         /* Clear Tx packet arbiter timeout IRQ */
1698         skge_write16(hw, B3_PA_CTRL,
1699                      port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1700 
1701         /* Reset the MAC */
1702         skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1703         do {
1704                 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1705                 if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1706                         break;
1707         } while (--retries > 0);
1708 
1709         /* For external PHYs there must be special handling */
1710         if (hw->phy_type != SK_PHY_XMAC) {
1711                 u32 reg = skge_read32(hw, B2_GP_IO);
1712                 if (port == 0) {
1713                         reg |= GP_DIR_0;
1714                         reg &= ~GP_IO_0;
1715                 } else {
1716                         reg |= GP_DIR_2;
1717                         reg &= ~GP_IO_2;
1718                 }
1719                 skge_write32(hw, B2_GP_IO, reg);
1720                 skge_read32(hw, B2_GP_IO);
1721         }
1722 
1723         xm_write16(hw, port, XM_MMU_CMD,
1724                         xm_read16(hw, port, XM_MMU_CMD)
1725                         & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1726 
1727         xm_read16(hw, port, XM_MMU_CMD);
1728 }
1729 
1730 
1731 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1732 {
1733         struct skge_hw *hw = skge->hw;
1734         int port = skge->port;
1735         int i;
1736         unsigned long timeout = jiffies + HZ;
1737 
1738         xm_write16(hw, port,
1739                         XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1740 
1741         /* wait for update to complete */
1742         while (xm_read16(hw, port, XM_STAT_CMD)
1743                & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1744                 if (time_after(jiffies, timeout))
1745                         break;
1746                 udelay(10);
1747         }
1748 
1749         /* special case for 64 bit octet counter */
1750         data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1751                 | xm_read32(hw, port, XM_TXO_OK_LO);
1752         data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1753                 | xm_read32(hw, port, XM_RXO_OK_LO);
1754 
1755         for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1756                 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1757 }
1758 
1759 static void genesis_mac_intr(struct skge_hw *hw, int port)
1760 {
1761         struct net_device *dev = hw->dev[port];
1762         struct skge_port *skge = netdev_priv(dev);
1763         u16 status = xm_read16(hw, port, XM_ISRC);
1764 
1765         netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1766                      "mac interrupt status 0x%x\n", status);
1767 
1768         if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1769                 xm_link_down(hw, port);
1770                 mod_timer(&skge->link_timer, jiffies + 1);
1771         }
1772 
1773         if (status & XM_IS_TXF_UR) {
1774                 xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1775                 ++dev->stats.tx_fifo_errors;
1776         }
1777 }
1778 
1779 static void genesis_link_up(struct skge_port *skge)
1780 {
1781         struct skge_hw *hw = skge->hw;
1782         int port = skge->port;
1783         u16 cmd, msk;
1784         u32 mode;
1785 
1786         cmd = xm_read16(hw, port, XM_MMU_CMD);
1787 
1788         /*
1789          * enabling pause frame reception is required for 1000BT
1790          * because the XMAC is not reset if the link is going down
1791          */
1792         if (skge->flow_status == FLOW_STAT_NONE ||
1793             skge->flow_status == FLOW_STAT_LOC_SEND)
1794                 /* Disable Pause Frame Reception */
1795                 cmd |= XM_MMU_IGN_PF;
1796         else
1797                 /* Enable Pause Frame Reception */
1798                 cmd &= ~XM_MMU_IGN_PF;
1799 
1800         xm_write16(hw, port, XM_MMU_CMD, cmd);
1801 
1802         mode = xm_read32(hw, port, XM_MODE);
1803         if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1804             skge->flow_status == FLOW_STAT_LOC_SEND) {
1805                 /*
1806                  * Configure Pause Frame Generation
1807                  * Use internal and external Pause Frame Generation.
1808                  * Sending pause frames is edge triggered.
1809                  * Send a Pause frame with the maximum pause time if
1810                  * internal oder external FIFO full condition occurs.
1811                  * Send a zero pause time frame to re-start transmission.
1812                  */
1813                 /* XM_PAUSE_DA = '010000C28001' (default) */
1814                 /* XM_MAC_PTIME = 0xffff (maximum) */
1815                 /* remember this value is defined in big endian (!) */
1816                 xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1817 
1818                 mode |= XM_PAUSE_MODE;
1819                 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1820         } else {
1821                 /*
1822                  * disable pause frame generation is required for 1000BT
1823                  * because the XMAC is not reset if the link is going down
1824                  */
1825                 /* Disable Pause Mode in Mode Register */
1826                 mode &= ~XM_PAUSE_MODE;
1827 
1828                 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1829         }
1830 
1831         xm_write32(hw, port, XM_MODE, mode);
1832 
1833         /* Turn on detection of Tx underrun */
1834         msk = xm_read16(hw, port, XM_IMSK);
1835         msk &= ~XM_IS_TXF_UR;
1836         xm_write16(hw, port, XM_IMSK, msk);
1837 
1838         xm_read16(hw, port, XM_ISRC);
1839 
1840         /* get MMU Command Reg. */
1841         cmd = xm_read16(hw, port, XM_MMU_CMD);
1842         if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1843                 cmd |= XM_MMU_GMII_FD;
1844 
1845         /*
1846          * Workaround BCOM Errata (#10523) for all BCom Phys
1847          * Enable Power Management after link up
1848          */
1849         if (hw->phy_type == SK_PHY_BCOM) {
1850                 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1851                              xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1852                              & ~PHY_B_AC_DIS_PM);
1853                 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1854         }
1855 
1856         /* enable Rx/Tx */
1857         xm_write16(hw, port, XM_MMU_CMD,
1858                         cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1859         skge_link_up(skge);
1860 }
1861 
1862 
1863 static inline void bcom_phy_intr(struct skge_port *skge)
1864 {
1865         struct skge_hw *hw = skge->hw;
1866         int port = skge->port;
1867         u16 isrc;
1868 
1869         isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1870         netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1871                      "phy interrupt status 0x%x\n", isrc);
1872 
1873         if (isrc & PHY_B_IS_PSE)
1874                 pr_err("%s: uncorrectable pair swap error\n",
1875                        hw->dev[port]->name);
1876 
1877         /* Workaround BCom Errata:
1878          *      enable and disable loopback mode if "NO HCD" occurs.
1879          */
1880         if (isrc & PHY_B_IS_NO_HDCL) {
1881                 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1882                 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1883                                   ctrl | PHY_CT_LOOP);
1884                 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1885                                   ctrl & ~PHY_CT_LOOP);
1886         }
1887 
1888         if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1889                 bcom_check_link(hw, port);
1890 
1891 }
1892 
1893 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1894 {
1895         int i;
1896 
1897         gma_write16(hw, port, GM_SMI_DATA, val);
1898         gma_write16(hw, port, GM_SMI_CTRL,
1899                          GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1900         for (i = 0; i < PHY_RETRIES; i++) {
1901                 udelay(1);
1902 
1903                 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1904                         return 0;
1905         }
1906 
1907         pr_warn("%s: phy write timeout\n", hw->dev[port]->name);
1908         return -EIO;
1909 }
1910 
1911 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1912 {
1913         int i;
1914 
1915         gma_write16(hw, port, GM_SMI_CTRL,
1916                          GM_SMI_CT_PHY_AD(hw->phy_addr)
1917                          | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1918 
1919         for (i = 0; i < PHY_RETRIES; i++) {
1920                 udelay(1);
1921                 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1922                         goto ready;
1923         }
1924 
1925         return -ETIMEDOUT;
1926  ready:
1927         *val = gma_read16(hw, port, GM_SMI_DATA);
1928         return 0;
1929 }
1930 
1931 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1932 {
1933         u16 v = 0;
1934         if (__gm_phy_read(hw, port, reg, &v))
1935                 pr_warn("%s: phy read timeout\n", hw->dev[port]->name);
1936         return v;
1937 }
1938 
1939 /* Marvell Phy Initialization */
1940 static void yukon_init(struct skge_hw *hw, int port)
1941 {
1942         struct skge_port *skge = netdev_priv(hw->dev[port]);
1943         u16 ctrl, ct1000, adv;
1944 
1945         if (skge->autoneg == AUTONEG_ENABLE) {
1946                 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1947 
1948                 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1949                           PHY_M_EC_MAC_S_MSK);
1950                 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1951 
1952                 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1953 
1954                 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1955         }
1956 
1957         ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1958         if (skge->autoneg == AUTONEG_DISABLE)
1959                 ctrl &= ~PHY_CT_ANE;
1960 
1961         ctrl |= PHY_CT_RESET;
1962         gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1963 
1964         ctrl = 0;
1965         ct1000 = 0;
1966         adv = PHY_AN_CSMA;
1967 
1968         if (skge->autoneg == AUTONEG_ENABLE) {
1969                 if (hw->copper) {
1970                         if (skge->advertising & ADVERTISED_1000baseT_Full)
1971                                 ct1000 |= PHY_M_1000C_AFD;
1972                         if (skge->advertising & ADVERTISED_1000baseT_Half)
1973                                 ct1000 |= PHY_M_1000C_AHD;
1974                         if (skge->advertising & ADVERTISED_100baseT_Full)
1975                                 adv |= PHY_M_AN_100_FD;
1976                         if (skge->advertising & ADVERTISED_100baseT_Half)
1977                                 adv |= PHY_M_AN_100_HD;
1978                         if (skge->advertising & ADVERTISED_10baseT_Full)
1979                                 adv |= PHY_M_AN_10_FD;
1980                         if (skge->advertising & ADVERTISED_10baseT_Half)
1981                                 adv |= PHY_M_AN_10_HD;
1982 
1983                         /* Set Flow-control capabilities */
1984                         adv |= phy_pause_map[skge->flow_control];
1985                 } else {
1986                         if (skge->advertising & ADVERTISED_1000baseT_Full)
1987                                 adv |= PHY_M_AN_1000X_AFD;
1988                         if (skge->advertising & ADVERTISED_1000baseT_Half)
1989                                 adv |= PHY_M_AN_1000X_AHD;
1990 
