root/drivers/net/ethernet/amd/au1000_eth.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. au1000_enable_mac
  2. au1000_mdio_read
  3. au1000_mdio_write
  4. au1000_mdiobus_read
  5. au1000_mdiobus_write
  6. au1000_mdiobus_reset
  7. au1000_hard_stop
  8. au1000_enable_rx_tx
  9. au1000_adjust_link
  10. au1000_mii_probe
  11. au1000_GetFreeDB
  12. au1000_ReleaseDB
  13. au1000_reset_mac_unlocked
  14. au1000_reset_mac
  15. au1000_setup_hw_rings
  16. au1000_get_drvinfo
  17. au1000_set_msglevel
  18. au1000_get_msglevel
  19. au1000_init
  20. au1000_update_rx_stats
  21. au1000_rx
  22. au1000_update_tx_stats
  23. au1000_tx_ack
  24. au1000_interrupt
  25. au1000_open
  26. au1000_close
  27. au1000_tx
  28. au1000_tx_timeout
  29. au1000_multicast_list
  30. au1000_ioctl
  31. au1000_probe
  32. au1000_remove

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  *
   4  * Alchemy Au1x00 ethernet driver
   5  *
   6  * Copyright 2001-2003, 2006 MontaVista Software Inc.
   7  * Copyright 2002 TimeSys Corp.
   8  * Added ethtool/mii-tool support,
   9  * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
  10  * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
  11  * or riemer@riemer-nt.de: fixed the link beat detection with
  12  * ioctls (SIOCGMIIPHY)
  13  * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
  14  *  converted to use linux-2.6.x's PHY framework
  15  *
  16  * Author: MontaVista Software, Inc.
  17  *              ppopov@mvista.com or source@mvista.com
  18  */
  19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  20 
  21 #include <linux/capability.h>
  22 #include <linux/dma-mapping.h>
  23 #include <linux/module.h>
  24 #include <linux/kernel.h>
  25 #include <linux/string.h>
  26 #include <linux/timer.h>
  27 #include <linux/errno.h>
  28 #include <linux/in.h>
  29 #include <linux/ioport.h>
  30 #include <linux/bitops.h>
  31 #include <linux/slab.h>
  32 #include <linux/interrupt.h>
  33 #include <linux/netdevice.h>
  34 #include <linux/etherdevice.h>
  35 #include <linux/ethtool.h>
  36 #include <linux/mii.h>
  37 #include <linux/skbuff.h>
  38 #include <linux/delay.h>
  39 #include <linux/crc32.h>
  40 #include <linux/phy.h>
  41 #include <linux/platform_device.h>
  42 #include <linux/cpu.h>
  43 #include <linux/io.h>
  44 
  45 #include <asm/mipsregs.h>
  46 #include <asm/irq.h>
  47 #include <asm/processor.h>
  48 
  49 #include <au1000.h>
  50 #include <au1xxx_eth.h>
  51 #include <prom.h>
  52 
  53 #include "au1000_eth.h"
  54 
  55 #ifdef AU1000_ETH_DEBUG
  56 static int au1000_debug = 5;
  57 #else
  58 static int au1000_debug = 3;
  59 #endif
  60 
  61 #define AU1000_DEF_MSG_ENABLE   (NETIF_MSG_DRV  | \
  62                                 NETIF_MSG_PROBE | \
  63                                 NETIF_MSG_LINK)
  64 
  65 #define DRV_NAME        "au1000_eth"
  66 #define DRV_VERSION     "1.7"
  67 #define DRV_AUTHOR      "Pete Popov <ppopov@embeddedalley.com>"
  68 #define DRV_DESC        "Au1xxx on-chip Ethernet driver"
  69 
  70 MODULE_AUTHOR(DRV_AUTHOR);
  71 MODULE_DESCRIPTION(DRV_DESC);
  72 MODULE_LICENSE("GPL");
  73 MODULE_VERSION(DRV_VERSION);
  74 
  75 /* AU1000 MAC registers and bits */
  76 #define MAC_CONTROL             0x0
  77 #  define MAC_RX_ENABLE         (1 << 2)
  78 #  define MAC_TX_ENABLE         (1 << 3)
  79 #  define MAC_DEF_CHECK         (1 << 5)
  80 #  define MAC_SET_BL(X)         (((X) & 0x3) << 6)
  81 #  define MAC_AUTO_PAD          (1 << 8)
  82 #  define MAC_DISABLE_RETRY     (1 << 10)
  83 #  define MAC_DISABLE_BCAST     (1 << 11)
  84 #  define MAC_LATE_COL          (1 << 12)
  85 #  define MAC_HASH_MODE         (1 << 13)
  86 #  define MAC_HASH_ONLY         (1 << 15)
  87 #  define MAC_PASS_ALL          (1 << 16)
  88 #  define MAC_INVERSE_FILTER    (1 << 17)
  89 #  define MAC_PROMISCUOUS       (1 << 18)
  90 #  define MAC_PASS_ALL_MULTI    (1 << 19)
  91 #  define MAC_FULL_DUPLEX       (1 << 20)
  92 #  define MAC_NORMAL_MODE       0
  93 #  define MAC_INT_LOOPBACK      (1 << 21)
  94 #  define MAC_EXT_LOOPBACK      (1 << 22)
  95 #  define MAC_DISABLE_RX_OWN    (1 << 23)
  96 #  define MAC_BIG_ENDIAN        (1 << 30)
  97 #  define MAC_RX_ALL            (1 << 31)
  98 #define MAC_ADDRESS_HIGH        0x4
  99 #define MAC_ADDRESS_LOW         0x8
 100 #define MAC_MCAST_HIGH          0xC
 101 #define MAC_MCAST_LOW           0x10
 102 #define MAC_MII_CNTRL           0x14
 103 #  define MAC_MII_BUSY          (1 << 0)
 104 #  define MAC_MII_READ          0
 105 #  define MAC_MII_WRITE         (1 << 1)
 106 #  define MAC_SET_MII_SELECT_REG(X) (((X) & 0x1f) << 6)
 107 #  define MAC_SET_MII_SELECT_PHY(X) (((X) & 0x1f) << 11)
 108 #define MAC_MII_DATA            0x18
 109 #define MAC_FLOW_CNTRL          0x1C
 110 #  define MAC_FLOW_CNTRL_BUSY   (1 << 0)
 111 #  define MAC_FLOW_CNTRL_ENABLE (1 << 1)
 112 #  define MAC_PASS_CONTROL      (1 << 2)
