root/drivers/net/ethernet/amd/xgbe/xgbe-dev.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. xgbe_get_max_frame
  2. xgbe_usec_to_riwt
  3. xgbe_riwt_to_usec
  4. xgbe_config_pbl_val
  5. xgbe_config_osp_mode
  6. xgbe_config_rsf_mode
  7. xgbe_config_tsf_mode
  8. xgbe_config_rx_threshold
  9. xgbe_config_tx_threshold
  10. xgbe_config_rx_coalesce
  11. xgbe_config_tx_coalesce
  12. xgbe_config_rx_buffer_size
  13. xgbe_config_tso_mode
  14. xgbe_config_sph_mode
  15. xgbe_write_rss_reg
  16. xgbe_write_rss_hash_key
  17. xgbe_write_rss_lookup_table
  18. xgbe_set_rss_hash_key
  19. xgbe_set_rss_lookup_table
  20. xgbe_enable_rss
  21. xgbe_disable_rss
  22. xgbe_config_rss
  23. xgbe_is_pfc_queue
  24. xgbe_set_vxlan_id
  25. xgbe_enable_vxlan
  26. xgbe_disable_vxlan
  27. xgbe_disable_tx_flow_control
  28. xgbe_enable_tx_flow_control
  29. xgbe_disable_rx_flow_control
  30. xgbe_enable_rx_flow_control
  31. xgbe_config_tx_flow_control
  32. xgbe_config_rx_flow_control
  33. xgbe_config_flow_control
  34. xgbe_enable_dma_interrupts
  35. xgbe_enable_mtl_interrupts
  36. xgbe_enable_mac_interrupts
  37. xgbe_enable_ecc_interrupts
  38. xgbe_disable_ecc_ded
  39. xgbe_disable_ecc_sec
  40. xgbe_set_speed
  41. xgbe_enable_rx_vlan_stripping
  42. xgbe_disable_rx_vlan_stripping
  43. xgbe_enable_rx_vlan_filtering
  44. xgbe_disable_rx_vlan_filtering
  45. xgbe_vid_crc32_le
  46. xgbe_update_vlan_hash_table
  47. xgbe_set_promiscuous_mode
  48. xgbe_set_all_multicast_mode
  49. xgbe_set_mac_reg
  50. xgbe_set_mac_addn_addrs
  51. xgbe_set_mac_hash_table
  52. xgbe_add_mac_addresses
  53. xgbe_set_mac_address
  54. xgbe_config_rx_mode
  55. xgbe_clr_gpio
  56. xgbe_set_gpio
  57. xgbe_read_mmd_regs_v2
  58. xgbe_write_mmd_regs_v2
  59. xgbe_read_mmd_regs_v1
  60. xgbe_write_mmd_regs_v1
  61. xgbe_read_mmd_regs
  62. xgbe_write_mmd_regs
  63. xgbe_create_mdio_sca
  64. xgbe_write_ext_mii_regs
  65. xgbe_read_ext_mii_regs
  66. xgbe_set_ext_mii_mode
  67. xgbe_tx_complete
  68. xgbe_disable_rx_csum
  69. xgbe_enable_rx_csum
  70. xgbe_tx_desc_reset
  71. xgbe_tx_desc_init
  72. xgbe_rx_desc_reset
  73. xgbe_rx_desc_init
  74. xgbe_update_tstamp_addend
  75. xgbe_set_tstamp_time
  76. xgbe_get_tstamp_time
  77. xgbe_get_tx_tstamp
  78. xgbe_get_rx_tstamp
  79. xgbe_config_tstamp
  80. xgbe_tx_start_xmit
  81. xgbe_dev_xmit
  82. xgbe_dev_read
  83. xgbe_is_context_desc
  84. xgbe_is_last_desc
  85. xgbe_enable_int
  86. xgbe_disable_int
  87. __xgbe_exit
  88. xgbe_exit
  89. xgbe_flush_tx_queues
  90. xgbe_config_dma_bus
  91. xgbe_config_dma_cache
  92. xgbe_config_mtl_mode
  93. xgbe_queue_flow_control_threshold
  94. xgbe_calculate_flow_control_threshold
  95. xgbe_config_flow_control_threshold
  96. xgbe_get_tx_fifo_size
  97. xgbe_get_rx_fifo_size
  98. xgbe_calculate_equal_fifo
  99. xgbe_set_nonprio_fifos
  100. xgbe_get_pfc_delay
  101. xgbe_get_pfc_queues
  102. xgbe_calculate_dcb_fifo
  103. xgbe_config_tx_fifo_size
  104. xgbe_config_rx_fifo_size
  105. xgbe_config_queue_mapping
  106. xgbe_config_tc
  107. xgbe_config_dcb_tc
  108. xgbe_config_dcb_pfc
  109. xgbe_config_mac_address
  110. xgbe_config_jumbo_enable
  111. xgbe_config_mac_speed
  112. xgbe_config_checksum_offload
  113. xgbe_config_vlan_support
  114. xgbe_mmc_read
  115. xgbe_tx_mmc_int
  116. xgbe_rx_mmc_int
  117. xgbe_read_mmc_stats
  118. xgbe_config_mmc
  119. xgbe_txq_prepare_tx_stop
  120. xgbe_prepare_tx_stop
  121. xgbe_enable_tx
  122. xgbe_disable_tx
  123. xgbe_prepare_rx_stop
  124. xgbe_enable_rx
  125. xgbe_disable_rx
  126. xgbe_powerup_tx
  127. xgbe_powerdown_tx
  128. xgbe_powerup_rx
  129. xgbe_powerdown_rx
  130. xgbe_init
  131. xgbe_init_function_ptrs_dev

   1 /*
   2  * AMD 10Gb Ethernet driver
   3  *
   4  * This file is available to you under your choice of the following two
   5  * licenses:
   6  *
   7  * License 1: GPLv2
   8  *
   9  * Copyright (c) 2014-2016 Advanced Micro Devices, Inc.
  10  *
  11  * This file is free software; you may copy, redistribute and/or modify