1991                         adv |= fiber_pause_map[skge->flow_control];
1992                 }
1993 
1994                 /* Restart Auto-negotiation */
1995                 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1996         } else {
1997                 /* forced speed/duplex settings */
1998                 ct1000 = PHY_M_1000C_MSE;
1999 
2000                 if (skge->duplex == DUPLEX_FULL)
2001                         ctrl |= PHY_CT_DUP_MD;
2002 
2003                 switch (skge->speed) {
2004                 case SPEED_1000:
2005                         ctrl |= PHY_CT_SP1000;
2006                         break;
2007                 case SPEED_100:
2008                         ctrl |= PHY_CT_SP100;
2009                         break;
2010                 }
2011 
2012                 ctrl |= PHY_CT_RESET;
2013         }
2014 
2015         gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2016 
2017         gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2018         gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2019 
2020         /* Enable phy interrupt on autonegotiation complete (or link up) */
2021         if (skge->autoneg == AUTONEG_ENABLE)
2022                 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2023         else
2024                 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2025 }
2026 
2027 static void yukon_reset(struct skge_hw *hw, int port)
2028 {
2029         gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2030         gma_write16(hw, port, GM_MC_ADDR_H1, 0);        /* clear MC hash */
2031         gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2032         gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2033         gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2034 
2035         gma_write16(hw, port, GM_RX_CTRL,
2036                          gma_read16(hw, port, GM_RX_CTRL)
2037                          | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2038 }
2039 
2040 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2041 static int is_yukon_lite_a0(struct skge_hw *hw)
2042 {
2043         u32 reg;
2044         int ret;
2045 
2046         if (hw->chip_id != CHIP_ID_YUKON)
2047                 return 0;
2048 
2049         reg = skge_read32(hw, B2_FAR);
2050         skge_write8(hw, B2_FAR + 3, 0xff);
2051         ret = (skge_read8(hw, B2_FAR + 3) != 0);
2052         skge_write32(hw, B2_FAR, reg);
2053         return ret;
2054 }
2055 
2056 static void yukon_mac_init(struct skge_hw *hw, int port)
2057 {
2058         struct skge_port *skge = netdev_priv(hw->dev[port]);
2059         int i;
2060         u32 reg;
2061         const u8 *addr = hw->dev[port]->dev_addr;
2062 
2063         /* WA code for COMA mode -- set PHY reset */
2064         if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2065             hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2066                 reg = skge_read32(hw, B2_GP_IO);
2067                 reg |= GP_DIR_9 | GP_IO_9;
2068                 skge_write32(hw, B2_GP_IO, reg);
2069         }
2070 
2071         /* hard reset */
2072         skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2073         skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2074 
2075         /* WA code for COMA mode -- clear PHY reset */
2076         if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2077             hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2078                 reg = skge_read32(hw, B2_GP_IO);
2079                 reg |= GP_DIR_9;
2080                 reg &= ~GP_IO_9;
2081                 skge_write32(hw, B2_GP_IO, reg);
2082         }
2083 
2084         /* Set hardware config mode */
2085         reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2086                 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2087         reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2088 
2089         /* Clear GMC reset */
2090         skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2091         skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2092         skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2093 
2094         if (skge->autoneg == AUTONEG_DISABLE) {
2095                 reg = GM_GPCR_AU_ALL_DIS;
2096                 gma_write16(hw, port, GM_GP_CTRL,
2097                                  gma_read16(hw, port, GM_GP_CTRL) | reg);
2098 
2099                 switch (skge->speed) {
2100                 case SPEED_1000:
2101                         reg &= ~GM_GPCR_SPEED_100;
2102                         reg |= GM_GPCR_SPEED_1000;
2103                         break;
2104                 case SPEED_100:
2105                         reg &= ~GM_GPCR_SPEED_1000;
2106                         reg |= GM_GPCR_SPEED_100;
2107                         break;
2108                 case SPEED_10:
2109                         reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2110                         break;
2111                 }
2112 
2113                 if (skge->duplex == DUPLEX_FULL)
2114                         reg |= GM_GPCR_DUP_FULL;
2115         } else
2116                 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2117 
2118         switch (skge->flow_control) {
2119         case FLOW_MODE_NONE:
2120                 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2121                 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2122                 break;
2123         case FLOW_MODE_LOC_SEND:
2124                 /* disable Rx flow-control */
2125                 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2126                 break;
2127         case FLOW_MODE_SYMMETRIC:
2128         case FLOW_MODE_SYM_OR_REM:
2129                 /* enable Tx & Rx flow-control */
2130                 break;
2131         }
2132 
2133         gma_write16(hw, port, GM_GP_CTRL, reg);
2134         skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2135 
2136         yukon_init(hw, port);
2137 
2138         /* MIB clear */
2139         reg = gma_read16(hw, port, GM_PHY_ADDR);
2140         gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2141 
2142         for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2143                 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2144         gma_write16(hw, port, GM_PHY_ADDR, reg);
2145 
2146         /* transmit control */
2147         gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2148 
2149         /* receive control reg: unicast + multicast + no FCS  */
2150         gma_write16(hw, port, GM_RX_CTRL,
2151                          GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2152 
2153         /* transmit flow control */
2154         gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2155 
2156         /* transmit parameter */
2157         gma_write16(hw, port, GM_TX_PARAM,
2158                          TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2159                          TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2160                          TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2161 
2162         /* configure the Serial Mode Register */
2163         reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2164                 | GM_SMOD_VLAN_ENA
2165                 | IPG_DATA_VAL(IPG_DATA_DEF);
2166 
2167         if (hw->dev[port]->mtu > ETH_DATA_LEN)
2168                 reg |= GM_SMOD_JUMBO_ENA;
2169 
2170         gma_write16(hw, port, GM_SERIAL_MODE, reg);
2171 
2172         /* physical address: used for pause frames */
2173         gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2174         /* virtual address for data */
2175         gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2176 
2177         /* enable interrupt mask for counter overflows */
2178         gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2179         gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2180         gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2181 
2182         /* Initialize Mac Fifo */
2183 
2184         /* Configure Rx MAC FIFO */
2185         skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2186         reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2187 
2188         /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2189         if (is_yukon_lite_a0(hw))
2190                 reg &= ~GMF_RX_F_FL_ON;
2191 
2192         skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2193         skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2194         /*
2195          * because Pause Packet Truncation in GMAC is not working
2196          * we have to increase the Flush Threshold to 64 bytes
2197          * in order to flush pause packets in Rx FIFO on Yukon-1
2198          */
2199         skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2200 
2201         /* Configure Tx MAC FIFO */
2202         skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2203         skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2204 }
2205 
2206 /* Go into power down mode */
2207 static void yukon_suspend(struct skge_hw *hw, int port)
2208 {
2209         u16 ctrl;
2210 
2211         ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2212         ctrl |= PHY_M_PC_POL_R_DIS;
2213         gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2214 
2215         ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2216         ctrl |= PHY_CT_RESET;
2217         gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2218 
2219         /* switch IEEE compatible power down mode on */
2220         ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2221         ctrl |= PHY_CT_PDOWN;
2222         gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2223 }
2224 
2225 static void yukon_stop(struct skge_port *skge)
2226 {
2227         struct skge_hw *hw = skge->hw;
2228         int port = skge->port;
2229 
2230         skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2231         yukon_reset(hw, port);
2232 
2233         gma_write16(hw, port, GM_GP_CTRL,
2234                          gma_read16(hw, port, GM_GP_CTRL)
2235                          & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2236         gma_read16(hw, port, GM_GP_CTRL);
2237 
2238         yukon_suspend(hw, port);
2239 
2240         /* set GPHY Control reset */
2241         skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2242         skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2243 }
2244 
2245 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2246 {
2247         struct skge_hw *hw = skge->hw;
2248         int port = skge->port;
2249         int i;
2250 
2251         data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2252                 | gma_read32(hw, port, GM_TXO_OK_LO);
2253         data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2254                 | gma_read32(hw, port, GM_RXO_OK_LO);
2255 
2256         for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2257                 data[i] = gma_read32(hw, port,
2258                                           skge_stats[i].gma_offset);
2259 }
2260 
2261 static void yukon_mac_intr(struct skge_hw *hw, int port)
2262 {
2263         struct net_device *dev = hw->dev[port];
2264         struct skge_port *skge = netdev_priv(dev);
2265         u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2266 
2267         netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2268                      "mac interrupt status 0x%x\n", status);
2269 
2270         if (status & GM_IS_RX_FF_OR) {
2271                 ++dev->stats.rx_fifo_errors;
2272                 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2273         }
2274 
2275         if (status & GM_IS_TX_FF_UR) {
2276                 ++dev->stats.tx_fifo_errors;
2277                 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2278         }
2279 
2280 }
2281 
2282 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2283 {
2284         switch (aux & PHY_M_PS_SPEED_MSK) {