 113 #  define MAC_SET_PAUSE(X)      (((X) & 0xffff) << 16)
 114 #define MAC_VLAN1_TAG           0x20
 115 #define MAC_VLAN2_TAG           0x24
 116 
 117 /* Ethernet Controller Enable */
 118 #  define MAC_EN_CLOCK_ENABLE   (1 << 0)
 119 #  define MAC_EN_RESET0         (1 << 1)
 120 #  define MAC_EN_TOSS           (0 << 2)
 121 #  define MAC_EN_CACHEABLE      (1 << 3)
 122 #  define MAC_EN_RESET1         (1 << 4)
 123 #  define MAC_EN_RESET2         (1 << 5)
 124 #  define MAC_DMA_RESET         (1 << 6)
 125 
 126 /* Ethernet Controller DMA Channels */
 127 /* offsets from MAC_TX_RING_ADDR address */
 128 #define MAC_TX_BUFF0_STATUS     0x0
 129 #  define TX_FRAME_ABORTED      (1 << 0)
 130 #  define TX_JAB_TIMEOUT        (1 << 1)
 131 #  define TX_NO_CARRIER         (1 << 2)
 132 #  define TX_LOSS_CARRIER       (1 << 3)
 133 #  define TX_EXC_DEF            (1 << 4)
 134 #  define TX_LATE_COLL_ABORT    (1 << 5)
 135 #  define TX_EXC_COLL           (1 << 6)
 136 #  define TX_UNDERRUN           (1 << 7)
 137 #  define TX_DEFERRED           (1 << 8)
 138 #  define TX_LATE_COLL          (1 << 9)
 139 #  define TX_COLL_CNT_MASK      (0xF << 10)
 140 #  define TX_PKT_RETRY          (1 << 31)
 141 #define MAC_TX_BUFF0_ADDR       0x4
 142 #  define TX_DMA_ENABLE         (1 << 0)
 143 #  define TX_T_DONE             (1 << 1)
 144 #  define TX_GET_DMA_BUFFER(X)  (((X) >> 2) & 0x3)
 145 #define MAC_TX_BUFF0_LEN        0x8
 146 #define MAC_TX_BUFF1_STATUS     0x10
 147 #define MAC_TX_BUFF1_ADDR       0x14
 148 #define MAC_TX_BUFF1_LEN        0x18
 149 #define MAC_TX_BUFF2_STATUS     0x20
 150 #define MAC_TX_BUFF2_ADDR       0x24
 151 #define MAC_TX_BUFF2_LEN        0x28
 152 #define MAC_TX_BUFF3_STATUS     0x30
 153 #define MAC_TX_BUFF3_ADDR       0x34
 154 #define MAC_TX_BUFF3_LEN        0x38
 155 
 156 /* offsets from MAC_RX_RING_ADDR */
 157 #define MAC_RX_BUFF0_STATUS     0x0
 158 #  define RX_FRAME_LEN_MASK     0x3fff
 159 #  define RX_WDOG_TIMER         (1 << 14)
 160 #  define RX_RUNT               (1 << 15)
 161 #  define RX_OVERLEN            (1 << 16)
 162 #  define RX_COLL               (1 << 17)
 163 #  define RX_ETHER              (1 << 18)
 164 #  define RX_MII_ERROR          (1 << 19)
 165 #  define RX_DRIBBLING          (1 << 20)
 166 #  define RX_CRC_ERROR          (1 << 21)
 167 #  define RX_VLAN1              (1 << 22)
 168 #  define RX_VLAN2              (1 << 23)
 169 #  define RX_LEN_ERROR          (1 << 24)
 170 #  define RX_CNTRL_FRAME        (1 << 25)
 171 #  define RX_U_CNTRL_FRAME      (1 << 26)
 172 #  define RX_MCAST_FRAME        (1 << 27)
 173 #  define RX_BCAST_FRAME        (1 << 28)
 174 #  define RX_FILTER_FAIL        (1 << 29)
 175 #  define RX_PACKET_FILTER      (1 << 30)
 176 #  define RX_MISSED_FRAME       (1 << 31)
 177 
 178 #  define RX_ERROR (RX_WDOG_TIMER | RX_RUNT | RX_OVERLEN |  \
 179                     RX_COLL | RX_MII_ERROR | RX_CRC_ERROR | \
 180                     RX_LEN_ERROR | RX_U_CNTRL_FRAME | RX_MISSED_FRAME)
 181 #define MAC_RX_BUFF0_ADDR       0x4
 182 #  define RX_DMA_ENABLE         (1 << 0)
 183 #  define RX_T_DONE             (1 << 1)
 184 #  define RX_GET_DMA_BUFFER(X)  (((X) >> 2) & 0x3)
 185 #  define RX_SET_BUFF_ADDR(X)   ((X) & 0xffffffc0)
 186 #define MAC_RX_BUFF1_STATUS     0x10
 187 #define MAC_RX_BUFF1_ADDR       0x14
 188 #define MAC_RX_BUFF2_STATUS     0x20
 189 #define MAC_RX_BUFF2_ADDR       0x24
 190 #define MAC_RX_BUFF3_STATUS     0x30
 191 #define MAC_RX_BUFF3_ADDR       0x34
 192 
 193 /*
 194  * Theory of operation
 195  *
 196  * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
 197  * There are four receive and four transmit descriptors.  These
 198  * descriptors are not in memory; rather, they are just a set of
 199  * hardware registers.
 200  *
 201  * Since the Au1000 has a coherent data cache, the receive and
 202  * transmit buffers are allocated from the KSEG0 segment. The
 203  * hardware registers, however, are still mapped at KSEG1 to
 204  * make sure there's no out-of-order writes, and that all writes
 205  * complete immediately.
 206  */
 207 
 208 /*
 209  * board-specific configurations
 210  *
 211  * PHY detection algorithm
 212  *
 213  * If phy_static_config is undefined, the PHY setup is
 214  * autodetected:
 215  *
 216  * mii_probe() first searches the current MAC's MII bus for a PHY,
 217  * selecting the first (or last, if phy_search_highest_addr is
 218  * defined) PHY address not already claimed by another netdev.
 219  *
 220  * If nothing was found that way when searching for the 2nd ethernet
 221  * controller's PHY and phy1_search_mac0 is defined, then
 222  * the first MII bus is searched as well for an unclaimed PHY; this is
 223  * needed in case of a dual-PHY accessible only through the MAC0's MII
 224  * bus.
 225  *
 226  * Finally, if no PHY is found, then the corresponding ethernet
 227  * controller is not registered to the network subsystem.
