root/drivers/net/ethernet/tundra/tsi108_eth.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. dump_eth_one
  2. tsi108_read_mii
  3. tsi108_write_mii
  4. tsi108_mdio_read
  5. tsi108_mdio_write
  6. tsi108_write_tbi
  7. mii_speed
  8. tsi108_check_phy
  9. tsi108_stat_carry_one
  10. tsi108_stat_carry
  11. tsi108_read_stat
  12. tsi108_get_stats
  13. tsi108_restart_rx
  14. tsi108_restart_tx
  15. tsi108_complete_tx
  16. tsi108_send_packet
  17. tsi108_complete_rx
  18. tsi108_refill_rx
  19. tsi108_poll
  20. tsi108_rx_int
  21. tsi108_check_rxring
  22. tsi108_tx_int
  23. tsi108_irq
  24. tsi108_stop_ethernet
  25. tsi108_reset_ether
  26. tsi108_get_mac
  27. tsi108_set_mac
  28. tsi108_set_rx_mode
  29. tsi108_init_phy
  30. tsi108_kill_phy
  31. tsi108_open
  32. tsi108_close
  33. tsi108_init_mac
  34. tsi108_get_link_ksettings
  35. tsi108_set_link_ksettings
  36. tsi108_do_ioctl
  37. tsi108_init_one
  38. tsi108_timed_checker
  39. tsi108_ether_remove

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*******************************************************************************
   3 
   4   Copyright(c) 2006 Tundra Semiconductor Corporation.
   5 
   6 
   7 *******************************************************************************/
   8 
   9 /* This driver is based on the driver code originally developed
  10  * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
  11  * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation
  12  *
  13  * Currently changes from original version are:
  14  * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
  15  * - modifications to handle two ports independently and support for
  16  *   additional PHY devices (alexandre.bounine@tundra.com)
  17  * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
  18  *
  19  */
  20 
  21 #include <linux/module.h>
  22 #include <linux/types.h>
  23 #include <linux/interrupt.h>
  24 #include <linux/net.h>
  25 #include <linux/netdevice.h>
  26 #include <linux/etherdevice.h>
  27 #include <linux/ethtool.h>
  28 #include <linux/skbuff.h>
  29 #include <linux/spinlock.h>
  30 #include <linux/delay.h>
  31 #include <linux/crc32.h>
  32 #include <linux/mii.h>
  33 #include <linux/device.h>
  34 #include <linux/pci.h>
  35 #include <linux/rtnetlink.h>
  36 #include <linux/timer.h>
  37 #include <linux/platform_device.h>
  38 #include <linux/gfp.h>
  39 
  40 #include <asm/io.h>
  41 #include <asm/tsi108.h>
  42 
  43 #include "tsi108_eth.h"
  44 
  45 #define MII_READ_DELAY 10000    /* max link wait time in msec */
  46 
  47 #define TSI108_RXRING_LEN     256
  48 
  49 /* NOTE: The driver currently does not support receiving packets
  50  * larger than the buffer size, so don't decrease this (unless you
  51  * want to add such support).
  52  */
  53 #define TSI108_RXBUF_SIZE     1536
  54 
  55 #define TSI108_TXRING_LEN     256
  56 
  57 #define TSI108_TX_INT_FREQ    64
  58 
  59 /* Check the phy status every half a second. */
  60 #define CHECK_PHY_INTERVAL (HZ/2)
  61 
  62 static int tsi108_init_one(struct platform_device *pdev);
  63 static int tsi108_ether_remove(struct platform_device *pdev);
  64 
  65 struct tsi108_prv_data {
  66         void  __iomem *regs;    /* Base of normal regs */
  67         void  __iomem *phyregs; /* Base of register bank used for PHY access */
  68 
  69         struct net_device *dev;
  70         struct napi_struct napi;
  71 
  72         unsigned int phy;               /* Index of PHY for this interface */
  73         unsigned int irq_num;
  74         unsigned int id;
  75         unsigned int phy_type;
  76 
  77         struct timer_list timer;/* Timer that triggers the check phy function */
  78         unsigned int rxtail;    /* Next entry in rxring to read */
  79         unsigned int rxhead;    /* Next entry in rxring to give a new buffer */
  80         unsigned int rxfree;    /* Number of free, allocated RX buffers */
  81 
  82         unsigned int rxpending; /* Non-zero if there are still descriptors
  83                                  * to be processed from a previous descriptor
  84                                  * interrupt condition that has been cleared */
  85 
  86         unsigned int txtail;    /* Next TX descriptor to check status on */
  87         unsigned int txhead;    /* Next TX descriptor to use */
  88 
  89         /* Number of free TX descriptors.  This could be calculated from
  90          * rxhead and rxtail if one descriptor were left unused to disambiguate
  91          * full and empty conditions, but it's simpler to just keep track
  92          * explicitly. */
  93 
  94         unsigned int txfree;
  95 
  96         unsigned int phy_ok;            /* The PHY is currently powered on. */
  97 
  98         /* PHY status (duplex is 1 for half, 2 for full,
  99          * so that the default 0 indicates that neither has
 100          * yet been configured). */
 101 
 102         unsigned int link_up;
 103         unsigned int speed;
 104         unsigned int duplex;
 105 
 106         tx_desc *txring;
 107         rx_desc *rxring;
 108         struct sk_buff *txskbs[TSI108_TXRING_LEN];
 109         struct sk_buff *rxskbs[TSI108_RXRING_LEN];
 110 
 111         dma_addr_t txdma, rxdma;
 112 
 113         /* txlock nests in misclock and phy_lock */
 114 
 115         spinlock_t txlock, misclock;
 116 
 117         /* stats is used to hold the upper bits of each hardware counter,
 118          * and tmpstats is used to hold the full values for returning
 119          * to the caller of get_stats().  They must be separate in case
 120          * an overflow interrupt occurs before the stats are consumed.
 121          */
 122 
 123         struct net_device_stats stats;
 124         struct net_device_stats tmpstats;
 125 
 126         /* These stats are kept separate in hardware, thus require individual
 127          * fields for handling carry.  They are combined in get_stats.
 128          */
 129 
 130         unsigned long rx_fcs;   /* Add to rx_frame_errors */
 131         unsigned long rx_short_fcs;     /* Add to rx_frame_errors */
 132         unsigned long rx_long_fcs;      /* Add to rx_frame_errors */
 133         unsigned long rx_underruns;     /* Add to rx_length_errors */
 134         unsigned long rx_overruns;      /* Add to rx_length_errors */
 135 
 136         unsigned long tx_coll_abort;    /* Add to tx_aborted_errors/collisions */
 137         unsigned long tx_pause_drop;    /* Add to tx_aborted_errors */
 138 
 139         unsigned long mc_hash[16];
 140         u32 msg_enable;                 /* debug message level */
 141         struct mii_if_info mii_if;
 142         unsigned int init_media;
 143 
 144         struct platform_device *pdev;
 145 };
 146 
 147 /* Structure for a device driver */
 148 
 149 static struct platform_driver tsi_eth_driver = {
 150         .probe = tsi108_init_one,
 151         .remove = tsi108_ether_remove,
 152         .driver = {
 153                 .name = "tsi-ethernet",
 154         },
 155 };
 156 
 157 static void tsi108_timed_checker(struct timer_list *t);
 158 
 159 #ifdef DEBUG
 160 static void dump_eth_one(struct net_device *dev)
 161 {
 162         struct tsi108_prv_data *data = netdev_priv(dev);
 163 
 164         printk("Dumping %s...\n", dev->name);
 165         printk("intstat %x intmask %x phy_ok %d"
 166                " link %d speed %d duplex %d\n",
 167                TSI_READ(TSI108_EC_INTSTAT),
 168                TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
 169                data->link_up, data->speed, data->duplex);
 170 
 171         printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
 172                data->txhead, data->txtail, data->txfree,
 173                TSI_READ(TSI108_EC_TXSTAT),
 174                TSI_READ(TSI108_EC_TXESTAT),
 175                TSI_READ(TSI108_EC_TXERR));
 176 
 177         printk("RX: head %d, tail %d, free %d, stat %x,"
 178                " estat %x, err %x, pending %d\n\n",
 179                data->rxhead, data->rxtail, data->rxfree,
 180                TSI_READ(TSI108_EC_RXSTAT),
 181                TSI_READ(TSI108_EC_RXESTAT),
 182                TSI_READ(TSI108_EC_RXERR), data->rxpending);
 183 }
 184 #endif
 185 
 186 /* Synchronization is needed between the thread and up/down events.