2285         case PHY_M_PS_SPEED_1000:
2286                 return SPEED_1000;
2287         case PHY_M_PS_SPEED_100:
2288                 return SPEED_100;
2289         default:
2290                 return SPEED_10;
2291         }
2292 }
2293 
2294 static void yukon_link_up(struct skge_port *skge)
2295 {
2296         struct skge_hw *hw = skge->hw;
2297         int port = skge->port;
2298         u16 reg;
2299 
2300         /* Enable Transmit FIFO Underrun */
2301         skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2302 
2303         reg = gma_read16(hw, port, GM_GP_CTRL);
2304         if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2305                 reg |= GM_GPCR_DUP_FULL;
2306 
2307         /* enable Rx/Tx */
2308         reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2309         gma_write16(hw, port, GM_GP_CTRL, reg);
2310 
2311         gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2312         skge_link_up(skge);
2313 }
2314 
2315 static void yukon_link_down(struct skge_port *skge)
2316 {
2317         struct skge_hw *hw = skge->hw;
2318         int port = skge->port;
2319         u16 ctrl;
2320 
2321         ctrl = gma_read16(hw, port, GM_GP_CTRL);
2322         ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2323         gma_write16(hw, port, GM_GP_CTRL, ctrl);
2324 
2325         if (skge->flow_status == FLOW_STAT_REM_SEND) {
2326                 ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2327                 ctrl |= PHY_M_AN_ASP;
2328                 /* restore Asymmetric Pause bit */
2329                 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2330         }
2331 
2332         skge_link_down(skge);
2333 
2334         yukon_init(hw, port);
2335 }
2336 
2337 static void yukon_phy_intr(struct skge_port *skge)
2338 {
2339         struct skge_hw *hw = skge->hw;
2340         int port = skge->port;
2341         const char *reason = NULL;
2342         u16 istatus, phystat;
2343 
2344         istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2345         phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2346 
2347         netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2348                      "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2349 
2350         if (istatus & PHY_M_IS_AN_COMPL) {
2351                 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2352                     & PHY_M_AN_RF) {
2353                         reason = "remote fault";
2354                         goto failed;
2355                 }
2356 
2357                 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2358                         reason = "master/slave fault";
2359                         goto failed;
2360                 }
2361 
2362                 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2363                         reason = "speed/duplex";
2364                         goto failed;
2365                 }
2366 
2367                 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2368                         ? DUPLEX_FULL : DUPLEX_HALF;
2369                 skge->speed = yukon_speed(hw, phystat);
2370 
2371                 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2372                 switch (phystat & PHY_M_PS_PAUSE_MSK) {
2373                 case PHY_M_PS_PAUSE_MSK:
2374                         skge->flow_status = FLOW_STAT_SYMMETRIC;
2375                         break;
2376                 case PHY_M_PS_RX_P_EN:
2377                         skge->flow_status = FLOW_STAT_REM_SEND;
2378                         break;
2379                 case PHY_M_PS_TX_P_EN:
2380                         skge->flow_status = FLOW_STAT_LOC_SEND;
2381                         break;
2382                 default:
2383                         skge->flow_status = FLOW_STAT_NONE;
2384                 }
2385 
2386                 if (skge->flow_status == FLOW_STAT_NONE ||
2387                     (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2388                         skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2389                 else
2390                         skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2391                 yukon_link_up(skge);
2392                 return;
2393         }
2394 
2395         if (istatus & PHY_M_IS_LSP_CHANGE)
2396                 skge->speed = yukon_speed(hw, phystat);
2397 
2398         if (istatus & PHY_M_IS_DUP_CHANGE)
2399                 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2400         if (istatus & PHY_M_IS_LST_CHANGE) {
2401                 if (phystat & PHY_M_PS_LINK_UP)
2402                         yukon_link_up(skge);
2403                 else
2404                         yukon_link_down(skge);
2405         }
2406         return;
2407  failed:
2408         pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2409 
2410         /* XXX restart autonegotiation? */
2411 }
2412 
2413 static void skge_phy_reset(struct skge_port *skge)
2414 {
2415         struct skge_hw *hw = skge->hw;
2416         int port = skge->port;
2417         struct net_device *dev = hw->dev[port];
2418 
2419         netif_stop_queue(skge->netdev);
2420         netif_carrier_off(skge->netdev);
2421 
2422         spin_lock_bh(&hw->phy_lock);
2423         if (is_genesis(hw)) {
2424                 genesis_reset(hw, port);
2425                 genesis_mac_init(hw, port);
2426         } else {
2427                 yukon_reset(hw, port);
2428                 yukon_init(hw, port);
2429         }
2430         spin_unlock_bh(&hw->phy_lock);
2431 
2432         skge_set_multicast(dev);
2433 }
2434 
2435 /* Basic MII support */
2436 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2437 {
2438         struct mii_ioctl_data *data = if_mii(ifr);
2439         struct skge_port *skge = netdev_priv(dev);
2440         struct skge_hw *hw = skge->hw;
2441         int err = -EOPNOTSUPP;
2442 
2443         if (!netif_running(dev))
2444                 return -ENODEV; /* Phy still in reset */
2445 
2446         switch (cmd) {
2447         case SIOCGMIIPHY:
2448                 data->phy_id = hw->phy_addr;
2449 
2450                 /* fallthru */
2451         case SIOCGMIIREG: {
2452                 u16 val = 0;
2453                 spin_lock_bh(&hw->phy_lock);
2454 
2455                 if (is_genesis(hw))
2456                         err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2457                 else
2458                         err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2459                 spin_unlock_bh(&hw->phy_lock);
2460                 data->val_out = val;
2461                 break;
2462         }
2463 
2464         case SIOCSMIIREG:
2465                 spin_lock_bh(&hw->phy_lock);
2466                 if (is_genesis(hw))
2467                         err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2468                                    data->val_in);
2469                 else
2470                         err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2471                                    data->val_in);
2472                 spin_unlock_bh(&hw->phy_lock);
2473                 break;
2474         }
2475         return err;
2476 }
2477 
2478 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2479 {
2480         u32 end;
2481 
2482         start /= 8;
2483         len /= 8;
2484         end = start + len - 1;
2485 
2486         skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2487         skge_write32(hw, RB_ADDR(q, RB_START), start);
2488         skge_write32(hw, RB_ADDR(q, RB_WP), start);
2489         skge_write32(hw, RB_ADDR(q, RB_RP), start);
2490         skge_write32(hw, RB_ADDR(q, RB_END), end);
2491 
2492         if (q == Q_R1 || q == Q_R2) {
2493                 /* Set thresholds on receive queue's */
2494                 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2495                              start + (2*len)/3);
2496                 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2497                              start + (len/3));
2498         } else {
2499                 /* Enable store & forward on Tx queue's because
2500                  * Tx FIFO is only 4K on Genesis and 1K on Yukon
2501                  */
2502                 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2503         }
2504 
2505         skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2506 }
2507 
2508 /* Setup Bus Memory Interface */
2509 static void skge_qset(struct skge_port *skge, u16 q,
2510                       const struct skge_element *e)
2511 {
2512         struct skge_hw *hw = skge->hw;
2513         u32 watermark = 0x600;
2514         u64 base = skge->dma + (e->desc - skge->mem);
2515 
2516         /* optimization to reduce window on 32bit/33mhz */
2517         if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2518                 watermark /= 2;
2519 
2520         skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2521         skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2522         skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2523         skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2524 }
2525 
2526 static int skge_up(struct net_device *dev)
2527 {
2528         struct skge_port *skge = netdev_priv(dev);
2529         struct skge_hw *hw = skge->hw;
2530         int port = skge->port;
2531         u32 chunk, ram_addr;
2532         size_t rx_size, tx_size;
2533         int err;
2534 
2535         if (!is_valid_ether_addr(dev->dev_addr))
2536                 return -EINVAL;
2537 
2538         netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2539 
2540         if (dev->mtu > RX_BUF_SIZE)
2541                 skge->rx_buf_size = dev->mtu + ETH_HLEN;
2542         else
2543                 skge->rx_buf_size = RX_BUF_SIZE;
2544 
2545 
2546         rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2547         tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2548         skge->mem_size = tx_size + rx_size;
2549         skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2550         if (!skge->mem)
2551                 return -ENOMEM;
2552 
2553         BUG_ON(skge->dma & 7);
2554 
2555         if (upper_32_bits(skge->dma) != upper_32_bits(skge->dma + skge->mem_size)) {
2556                 dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
2557                 err = -EINVAL;
2558                 goto free_pci_mem;
2559         }
2560 
2561         err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2562         if (err)
2563                 goto free_pci_mem;
2564 
2565         err = skge_rx_fill(dev);
2566         if (err)
2567                 goto free_rx_ring;
2568 
2569         err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2570                               skge->dma + rx_size);
2571         if (err)
2572                 goto free_rx_ring;
2573 
2574         if (hw->ports == 1) {
2575                 err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
2576                                   dev->name, hw);
2577                 if (err) {
2578                         netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
2579                                    hw->pdev->irq, err);
2580                         goto free_tx_ring;
2581                 }
2582         }
2583 
2584         /* Initialize MAC */
2585         netif_carrier_off(dev);
2586         spin_lock_bh(&hw->phy_lock);
2587         if (is_genesis(hw))
2588                 genesis_mac_init(hw, port);
2589         else
2590                 yukon_mac_init(hw, port);
2591         spin_unlock_bh(&hw->phy_lock);
2592 
2593         /* Configure RAMbuffers - equally between ports and tx/rx */
2594         chunk = (hw->ram_size  - hw->ram_offset) / (hw->ports * 2);
2595         ram_addr = hw->ram_offset + 2 * chunk * port;
2596 
2597         skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2598         skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2599 