 228  */
 229 
 230 /* autodetection defaults: phy1_search_mac0 */
 231 
 232 /* static PHY setup
 233  *
 234  * most boards PHY setup should be detectable properly with the
 235  * autodetection algorithm in mii_probe(), but in some cases (e.g. if
 236  * you have a switch attached, or want to use the PHY's interrupt
 237  * notification capabilities) you can provide a static PHY
 238  * configuration here
 239  *
 240  * IRQs may only be set, if a PHY address was configured
 241  * If a PHY address is given, also a bus id is required to be set
 242  *
 243  * ps: make sure the used irqs are configured properly in the board
 244  * specific irq-map
 245  */
 246 
 247 static void au1000_enable_mac(struct net_device *dev, int force_reset)
 248 {
 249         unsigned long flags;
 250         struct au1000_private *aup = netdev_priv(dev);
 251 
 252         spin_lock_irqsave(&aup->lock, flags);
 253 
 254         if (force_reset || (!aup->mac_enabled)) {
 255                 writel(MAC_EN_CLOCK_ENABLE, aup->enable);
 256                 wmb(); /* drain writebuffer */
 257                 mdelay(2);
 258                 writel((MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
 259                                 | MAC_EN_CLOCK_ENABLE), aup->enable);
 260                 wmb(); /* drain writebuffer */
 261                 mdelay(2);
 262 
 263                 aup->mac_enabled = 1;
 264         }
 265 
 266         spin_unlock_irqrestore(&aup->lock, flags);
 267 }
 268 
 269 /*
 270  * MII operations
 271  */
 272 static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg)
 273 {
 274         struct au1000_private *aup = netdev_priv(dev);
 275         u32 *const mii_control_reg = &aup->mac->mii_control;
 276         u32 *const mii_data_reg = &aup->mac->mii_data;
 277         u32 timedout = 20;
 278         u32 mii_control;
 279 
 280         while (readl(mii_control_reg) & MAC_MII_BUSY) {
 281                 mdelay(1);
 282                 if (--timedout == 0) {
 283                         netdev_err(dev, "read_MII busy timeout!!\n");
 284                         return -1;
 285                 }
 286         }
 287 
 288         mii_control = MAC_SET_MII_SELECT_REG(reg) |
 289                 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
 290 
 291         writel(mii_control, mii_control_reg);
 292 
 293         timedout = 20;
 294         while (readl(mii_control_reg) & MAC_MII_BUSY) {
 295                 mdelay(1);
 296                 if (--timedout == 0) {
 297                         netdev_err(dev, "mdio_read busy timeout!!\n");
 298                         return -1;
 299                 }
 300         }
 301         return readl(mii_data_reg);
 302 }
 303 
 304 static void au1000_mdio_write(struct net_device *dev, int phy_addr,
 305                               int reg, u16 value)
 306 {
 307         struct au1000_private *aup = netdev_priv(dev);
 308         u32 *const mii_control_reg = &aup->mac->mii_control;
 309         u32 *const mii_data_reg = &aup->mac->mii_data;
 310         u32 timedout = 20;
 311         u32 mii_control;
 312 
 313         while (readl(mii_control_reg) & MAC_MII_BUSY) {
 314                 mdelay(1);
 315                 if (--timedout == 0) {
 316                         netdev_err(dev, "mdio_write busy timeout!!\n");
 317                         return;
 318                 }
 319         }
 320 
 321         mii_control = MAC_SET_MII_SELECT_REG(reg) |
 322                 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
 323 
 324         writel(value, mii_data_reg);
 325         writel(mii_control, mii_control_reg);
 326 }
 327 
 328 static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
 329 {
 330         struct net_device *const dev = bus->priv;
 331 
 332         /* make sure the MAC associated with this
 333          * mii_bus is enabled
 334          */
 335         au1000_enable_mac(dev, 0);
 336 
 337         return au1000_mdio_read(dev, phy_addr, regnum);
 338 }
 339 
 340 static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
 341                                 u16 value)
 342 {
 343         struct net_device *const dev = bus->priv;
 344 
 345         /* make sure the MAC associated with this
 346          * mii_bus is enabled
 347          */
 348         au1000_enable_mac(dev, 0);
 349 
 350         au1000_mdio_write(dev, phy_addr, regnum, value);
 351         return 0;
 352 }
 353 
 354 static int au1000_mdiobus_reset(struct mii_bus *bus)
 355 {
 356         struct net_device *const dev = bus->priv;
 357 
 358         /* make sure the MAC associated with this
 359          * mii_bus is enabled
 360          */
 361         au1000_enable_mac(dev, 0);
 362 
 363         return 0;
 364 }
 365 
 366 static void au1000_hard_stop(struct net_device *dev)
 367 {
 368         struct au1000_private *aup = netdev_priv(dev);
 369         u32 reg;
 370 
 371         netif_dbg(aup, drv, dev, "hard stop\n");
 372 
 373         reg = readl(&aup->mac->control);
 374         reg &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
 375         writel(reg, &aup->mac->control);
 376         wmb(); /* drain writebuffer */
 377         mdelay(10);
 378 }
 379 
 380 static void au1000_enable_rx_tx(struct net_device *dev)
 381 {
 382         struct au1000_private *aup = netdev_priv(dev);
 383         u32 reg;
 384 
 385         netif_dbg(aup, hw, dev, "enable_rx_tx\n");
 386 
 387         reg = readl(&aup->mac->control);
 388         reg |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
 389         writel(reg, &aup->mac->control);
 390         wmb(); /* drain writebuffer */
 391         mdelay(10);
 392 }
 393 
 394 static void
 395 au1000_adjust_link(struct net_device *dev)
 396 {
 397         struct au1000_private *aup = netdev_priv(dev);
 398         struct phy_device *phydev = dev->phydev;
 399         unsigned long flags;
 400         u32 reg;
 401 
 402         int status_change = 0;
 403 
 404         BUG_ON(!phydev);
 405 
 406         spin_lock_irqsave(&aup->lock, flags);
 407 
 408         if (phydev->link && (aup->old_speed != phydev->speed)) {
 409                 /* speed changed */
 410 
 411                 switch (phydev->speed) {
 412                 case SPEED_10:
 413                 case SPEED_100:
 414                         break;
 415                 default:
 416                         netdev_warn(dev, "Speed (%d) is not 10/100 ???\n",
 417                                                         phydev->speed);
 418                         break;
 419                 }
 420 
 421                 aup->old_speed = phydev->speed;
 422 
 423                 status_change = 1;
 424         }
 425 
 426         if (phydev->link && (aup->old_duplex != phydev->duplex)) {
 427                 /* duplex mode changed */
 428 
 429                 /* switching duplex mode requires to disable rx and tx! */
 430                 au1000_hard_stop(dev);
 431 
 432                 reg = readl(&aup->mac->control);
 433                 if (DUPLEX_FULL == phydev->duplex) {
 434                         reg |= MAC_FULL_DUPLEX;
 435                         reg &= ~MAC_DISABLE_RX_OWN;
 436                 } else {
 437                         reg &= ~MAC_FULL_DUPLEX;
 438                         reg |= MAC_DISABLE_RX_OWN;
 439                 }
 440                 writel(reg, &aup->mac->control);
 441                 wmb(); /* drain writebuffer */
 442                 mdelay(1);
 443 
 444                 au1000_enable_rx_tx(dev);
 445                 aup->old_duplex = phydev->duplex;
 446 
 447                 status_change = 1;
 448         }
 449 
 450         if (phydev->link != aup->old_link) {
 451                 /* link state changed */
 452 
 453                 if (!phydev->link) {
 454                         /* link went down */
 455                         aup->old_speed = 0;
 456                         aup->old_duplex = -1;
 457                 }
 458 
 459                 aup->old_link = phydev->link;
 460                 status_change = 1;
 461         }
 462 