 187  * Note that the PHY is accessed through the same registers for both
 188  * interfaces, so this can't be made interface-specific.
 189  */
 190 
 191 static DEFINE_SPINLOCK(phy_lock);
 192 
 193 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
 194 {
 195         unsigned i;
 196 
 197         TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
 198                                 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
 199                                 (reg << TSI108_MAC_MII_ADDR_REG));
 200         TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
 201         TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
 202         for (i = 0; i < 100; i++) {
 203                 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
 204                       (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
 205                         break;
 206                 udelay(10);
 207         }
 208 
 209         if (i == 100)
 210                 return 0xffff;
 211         else
 212                 return TSI_READ_PHY(TSI108_MAC_MII_DATAIN);
 213 }
 214 
 215 static void tsi108_write_mii(struct tsi108_prv_data *data,
 216                                 int reg, u16 val)
 217 {
 218         unsigned i = 100;
 219         TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
 220                                 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
 221                                 (reg << TSI108_MAC_MII_ADDR_REG));
 222         TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
 223         while (i--) {
 224                 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
 225                         TSI108_MAC_MII_IND_BUSY))
 226                         break;
 227                 udelay(10);
 228         }
 229 }
 230 
 231 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
 232 {
 233         struct tsi108_prv_data *data = netdev_priv(dev);
 234         return tsi108_read_mii(data, reg);
 235 }
 236 
 237 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
 238 {
 239         struct tsi108_prv_data *data = netdev_priv(dev);
 240         tsi108_write_mii(data, reg, val);
 241 }
 242 
 243 static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
 244                                         int reg, u16 val)
 245 {
 246         unsigned i = 1000;
 247         TSI_WRITE(TSI108_MAC_MII_ADDR,
 248                              (0x1e << TSI108_MAC_MII_ADDR_PHY)
 249                              | (reg << TSI108_MAC_MII_ADDR_REG));
 250         TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
 251         while(i--) {
 252                 if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
 253                         return;
 254                 udelay(10);
 255         }
 256         printk(KERN_ERR "%s function time out\n", __func__);
 257 }
 258 
 259 static int mii_speed(struct mii_if_info *mii)
 260 {
 261         int advert, lpa, val, media;
 262         int lpa2 = 0;
 263         int speed;
 264 
 265         if (!mii_link_ok(mii))
 266                 return 0;
 267 
 268         val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
 269         if ((val & BMSR_ANEGCOMPLETE) == 0)
 270                 return 0;
 271 
 272         advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
 273         lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
 274         media = mii_nway_result(advert & lpa);
 275 
 276         if (mii->supports_gmii)
 277                 lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
 278 
 279         speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
 280                         (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
 281         return speed;
 282 }
 283 
 284 static void tsi108_check_phy(struct net_device *dev)
 285 {
 286         struct tsi108_prv_data *data = netdev_priv(dev);
 287         u32 mac_cfg2_reg, portctrl_reg;
 288         u32 duplex;
 289         u32 speed;
 290         unsigned long flags;
 291 
 292         spin_lock_irqsave(&phy_lock, flags);
 293 
 294         if (!data->phy_ok)
 295                 goto out;
 296 
 297         duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
 298         data->init_media = 0;
 299 
 300         if (netif_carrier_ok(dev)) {
 301 
 302                 speed = mii_speed(&data->mii_if);
 303 
 304                 if ((speed != data->speed) || duplex) {
 305 
 306                         mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
 307                         portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
 308 
 309                         mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
 310 
 311                         if (speed == 1000) {
 312                                 mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
 313                                 portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
 314                         } else {
 315                                 mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
 316                                 portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
 317                         }
 318 
 319                         data->speed = speed;
 320 
 321                         if (data->mii_if.full_duplex) {
 322                                 mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
 323                                 portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
 324                                 data->duplex = 2;
 325                         } else {
 326                                 mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
 327                                 portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
 328                                 data->duplex = 1;
 329                         }
 330 
 331                         TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
 332                         TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
 333                 }
 334 
 335                 if (data->link_up == 0) {
 336                         /* The manual says it can take 3-4 usecs for the speed change
 337                          * to take effect.
 338                          */
 339                         udelay(5);
 340 
 341                         spin_lock(&data->txlock);
 342                         if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
 343                                 netif_wake_queue(dev);
 344 
 345                         data->link_up = 1;
 346                         spin_unlock(&data->txlock);
 347                 }
 348         } else {
 349                 if (data->link_up == 1) {
 350                         netif_stop_queue(dev);
 351                         data->link_up = 0;
 352                         printk(KERN_NOTICE "%s : link is down\n", dev->name);
 353                 }
 354 
 355                 goto out;
 356         }
 357 
 358 
 359 out:
 360         spin_unlock_irqrestore(&phy_lock, flags);
 361 }
 362 
 363 static inline void
 364 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
 365                       unsigned long *upper)
 366 {
 367         if (carry & carry_bit)
 368                 *upper += carry_shift;
 369 }
 370 
 371 static void tsi108_stat_carry(struct net_device *dev)
 372 {
 373         struct tsi108_prv_data *data = netdev_priv(dev);
 374         unsigned long flags;
 375         u32 carry1, carry2;
 376 
 377         spin_lock_irqsave(&data->misclock, flags);
 378 
 379         carry1 = TSI_READ(TSI108_STAT_CARRY1);
 380         carry2 = TSI_READ(TSI108_STAT_CARRY2);
 381 
 382         TSI_WRITE(TSI108_STAT_CARRY1, carry1);
 383         TSI_WRITE(TSI108_STAT_CARRY2, carry2);
 384 
 385         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
 386                               TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
 387 
 388         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
 389                               TSI108_STAT_RXPKTS_CARRY,
 390                               &data->stats.rx_packets);
 391 
 392         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
 393                               TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
 394 
 395         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
 396                               TSI108_STAT_RXMCAST_CARRY,
 397                               &data->stats.multicast);
 398 
 399         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
 400                               TSI108_STAT_RXALIGN_CARRY,
 401                               &data->stats.rx_frame_errors);
 402 
 403         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
 404                               TSI108_STAT_RXLENGTH_CARRY,
 405                               &data->stats.rx_length_errors);
 406 
 407         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
 408                               TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
 409 
 410         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
 411                               TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
 412 
 413         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
 414                               TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
 415 
 416         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
 417                               TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
 418 
 419         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
 420                               TSI108_STAT_RXDROP_CARRY,
 421                               &data->stats.rx_missed_errors);
 422 
 423         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
 424                               TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
 425 
 426         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
 427                               TSI108_STAT_TXPKTS_CARRY,
 428                               &data->stats.tx_packets);
 429 
 430         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
 431                               TSI108_STAT_TXEXDEF_CARRY,
 432                               &data->stats.tx_aborted_errors);
 433 
 434         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
 435                               TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
 436 
 437         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
 438                               TSI108_STAT_TXTCOL_CARRY,
 439                               &data->stats.collisions);
 440 
 441         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
 442                               TSI108_STAT_TXPAUSEDROP_CARRY,
 443                               &data->tx_pause_drop);
 444 
 445         spin_unlock_irqrestore(&data->misclock, flags);
 446 }
 447 
 448 /* Read a stat counter atomically with respect to carries.