2600         BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2601         skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2602         skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2603 
2604         /* Start receiver BMU */
2605         wmb();
2606         skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2607         skge_led(skge, LED_MODE_ON);
2608 
2609         spin_lock_irq(&hw->hw_lock);
2610         hw->intr_mask |= portmask[port];
2611         skge_write32(hw, B0_IMSK, hw->intr_mask);
2612         skge_read32(hw, B0_IMSK);
2613         spin_unlock_irq(&hw->hw_lock);
2614 
2615         napi_enable(&skge->napi);
2616 
2617         skge_set_multicast(dev);
2618 
2619         return 0;
2620 
2621  free_tx_ring:
2622         kfree(skge->tx_ring.start);
2623  free_rx_ring:
2624         skge_rx_clean(skge);
2625         kfree(skge->rx_ring.start);
2626  free_pci_mem:
2627         pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2628         skge->mem = NULL;
2629 
2630         return err;
2631 }
2632 
2633 /* stop receiver */
2634 static void skge_rx_stop(struct skge_hw *hw, int port)
2635 {
2636         skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2637         skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2638                      RB_RST_SET|RB_DIS_OP_MD);
2639         skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2640 }
2641 
2642 static int skge_down(struct net_device *dev)
2643 {
2644         struct skge_port *skge = netdev_priv(dev);
2645         struct skge_hw *hw = skge->hw;
2646         int port = skge->port;
2647 
2648         if (!skge->mem)
2649                 return 0;
2650 
2651         netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2652 
2653         netif_tx_disable(dev);
2654 
2655         if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
2656                 del_timer_sync(&skge->link_timer);
2657 
2658         napi_disable(&skge->napi);
2659         netif_carrier_off(dev);
2660 
2661         spin_lock_irq(&hw->hw_lock);
2662         hw->intr_mask &= ~portmask[port];
2663         skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
2664         skge_read32(hw, B0_IMSK);
2665         spin_unlock_irq(&hw->hw_lock);
2666 
2667         if (hw->ports == 1)
2668                 free_irq(hw->pdev->irq, hw);
2669 
2670         skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
2671         if (is_genesis(hw))
2672                 genesis_stop(skge);
2673         else
2674                 yukon_stop(skge);
2675 
2676         /* Stop transmitter */
2677         skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2678         skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2679                      RB_RST_SET|RB_DIS_OP_MD);
2680 
2681 
2682         /* Disable Force Sync bit and Enable Alloc bit */
2683         skge_write8(hw, SK_REG(port, TXA_CTRL),
2684                     TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2685 
2686         /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2687         skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2688         skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2689 
2690         /* Reset PCI FIFO */
2691         skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2692         skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2693 
2694         /* Reset the RAM Buffer async Tx queue */
2695         skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2696 
2697         skge_rx_stop(hw, port);
2698 
2699         if (is_genesis(hw)) {
2700                 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2701                 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2702         } else {
2703                 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2704                 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2705         }
2706 
2707         skge_led(skge, LED_MODE_OFF);
2708 
2709         netif_tx_lock_bh(dev);
2710         skge_tx_clean(dev);
2711         netif_tx_unlock_bh(dev);
2712 
2713         skge_rx_clean(skge);
2714 
2715         kfree(skge->rx_ring.start);
2716         kfree(skge->tx_ring.start);
2717         pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2718         skge->mem = NULL;
2719         return 0;
2720 }
2721 
2722 static inline int skge_avail(const struct skge_ring *ring)
2723 {
2724         smp_mb();
2725         return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2726                 + (ring->to_clean - ring->to_use) - 1;
2727 }
2728 
2729 static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2730                                    struct net_device *dev)
2731 {
2732         struct skge_port *skge = netdev_priv(dev);
2733         struct skge_hw *hw = skge->hw;
2734         struct skge_element *e;
2735         struct skge_tx_desc *td;
2736         int i;
2737         u32 control, len;
2738         dma_addr_t map;
2739 
2740         if (skb_padto(skb, ETH_ZLEN))
2741                 return NETDEV_TX_OK;
2742 
2743         if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2744                 return NETDEV_TX_BUSY;
2745 
2746         e = skge->tx_ring.to_use;
2747         td = e->desc;
2748         BUG_ON(td->control & BMU_OWN);
2749         e->skb = skb;
2750         len = skb_headlen(skb);
2751         map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2752         if (pci_dma_mapping_error(hw->pdev, map))
2753                 goto mapping_error;
2754 
2755         dma_unmap_addr_set(e, mapaddr, map);
2756         dma_unmap_len_set(e, maplen, len);
2757 
2758         td->dma_lo = lower_32_bits(map);
2759         td->dma_hi = upper_32_bits(map);
2760 
2761         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2762                 const int offset = skb_checksum_start_offset(skb);
2763 
2764                 /* This seems backwards, but it is what the sk98lin
2765                  * does.  Looks like hardware is wrong?
2766                  */
2767                 if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2768                     hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2769                         control = BMU_TCP_CHECK;
2770                 else
2771                         control = BMU_UDP_CHECK;
2772 
2773                 td->csum_offs = 0;
2774                 td->csum_start = offset;
2775                 td->csum_write = offset + skb->csum_offset;
2776         } else
2777                 control = BMU_CHECK;
2778 
2779         if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2780                 control |= BMU_EOF | BMU_IRQ_EOF;
2781         else {
2782                 struct skge_tx_desc *tf = td;
2783 
2784                 control |= BMU_STFWD;
2785                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2786                         const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2787 
2788                         map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
2789                                                skb_frag_size(frag), DMA_TO_DEVICE);
2790                         if (dma_mapping_error(&hw->pdev->dev, map))
2791                                 goto mapping_unwind;
2792 
2793                         e = e->next;
2794                         e->skb = skb;
2795                         tf = e->desc;
2796                         BUG_ON(tf->control & BMU_OWN);
2797 
2798                         tf->dma_lo = lower_32_bits(map);
2799                         tf->dma_hi = upper_32_bits(map);
2800                         dma_unmap_addr_set(e, mapaddr, map);
2801                         dma_unmap_len_set(e, maplen, skb_frag_size(frag));
2802 
2803                         tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
2804                 }
2805                 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2806         }
2807         /* Make sure all the descriptors written */
2808         wmb();
2809         td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2810         wmb();
2811 
2812         netdev_sent_queue(dev, skb->len);
2813 
2814         skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2815 
2816         netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2817                      "tx queued, slot %td, len %d\n",
2818                      e - skge->tx_ring.start, skb->len);
2819 
2820         skge->tx_ring.to_use = e->next;
2821         smp_wmb();
2822 
2823         if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2824                 netdev_dbg(dev, "transmit queue full\n");
2825                 netif_stop_queue(dev);
2826         }
2827 
2828         return NETDEV_TX_OK;
2829 
2830 mapping_unwind:
2831         e = skge->tx_ring.to_use;
2832         pci_unmap_single(hw->pdev,
2833                          dma_unmap_addr(e, mapaddr),
2834                          dma_unmap_len(e, maplen),
2835                          PCI_DMA_TODEVICE);
2836         while (i-- > 0) {
2837                 e = e->next;
2838                 pci_unmap_page(hw->pdev,
2839                                dma_unmap_addr(e, mapaddr),
2840                                dma_unmap_len(e, maplen),
2841                                PCI_DMA_TODEVICE);
2842         }
2843 
2844 mapping_error:
2845         if (net_ratelimit())
2846                 dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name);
2847         dev_kfree_skb_any(skb);
2848         return NETDEV_TX_OK;
2849 }
2850 
2851 
2852 /* Free resources associated with this reing element */
2853 static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e,
2854                                  u32 control)
2855 {
2856         /* skb header vs. fragment */
2857         if (control & BMU_STF)
2858                 pci_unmap_single(pdev, dma_unmap_addr(e, mapaddr),
2859                                  dma_unmap_len(e, maplen),
2860                                  PCI_DMA_TODEVICE);
2861         else
2862                 pci_unmap_page(pdev, dma_unmap_addr(e, mapaddr),
2863                                dma_unmap_len(e, maplen),
2864                                PCI_DMA_TODEVICE);
2865 }
2866 
2867 /* Free all buffers in transmit ring */
2868 static void skge_tx_clean(struct net_device *dev)
2869 {
2870         struct skge_port *skge = netdev_priv(dev);
2871         struct skge_element *e;
2872 
2873         for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2874                 struct skge_tx_desc *td = e->desc;
2875 
2876                 skge_tx_unmap(skge->hw->pdev, e, td->control);
2877 
2878                 if (td->control & BMU_EOF)
2879                         dev_kfree_skb(e->skb);
2880                 td->control = 0;
2881         }
2882 
2883         netdev_reset_queue(dev);
2884         skge->tx_ring.to_clean = e;
2885 }
2886 
2887 static void skge_tx_timeout(struct net_device *dev)
2888 {
2889         struct skge_port *skge = netdev_priv(dev);
2890 
2891         netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2892 
2893         skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2894         skge_tx_clean(dev);
2895         netif_wake_queue(dev);
2896 }
2897 
2898 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2899 {
2900         int err;
2901 
2902         if (!netif_running(dev)) {
2903                 dev->mtu = new_mtu;
2904                 return 0;
2905         }
2906 
2907         skge_down(dev);
2908 
2909         dev->mtu = new_mtu;
2910 
2911         err = skge_up(dev);
2912         if (err)
2913                 dev_close(dev);
2914 
2915         return err;
2916 }
2917 
2918 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2919 
2920 static void genesis_add_filter(u8 filter[8], const u8 *addr)
2921 {
2922         u32 crc, bit;
2923 
2924         crc = ether_crc_le(ETH_ALEN, addr);
2925         bit = ~crc & 0x3f;
2926         filter[bit/8] |= 1 << (bit%8);
2927 }
2928 
2929 static void genesis_set_multicast(struct net_device *dev)
2930 {
2931         struct skge_port *skge = netdev_priv(dev);