 463         spin_unlock_irqrestore(&aup->lock, flags);
 464 
 465         if (status_change) {
 466                 if (phydev->link)
 467                         netdev_info(dev, "link up (%d/%s)\n",
 468                                phydev->speed,
 469                                DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
 470                 else
 471                         netdev_info(dev, "link down\n");
 472         }
 473 }
 474 
 475 static int au1000_mii_probe(struct net_device *dev)
 476 {
 477         struct au1000_private *const aup = netdev_priv(dev);
 478         struct phy_device *phydev = NULL;
 479         int phy_addr;
 480 
 481         if (aup->phy_static_config) {
 482                 BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
 483 
 484                 if (aup->phy_addr)
 485                         phydev = mdiobus_get_phy(aup->mii_bus, aup->phy_addr);
 486                 else
 487                         netdev_info(dev, "using PHY-less setup\n");
 488                 return 0;
 489         }
 490 
 491         /* find the first (lowest address) PHY
 492          * on the current MAC's MII bus
 493          */
 494         for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
 495                 if (mdiobus_get_phy(aup->mii_bus, phy_addr)) {
 496                         phydev = mdiobus_get_phy(aup->mii_bus, phy_addr);
 497                         if (!aup->phy_search_highest_addr)
 498                                 /* break out with first one found */
 499                                 break;
 500                 }
 501 
 502         if (aup->phy1_search_mac0) {
 503                 /* try harder to find a PHY */
 504                 if (!phydev && (aup->mac_id == 1)) {
 505                         /* no PHY found, maybe we have a dual PHY? */
 506                         dev_info(&dev->dev, ": no PHY found on MAC1, "
 507                                 "let's see if it's attached to MAC0...\n");
 508 
 509                         /* find the first (lowest address) non-attached
 510                          * PHY on the MAC0 MII bus
 511                          */
 512                         for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
 513                                 struct phy_device *const tmp_phydev =
 514                                         mdiobus_get_phy(aup->mii_bus,
 515                                                         phy_addr);
 516 
 517                                 if (aup->mac_id == 1)
 518                                         break;
 519 
 520                                 /* no PHY here... */
 521                                 if (!tmp_phydev)
 522                                         continue;
 523 
 524                                 /* already claimed by MAC0 */
 525                                 if (tmp_phydev->attached_dev)
 526                                         continue;
 527 
 528                                 phydev = tmp_phydev;
 529                                 break; /* found it */
 530                         }
 531                 }
 532         }
 533 
 534         if (!phydev) {
 535                 netdev_err(dev, "no PHY found\n");
 536                 return -1;
 537         }
 538 
 539         /* now we are supposed to have a proper phydev, to attach to... */
 540         BUG_ON(phydev->attached_dev);
 541 
 542         phydev = phy_connect(dev, phydev_name(phydev),
 543                              &au1000_adjust_link, PHY_INTERFACE_MODE_MII);
 544 
 545         if (IS_ERR(phydev)) {
 546                 netdev_err(dev, "Could not attach to PHY\n");
 547                 return PTR_ERR(phydev);
 548         }
 549 
 550         phy_set_max_speed(phydev, SPEED_100);
 551 
 552         aup->old_link = 0;
 553         aup->old_speed = 0;
 554         aup->old_duplex = -1;
 555 
 556         phy_attached_info(phydev);
 557 
 558         return 0;
 559 }
 560 
 561 
 562 /*
 563  * Buffer allocation/deallocation routines. The buffer descriptor returned
 564  * has the virtual and dma address of a buffer suitable for
 565  * both, receive and transmit operations.
 566  */
 567 static struct db_dest *au1000_GetFreeDB(struct au1000_private *aup)
 568 {
 569         struct db_dest *pDB;
 570         pDB = aup->pDBfree;
 571 
 572         if (pDB)
 573                 aup->pDBfree = pDB->pnext;
 574 
 575         return pDB;
 576 }
 577 
 578 void au1000_ReleaseDB(struct au1000_private *aup, struct db_dest *pDB)
 579 {
 580         struct db_dest *pDBfree = aup->pDBfree;
 581         if (pDBfree)
 582                 pDBfree->pnext = pDB;
 583         aup->pDBfree = pDB;
 584 }
 585 
 586 static void au1000_reset_mac_unlocked(struct net_device *dev)
 587 {
 588         struct au1000_private *const aup = netdev_priv(dev);
 589         int i;
 590 
 591         au1000_hard_stop(dev);
 592 
 593         writel(MAC_EN_CLOCK_ENABLE, aup->enable);
 594         wmb(); /* drain writebuffer */
 595         mdelay(2);
 596         writel(0, aup->enable);
 597         wmb(); /* drain writebuffer */
 598         mdelay(2);
 599 
 600         aup->tx_full = 0;
 601         for (i = 0; i < NUM_RX_DMA; i++) {
 602                 /* reset control bits */
 603                 aup->rx_dma_ring[i]->buff_stat &= ~0xf;
 604         }
 605         for (i = 0; i < NUM_TX_DMA; i++) {
 606                 /* reset control bits */
 607                 aup->tx_dma_ring[i]->buff_stat &= ~0xf;
 608         }
 609 
 610         aup->mac_enabled = 0;
 611 
 612 }
 613 
 614 static void au1000_reset_mac(struct net_device *dev)
 615 {
 616         struct au1000_private *const aup = netdev_priv(dev);
 617         unsigned long flags;
 618 
 619         netif_dbg(aup, hw, dev, "reset mac, aup %x\n",
 620                                         (unsigned)aup);
 621 
 622         spin_lock_irqsave(&aup->lock, flags);
 623 
 624         au1000_reset_mac_unlocked(dev);
 625 
 626         spin_unlock_irqrestore(&aup->lock, flags);
 627 }
 628 
 629 /*
 630  * Setup the receive and transmit "rings".  These pointers are the addresses
 631  * of the rx and tx MAC DMA registers so they are fixed by the hardware --
 632  * these are not descriptors sitting in memory.
 633  */
 634 static void
 635 au1000_setup_hw_rings(struct au1000_private *aup, void __iomem *tx_base)
 636 {
 637         int i;
 638 
 639         for (i = 0; i < NUM_RX_DMA; i++) {
 640                 aup->rx_dma_ring[i] = (struct rx_dma *)
 641                         (tx_base + 0x100 + sizeof(struct rx_dma) * i);
 642         }
 643         for (i = 0; i < NUM_TX_DMA; i++) {
 644                 aup->tx_dma_ring[i] = (struct tx_dma *)
 645                         (tx_base + sizeof(struct tx_dma) * i);
 646         }
 647 }
 648 
 649 /*
 650  * ethtool operations
 651  */
 652 
 653 static void
 654 au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
 655 {
 656         struct au1000_private *aup = netdev_priv(dev);
 657 
 658         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
 659         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
 660         snprintf(info->bus_info, sizeof(info->bus_info), "%s %d", DRV_NAME,
 661                  aup->mac_id);
 662 }
 663 
 664 static void au1000_set_msglevel(struct net_device *dev, u32 value)
 665 {
 666         struct au1000_private *aup = netdev_priv(dev);
 667         aup->msg_enable = value;
 668 }
 669 
 670 static u32 au1000_get_msglevel(struct net_device *dev)
 671 {
 672         struct au1000_private *aup = netdev_priv(dev);
 673         return aup->msg_enable;
 674 }
 675 
 676 static const struct ethtool_ops au1000_ethtool_ops = {
 677         .get_drvinfo = au1000_get_drvinfo,
 678         .get_link = ethtool_op_get_link,
 679         .get_msglevel = au1000_get_msglevel,
 680         .set_msglevel = au1000_set_msglevel,
 681         .get_link_ksettings = phy_ethtool_get_link_ksettings,
 682         .set_link_ksettings = phy_ethtool_set_link_ksettings,
 683 };
 684 
 685 
 686 /*
 687  * Initialize the interface.