 449  * data->misclock must be held.
 450  */
 451 static inline unsigned long
 452 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
 453                  int carry_shift, unsigned long *upper)
 454 {
 455         int carryreg;
 456         unsigned long val;
 457 
 458         if (reg < 0xb0)
 459                 carryreg = TSI108_STAT_CARRY1;
 460         else
 461                 carryreg = TSI108_STAT_CARRY2;
 462 
 463       again:
 464         val = TSI_READ(reg) | *upper;
 465 
 466         /* Check to see if it overflowed, but the interrupt hasn't
 467          * been serviced yet.  If so, handle the carry here, and
 468          * try again.
 469          */
 470 
 471         if (unlikely(TSI_READ(carryreg) & carry_bit)) {
 472                 *upper += carry_shift;
 473                 TSI_WRITE(carryreg, carry_bit);
 474                 goto again;
 475         }
 476 
 477         return val;
 478 }
 479 
 480 static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
 481 {
 482         unsigned long excol;
 483 
 484         struct tsi108_prv_data *data = netdev_priv(dev);
 485         spin_lock_irq(&data->misclock);
 486 
 487         data->tmpstats.rx_packets =
 488             tsi108_read_stat(data, TSI108_STAT_RXPKTS,
 489                              TSI108_STAT_CARRY1_RXPKTS,
 490                              TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
 491 
 492         data->tmpstats.tx_packets =
 493             tsi108_read_stat(data, TSI108_STAT_TXPKTS,
 494                              TSI108_STAT_CARRY2_TXPKTS,
 495                              TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
 496 
 497         data->tmpstats.rx_bytes =
 498             tsi108_read_stat(data, TSI108_STAT_RXBYTES,
 499                              TSI108_STAT_CARRY1_RXBYTES,
 500                              TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
 501 
 502         data->tmpstats.tx_bytes =
 503             tsi108_read_stat(data, TSI108_STAT_TXBYTES,
 504                              TSI108_STAT_CARRY2_TXBYTES,
 505                              TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
 506 
 507         data->tmpstats.multicast =
 508             tsi108_read_stat(data, TSI108_STAT_RXMCAST,
 509                              TSI108_STAT_CARRY1_RXMCAST,
 510                              TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
 511 
 512         excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
 513                                  TSI108_STAT_CARRY2_TXEXCOL,
 514                                  TSI108_STAT_TXEXCOL_CARRY,
 515                                  &data->tx_coll_abort);
 516 
 517         data->tmpstats.collisions =
 518             tsi108_read_stat(data, TSI108_STAT_TXTCOL,
 519                              TSI108_STAT_CARRY2_TXTCOL,
 520                              TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
 521 
 522         data->tmpstats.collisions += excol;
 523 
 524         data->tmpstats.rx_length_errors =
 525             tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
 526                              TSI108_STAT_CARRY1_RXLENGTH,
 527                              TSI108_STAT_RXLENGTH_CARRY,
 528                              &data->stats.rx_length_errors);
 529 
 530         data->tmpstats.rx_length_errors +=
 531             tsi108_read_stat(data, TSI108_STAT_RXRUNT,
 532                              TSI108_STAT_CARRY1_RXRUNT,
 533                              TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
 534 
 535         data->tmpstats.rx_length_errors +=
 536             tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
 537                              TSI108_STAT_CARRY1_RXJUMBO,
 538                              TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
 539 
 540         data->tmpstats.rx_frame_errors =
 541             tsi108_read_stat(data, TSI108_STAT_RXALIGN,
 542                              TSI108_STAT_CARRY1_RXALIGN,
 543                              TSI108_STAT_RXALIGN_CARRY,
 544                              &data->stats.rx_frame_errors);
 545 
 546         data->tmpstats.rx_frame_errors +=
 547             tsi108_read_stat(data, TSI108_STAT_RXFCS,
 548                              TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
 549                              &data->rx_fcs);
 550 
 551         data->tmpstats.rx_frame_errors +=
 552             tsi108_read_stat(data, TSI108_STAT_RXFRAG,
 553                              TSI108_STAT_CARRY1_RXFRAG,
 554                              TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
 555 
 556         data->tmpstats.rx_missed_errors =
 557             tsi108_read_stat(data, TSI108_STAT_RXDROP,
 558                              TSI108_STAT_CARRY1_RXDROP,
 559                              TSI108_STAT_RXDROP_CARRY,
 560                              &data->stats.rx_missed_errors);
 561 
 562         /* These three are maintained by software. */
 563         data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
 564         data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
 565 
 566         data->tmpstats.tx_aborted_errors =
 567             tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
 568                              TSI108_STAT_CARRY2_TXEXDEF,
 569                              TSI108_STAT_TXEXDEF_CARRY,
 570                              &data->stats.tx_aborted_errors);
 571 
 572         data->tmpstats.tx_aborted_errors +=
 573             tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
 574                              TSI108_STAT_CARRY2_TXPAUSE,
 575                              TSI108_STAT_TXPAUSEDROP_CARRY,
 576                              &data->tx_pause_drop);
 577 
 578         data->tmpstats.tx_aborted_errors += excol;
 579 
 580         data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
 581         data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
 582             data->tmpstats.rx_crc_errors +
 583             data->tmpstats.rx_frame_errors +
 584             data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
 585 
 586         spin_unlock_irq(&data->misclock);
 587         return &data->tmpstats;
 588 }
 589 
 590 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
 591 {
 592         TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
 593                              TSI108_EC_RXQ_PTRHIGH_VALID);
 594 
 595         TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
 596                              | TSI108_EC_RXCTRL_QUEUE0);
 597 }
 598 
 599 static void tsi108_restart_tx(struct tsi108_prv_data * data)
 600 {
 601         TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
 602                              TSI108_EC_TXQ_PTRHIGH_VALID);
 603 
 604         TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
 605                              TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
 606 }
 607 
 608 /* txlock must be held by caller, with IRQs disabled, and
 609  * with permission to re-enable them when the lock is dropped.