2932         struct skge_hw *hw = skge->hw;
2933         int port = skge->port;
2934         struct netdev_hw_addr *ha;
2935         u32 mode;
2936         u8 filter[8];
2937 
2938         mode = xm_read32(hw, port, XM_MODE);
2939         mode |= XM_MD_ENA_HASH;
2940         if (dev->flags & IFF_PROMISC)
2941                 mode |= XM_MD_ENA_PROM;
2942         else
2943                 mode &= ~XM_MD_ENA_PROM;
2944 
2945         if (dev->flags & IFF_ALLMULTI)
2946                 memset(filter, 0xff, sizeof(filter));
2947         else {
2948                 memset(filter, 0, sizeof(filter));
2949 
2950                 if (skge->flow_status == FLOW_STAT_REM_SEND ||
2951                     skge->flow_status == FLOW_STAT_SYMMETRIC)
2952                         genesis_add_filter(filter, pause_mc_addr);
2953 
2954                 netdev_for_each_mc_addr(ha, dev)
2955                         genesis_add_filter(filter, ha->addr);
2956         }
2957 
2958         xm_write32(hw, port, XM_MODE, mode);
2959         xm_outhash(hw, port, XM_HSM, filter);
2960 }
2961 
2962 static void yukon_add_filter(u8 filter[8], const u8 *addr)
2963 {
2964          u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2965          filter[bit/8] |= 1 << (bit%8);
2966 }
2967 
2968 static void yukon_set_multicast(struct net_device *dev)
2969 {
2970         struct skge_port *skge = netdev_priv(dev);
2971         struct skge_hw *hw = skge->hw;
2972         int port = skge->port;
2973         struct netdev_hw_addr *ha;
2974         int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2975                         skge->flow_status == FLOW_STAT_SYMMETRIC);
2976         u16 reg;
2977         u8 filter[8];
2978 
2979         memset(filter, 0, sizeof(filter));
2980 
2981         reg = gma_read16(hw, port, GM_RX_CTRL);
2982         reg |= GM_RXCR_UCF_ENA;
2983 
2984         if (dev->flags & IFF_PROMISC)           /* promiscuous */
2985                 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2986         else if (dev->flags & IFF_ALLMULTI)     /* all multicast */
2987                 memset(filter, 0xff, sizeof(filter));
2988         else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
2989                 reg &= ~GM_RXCR_MCF_ENA;
2990         else {
2991                 reg |= GM_RXCR_MCF_ENA;
2992 
2993                 if (rx_pause)
2994                         yukon_add_filter(filter, pause_mc_addr);
2995 
2996                 netdev_for_each_mc_addr(ha, dev)
2997                         yukon_add_filter(filter, ha->addr);
2998         }
2999 
3000 
3001         gma_write16(hw, port, GM_MC_ADDR_H1,
3002                          (u16)filter[0] | ((u16)filter[1] << 8));
3003         gma_write16(hw, port, GM_MC_ADDR_H2,
3004                          (u16)filter[2] | ((u16)filter[3] << 8));
3005         gma_write16(hw, port, GM_MC_ADDR_H3,
3006                          (u16)filter[4] | ((u16)filter[5] << 8));
3007         gma_write16(hw, port, GM_MC_ADDR_H4,
3008                          (u16)filter[6] | ((u16)filter[7] << 8));
3009 
3010         gma_write16(hw, port, GM_RX_CTRL, reg);
3011 }
3012 
3013 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
3014 {
3015         if (is_genesis(hw))
3016                 return status >> XMR_FS_LEN_SHIFT;
3017         else
3018                 return status >> GMR_FS_LEN_SHIFT;
3019 }
3020 
3021 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
3022 {
3023         if (is_genesis(hw))
3024                 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
3025         else
3026                 return (status & GMR_FS_ANY_ERR) ||
3027                         (status & GMR_FS_RX_OK) == 0;
3028 }
3029 
3030 static void skge_set_multicast(struct net_device *dev)
3031 {
3032         struct skge_port *skge = netdev_priv(dev);
3033 
3034         if (is_genesis(skge->hw))
3035                 genesis_set_multicast(dev);
3036         else
3037                 yukon_set_multicast(dev);
3038 
3039 }
3040 
3041 
3042 /* Get receive buffer from descriptor.
3043  * Handles copy of small buffers and reallocation failures
3044  */
3045 static struct sk_buff *skge_rx_get(struct net_device *dev,
3046                                    struct skge_element *e,
3047                                    u32 control, u32 status, u16 csum)
3048 {
3049         struct skge_port *skge = netdev_priv(dev);
3050         struct sk_buff *skb;
3051         u16 len = control & BMU_BBC;
3052 
3053         netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3054                      "rx slot %td status 0x%x len %d\n",
3055                      e - skge->rx_ring.start, status, len);
3056 
3057         if (len > skge->rx_buf_size)
3058                 goto error;
3059 
3060         if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3061                 goto error;
3062 
3063         if (bad_phy_status(skge->hw, status))
3064                 goto error;
3065 
3066         if (phy_length(skge->hw, status) != len)
3067                 goto error;
3068 
3069         if (len < RX_COPY_THRESHOLD) {
3070                 skb = netdev_alloc_skb_ip_align(dev, len);
3071                 if (!skb)
3072                         goto resubmit;
3073 
3074                 pci_dma_sync_single_for_cpu(skge->hw->pdev,
3075                                             dma_unmap_addr(e, mapaddr),
3076                                             dma_unmap_len(e, maplen),
3077                                             PCI_DMA_FROMDEVICE);
3078                 skb_copy_from_linear_data(e->skb, skb->data, len);
3079                 pci_dma_sync_single_for_device(skge->hw->pdev,
3080                                                dma_unmap_addr(e, mapaddr),
3081                                                dma_unmap_len(e, maplen),
3082                                                PCI_DMA_FROMDEVICE);
3083                 skge_rx_reuse(e, skge->rx_buf_size);
3084         } else {
3085                 struct skge_element ee;
3086                 struct sk_buff *nskb;
3087 
3088                 nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3089                 if (!nskb)
3090                         goto resubmit;
3091 
3092                 ee = *e;
3093 
3094                 skb = ee.skb;
3095                 prefetch(skb->data);
3096 
3097                 if (skge_rx_setup(skge, e, nskb, skge->rx_buf_size) < 0) {
3098                         dev_kfree_skb(nskb);
3099                         goto resubmit;
3100                 }
3101 
3102                 pci_unmap_single(skge->hw->pdev,
3103                                  dma_unmap_addr(&ee, mapaddr),
3104                                  dma_unmap_len(&ee, maplen),
3105                                  PCI_DMA_FROMDEVICE);
3106         }
3107 
3108         skb_put(skb, len);
3109 
3110         if (dev->features & NETIF_F_RXCSUM) {
3111                 skb->csum = le16_to_cpu(csum);
3112                 skb->ip_summed = CHECKSUM_COMPLETE;
3113         }
3114 
3115         skb->protocol = eth_type_trans(skb, dev);
3116 
3117         return skb;
3118 error:
3119 
3120         netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3121                      "rx err, slot %td control 0x%x status 0x%x\n",
3122                      e - skge->rx_ring.start, control, status);
3123 
3124         if (is_genesis(skge->hw)) {
3125                 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3126                         dev->stats.rx_length_errors++;
3127                 if (status & XMR_FS_FRA_ERR)
3128                         dev->stats.rx_frame_errors++;
3129                 if (status & XMR_FS_FCS_ERR)
3130                         dev->stats.rx_crc_errors++;
3131         } else {
3132                 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3133                         dev->stats.rx_length_errors++;
3134                 if (status & GMR_FS_FRAGMENT)
3135                         dev->stats.rx_frame_errors++;
3136                 if (status & GMR_FS_CRC_ERR)
3137                         dev->stats.rx_crc_errors++;
3138         }
3139 
3140 resubmit:
3141         skge_rx_reuse(e, skge->rx_buf_size);
3142         return NULL;
3143 }
3144 
3145 /* Free all buffers in Tx ring which are no longer owned by device */
3146 static void skge_tx_done(struct net_device *dev)
3147 {
3148         struct skge_port *skge = netdev_priv(dev);
3149         struct skge_ring *ring = &skge->tx_ring;
3150         struct skge_element *e;
3151         unsigned int bytes_compl = 0, pkts_compl = 0;
3152 
3153         skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3154 
3155         for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3156                 u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3157 
3158                 if (control & BMU_OWN)
3159                         break;
3160 
3161                 skge_tx_unmap(skge->hw->pdev, e, control);
3162 
3163                 if (control & BMU_EOF) {
3164                         netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
3165                                      "tx done slot %td\n",
3166                                      e - skge->tx_ring.start);
3167 
3168                         pkts_compl++;
3169                         bytes_compl += e->skb->len;
3170 
3171                         dev_consume_skb_any(e->skb);
3172                 }
3173         }
3174         netdev_completed_queue(dev, pkts_compl, bytes_compl);
3175         skge->tx_ring.to_clean = e;
3176 
3177         /* Can run lockless until we need to synchronize to restart queue. */
3178         smp_mb();
3179 
3180         if (unlikely(netif_queue_stopped(dev) &&
3181                      skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3182                 netif_tx_lock(dev);
3183                 if (unlikely(netif_queue_stopped(dev) &&
3184                              skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3185                         netif_wake_queue(dev);
3186 
3187                 }
3188                 netif_tx_unlock(dev);
3189         }
3190 }
3191 
3192 static int skge_poll(struct napi_struct *napi, int budget)
3193 {
3194         struct skge_port *skge = container_of(napi, struct skge_port, napi);
3195         struct net_device *dev = skge->netdev;
3196         struct skge_hw *hw = skge->hw;
3197         struct skge_ring *ring = &skge->rx_ring;
3198         struct skge_element *e;
3199         int work_done = 0;
3200 
3201         skge_tx_done(dev);
3202 
3203         skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3204 
3205         for (e = ring->to_clean; prefetch(e->next), work_done < budget; e = e->next) {
3206                 struct skge_rx_desc *rd = e->desc;
3207                 struct sk_buff *skb;
3208                 u32 control;
3209 
3210                 rmb();
3211                 control = rd->control;
3212                 if (control & BMU_OWN)
3213                         break;
3214 
3215                 skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3216                 if (likely(skb)) {
3217                         napi_gro_receive(napi, skb);
3218                         ++work_done;
3219                 }
3220         }
3221         ring->to_clean = e;
3222 
3223         /* restart receiver */
3224         wmb();
3225         skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3226 
3227         if (work_done < budget && napi_complete_done(napi, work_done)) {
3228                 unsigned long flags;
3229 
3230                 spin_lock_irqsave(&hw->hw_lock, flags);
3231                 hw->intr_mask |= napimask[skge->port];
3232                 skge_write32(hw, B0_IMSK, hw->intr_mask);
3233                 skge_read32(hw, B0_IMSK);
3234                 spin_unlock_irqrestore(&hw->hw_lock, flags);
3235         }
3236 
3237         return work_done;
3238 }
3239 
3240 /* Parity errors seem to happen when Genesis is connected to a switch
3241  * with no other ports present. Heartbeat error??