 688  *
 689  * When the device powers up, the clocks are disabled and the
 690  * mac is in reset state.  When the interface is closed, we
 691  * do the same -- reset the device and disable the clocks to
 692  * conserve power. Thus, whenever au1000_init() is called,
 693  * the device should already be in reset state.
 694  */
 695 static int au1000_init(struct net_device *dev)
 696 {
 697         struct au1000_private *aup = netdev_priv(dev);
 698         unsigned long flags;
 699         int i;
 700         u32 control;
 701 
 702         netif_dbg(aup, hw, dev, "au1000_init\n");
 703 
 704         /* bring the device out of reset */
 705         au1000_enable_mac(dev, 1);
 706 
 707         spin_lock_irqsave(&aup->lock, flags);
 708 
 709         writel(0, &aup->mac->control);
 710         aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
 711         aup->tx_tail = aup->tx_head;
 712         aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
 713 
 714         writel(dev->dev_addr[5]<<8 | dev->dev_addr[4],
 715                                         &aup->mac->mac_addr_high);
 716         writel(dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
 717                 dev->dev_addr[1]<<8 | dev->dev_addr[0],
 718                                         &aup->mac->mac_addr_low);
 719 
 720 
 721         for (i = 0; i < NUM_RX_DMA; i++)
 722                 aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
 723 
 724         wmb(); /* drain writebuffer */
 725 
 726         control = MAC_RX_ENABLE | MAC_TX_ENABLE;
 727 #ifndef CONFIG_CPU_LITTLE_ENDIAN
 728         control |= MAC_BIG_ENDIAN;
 729 #endif
 730         if (dev->phydev) {
 731                 if (dev->phydev->link && (DUPLEX_FULL == dev->phydev->duplex))
 732                         control |= MAC_FULL_DUPLEX;
 733                 else
 734                         control |= MAC_DISABLE_RX_OWN;
 735         } else { /* PHY-less op, assume full-duplex */
 736                 control |= MAC_FULL_DUPLEX;
 737         }
 738 
 739         writel(control, &aup->mac->control);
 740         writel(0x8100, &aup->mac->vlan1_tag); /* activate vlan support */
 741         wmb(); /* drain writebuffer */
 742 
 743         spin_unlock_irqrestore(&aup->lock, flags);
 744         return 0;
 745 }
 746 
 747 static inline void au1000_update_rx_stats(struct net_device *dev, u32 status)
 748 {
 749         struct net_device_stats *ps = &dev->stats;
 750 
 751         ps->rx_packets++;
 752         if (status & RX_MCAST_FRAME)
 753                 ps->multicast++;
 754 
 755         if (status & RX_ERROR) {
 756                 ps->rx_errors++;
 757                 if (status & RX_MISSED_FRAME)
 758                         ps->rx_missed_errors++;
 759                 if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR))
 760                         ps->rx_length_errors++;
 761                 if (status & RX_CRC_ERROR)
 762                         ps->rx_crc_errors++;
 763                 if (status & RX_COLL)
 764                         ps->collisions++;
 765         } else
 766                 ps->rx_bytes += status & RX_FRAME_LEN_MASK;
 767 
 768 }
 769 
 770 /*
 771  * Au1000 receive routine.
 772  */
 773 static int au1000_rx(struct net_device *dev)
 774 {
 775         struct au1000_private *aup = netdev_priv(dev);
 776         struct sk_buff *skb;
 777         struct rx_dma *prxd;
 778         u32 buff_stat, status;
 779         struct db_dest *pDB;
 780         u32     frmlen;
 781 
 782         netif_dbg(aup, rx_status, dev, "au1000_rx head %d\n", aup->rx_head);
 783 
 784         prxd = aup->rx_dma_ring[aup->rx_head];
 785         buff_stat = prxd->buff_stat;
 786         while (buff_stat & RX_T_DONE)  {
 787                 status = prxd->status;
 788                 pDB = aup->rx_db_inuse[aup->rx_head];
 789                 au1000_update_rx_stats(dev, status);
 790                 if (!(status & RX_ERROR))  {
 791 
 792                         /* good frame */
 793                         frmlen = (status & RX_FRAME_LEN_MASK);
 794                         frmlen -= 4; /* Remove FCS */
 795                         skb = netdev_alloc_skb(dev, frmlen + 2);
 796                         if (skb == NULL) {
 797                                 dev->stats.rx_dropped++;
 798                                 continue;
 799                         }
 800                         skb_reserve(skb, 2);    /* 16 byte IP header align */
 801                         skb_copy_to_linear_data(skb,
 802                                 (unsigned char *)pDB->vaddr, frmlen);
 803                         skb_put(skb, frmlen);
 804                         skb->protocol = eth_type_trans(skb, dev);
 805                         netif_rx(skb);  /* pass the packet to upper layers */
 806                 } else {
 807                         if (au1000_debug > 4) {
 808                                 pr_err("rx_error(s):");
 809                                 if (status & RX_MISSED_FRAME)
 810                                         pr_cont(" miss");
 811                                 if (status & RX_WDOG_TIMER)
 812                                         pr_cont(" wdog");
 813                                 if (status & RX_RUNT)
 814                                         pr_cont(" runt");
 815                                 if (status & RX_OVERLEN)
 816                                         pr_cont(" overlen");
 817                                 if (status & RX_COLL)
 818                                         pr_cont(" coll");
 819                                 if (status & RX_MII_ERROR)
 820                                         pr_cont(" mii error");
 821                                 if (status & RX_CRC_ERROR)
 822                                         pr_cont(" crc error");
 823                                 if (status & RX_LEN_ERROR)
 824                                         pr_cont(" len error");
 825                                 if (status & RX_U_CNTRL_FRAME)
 826                                         pr_cont(" u control frame");
 827                                 pr_cont("\n");
 828                         }
 829                 }
 830                 prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
 831                 aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
 832                 wmb(); /* drain writebuffer */
 833 
 834                 /* next descriptor */
 835                 prxd = aup->rx_dma_ring[aup->rx_head];
 836                 buff_stat = prxd->buff_stat;
 837         }
 838         return 0;
 839 }
 840 
 841 static void au1000_update_tx_stats(struct net_device *dev, u32 status)
 842 {
 843         struct net_device_stats *ps = &dev->stats;
 844 
 845         if (status & TX_FRAME_ABORTED) {
 846                 if (!dev->phydev || (DUPLEX_FULL == dev->phydev->duplex)) {
 847                         if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
 848                                 /* any other tx errors are only valid
 849                                  * in half duplex mode
 850                                  */
 851                                 ps->tx_errors++;
 852                                 ps->tx_aborted_errors++;
 853                         }
 854                 } else {
 855                         ps->tx_errors++;
 856                         ps->tx_aborted_errors++;
 857                         if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
 858                                 ps->tx_carrier_errors++;
 859                 }
 860         }
 861 }
 862 
 863 /*
 864  * Called from the interrupt service routine to acknowledge
 865  * the TX DONE bits.  This is a must if the irq is setup as
 866  * edge triggered.