 610  */
 611 static void tsi108_complete_tx(struct net_device *dev)
 612 {
 613         struct tsi108_prv_data *data = netdev_priv(dev);
 614         int tx;
 615         struct sk_buff *skb;
 616         int release = 0;
 617 
 618         while (!data->txfree || data->txhead != data->txtail) {
 619                 tx = data->txtail;
 620 
 621                 if (data->txring[tx].misc & TSI108_TX_OWN)
 622                         break;
 623 
 624                 skb = data->txskbs[tx];
 625 
 626                 if (!(data->txring[tx].misc & TSI108_TX_OK))
 627                         printk("%s: bad tx packet, misc %x\n",
 628                                dev->name, data->txring[tx].misc);
 629 
 630                 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
 631                 data->txfree++;
 632 
 633                 if (data->txring[tx].misc & TSI108_TX_EOF) {
 634                         dev_kfree_skb_any(skb);
 635                         release++;
 636                 }
 637         }
 638 
 639         if (release) {
 640                 if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
 641                         netif_wake_queue(dev);
 642         }
 643 }
 644 
 645 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
 646 {
 647         struct tsi108_prv_data *data = netdev_priv(dev);
 648         int frags = skb_shinfo(skb)->nr_frags + 1;
 649         int i;
 650 
 651         if (!data->phy_ok && net_ratelimit())
 652                 printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
 653 
 654         if (!data->link_up) {
 655                 printk(KERN_ERR "%s: Transmit while link is down!\n",
 656                        dev->name);
 657                 netif_stop_queue(dev);
 658                 return NETDEV_TX_BUSY;
 659         }
 660 
 661         if (data->txfree < MAX_SKB_FRAGS + 1) {
 662                 netif_stop_queue(dev);
 663 
 664                 if (net_ratelimit())
 665                         printk(KERN_ERR "%s: Transmit with full tx ring!\n",
 666                                dev->name);
 667                 return NETDEV_TX_BUSY;
 668         }
 669 
 670         if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
 671                 netif_stop_queue(dev);
 672         }
 673 
 674         spin_lock_irq(&data->txlock);
 675 
 676         for (i = 0; i < frags; i++) {
 677                 int misc = 0;
 678                 int tx = data->txhead;
 679 
 680                 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
 681                  * the interrupt bit.  TX descriptor-complete interrupts are
 682                  * enabled when the queue fills up, and masked when there is
 683                  * still free space.  This way, when saturating the outbound
 684                  * link, the tx interrupts are kept to a reasonable level.
 685                  * When the queue is not full, reclamation of skbs still occurs
 686                  * as new packets are transmitted, or on a queue-empty
 687                  * interrupt.
 688                  */
 689 
 690                 if ((tx % TSI108_TX_INT_FREQ == 0) &&
 691                     ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
 692                         misc = TSI108_TX_INT;
 693 
 694                 data->txskbs[tx] = skb;
 695 
 696                 if (i == 0) {
 697                         data->txring[tx].buf0 = dma_map_single(&data->pdev->dev,
 698                                         skb->data, skb_headlen(skb),
 699                                         DMA_TO_DEVICE);
 700                         data->txring[tx].len = skb_headlen(skb);
 701                         misc |= TSI108_TX_SOF;
 702                 } else {
 703                         const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
 704 
 705                         data->txring[tx].buf0 =
 706                                 skb_frag_dma_map(&data->pdev->dev, frag,
 707                                                 0, skb_frag_size(frag),
 708                                                 DMA_TO_DEVICE);
 709                         data->txring[tx].len = skb_frag_size(frag);
 710                 }
 711 
 712                 if (i == frags - 1)
 713                         misc |= TSI108_TX_EOF;
 714 
 715                 if (netif_msg_pktdata(data)) {
 716                         int i;
 717                         printk("%s: Tx Frame contents (%d)\n", dev->name,
 718                                skb->len);
 719                         for (i = 0; i < skb->len; i++)
 720                                 printk(" %2.2x", skb->data[i]);
 721                         printk(".\n");
 722                 }
 723                 data->txring[tx].misc = misc | TSI108_TX_OWN;
 724 
 725                 data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
 726                 data->txfree--;
 727         }
 728 
 729         tsi108_complete_tx(dev);
 730 
 731         /* This must be done after the check for completed tx descriptors,
 732          * so that the tail pointer is correct.
 733          */
 734 
 735         if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
 736                 tsi108_restart_tx(data);
 737 
 738         spin_unlock_irq(&data->txlock);
 739         return NETDEV_TX_OK;
 740 }
 741 
 742 static int tsi108_complete_rx(struct net_device *dev, int budget)
 743 {
 744         struct tsi108_prv_data *data = netdev_priv(dev);
 745         int done = 0;
 746 
 747         while (data->rxfree && done != budget) {
 748                 int rx = data->rxtail;
 749                 struct sk_buff *skb;
 750 
 751                 if (data->rxring[rx].misc & TSI108_RX_OWN)
 752                         break;
 753 
 754                 skb = data->rxskbs[rx];
 755                 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
 756                 data->rxfree--;
 757                 done++;
 758 
 759                 if (data->rxring[rx].misc & TSI108_RX_BAD) {
 760                         spin_lock_irq(&data->misclock);
 761 
 762                         if (data->rxring[rx].misc & TSI108_RX_CRC)
 763                                 data->stats.rx_crc_errors++;
 764                         if (data->rxring[rx].misc & TSI108_RX_OVER)
 765                                 data->stats.rx_fifo_errors++;
 766 
 767                         spin_unlock_irq(&data->misclock);
 768 
 769                         dev_kfree_skb_any(skb);
 770                         continue;
 771                 }
 772                 if (netif_msg_pktdata(data)) {
 773                         int i;
 774                         printk("%s: Rx Frame contents (%d)\n",
 775                                dev->name, data->rxring[rx].len);
 776                         for (i = 0; i < data->rxring[rx].len; i++)
 777                                 printk(" %2.2x", skb->data[i]);
 778                         printk(".\n");
 779                 }
 780 
 781                 skb_put(skb, data->rxring[rx].len);
 782                 skb->protocol = eth_type_trans(skb, dev);
 783                 netif_receive_skb(skb);
 784         }
 785 
 786         return done;
 787 }
 788 
 789 static int tsi108_refill_rx(struct net_device *dev, int budget)
 790 {
 791         struct tsi108_prv_data *data = netdev_priv(dev);
 792         int done = 0;
 793 
 794         while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
 795                 int rx = data->rxhead;
 796                 struct sk_buff *skb;
 797 
 798                 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
 799                 data->rxskbs[rx] = skb;
 800                 if (!skb)
 801                         break;
 802 
 803                 data->rxring[rx].buf0 = dma_map_single(&data->pdev->dev,
 804                                 skb->data, TSI108_RX_SKB_SIZE,
 805                                 DMA_FROM_DEVICE);
 806 
 807                 /* Sometimes the hardware sets blen to zero after packet
 808                  * reception, even though the manual says that it's only ever
 809                  * modified by the driver.
 810                  */
 811 
 812                 data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
 813                 data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
 814 
 815                 data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
 816                 data->rxfree++;
 817                 done++;
 818         }
 819 
 820         if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
 821                            TSI108_EC_RXSTAT_QUEUE0))
 822                 tsi108_restart_rx(data, dev);
 823 
 824         return done;
 825 }
 826 
 827 static int tsi108_poll(struct napi_struct *napi, int budget)
 828 {
 829         struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
 830         struct net_device *dev = data->dev;
 831         u32 estat = TSI_READ(TSI108_EC_RXESTAT);
 832         u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
 833         int num_received = 0, num_filled = 0;
 834 
 835         intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
 836             TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
 837 
 838         TSI_WRITE(TSI108_EC_RXESTAT, estat);
 839         TSI_WRITE(TSI108_EC_INTSTAT, intstat);
 840 
 841         if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
 842                 num_received = tsi108_complete_rx(dev, budget);
 843 
 844         /* This should normally fill no more slots than the number of
 845          * packets received in tsi108_complete_rx().  The exception
 846          * is when we previously ran out of memory for RX SKBs.  In that
 847          * case, it's helpful to obey the budget, not only so that the
 848          * CPU isn't hogged, but so that memory (which may still be low)
 849          * is not hogged by one device.