3242  */
3243 static void skge_mac_parity(struct skge_hw *hw, int port)
3244 {
3245         struct net_device *dev = hw->dev[port];
3246 
3247         ++dev->stats.tx_heartbeat_errors;
3248 
3249         if (is_genesis(hw))
3250                 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3251                              MFF_CLR_PERR);
3252         else
3253                 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3254                 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3255                             (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3256                             ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3257 }
3258 
3259 static void skge_mac_intr(struct skge_hw *hw, int port)
3260 {
3261         if (is_genesis(hw))
3262                 genesis_mac_intr(hw, port);
3263         else
3264                 yukon_mac_intr(hw, port);
3265 }
3266 
3267 /* Handle device specific framing and timeout interrupts */
3268 static void skge_error_irq(struct skge_hw *hw)
3269 {
3270         struct pci_dev *pdev = hw->pdev;
3271         u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3272 
3273         if (is_genesis(hw)) {
3274                 /* clear xmac errors */
3275                 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3276                         skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3277                 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3278                         skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3279         } else {
3280                 /* Timestamp (unused) overflow */
3281                 if (hwstatus & IS_IRQ_TIST_OV)
3282                         skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3283         }
3284 
3285         if (hwstatus & IS_RAM_RD_PAR) {
3286                 dev_err(&pdev->dev, "Ram read data parity error\n");
3287                 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3288         }
3289 
3290         if (hwstatus & IS_RAM_WR_PAR) {
3291                 dev_err(&pdev->dev, "Ram write data parity error\n");
3292                 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3293         }
3294 
3295         if (hwstatus & IS_M1_PAR_ERR)
3296                 skge_mac_parity(hw, 0);
3297 
3298         if (hwstatus & IS_M2_PAR_ERR)
3299                 skge_mac_parity(hw, 1);
3300 
3301         if (hwstatus & IS_R1_PAR_ERR) {
3302                 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3303                         hw->dev[0]->name);
3304                 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3305         }
3306 
3307         if (hwstatus & IS_R2_PAR_ERR) {
3308                 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3309                         hw->dev[1]->name);
3310                 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3311         }
3312 
3313         if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3314                 u16 pci_status, pci_cmd;
3315 
3316                 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3317                 pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3318 
3319                 dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3320                         pci_cmd, pci_status);
3321 
3322                 /* Write the error bits back to clear them. */
3323                 pci_status &= PCI_STATUS_ERROR_BITS;
3324                 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3325                 pci_write_config_word(pdev, PCI_COMMAND,
3326                                       pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3327                 pci_write_config_word(pdev, PCI_STATUS, pci_status);
3328                 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3329 
3330                 /* if error still set then just ignore it */
3331                 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3332                 if (hwstatus & IS_IRQ_STAT) {
3333                         dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3334                         hw->intr_mask &= ~IS_HW_ERR;
3335                 }
3336         }
3337 }
3338 
3339 /*
3340  * Interrupt from PHY are handled in tasklet (softirq)
3341  * because accessing phy registers requires spin wait which might
3342  * cause excess interrupt latency.
3343  */
3344 static void skge_extirq(unsigned long arg)
3345 {
3346         struct skge_hw *hw = (struct skge_hw *) arg;
3347         int port;
3348 
3349         for (port = 0; port < hw->ports; port++) {
3350                 struct net_device *dev = hw->dev[port];
3351 
3352                 if (netif_running(dev)) {
3353                         struct skge_port *skge = netdev_priv(dev);
3354 
3355                         spin_lock(&hw->phy_lock);
3356                         if (!is_genesis(hw))
3357                                 yukon_phy_intr(skge);
3358                         else if (hw->phy_type == SK_PHY_BCOM)
3359                                 bcom_phy_intr(skge);
3360                         spin_unlock(&hw->phy_lock);
3361                 }
3362         }
3363 
3364         spin_lock_irq(&hw->hw_lock);
3365         hw->intr_mask |= IS_EXT_REG;
3366         skge_write32(hw, B0_IMSK, hw->intr_mask);
3367         skge_read32(hw, B0_IMSK);
3368         spin_unlock_irq(&hw->hw_lock);
3369 }
3370 
3371 static irqreturn_t skge_intr(int irq, void *dev_id)
3372 {
3373         struct skge_hw *hw = dev_id;
3374         u32 status;
3375         int handled = 0;
3376 
3377         spin_lock(&hw->hw_lock);
3378         /* Reading this register masks IRQ */
3379         status = skge_read32(hw, B0_SP_ISRC);
3380         if (status == 0 || status == ~0)
3381                 goto out;
3382 
3383         handled = 1;
3384         status &= hw->intr_mask;
3385         if (status & IS_EXT_REG) {
3386                 hw->intr_mask &= ~IS_EXT_REG;
3387                 tasklet_schedule(&hw->phy_task);
3388         }
3389 
3390         if (status & (IS_XA1_F|IS_R1_F)) {
3391                 struct skge_port *skge = netdev_priv(hw->dev[0]);
3392                 hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3393                 napi_schedule(&skge->napi);
3394         }
3395 
3396         if (status & IS_PA_TO_TX1)
3397                 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3398 
3399         if (status & IS_PA_TO_RX1) {
3400                 ++hw->dev[0]->stats.rx_over_errors;
3401                 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3402         }
3403 
3404 
3405         if (status & IS_MAC1)
3406                 skge_mac_intr(hw, 0);
3407 
3408         if (hw->dev[1]) {
3409                 struct skge_port *skge = netdev_priv(hw->dev[1]);
3410 
3411                 if (status & (IS_XA2_F|IS_R2_F)) {
3412                         hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3413                         napi_schedule(&skge->napi);
3414                 }
3415 
3416                 if (status & IS_PA_TO_RX2) {
3417                         ++hw->dev[1]->stats.rx_over_errors;
3418                         skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3419                 }
3420 
3421                 if (status & IS_PA_TO_TX2)
3422                         skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3423 
3424                 if (status & IS_MAC2)
3425                         skge_mac_intr(hw, 1);
3426         }
3427 
3428         if (status & IS_HW_ERR)
3429                 skge_error_irq(hw);
3430 out:
3431         skge_write32(hw, B0_IMSK, hw->intr_mask);
3432         skge_read32(hw, B0_IMSK);
3433         spin_unlock(&hw->hw_lock);
3434 
3435         return IRQ_RETVAL(handled);
3436 }
3437 
3438 #ifdef CONFIG_NET_POLL_CONTROLLER
3439 static void skge_netpoll(struct net_device *dev)
3440 {
3441         struct skge_port *skge = netdev_priv(dev);
3442 
3443         disable_irq(dev->irq);
3444         skge_intr(dev->irq, skge->hw);
3445         enable_irq(dev->irq);
3446 }
3447 #endif
3448 
3449 static int skge_set_mac_address(struct net_device *dev, void *p)
3450 {
3451         struct skge_port *skge = netdev_priv(dev);
3452         struct skge_hw *hw = skge->hw;
3453         unsigned port = skge->port;
3454         const struct sockaddr *addr = p;
3455         u16 ctrl;
3456 
3457         if (!is_valid_ether_addr(addr->sa_data))
3458                 return -EADDRNOTAVAIL;
3459 
3460         memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3461 
3462         if (!netif_running(dev)) {
3463                 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3464                 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3465         } else {
3466                 /* disable Rx */
3467                 spin_lock_bh(&hw->phy_lock);
3468                 ctrl = gma_read16(hw, port, GM_GP_CTRL);
3469                 gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3470 
3471                 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3472                 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3473 
3474                 if (is_genesis(hw))
3475                         xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3476                 else {
3477                         gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3478                         gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3479                 }
3480 
3481                 gma_write16(hw, port, GM_GP_CTRL, ctrl);
3482                 spin_unlock_bh(&hw->phy_lock);
3483         }
3484 
3485         return 0;
3486 }
3487 
3488 static const struct {
3489         u8 id;
3490         const char *name;
3491 } skge_chips[] = {
3492         { CHIP_ID_GENESIS,      "Genesis" },
3493         { CHIP_ID_YUKON,         "Yukon" },
3494         { CHIP_ID_YUKON_LITE,    "Yukon-Lite"},
3495         { CHIP_ID_YUKON_LP,      "Yukon-LP"},
3496 };
3497 
3498 static const char *skge_board_name(const struct skge_hw *hw)
3499 {
3500         int i;
3501         static char buf[16];
3502 
3503         for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3504                 if (skge_chips[i].id == hw->chip_id)
3505                         return skge_chips[i].name;
3506 
3507         snprintf(buf, sizeof(buf), "chipid 0x%x", hw->chip_id);
3508         return buf;
3509 }
3510 
3511 
3512 /*
3513  * Setup the board data structure, but don't bring up
3514  * the port(s)
3515  */
3516 static int skge_reset(struct skge_hw *hw)
3517 {
3518         u32 reg;
3519         u16 ctst, pci_status;
3520         u8 t8, mac_cfg, pmd_type;
3521         int i;
3522 
3523         ctst = skge_read16(hw, B0_CTST);
3524 
3525         /* do a SW reset */
3526         skge_write8(hw, B0_CTST, CS_RST_SET);
3527         skge_write8(hw, B0_CTST, CS_RST_CLR);
3528 
3529         /* clear PCI errors, if any */
3530         skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3531         skge_write8(hw, B2_TST_CTRL2, 0);
3532 
3533         pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3534         pci_write_config_word(hw->pdev, PCI_STATUS,
3535                               pci_status | PCI_STATUS_ERROR_BITS);
3536         skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3537         skge_write8(hw, B0_CTST, CS_MRST_CLR);
3538 
3539         /* restore CLK_RUN bits (for Yukon-Lite) */
3540         skge_write16(hw, B0_CTST,
3541                      ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3542 