 867  */
 868 static void au1000_tx_ack(struct net_device *dev)
 869 {
 870         struct au1000_private *aup = netdev_priv(dev);
 871         struct tx_dma *ptxd;
 872 
 873         ptxd = aup->tx_dma_ring[aup->tx_tail];
 874 
 875         while (ptxd->buff_stat & TX_T_DONE) {
 876                 au1000_update_tx_stats(dev, ptxd->status);
 877                 ptxd->buff_stat &= ~TX_T_DONE;
 878                 ptxd->len = 0;
 879                 wmb(); /* drain writebuffer */
 880 
 881                 aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
 882                 ptxd = aup->tx_dma_ring[aup->tx_tail];
 883 
 884                 if (aup->tx_full) {
 885                         aup->tx_full = 0;
 886                         netif_wake_queue(dev);
 887                 }
 888         }
 889 }
 890 
 891 /*
 892  * Au1000 interrupt service routine.
 893  */
 894 static irqreturn_t au1000_interrupt(int irq, void *dev_id)
 895 {
 896         struct net_device *dev = dev_id;
 897 
 898         /* Handle RX interrupts first to minimize chance of overrun */
 899 
 900         au1000_rx(dev);
 901         au1000_tx_ack(dev);
 902         return IRQ_RETVAL(1);
 903 }
 904 
 905 static int au1000_open(struct net_device *dev)
 906 {
 907         int retval;
 908         struct au1000_private *aup = netdev_priv(dev);
 909 
 910         netif_dbg(aup, drv, dev, "open: dev=%p\n", dev);
 911 
 912         retval = request_irq(dev->irq, au1000_interrupt, 0,
 913                                         dev->name, dev);
 914         if (retval) {
 915                 netdev_err(dev, "unable to get IRQ %d\n", dev->irq);
 916                 return retval;
 917         }
 918 
 919         retval = au1000_init(dev);
 920         if (retval) {
 921                 netdev_err(dev, "error in au1000_init\n");
 922                 free_irq(dev->irq, dev);
 923                 return retval;
 924         }
 925 
 926         if (dev->phydev)
 927                 phy_start(dev->phydev);
 928 
 929         netif_start_queue(dev);
 930 
 931         netif_dbg(aup, drv, dev, "open: Initialization done.\n");
 932 
 933         return 0;
 934 }
 935 
 936 static int au1000_close(struct net_device *dev)
 937 {
 938         unsigned long flags;
 939         struct au1000_private *const aup = netdev_priv(dev);
 940 
 941         netif_dbg(aup, drv, dev, "close: dev=%p\n", dev);
 942 
 943         if (dev->phydev)
 944                 phy_stop(dev->phydev);
 945 
 946         spin_lock_irqsave(&aup->lock, flags);
 947 
 948         au1000_reset_mac_unlocked(dev);
 949 
 950         /* stop the device */
 951         netif_stop_queue(dev);
 952 
 953         /* disable the interrupt */
 954         free_irq(dev->irq, dev);
 955         spin_unlock_irqrestore(&aup->lock, flags);
 956 
 957         return 0;
 958 }
 959 
 960 /*
 961  * Au1000 transmit routine.
 962  */
 963 static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev)
 964 {
 965         struct au1000_private *aup = netdev_priv(dev);
 966         struct net_device_stats *ps = &dev->stats;
 967         struct tx_dma *ptxd;
 968         u32 buff_stat;
 969         struct db_dest *pDB;
 970         int i;
 971 
 972         netif_dbg(aup, tx_queued, dev, "tx: aup %x len=%d, data=%p, head %d\n",
 973                                 (unsigned)aup, skb->len,
 974                                 skb->data, aup->tx_head);
 975 
 976         ptxd = aup->tx_dma_ring[aup->tx_head];
 977         buff_stat = ptxd->buff_stat;
 978         if (buff_stat & TX_DMA_ENABLE) {
 979                 /* We've wrapped around and the transmitter is still busy */
 980                 netif_stop_queue(dev);
 981                 aup->tx_full = 1;
 982                 return NETDEV_TX_BUSY;
 983         } else if (buff_stat & TX_T_DONE) {
 984                 au1000_update_tx_stats(dev, ptxd->status);
 985                 ptxd->len = 0;
 986         }
 987 
 988         if (aup->tx_full) {
 989                 aup->tx_full = 0;
 990                 netif_wake_queue(dev);
 991         }
 992 
 993         pDB = aup->tx_db_inuse[aup->tx_head];
 994         skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
 995         if (skb->len < ETH_ZLEN) {
 996                 for (i = skb->len; i < ETH_ZLEN; i++)
 997                         ((char *)pDB->vaddr)[i] = 0;
 998 
 999                 ptxd->len = ETH_ZLEN;
1000         } else
1001                 ptxd->len = skb->len;
1002 
1003         ps->tx_packets++;
1004         ps->tx_bytes += ptxd->len;
1005 
1006         ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
1007         wmb(); /* drain writebuffer */
1008         dev_kfree_skb(skb);
1009         aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
1010         return NETDEV_TX_OK;
1011 }
1012 
1013 /*
1014  * The Tx ring has been full longer than the watchdog timeout
1015  * value. The transmitter must be hung?