 850          *
 851          * A work unit is considered to be two SKBs to allow us to catch
 852          * up when the ring has shrunk due to out-of-memory but we're
 853          * still removing the full budget's worth of packets each time.
 854          */
 855 
 856         if (data->rxfree < TSI108_RXRING_LEN)
 857                 num_filled = tsi108_refill_rx(dev, budget * 2);
 858 
 859         if (intstat & TSI108_INT_RXERROR) {
 860                 u32 err = TSI_READ(TSI108_EC_RXERR);
 861                 TSI_WRITE(TSI108_EC_RXERR, err);
 862 
 863                 if (err) {
 864                         if (net_ratelimit())
 865                                 printk(KERN_DEBUG "%s: RX error %x\n",
 866                                        dev->name, err);
 867 
 868                         if (!(TSI_READ(TSI108_EC_RXSTAT) &
 869                               TSI108_EC_RXSTAT_QUEUE0))
 870                                 tsi108_restart_rx(data, dev);
 871                 }
 872         }
 873 
 874         if (intstat & TSI108_INT_RXOVERRUN) {
 875                 spin_lock_irq(&data->misclock);
 876                 data->stats.rx_fifo_errors++;
 877                 spin_unlock_irq(&data->misclock);
 878         }
 879 
 880         if (num_received < budget) {
 881                 data->rxpending = 0;
 882                 napi_complete_done(napi, num_received);
 883 
 884                 TSI_WRITE(TSI108_EC_INTMASK,
 885                                      TSI_READ(TSI108_EC_INTMASK)
 886                                      & ~(TSI108_INT_RXQUEUE0
 887                                          | TSI108_INT_RXTHRESH |
 888                                          TSI108_INT_RXOVERRUN |
 889                                          TSI108_INT_RXERROR |
 890                                          TSI108_INT_RXWAIT));
 891         } else {
 892                 data->rxpending = 1;
 893         }
 894 
 895         return num_received;
 896 }
 897 
 898 static void tsi108_rx_int(struct net_device *dev)
 899 {
 900         struct tsi108_prv_data *data = netdev_priv(dev);
 901 
 902         /* A race could cause dev to already be scheduled, so it's not an
 903          * error if that happens (and interrupts shouldn't be re-masked,
 904          * because that can cause harmful races, if poll has already
 905          * unmasked them but not cleared LINK_STATE_SCHED).
 906          *
 907          * This can happen if this code races with tsi108_poll(), which masks
 908          * the interrupts after tsi108_irq_one() read the mask, but before
 909          * napi_schedule is called.  It could also happen due to calls
 910          * from tsi108_check_rxring().
 911          */
 912 
 913         if (napi_schedule_prep(&data->napi)) {
 914                 /* Mask, rather than ack, the receive interrupts.  The ack
 915                  * will happen in tsi108_poll().
 916                  */
 917 
 918                 TSI_WRITE(TSI108_EC_INTMASK,
 919                                      TSI_READ(TSI108_EC_INTMASK) |
 920                                      TSI108_INT_RXQUEUE0
 921                                      | TSI108_INT_RXTHRESH |
 922                                      TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
 923                                      TSI108_INT_RXWAIT);
 924                 __napi_schedule(&data->napi);
 925         } else {
 926                 if (!netif_running(dev)) {
 927                         /* This can happen if an interrupt occurs while the
 928                          * interface is being brought down, as the START
 929                          * bit is cleared before the stop function is called.
 930                          *
 931                          * In this case, the interrupts must be masked, or
 932                          * they will continue indefinitely.
 933                          *
 934                          * There's a race here if the interface is brought down
 935                          * and then up in rapid succession, as the device could
 936                          * be made running after the above check and before
 937                          * the masking below.  This will only happen if the IRQ
 938                          * thread has a lower priority than the task brining
 939                          * up the interface.  Fixing this race would likely
 940                          * require changes in generic code.
 941                          */
 942 
 943                         TSI_WRITE(TSI108_EC_INTMASK,
 944                                              TSI_READ
 945                                              (TSI108_EC_INTMASK) |
 946                                              TSI108_INT_RXQUEUE0 |
 947                                              TSI108_INT_RXTHRESH |
 948                                              TSI108_INT_RXOVERRUN |
 949                                              TSI108_INT_RXERROR |
 950                                              TSI108_INT_RXWAIT);
 951                 }
 952         }
 953 }
 954 
 955 /* If the RX ring has run out of memory, try periodically
 956  * to allocate some more, as otherwise poll would never
 957  * get called (apart from the initial end-of-queue condition).
 958  *
 959  * This is called once per second (by default) from the thread.
 960  */
 961 
 962 static void tsi108_check_rxring(struct net_device *dev)
 963 {
 964         struct tsi108_prv_data *data = netdev_priv(dev);
 965 
 966         /* A poll is scheduled, as opposed to caling tsi108_refill_rx
 967          * directly, so as to keep the receive path single-threaded
 968          * (and thus not needing a lock).
 969          */
 970 
 971         if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
 972                 tsi108_rx_int(dev);
 973 }
 974 
 975 static void tsi108_tx_int(struct net_device *dev)
 976 {
 977         struct tsi108_prv_data *data = netdev_priv(dev);
 978         u32 estat = TSI_READ(TSI108_EC_TXESTAT);
 979 
 980         TSI_WRITE(TSI108_EC_TXESTAT, estat);
 981         TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
 982                              TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
 983         if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
 984                 u32 err = TSI_READ(TSI108_EC_TXERR);
 985                 TSI_WRITE(TSI108_EC_TXERR, err);
 986 
 987                 if (err && net_ratelimit())
 988                         printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
 989         }
 990 
 991         if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
 992                 spin_lock(&data->txlock);
 993                 tsi108_complete_tx(dev);
 994                 spin_unlock(&data->txlock);
 995         }
 996 }
 997 
 998 
 999 static irqreturn_t tsi108_irq(int irq, void *dev_id)
1000 {
1001         struct net_device *dev = dev_id;
1002         struct tsi108_prv_data *data = netdev_priv(dev);
1003         u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1004 
1005         if (!(stat & TSI108_INT_ANY))
1006                 return IRQ_NONE;        /* Not our interrupt */
1007 
1008         stat &= ~TSI_READ(TSI108_EC_INTMASK);
1009 
1010         if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1011                     TSI108_INT_TXERROR))
1012                 tsi108_tx_int(dev);
1013         if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1014                     TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1015                     TSI108_INT_RXERROR))
1016                 tsi108_rx_int(dev);
1017 
1018         if (stat & TSI108_INT_SFN) {
1019                 if (net_ratelimit())
1020                         printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1021                 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1022         }
1023 
1024         if (stat & TSI108_INT_STATCARRY) {
1025                 tsi108_stat_carry(dev);
1026                 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1027         }
1028 
1029         return IRQ_HANDLED;
1030 }
1031 
1032 static void tsi108_stop_ethernet(struct net_device *dev)
1033 {
1034         struct tsi108_prv_data *data = netdev_priv(dev);
1035         int i = 1000;
1036         /* Disable all TX and RX queues ... */
1037         TSI_WRITE(TSI108_EC_TXCTRL, 0);
1038         TSI_WRITE(TSI108_EC_RXCTRL, 0);
1039 
1040         /* ...and wait for them to become idle */
1041         while(i--) {
1042                 if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1043                         break;
1044                 udelay(10);
1045         }
1046         i = 1000;
1047         while(i--){
1048                 if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1049                         return;
1050                 udelay(10);
1051         }
1052         printk(KERN_ERR "%s function time out\n", __func__);
1053 }
1054 
1055 static void tsi108_reset_ether(struct tsi108_prv_data * data)
1056 {
1057         TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1058         udelay(100);
1059         TSI_WRITE(TSI108_MAC_CFG1, 0);
1060 
1061         TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1062         udelay(100);
1063         TSI_WRITE(TSI108_EC_PORTCTRL,
1064                              TSI_READ(TSI108_EC_PORTCTRL) &
1065                              ~TSI108_EC_PORTCTRL_STATRST);
1066 
1067         TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1068         udelay(100);
1069         TSI_WRITE(TSI108_EC_TXCFG,
1070                              TSI_READ(TSI108_EC_TXCFG) &
1071                              ~TSI108_EC_TXCFG_RST);
1072 
1073         TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1074         udelay(100);
1075         TSI_WRITE(TSI108_EC_RXCFG,
1076                              TSI_READ(TSI108_EC_RXCFG) &
1077                              ~TSI108_EC_RXCFG_RST);
1078 
1079         TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1080                              TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1081                              TSI108_MAC_MII_MGMT_RST);
1082         udelay(100);
1083         TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1084                              (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1085                              ~(TSI108_MAC_MII_MGMT_RST |
1086                                TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1087 }
1088 
1089 static int tsi108_get_mac(struct net_device *dev)
1090 {
1091         struct tsi108_prv_data *data = netdev_priv(dev);
1092         u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1093         u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1094 
1095         /* Note that the octets are reversed from what the manual says,
1096          * producing an even weirder ordering...