3543         hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3544         hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3545         pmd_type = skge_read8(hw, B2_PMD_TYP);
3546         hw->copper = (pmd_type == 'T' || pmd_type == '1');
3547 
3548         switch (hw->chip_id) {
3549         case CHIP_ID_GENESIS:
3550 #ifdef CONFIG_SKGE_GENESIS
3551                 switch (hw->phy_type) {
3552                 case SK_PHY_XMAC:
3553                         hw->phy_addr = PHY_ADDR_XMAC;
3554                         break;
3555                 case SK_PHY_BCOM:
3556                         hw->phy_addr = PHY_ADDR_BCOM;
3557                         break;
3558                 default:
3559                         dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3560                                hw->phy_type);
3561                         return -EOPNOTSUPP;
3562                 }
3563                 break;
3564 #else
3565                 dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
3566                 return -EOPNOTSUPP;
3567 #endif
3568 
3569         case CHIP_ID_YUKON:
3570         case CHIP_ID_YUKON_LITE:
3571         case CHIP_ID_YUKON_LP:
3572                 if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3573                         hw->copper = 1;
3574 
3575                 hw->phy_addr = PHY_ADDR_MARV;
3576                 break;
3577 
3578         default:
3579                 dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3580                        hw->chip_id);
3581                 return -EOPNOTSUPP;
3582         }
3583 
3584         mac_cfg = skge_read8(hw, B2_MAC_CFG);
3585         hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3586         hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3587 
3588         /* read the adapters RAM size */
3589         t8 = skge_read8(hw, B2_E_0);
3590         if (is_genesis(hw)) {
3591                 if (t8 == 3) {
3592                         /* special case: 4 x 64k x 36, offset = 0x80000 */
3593                         hw->ram_size = 0x100000;
3594                         hw->ram_offset = 0x80000;
3595                 } else
3596                         hw->ram_size = t8 * 512;
3597         } else if (t8 == 0)
3598                 hw->ram_size = 0x20000;
3599         else
3600                 hw->ram_size = t8 * 4096;
3601 
3602         hw->intr_mask = IS_HW_ERR;
3603 
3604         /* Use PHY IRQ for all but fiber based Genesis board */
3605         if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
3606                 hw->intr_mask |= IS_EXT_REG;
3607 
3608         if (is_genesis(hw))
3609                 genesis_init(hw);
3610         else {
3611                 /* switch power to VCC (WA for VAUX problem) */
3612                 skge_write8(hw, B0_POWER_CTRL,
3613                             PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3614 
3615                 /* avoid boards with stuck Hardware error bits */
3616                 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3617                     (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3618                         dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3619                         hw->intr_mask &= ~IS_HW_ERR;
3620                 }
3621 
3622                 /* Clear PHY COMA */
3623                 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3624                 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3625                 reg &= ~PCI_PHY_COMA;
3626                 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3627                 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3628 
3629 
3630                 for (i = 0; i < hw->ports; i++) {
3631                         skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3632                         skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3633                 }
3634         }
3635 
3636         /* turn off hardware timer (unused) */
3637         skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3638         skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3639         skge_write8(hw, B0_LED, LED_STAT_ON);
3640 
3641         /* enable the Tx Arbiters */
3642         for (i = 0; i < hw->ports; i++)
3643                 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3644 
3645         /* Initialize ram interface */
3646         skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3647 
3648         skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3649         skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3650         skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3651         skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3652         skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3653         skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3654         skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3655         skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3656         skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3657         skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3658         skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3659         skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3660 
3661         skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3662 
3663         /* Set interrupt moderation for Transmit only
3664          * Receive interrupts avoided by NAPI
3665          */
3666         skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3667         skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3668         skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3669 
3670         /* Leave irq disabled until first port is brought up. */
3671         skge_write32(hw, B0_IMSK, 0);
3672 
3673         for (i = 0; i < hw->ports; i++) {
3674                 if (is_genesis(hw))
3675                         genesis_reset(hw, i);
3676                 else
3677                         yukon_reset(hw, i);
3678         }
3679 
3680         return 0;
3681 }
3682 
3683 
3684 #ifdef CONFIG_SKGE_DEBUG
3685 
3686 static struct dentry *skge_debug;
3687 
3688 static int skge_debug_show(struct seq_file *seq, void *v)
3689 {
3690         struct net_device *dev = seq->private;
3691         const struct skge_port *skge = netdev_priv(dev);
3692         const struct skge_hw *hw = skge->hw;
3693         const struct skge_element *e;
3694 
3695         if (!netif_running(dev))
3696                 return -ENETDOWN;
3697 
3698         seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3699                    skge_read32(hw, B0_IMSK));
3700 
3701         seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3702         for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3703                 const struct skge_tx_desc *t = e->desc;
3704                 seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3705                            t->control, t->dma_hi, t->dma_lo, t->status,
3706                            t->csum_offs, t->csum_write, t->csum_start);
3707         }
3708 
3709         seq_puts(seq, "\nRx Ring:\n");
3710         for (e = skge->rx_ring.to_clean; ; e = e->next) {
3711                 const struct skge_rx_desc *r = e->desc;
3712 
3713                 if (r->control & BMU_OWN)
3714                         break;
3715 
3716                 seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3717                            r->control, r->dma_hi, r->dma_lo, r->status,
3718                            r->timestamp, r->csum1, r->csum1_start);
3719         }
3720 
3721         return 0;
3722 }
3723 DEFINE_SHOW_ATTRIBUTE(skge_debug);
3724 
3725 /*
3726  * Use network device events to create/remove/rename
3727  * debugfs file entries
3728  */
3729 static int skge_device_event(struct notifier_block *unused,
3730                              unsigned long event, void *ptr)
3731 {
3732         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3733         struct skge_port *skge;
3734 
3735         if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3736                 goto done;
3737 
3738         skge = netdev_priv(dev);
3739         switch (event) {
3740         case NETDEV_CHANGENAME:
3741                 if (skge->debugfs)
3742                         skge->debugfs = debugfs_rename(skge_debug,
3743                                                        skge->debugfs,
3744                                                        skge_debug, dev->name);
3745                 break;
3746 
3747         case NETDEV_GOING_DOWN:
3748                 debugfs_remove(skge->debugfs);
3749                 skge->debugfs = NULL;
3750                 break;
3751 
3752         case NETDEV_UP:
3753                 skge->debugfs = debugfs_create_file(dev->name, 0444, skge_debug,
3754                                                     dev, &skge_debug_fops);
3755                 break;
3756         }
3757 
3758 done:
3759         return NOTIFY_DONE;
3760 }
3761 
3762 static struct notifier_block skge_notifier = {
3763         .notifier_call = skge_device_event,
3764 };
3765 
3766 
3767 static __init void skge_debug_init(void)
3768 {
3769         skge_debug = debugfs_create_dir("skge", NULL);
3770 
3771         register_netdevice_notifier(&skge_notifier);
3772 }
3773 
3774 static __exit void skge_debug_cleanup(void)
3775 {
3776         if (skge_debug) {
3777                 unregister_netdevice_notifier(&skge_notifier);
3778                 debugfs_remove(skge_debug);
3779                 skge_debug = NULL;
3780         }
3781 }
3782 
3783 #else
3784 #define skge_debug_init()
3785 #define skge_debug_cleanup()
3786 #endif
3787 
3788 static const struct net_device_ops skge_netdev_ops = {
3789         .ndo_open               = skge_up,
3790         .ndo_stop               = skge_down,
3791         .ndo_start_xmit         = skge_xmit_frame,
3792         .ndo_do_ioctl           = skge_ioctl,
3793         .ndo_get_stats          = skge_get_stats,
3794         .ndo_tx_timeout         = skge_tx_timeout,
3795         .ndo_change_mtu         = skge_change_mtu,
3796         .ndo_validate_addr      = eth_validate_addr,
3797         .ndo_set_rx_mode        = skge_set_multicast,
3798         .ndo_set_mac_address    = skge_set_mac_address,
3799 #ifdef CONFIG_NET_POLL_CONTROLLER
3800         .ndo_poll_controller    = skge_netpoll,
3801 #endif
3802 };
3803 
3804 
3805 /* Initialize network device */
3806 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3807                                        int highmem)
3808 {
3809         struct skge_port *skge;
3810         struct net_device *dev = alloc_etherdev(sizeof(*skge));
3811 
3812         if (!dev)
3813                 return NULL;
3814 
3815         SET_NETDEV_DEV(dev, &hw->pdev->dev);
3816         dev->netdev_ops = &skge_netdev_ops;
3817         dev->ethtool_ops = &skge_ethtool_ops;
3818         dev->watchdog_timeo = TX_WATCHDOG;
3819         dev->irq = hw->pdev->irq;
3820 
3821         /* MTU range: 60 - 9000 */
3822         dev->min_mtu = ETH_ZLEN;
3823         dev->max_mtu = ETH_JUMBO_MTU;
3824 
3825         if (highmem)
3826                 dev->features |= NETIF_F_HIGHDMA;
3827 
3828         skge = netdev_priv(dev);
3829         netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3830         skge->netdev = dev;
3831         skge->hw = hw;
3832         skge->msg_enable = netif_msg_init(debug, default_msg);
3833 
3834         skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3835         skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3836 