1016  */
1017 static void au1000_tx_timeout(struct net_device *dev)
1018 {
1019         netdev_err(dev, "au1000_tx_timeout: dev=%p\n", dev);
1020         au1000_reset_mac(dev);
1021         au1000_init(dev);
1022         netif_trans_update(dev); /* prevent tx timeout */
1023         netif_wake_queue(dev);
1024 }
1025 
1026 static void au1000_multicast_list(struct net_device *dev)
1027 {
1028         struct au1000_private *aup = netdev_priv(dev);
1029         u32 reg;
1030 
1031         netif_dbg(aup, drv, dev, "%s: flags=%x\n", __func__, dev->flags);
1032         reg = readl(&aup->mac->control);
1033         if (dev->flags & IFF_PROMISC) {                 /* Set promiscuous. */
1034                 reg |= MAC_PROMISCUOUS;
1035         } else if ((dev->flags & IFF_ALLMULTI)  ||
1036                            netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) {
1037                 reg |= MAC_PASS_ALL_MULTI;
1038                 reg &= ~MAC_PROMISCUOUS;
1039                 netdev_info(dev, "Pass all multicast\n");
1040         } else {
1041                 struct netdev_hw_addr *ha;
1042                 u32 mc_filter[2];       /* Multicast hash filter */
1043 
1044                 mc_filter[1] = mc_filter[0] = 0;
1045                 netdev_for_each_mc_addr(ha, dev)
1046                         set_bit(ether_crc(ETH_ALEN, ha->addr)>>26,
1047                                         (long *)mc_filter);
1048                 writel(mc_filter[1], &aup->mac->multi_hash_high);
1049                 writel(mc_filter[0], &aup->mac->multi_hash_low);
1050                 reg &= ~MAC_PROMISCUOUS;
1051                 reg |= MAC_HASH_MODE;
1052         }
1053         writel(reg, &aup->mac->control);
1054 }
1055 
1056 static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1057 {
1058         if (!netif_running(dev))
1059                 return -EINVAL;
1060 
1061         if (!dev->phydev)
1062                 return -EINVAL; /* PHY not controllable */
1063 
1064         return phy_mii_ioctl(dev->phydev, rq, cmd);
1065 }
1066 
1067 static const struct net_device_ops au1000_netdev_ops = {
1068         .ndo_open               = au1000_open,
1069         .ndo_stop               = au1000_close,
1070         .ndo_start_xmit         = au1000_tx,
1071         .ndo_set_rx_mode        = au1000_multicast_list,
1072         .ndo_do_ioctl           = au1000_ioctl,
1073         .ndo_tx_timeout         = au1000_tx_timeout,
1074         .ndo_set_mac_address    = eth_mac_addr,
1075         .ndo_validate_addr      = eth_validate_addr,
1076 };
1077 
1078 static int au1000_probe(struct platform_device *pdev)
1079 {
1080         struct au1000_private *aup = NULL;
1081         struct au1000_eth_platform_data *pd;
1082         struct net_device *dev = NULL;
1083         struct db_dest *pDB, *pDBfree;
1084         int irq, i, err = 0;
1085         struct resource *base, *macen, *macdma;
1086 
1087         base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1088         if (!base) {
1089                 dev_err(&pdev->dev, "failed to retrieve base register\n");
1090                 err = -ENODEV;
1091                 goto out;
1092         }
1093 
1094         macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1095         if (!macen) {
1096                 dev_err(&pdev->dev, "failed to retrieve MAC Enable register\n");
1097                 err = -ENODEV;
1098                 goto out;
1099         }
1100 
1101         irq = platform_get_irq(pdev, 0);
1102         if (irq < 0) {
1103                 err = -ENODEV;
1104                 goto out;
1105         }
1106 
1107         macdma = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1108         if (!macdma) {
1109                 dev_err(&pdev->dev, "failed to retrieve MACDMA registers\n");
1110                 err = -ENODEV;
1111                 goto out;
1112         }
1113 
1114         if (!request_mem_region(base->start, resource_size(base),
1115                                                         pdev->name)) {
1116                 dev_err(&pdev->dev, "failed to request memory region for base registers\n");
1117                 err = -ENXIO;
1118                 goto out;
1119         }
1120 
1121         if (!request_mem_region(macen->start, resource_size(macen),
1122                                                         pdev->name)) {
1123                 dev_err(&pdev->dev, "failed to request memory region for MAC enable register\n");
1124                 err = -ENXIO;
1125                 goto err_request;
1126         }
1127 
1128         if (!request_mem_region(macdma->start, resource_size(macdma),
1129                                                         pdev->name)) {
1130                 dev_err(&pdev->dev, "failed to request MACDMA memory region\n");
1131                 err = -ENXIO;
1132                 goto err_macdma;
1133         }
1134 
1135         dev = alloc_etherdev(sizeof(struct au1000_private));
1136         if (!dev) {
1137                 err = -ENOMEM;
1138                 goto err_alloc;
1139         }
1140 
1141         SET_NETDEV_DEV(dev, &pdev->dev);
1142         platform_set_drvdata(pdev, dev);
1143         aup = netdev_priv(dev);
1144 
1145         spin_lock_init(&aup->lock);
1146         aup->msg_enable = (au1000_debug < 4 ?
1147                                 AU1000_DEF_MSG_ENABLE : au1000_debug);
1148 
1149         /* Allocate the data buffers
1150          * Snooping works fine with eth on all au1xxx
1151          */
1152         aup->vaddr = (u32)dma_alloc_attrs(&pdev->dev, MAX_BUF_SIZE *
1153                                           (NUM_TX_BUFFS + NUM_RX_BUFFS),
1154                                           &aup->dma_addr, 0,
1155                                           DMA_ATTR_NON_CONSISTENT);
1156         if (!aup->vaddr) {
1157                 dev_err(&pdev->dev, "failed to allocate data buffers\n");
1158                 err = -ENOMEM;
1159                 goto err_vaddr;
1160         }
1161 
1162         /* aup->mac is the base address of the MAC's registers */
1163         aup->mac = (struct mac_reg *)
1164                         ioremap_nocache(base->start, resource_size(base));
1165         if (!aup->mac) {
1166                 dev_err(&pdev->dev, "failed to ioremap MAC registers\n");
1167                 err = -ENXIO;
1168                 goto err_remap1;
1169         }
1170 
1171         /* Setup some variables for quick register address access */
1172         aup->enable = (u32 *)ioremap_nocache(macen->start,
1173                                                 resource_size(macen));
1174         if (!aup->enable) {
1175                 dev_err(&pdev->dev, "failed to ioremap MAC enable register\n");
1176                 err = -ENXIO;
1177                 goto err_remap2;
1178         }
1179         aup->mac_id = pdev->id;
1180 
1181         aup->macdma = ioremap_nocache(macdma->start, resource_size(macdma));
1182         if (!aup->macdma) {
1183                 dev_err(&pdev->dev, "failed to ioremap MACDMA registers\n");
1184                 err = -ENXIO;
1185                 goto err_remap3;
1186         }
1187 
1188         au1000_setup_hw_rings(aup, aup->macdma);
1189 
1190         writel(0, aup->enable);
1191         aup->mac_enabled = 0;
1192 
1193         pd = dev_get_platdata(&pdev->dev);
1194         if (!pd) {
1195                 dev_info(&pdev->dev, "no platform_data passed,"
1196                                         " PHY search on MAC0\n");
1197                 aup->phy1_search_mac0 = 1;
1198         } else {
1199                 if (is_valid_ether_addr(pd->mac)) {
1200                         memcpy(dev->dev_addr, pd->mac, ETH_ALEN);
1201                 } else {