1097          */
1098         if (word2 == 0 && word1 == 0) {
1099                 dev->dev_addr[0] = 0x00;
1100                 dev->dev_addr[1] = 0x06;
1101                 dev->dev_addr[2] = 0xd2;
1102                 dev->dev_addr[3] = 0x00;
1103                 dev->dev_addr[4] = 0x00;
1104                 if (0x8 == data->phy)
1105                         dev->dev_addr[5] = 0x01;
1106                 else
1107                         dev->dev_addr[5] = 0x02;
1108 
1109                 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1110 
1111                 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1112                     (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1113 
1114                 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1115                 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1116         } else {
1117                 dev->dev_addr[0] = (word2 >> 16) & 0xff;
1118                 dev->dev_addr[1] = (word2 >> 24) & 0xff;
1119                 dev->dev_addr[2] = (word1 >> 0) & 0xff;
1120                 dev->dev_addr[3] = (word1 >> 8) & 0xff;
1121                 dev->dev_addr[4] = (word1 >> 16) & 0xff;
1122                 dev->dev_addr[5] = (word1 >> 24) & 0xff;
1123         }
1124 
1125         if (!is_valid_ether_addr(dev->dev_addr)) {
1126                 printk(KERN_ERR
1127                        "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
1128                        dev->name, word1, word2);
1129                 return -EINVAL;
1130         }
1131 
1132         return 0;
1133 }
1134 
1135 static int tsi108_set_mac(struct net_device *dev, void *addr)
1136 {
1137         struct tsi108_prv_data *data = netdev_priv(dev);
1138         u32 word1, word2;
1139         int i;
1140 
1141         if (!is_valid_ether_addr(addr))
1142                 return -EADDRNOTAVAIL;
1143 
1144         for (i = 0; i < 6; i++)
1145                 /* +2 is for the offset of the HW addr type */
1146                 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1147 
1148         word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1149 
1150         word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1151             (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1152 
1153         spin_lock_irq(&data->misclock);
1154         TSI_WRITE(TSI108_MAC_ADDR1, word1);
1155         TSI_WRITE(TSI108_MAC_ADDR2, word2);
1156         spin_lock(&data->txlock);
1157 
1158         if (data->txfree && data->link_up)
1159                 netif_wake_queue(dev);
1160 
1161         spin_unlock(&data->txlock);
1162         spin_unlock_irq(&data->misclock);
1163         return 0;
1164 }
1165 
1166 /* Protected by dev->xmit_lock. */
1167 static void tsi108_set_rx_mode(struct net_device *dev)
1168 {
1169         struct tsi108_prv_data *data = netdev_priv(dev);
1170         u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1171 
1172         if (dev->flags & IFF_PROMISC) {
1173                 rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1174                 rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1175                 goto out;
1176         }
1177 
1178         rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1179 
1180         if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
1181                 int i;
1182                 struct netdev_hw_addr *ha;
1183                 rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1184 
1185                 memset(data->mc_hash, 0, sizeof(data->mc_hash));
1186 
1187                 netdev_for_each_mc_addr(ha, dev) {
1188                         u32 hash, crc;
1189 
1190                         crc = ether_crc(6, ha->addr);
1191                         hash = crc >> 23;
1192                         __set_bit(hash, &data->mc_hash[0]);
1193                 }
1194 
1195                 TSI_WRITE(TSI108_EC_HASHADDR,
1196                                      TSI108_EC_HASHADDR_AUTOINC |
1197                                      TSI108_EC_HASHADDR_MCAST);
1198 
1199                 for (i = 0; i < 16; i++) {
1200                         /* The manual says that the hardware may drop
1201                          * back-to-back writes to the data register.
1202                          */
1203                         udelay(1);
1204                         TSI_WRITE(TSI108_EC_HASHDATA,
1205                                              data->mc_hash[i]);
1206                 }
1207         }
1208 
1209       out:
1210         TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1211 }
1212 
1213 static void tsi108_init_phy(struct net_device *dev)
1214 {
1215         struct tsi108_prv_data *data = netdev_priv(dev);
1216         u32 i = 0;
1217         u16 phyval = 0;
1218         unsigned long flags;
1219 
1220         spin_lock_irqsave(&phy_lock, flags);
1221 
1222         tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1223         while (--i) {
1224                 if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1225                         break;
1226                 udelay(10);
1227         }
1228         if (i == 0)
1229                 printk(KERN_ERR "%s function time out\n", __func__);
1230 
1231         if (data->phy_type == TSI108_PHY_BCM54XX) {
1232                 tsi108_write_mii(data, 0x09, 0x0300);
1233                 tsi108_write_mii(data, 0x10, 0x1020);
1234                 tsi108_write_mii(data, 0x1c, 0x8c00);
1235         }
1236 
1237         tsi108_write_mii(data,
1238                          MII_BMCR,
1239                          BMCR_ANENABLE | BMCR_ANRESTART);
1240         while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1241                 cpu_relax();
1242 
1243         /* Set G/MII mode and receive clock select in TBI control #2.  The
1244          * second port won't work if this isn't done, even though we don't
1245          * use TBI mode.
1246          */
1247 
1248         tsi108_write_tbi(data, 0x11, 0x30);
1249 
1250         /* FIXME: It seems to take more than 2 back-to-back reads to the
1251          * PHY_STAT register before the link up status bit is set.