3837         /* Auto speed and flow control */
3838         skge->autoneg = AUTONEG_ENABLE;
3839         skge->flow_control = FLOW_MODE_SYM_OR_REM;
3840         skge->duplex = -1;
3841         skge->speed = -1;
3842         skge->advertising = skge_supported_modes(hw);
3843 
3844         if (device_can_wakeup(&hw->pdev->dev)) {
3845                 skge->wol = wol_supported(hw) & WAKE_MAGIC;
3846                 device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3847         }
3848 
3849         hw->dev[port] = dev;
3850 
3851         skge->port = port;
3852 
3853         /* Only used for Genesis XMAC */
3854         if (is_genesis(hw))
3855             timer_setup(&skge->link_timer, xm_link_timer, 0);
3856         else {
3857                 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3858                                    NETIF_F_RXCSUM;
3859                 dev->features |= dev->hw_features;
3860         }
3861 
3862         /* read the mac address */
3863         memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3864 
3865         return dev;
3866 }
3867 
3868 static void skge_show_addr(struct net_device *dev)
3869 {
3870         const struct skge_port *skge = netdev_priv(dev);
3871 
3872         netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3873 }
3874 
3875 static int only_32bit_dma;
3876 
3877 static int skge_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3878 {
3879         struct net_device *dev, *dev1;
3880         struct skge_hw *hw;
3881         int err, using_dac = 0;
3882 
3883         err = pci_enable_device(pdev);
3884         if (err) {
3885                 dev_err(&pdev->dev, "cannot enable PCI device\n");
3886                 goto err_out;
3887         }
3888 
3889         err = pci_request_regions(pdev, DRV_NAME);
3890         if (err) {
3891                 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3892                 goto err_out_disable_pdev;
3893         }
3894 
3895         pci_set_master(pdev);
3896 
3897         if (!only_32bit_dma && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3898                 using_dac = 1;
3899                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3900         } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
3901                 using_dac = 0;
3902                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3903         }
3904 
3905         if (err) {
3906                 dev_err(&pdev->dev, "no usable DMA configuration\n");
3907                 goto err_out_free_regions;
3908         }
3909 
3910 #ifdef __BIG_ENDIAN
3911         /* byte swap descriptors in hardware */
3912         {
3913                 u32 reg;
3914 
3915                 pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3916                 reg |= PCI_REV_DESC;
3917                 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3918         }
3919 #endif
3920 
3921         err = -ENOMEM;
3922         /* space for skge@pci:0000:04:00.0 */
3923         hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3924                      + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3925         if (!hw)
3926                 goto err_out_free_regions;
3927 
3928         sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3929 
3930         hw->pdev = pdev;
3931         spin_lock_init(&hw->hw_lock);
3932         spin_lock_init(&hw->phy_lock);
3933         tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw);
3934 
3935         hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3936         if (!hw->regs) {
3937                 dev_err(&pdev->dev, "cannot map device registers\n");
3938                 goto err_out_free_hw;
3939         }
3940 
3941         err = skge_reset(hw);
3942         if (err)
3943                 goto err_out_iounmap;
3944 
3945         pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3946                 DRV_VERSION,
3947                 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3948                 skge_board_name(hw), hw->chip_rev);
3949 
3950         dev = skge_devinit(hw, 0, using_dac);
3951         if (!dev) {
3952                 err = -ENOMEM;
3953                 goto err_out_led_off;
3954         }
3955 
3956         /* Some motherboards are broken and has zero in ROM. */
3957         if (!is_valid_ether_addr(dev->dev_addr))
3958                 dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3959 
3960         err = register_netdev(dev);
3961         if (err) {
3962                 dev_err(&pdev->dev, "cannot register net device\n");
3963                 goto err_out_free_netdev;
3964         }
3965 
3966         skge_show_addr(dev);
3967 
3968         if (hw->ports > 1) {
3969                 dev1 = skge_devinit(hw, 1, using_dac);
3970                 if (!dev1) {
3971                         err = -ENOMEM;
3972                         goto err_out_unregister;
3973                 }
3974 
3975                 err = register_netdev(dev1);
3976                 if (err) {
3977                         dev_err(&pdev->dev, "cannot register second net device\n");
3978                         goto err_out_free_dev1;
3979                 }
3980 
3981                 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
3982                                   hw->irq_name, hw);
3983                 if (err) {
3984                         dev_err(&pdev->dev, "cannot assign irq %d\n",
3985                                 pdev->irq);
3986                         goto err_out_unregister_dev1;
3987                 }
3988 
3989                 skge_show_addr(dev1);
3990         }
3991         pci_set_drvdata(pdev, hw);
3992 
3993         return 0;
3994 
3995 err_out_unregister_dev1:
3996         unregister_netdev(dev1);
3997 err_out_free_dev1:
3998         free_netdev(dev1);
3999 err_out_unregister:
4000         unregister_netdev(dev);
4001 err_out_free_netdev:
4002         free_netdev(dev);
4003 err_out_led_off:
4004         skge_write16(hw, B0_LED, LED_STAT_OFF);
4005 err_out_iounmap:
4006         iounmap(hw->regs);
4007 err_out_free_hw:
4008         kfree(hw);
4009 err_out_free_regions:
4010         pci_release_regions(pdev);
4011 err_out_disable_pdev:
4012         pci_disable_device(pdev);
4013 err_out:
4014         return err;
4015 }
4016 
4017 static void skge_remove(struct pci_dev *pdev)
4018 {
4019         struct skge_hw *hw  = pci_get_drvdata(pdev);
4020         struct net_device *dev0, *dev1;
4021 
4022         if (!hw)
4023                 return;
4024 
4025         dev1 = hw->dev[1];
4026         if (dev1)
4027                 unregister_netdev(dev1);
4028         dev0 = hw->dev[0];
4029         unregister_netdev(dev0);
4030 
4031         tasklet_kill(&hw->phy_task);
4032 
4033         spin_lock_irq(&hw->hw_lock);
4034         hw->intr_mask = 0;
4035 
4036         if (hw->ports > 1) {
4037                 skge_write32(hw, B0_IMSK, 0);
4038                 skge_read32(hw, B0_IMSK);
4039         }
4040         spin_unlock_irq(&hw->hw_lock);
4041 
4042         skge_write16(hw, B0_LED, LED_STAT_OFF);
4043         skge_write8(hw, B0_CTST, CS_RST_SET);
4044 
4045         if (hw->ports > 1)
4046                 free_irq(pdev->irq, hw);
4047         pci_release_regions(pdev);
4048         pci_disable_device(pdev);
4049         if (dev1)
4050                 free_netdev(dev1);
4051         free_netdev(dev0);
4052 
4053         iounmap(hw->regs);
4054         kfree(hw);
4055 }
4056 
4057 #ifdef CONFIG_PM_SLEEP
4058 static int skge_suspend(struct device *dev)
4059 {
4060         struct skge_hw *hw  = dev_get_drvdata(dev);
4061         int i;
4062 
4063         if (!hw)
4064                 return 0;
4065 
4066         for (i = 0; i < hw->ports; i++) {
4067                 struct net_device *dev = hw->dev[i];
4068                 struct skge_port *skge = netdev_priv(dev);
4069 
4070                 if (netif_running(dev))
4071                         skge_down(dev);
4072 
4073                 if (skge->wol)
4074                         skge_wol_init(skge);
4075         }
4076 
4077         skge_write32(hw, B0_IMSK, 0);
4078 
4079         return 0;
4080 }
4081 
4082 static int skge_resume(struct device *dev)
4083 {
4084         struct skge_hw *hw  = dev_get_drvdata(dev);
4085         int i, err;
4086 
4087         if (!hw)
4088                 return 0;
4089 
4090         err = skge_reset(hw);
4091         if (err)
4092                 goto out;
4093 
4094         for (i = 0; i < hw->ports; i++) {
4095                 struct net_device *dev = hw->dev[i];
4096 
4097                 if (netif_running(dev)) {
4098                         err = skge_up(dev);
4099 
4100                         if (err) {
4101                                 netdev_err(dev, "could not up: %d\n", err);
4102                                 dev_close(dev);
4103                                 goto out;
4104                         }
4105                 }
4106         }
4107 out:
4108         return err;
4109 }
4110 
4111 static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4112 #define SKGE_PM_OPS (&skge_pm_ops)
4113 
4114 #else
4115 
4116 #define SKGE_PM_OPS NULL
4117 #endif /* CONFIG_PM_SLEEP */
4118 
4119 static void skge_shutdown(struct pci_dev *pdev)
4120 {
4121         struct skge_hw *hw  = pci_get_drvdata(pdev);
4122         int i;
4123 
4124         if (!hw)
4125                 return;
4126 
4127         for (i = 0; i < hw->ports; i++) {
4128                 struct net_device *dev = hw->dev[i];
4129                 struct skge_port *skge = netdev_priv(dev);
4130 
4131                 if (skge->wol)
4132                         skge_wol_init(skge);
4133         }
4134 
4135         pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4136         pci_set_power_state(pdev, PCI_D3hot);
4137 }
4138 
4139 static struct pci_driver skge_driver = {
4140         .name =         DRV_NAME,
4141         .id_table =     skge_id_table,
4142         .probe =        skge_probe,
4143         .remove =       skge_remove,
4144         .shutdown =     skge_shutdown,
4145         .driver.pm =    SKGE_PM_OPS,
4146 };
4147 
4148 static const struct dmi_system_id skge_32bit_dma_boards[] = {
4149         {
4150                 .ident = "Gigabyte nForce boards",
4151                 .matches = {
4152                         DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4153                         DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4154                 },
4155         },
4156         {
4157                 .ident = "ASUS P5NSLI",
4158                 .matches = {
4159                         DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
4160                         DMI_MATCH(DMI_BOARD_NAME, "P5NSLI")
4161                 },
4162         },
4163         {
4164                 .ident = "FUJITSU SIEMENS A8NE-FM",
4165                 .matches = {
4166                         DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."),
4167                         DMI_MATCH(DMI_BOARD_NAME, "A8NE-FM")
4168                 },
4169         },
4170         {}
4171 };
4172 
4173 static int __init skge_init_module(void)
4174 {
4175         if (dmi_check_system(skge_32bit_dma_boards))
4176                 only_32bit_dma = 1;
4177         skge_debug_init();
4178         return pci_register_driver(&skge_driver);
4179 }
4180 
4181 static void __exit skge_cleanup_module(void)
4182 {
4183         pci_unregister_driver(&skge_driver);
4184         skge_debug_cleanup();
4185 }
4186 
4187 module_init(skge_init_module);
4188 module_exit(skge_cleanup_module);

/* [<][>][^][v][top][bottom][index][help] */