1202                         /* Set a random MAC since no valid provided by platform_data. */
1203                         eth_hw_addr_random(dev);
1204                 }
1205 
1206                 aup->phy_static_config = pd->phy_static_config;
1207                 aup->phy_search_highest_addr = pd->phy_search_highest_addr;
1208                 aup->phy1_search_mac0 = pd->phy1_search_mac0;
1209                 aup->phy_addr = pd->phy_addr;
1210                 aup->phy_busid = pd->phy_busid;
1211                 aup->phy_irq = pd->phy_irq;
1212         }
1213 
1214         if (aup->phy_busid > 0) {
1215                 dev_err(&pdev->dev, "MAC0-associated PHY attached 2nd MACs MII bus not supported yet\n");
1216                 err = -ENODEV;
1217                 goto err_mdiobus_alloc;
1218         }
1219 
1220         aup->mii_bus = mdiobus_alloc();
1221         if (aup->mii_bus == NULL) {
1222                 dev_err(&pdev->dev, "failed to allocate mdiobus structure\n");
1223                 err = -ENOMEM;
1224                 goto err_mdiobus_alloc;
1225         }
1226 
1227         aup->mii_bus->priv = dev;
1228         aup->mii_bus->read = au1000_mdiobus_read;
1229         aup->mii_bus->write = au1000_mdiobus_write;
1230         aup->mii_bus->reset = au1000_mdiobus_reset;
1231         aup->mii_bus->name = "au1000_eth_mii";
1232         snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1233                 pdev->name, aup->mac_id);
1234 
1235         /* if known, set corresponding PHY IRQs */
1236         if (aup->phy_static_config)
1237                 if (aup->phy_irq && aup->phy_busid == aup->mac_id)
1238                         aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq;
1239 
1240         err = mdiobus_register(aup->mii_bus);
1241         if (err) {
1242                 dev_err(&pdev->dev, "failed to register MDIO bus\n");
1243                 goto err_mdiobus_reg;
1244         }
1245 
1246         err = au1000_mii_probe(dev);
1247         if (err != 0)
1248                 goto err_out;
1249 
1250         pDBfree = NULL;
1251         /* setup the data buffer descriptors and attach a buffer to each one */
1252         pDB = aup->db;
1253         for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
1254                 pDB->pnext = pDBfree;
1255                 pDBfree = pDB;
1256                 pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
1257                 pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
1258                 pDB++;
1259         }
1260         aup->pDBfree = pDBfree;
1261 
1262         err = -ENODEV;
1263         for (i = 0; i < NUM_RX_DMA; i++) {
1264                 pDB = au1000_GetFreeDB(aup);
1265                 if (!pDB)
1266                         goto err_out;
1267 
1268                 aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1269                 aup->rx_db_inuse[i] = pDB;
1270         }
1271 
1272         err = -ENODEV;
1273         for (i = 0; i < NUM_TX_DMA; i++) {
1274                 pDB = au1000_GetFreeDB(aup);
1275                 if (!pDB)
1276                         goto err_out;
1277 
1278                 aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1279                 aup->tx_dma_ring[i]->len = 0;
1280                 aup->tx_db_inuse[i] = pDB;
1281         }
1282 
1283         dev->base_addr = base->start;
1284         dev->irq = irq;
1285         dev->netdev_ops = &au1000_netdev_ops;
1286         dev->ethtool_ops = &au1000_ethtool_ops;
1287         dev->watchdog_timeo = ETH_TX_TIMEOUT;
1288 
1289         /*
1290          * The boot code uses the ethernet controller, so reset it to start
1291          * fresh.  au1000_init() expects that the device is in reset state.
1292          */
1293         au1000_reset_mac(dev);
1294 
1295         err = register_netdev(dev);
1296         if (err) {
1297                 netdev_err(dev, "Cannot register net device, aborting.\n");
1298                 goto err_out;
1299         }
1300 
1301         netdev_info(dev, "Au1xx0 Ethernet found at 0x%lx, irq %d\n",
1302                         (unsigned long)base->start, irq);
1303 
1304         pr_info_once("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR);
1305 
1306         return 0;
1307 
1308 err_out:
1309         if (aup->mii_bus != NULL)
1310                 mdiobus_unregister(aup->mii_bus);
1311 
1312         /* here we should have a valid dev plus aup-> register addresses
1313          * so we can reset the mac properly.
1314          */
1315         au1000_reset_mac(dev);
1316 
1317         for (i = 0; i < NUM_RX_DMA; i++) {
1318                 if (aup->rx_db_inuse[i])
1319                         au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1320         }
1321         for (i = 0; i < NUM_TX_DMA; i++) {
1322                 if (aup->tx_db_inuse[i])
1323                         au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1324         }
1325 err_mdiobus_reg:
1326         mdiobus_free(aup->mii_bus);
1327 err_mdiobus_alloc:
1328         iounmap(aup->macdma);
1329 err_remap3:
1330         iounmap(aup->enable);
1331 err_remap2:
1332         iounmap(aup->mac);
1333 err_remap1:
1334         dma_free_attrs(&pdev->dev, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1335                         (void *)aup->vaddr, aup->dma_addr,
1336                         DMA_ATTR_NON_CONSISTENT);
1337 err_vaddr:
1338         free_netdev(dev);
1339 err_alloc:
1340         release_mem_region(macdma->start, resource_size(macdma));
1341 err_macdma:
1342         release_mem_region(macen->start, resource_size(macen));
1343 err_request:
1344         release_mem_region(base->start, resource_size(base));
1345 out:
1346         return err;
1347 }
1348 
1349 static int au1000_remove(struct platform_device *pdev)
1350 {
1351         struct net_device *dev = platform_get_drvdata(pdev);
1352         struct au1000_private *aup = netdev_priv(dev);
1353         int i;
1354         struct resource *base, *macen;
1355 
1356         unregister_netdev(dev);
1357         mdiobus_unregister(aup->mii_bus);
1358         mdiobus_free(aup->mii_bus);
1359 
1360         for (i = 0; i < NUM_RX_DMA; i++)
1361                 if (aup->rx_db_inuse[i])
1362                         au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1363 
1364         for (i = 0; i < NUM_TX_DMA; i++)
1365                 if (aup->tx_db_inuse[i])
1366                         au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1367 
1368         dma_free_attrs(&pdev->dev, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1369                         (void *)aup->vaddr, aup->dma_addr,
1370                         DMA_ATTR_NON_CONSISTENT);
1371 
1372         iounmap(aup->macdma);
1373         iounmap(aup->mac);
1374         iounmap(aup->enable);
1375 
1376         base = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1377         release_mem_region(base->start, resource_size(base));
1378 
1379         base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1380         release_mem_region(base->start, resource_size(base));
1381 
1382         macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1383         release_mem_region(macen->start, resource_size(macen));
1384 
1385         free_netdev(dev);
1386 
1387         return 0;
1388 }
1389 
1390 static struct platform_driver au1000_eth_driver = {
1391         .probe  = au1000_probe,
1392         .remove = au1000_remove,
1393         .driver = {
1394                 .name   = "au1000-eth",
1395         },
1396 };
1397 
1398 module_platform_driver(au1000_eth_driver);
1399 
1400 MODULE_ALIAS("platform:au1000-eth");

/* [<][>][^][v][top][bottom][index][help] */