1252          */
1253 
1254         data->link_up = 0;
1255 
1256         while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1257                  BMSR_LSTATUS)) {
1258                 if (i++ > (MII_READ_DELAY / 10)) {
1259                         break;
1260                 }
1261                 spin_unlock_irqrestore(&phy_lock, flags);
1262                 msleep(10);
1263                 spin_lock_irqsave(&phy_lock, flags);
1264         }
1265 
1266         data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1267         printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1268         data->phy_ok = 1;
1269         data->init_media = 1;
1270         spin_unlock_irqrestore(&phy_lock, flags);
1271 }
1272 
1273 static void tsi108_kill_phy(struct net_device *dev)
1274 {
1275         struct tsi108_prv_data *data = netdev_priv(dev);
1276         unsigned long flags;
1277 
1278         spin_lock_irqsave(&phy_lock, flags);
1279         tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1280         data->phy_ok = 0;
1281         spin_unlock_irqrestore(&phy_lock, flags);
1282 }
1283 
1284 static int tsi108_open(struct net_device *dev)
1285 {
1286         int i;
1287         struct tsi108_prv_data *data = netdev_priv(dev);
1288         unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1289         unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1290 
1291         i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1292         if (i != 0) {
1293                 printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1294                        data->id, data->irq_num);
1295                 return i;
1296         } else {
1297                 dev->irq = data->irq_num;
1298                 printk(KERN_NOTICE
1299                        "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1300                        data->id, dev->irq, dev->name);
1301         }
1302 
1303         data->rxring = dma_alloc_coherent(&data->pdev->dev, rxring_size,
1304                                           &data->rxdma, GFP_KERNEL);
1305         if (!data->rxring)
1306                 return -ENOMEM;
1307 
1308         data->txring = dma_alloc_coherent(&data->pdev->dev, txring_size,
1309                                           &data->txdma, GFP_KERNEL);
1310         if (!data->txring) {
1311                 dma_free_coherent(&data->pdev->dev, rxring_size, data->rxring,
1312                                     data->rxdma);
1313                 return -ENOMEM;
1314         }
1315 
1316         for (i = 0; i < TSI108_RXRING_LEN; i++) {
1317                 data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1318                 data->rxring[i].blen = TSI108_RXBUF_SIZE;
1319                 data->rxring[i].vlan = 0;
1320         }
1321 
1322         data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1323 
1324         data->rxtail = 0;
1325         data->rxhead = 0;
1326 
1327         for (i = 0; i < TSI108_RXRING_LEN; i++) {
1328                 struct sk_buff *skb;
1329 
1330                 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
1331                 if (!skb) {
1332                         /* Bah.  No memory for now, but maybe we'll get
1333                          * some more later.
1334                          * For now, we'll live with the smaller ring.
1335                          */
1336                         printk(KERN_WARNING
1337                                "%s: Could only allocate %d receive skb(s).\n",
1338                                dev->name, i);
1339                         data->rxhead = i;
1340                         break;
1341                 }
1342 
1343                 data->rxskbs[i] = skb;
1344                 data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1345                 data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1346         }
1347 
1348         data->rxfree = i;
1349         TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1350 
1351         for (i = 0; i < TSI108_TXRING_LEN; i++) {
1352                 data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1353                 data->txring[i].misc = 0;
1354         }
1355 
1356         data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1357         data->txtail = 0;
1358         data->txhead = 0;
1359         data->txfree = TSI108_TXRING_LEN;
1360         TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1361         tsi108_init_phy(dev);
1362 
1363         napi_enable(&data->napi);
1364 
1365         timer_setup(&data->timer, tsi108_timed_checker, 0);
1366         mod_timer(&data->timer, jiffies + 1);
1367 
1368         tsi108_restart_rx(data, dev);
1369 
1370         TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1371 
1372         TSI_WRITE(TSI108_EC_INTMASK,
1373                              ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1374                                TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1375                                TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1376                                TSI108_INT_SFN | TSI108_INT_STATCARRY));
1377 
1378         TSI_WRITE(TSI108_MAC_CFG1,
1379                              TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1380         netif_start_queue(dev);
1381         return 0;
1382 }
1383 
1384 static int tsi108_close(struct net_device *dev)
1385 {
1386         struct tsi108_prv_data *data = netdev_priv(dev);
1387 
1388         netif_stop_queue(dev);
1389         napi_disable(&data->napi);
1390 
1391         del_timer_sync(&data->timer);
1392 
1393         tsi108_stop_ethernet(dev);
1394         tsi108_kill_phy(dev);
1395         TSI_WRITE(TSI108_EC_INTMASK, ~0);
1396         TSI_WRITE(TSI108_MAC_CFG1, 0);
1397 
1398         /* Check for any pending TX packets, and drop them. */
1399 
1400         while (!data->txfree || data->txhead != data->txtail) {
1401                 int tx = data->txtail;
1402                 struct sk_buff *skb;
1403                 skb = data->txskbs[tx];
1404                 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1405                 data->txfree++;
1406                 dev_kfree_skb(skb);
1407         }
1408 
1409         free_irq(data->irq_num, dev);
1410 
1411         /* Discard the RX ring. */
1412 
1413         while (data->rxfree) {
1414                 int rx = data->rxtail;
1415                 struct sk_buff *skb;
1416 
1417                 skb = data->rxskbs[rx];
1418                 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1419                 data->rxfree--;
1420                 dev_kfree_skb(skb);
1421         }
1422 
1423         dma_free_coherent(&data->pdev->dev,
1424                             TSI108_RXRING_LEN * sizeof(rx_desc),
1425                             data->rxring, data->rxdma);
1426         dma_free_coherent(&data->pdev->dev,
1427                             TSI108_TXRING_LEN * sizeof(tx_desc),
1428                             data->txring, data->txdma);
1429 
1430         return 0;
1431 }
1432 
1433 static void tsi108_init_mac(struct net_device *dev)
1434 {
1435         struct tsi108_prv_data *data = netdev_priv(dev);
1436 
1437         TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1438                              TSI108_MAC_CFG2_PADCRC);
1439 
1440         TSI_WRITE(TSI108_EC_TXTHRESH,
1441                              (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1442                              (192 << TSI108_EC_TXTHRESH_STOPFILL));
1443 
1444         TSI_WRITE(TSI108_STAT_CARRYMASK1,
1445                              ~(TSI108_STAT_CARRY1_RXBYTES |
1446                                TSI108_STAT_CARRY1_RXPKTS |
1447                                TSI108_STAT_CARRY1_RXFCS |
1448                                TSI108_STAT_CARRY1_RXMCAST |
1449                                TSI108_STAT_CARRY1_RXALIGN |
1450                                TSI108_STAT_CARRY1_RXLENGTH |
1451                                TSI108_STAT_CARRY1_RXRUNT |
1452                                TSI108_STAT_CARRY1_RXJUMBO |
1453                                TSI108_STAT_CARRY1_RXFRAG |
1454                                TSI108_STAT_CARRY1_RXJABBER |
1455                                TSI108_STAT_CARRY1_RXDROP));
1456 
1457         TSI_WRITE(TSI108_STAT_CARRYMASK2,
1458                              ~(TSI108_STAT_CARRY2_TXBYTES |
1459                                TSI108_STAT_CARRY2_TXPKTS |
1460                                TSI108_STAT_CARRY2_TXEXDEF |
1461                                TSI108_STAT_CARRY2_TXEXCOL |
1462                                TSI108_STAT_CARRY2_TXTCOL |
1463                                TSI108_STAT_CARRY2_TXPAUSE));
1464 
1465         TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1466         TSI_WRITE(TSI108_MAC_CFG1, 0);
1467 
1468         TSI_WRITE(TSI108_EC_RXCFG,
1469                              TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1470 
1471         TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1472                              TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1473                              TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1474                                                 TSI108_EC_TXQ_CFG_SFNPORT));
1475 
1476         TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1477                              TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1478                              TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1479                                                 TSI108_EC_RXQ_CFG_SFNPORT));
1480 
1481         TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1482                              TSI108_EC_TXQ_BUFCFG_BURST256 |
1483                              TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1484                                                 TSI108_EC_TXQ_BUFCFG_SFNPORT));
1485 
1486         TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1487                              TSI108_EC_RXQ_BUFCFG_BURST256 |
1488                              TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1489                                                 TSI108_EC_RXQ_BUFCFG_SFNPORT));
1490 
1491         TSI_WRITE(TSI108_EC_INTMASK, ~0);
1492 }
1493 
1494 static int tsi108_get_link_ksettings(struct net_device *dev,
1495                                      struct ethtool_link_ksettings *cmd)
1496 {
1497         struct tsi108_prv_data *data = netdev_priv(dev);
1498         unsigned long flags;
1499 
1500         spin_lock_irqsave(&data->txlock, flags);
1501         mii_ethtool_get_link_ksettings(&data->mii_if, cmd);
1502         spin_unlock_irqrestore(&data->txlock, flags);
1503 
1504         return 0;
1505 }
1506 
1507 static int tsi108_set_link_ksettings(struct net_device *dev,
1508                                      const struct ethtool_link_ksettings *cmd)
1509 {
1510         struct tsi108_prv_data *data = netdev_priv(dev);
1511         unsigned long flags;
1512         int rc;
1513 
1514         spin_lock_irqsave(&data->txlock, flags);
1515         rc = mii_ethtool_set_link_ksettings(&data->mii_if, cmd);
1516         spin_unlock_irqrestore(&data->txlock, flags);
1517 
1518         return rc;
1519 }
1520 
1521 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1522 {
1523         struct tsi108_prv_data *data = netdev_priv(dev);
1524         if (!netif_running(dev))
1525                 return -EINVAL;
1526         return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1527 }
1528 
1529 static const struct ethtool_ops tsi108_ethtool_ops = {
1530         .get_link       = ethtool_op_get_link,
1531         .get_link_ksettings     = tsi108_get_link_ksettings,
1532         .set_link_ksettings     = tsi108_set_link_ksettings,
1533 };
1534 
1535 static const struct net_device_ops tsi108_netdev_ops = {
1536         .ndo_open               = tsi108_open,
1537         .ndo_stop               = tsi108_close,
1538         .ndo_start_xmit         = tsi108_send_packet,
1539         .ndo_set_rx_mode        = tsi108_set_rx_mode,
1540         .ndo_get_stats          = tsi108_get_stats,
1541         .ndo_do_ioctl           = tsi108_do_ioctl,
1542         .ndo_set_mac_address    = tsi108_set_mac,
1543         .ndo_validate_addr      = eth_validate_addr,
1544 };
1545 
1546 static int
1547 tsi108_init_one(struct platform_device *pdev)
1548 {
1549         struct net_device *dev = NULL;
1550         struct tsi108_prv_data *data = NULL;
1551         hw_info *einfo;
1552         int err = 0;
1553 
1554         einfo = dev_get_platdata(&pdev->dev);
1555 
1556         if (NULL == einfo) {
1557                 printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1558                        pdev->id);
1559                 return -ENODEV;
1560         }
1561 
1562         /* Create an ethernet device instance */
1563 
1564         dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1565         if (!dev)
1566                 return -ENOMEM;
1567 
1568         printk("tsi108_eth%d: probe...\n", pdev->id);
1569         data = netdev_priv(dev);
1570         data->dev = dev;
1571         data->pdev = pdev;
1572 
1573         pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1574                         pdev->id, einfo->regs, einfo->phyregs,
1575                         einfo->phy, einfo->irq_num);
1576 
1577         data->regs = ioremap(einfo->regs, 0x400);
1578         if (NULL == data->regs) {
1579                 err = -ENOMEM;
1580                 goto regs_fail;
1581         }
1582 
1583         data->phyregs = ioremap(einfo->phyregs, 0x400);
1584         if (NULL == data->phyregs) {
1585                 err = -ENOMEM;
1586                 goto phyregs_fail;
1587         }
1588 /* MII setup */
1589         data->mii_if.dev = dev;
1590         data->mii_if.mdio_read = tsi108_mdio_read;
1591         data->mii_if.mdio_write = tsi108_mdio_write;
1592         data->mii_if.phy_id = einfo->phy;
1593         data->mii_if.phy_id_mask = 0x1f;
1594         data->mii_if.reg_num_mask = 0x1f;
1595 
1596         data->phy = einfo->phy;
1597         data->phy_type = einfo->phy_type;
1598         data->irq_num = einfo->irq_num;
1599         data->id = pdev->id;
1600         netif_napi_add(dev, &data->napi, tsi108_poll, 64);
1601         dev->netdev_ops = &tsi108_netdev_ops;
1602         dev->ethtool_ops = &tsi108_ethtool_ops;
1603 
1604         /* Apparently, the Linux networking code won't use scatter-gather
1605          * if the hardware doesn't do checksums.  However, it's faster
1606          * to checksum in place and use SG, as (among other reasons)
1607          * the cache won't be dirtied (which then has to be flushed
1608          * before DMA).  The checksumming is done by the driver (via
1609          * a new function skb_csum_dev() in net/core/skbuff.c).
1610          */
1611 
1612         dev->features = NETIF_F_HIGHDMA;
1613 
1614         spin_lock_init(&data->txlock);
1615         spin_lock_init(&data->misclock);
1616 
1617         tsi108_reset_ether(data);
1618         tsi108_kill_phy(dev);
1619 
1620         if ((err = tsi108_get_mac(dev)) != 0) {
1621                 printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n",
1622                        dev->name);
1623                 goto register_fail;
1624         }
1625 
1626         tsi108_init_mac(dev);
1627         err = register_netdev(dev);
1628         if (err) {
1629                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1630                                 dev->name);
1631                 goto register_fail;
1632         }
1633 
1634         platform_set_drvdata(pdev, dev);
1635         printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1636                dev->name, dev->dev_addr);
1637 #ifdef DEBUG
1638         data->msg_enable = DEBUG;
1639         dump_eth_one(dev);
1640 #endif
1641 
1642         return 0;
1643 
1644 register_fail:
1645         iounmap(data->phyregs);
1646 
1647 phyregs_fail:
1648         iounmap(data->regs);
1649 
1650 regs_fail:
1651         free_netdev(dev);
1652         return err;
1653 }
1654 
1655 /* There's no way to either get interrupts from the PHY when
1656  * something changes, or to have the Tsi108 automatically communicate
1657  * with the PHY to reconfigure itself.
1658  *
1659  * Thus, we have to do it using a timer.
1660  */
1661 
1662 static void tsi108_timed_checker(struct timer_list *t)
1663 {
1664         struct tsi108_prv_data *data = from_timer(data, t, timer);
1665         struct net_device *dev = data->dev;
1666 
1667         tsi108_check_phy(dev);
1668         tsi108_check_rxring(dev);
1669         mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1670 }
1671 
1672 static int tsi108_ether_remove(struct platform_device *pdev)
1673 {
1674         struct net_device *dev = platform_get_drvdata(pdev);
1675         struct tsi108_prv_data *priv = netdev_priv(dev);
1676 
1677         unregister_netdev(dev);
1678         tsi108_stop_ethernet(dev);
1679         iounmap(priv->regs);
1680         iounmap(priv->phyregs);
1681         free_netdev(dev);
1682 
1683         return 0;
1684 }
1685 module_platform_driver(tsi_eth_driver);
1686 
1687 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1688 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1689 MODULE_LICENSE("GPL");
1690 MODULE_ALIAS("platform:tsi-ethernet");

/* [<][>][^][v][top][bottom][index][help] */