  12  * it under the terms of the GNU General Public License as published by
  13  * the Free Software Foundation, either version 2 of the License, or (at
  14  * your option) any later version.
  15  *
  16  * This file is distributed in the hope that it will be useful, but
  17  * WITHOUT ANY WARRANTY; without even the implied warranty of
  18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19  * General Public License for more details.
  20  *
  21  * You should have received a copy of the GNU General Public License
  22  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
  23  *
  24  * This file incorporates work covered by the following copyright and
  25  * permission notice:
  26  *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
  27  *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
  28  *     Inc. unless otherwise expressly agreed to in writing between Synopsys
  29  *     and you.
  30  *
  31  *     The Software IS NOT an item of Licensed Software or Licensed Product
  32  *     under any End User Software License Agreement or Agreement for Licensed
  33  *     Product with Synopsys or any supplement thereto.  Permission is hereby
  34  *     granted, free of charge, to any person obtaining a copy of this software
  35  *     annotated with this license and the Software, to deal in the Software
  36  *     without restriction, including without limitation the rights to use,
  37  *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
  38  *     of the Software, and to permit persons to whom the Software is furnished
  39  *     to do so, subject to the following conditions:
  40  *
  41  *     The above copyright notice and this permission notice shall be included
  42  *     in all copies or substantial portions of the Software.
  43  *
  44  *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
  45  *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
  46  *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
  47  *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
  48  *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  49  *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  50  *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  51  *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  52  *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  53  *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  54  *     THE POSSIBILITY OF SUCH DAMAGE.
  55  *
  56  *
  57  * License 2: Modified BSD
  58  *
  59  * Copyright (c) 2014-2016 Advanced Micro Devices, Inc.
  60  * All rights reserved.
  61  *
  62  * Redistribution and use in source and binary forms, with or without
  63  * modification, are permitted provided that the following conditions are met:
  64  *     * Redistributions of source code must retain the above copyright
  65  *       notice, this list of conditions and the following disclaimer.
  66  *     * Redistributions in binary form must reproduce the above copyright
  67  *       notice, this list of conditions and the following disclaimer in the
  68  *       documentation and/or other materials provided with the distribution.
  69  *     * Neither the name of Advanced Micro Devices, Inc. nor the
  70  *       names of its contributors may be used to endorse or promote products
  71  *       derived from this software without specific prior written permission.
  72  *
  73  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  74  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  75  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  76  * ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
  77  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  78  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  79  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  80  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  81  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  82  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  83  *
  84  * This file incorporates work covered by the following copyright and
  85  * permission notice:
  86  *     The Synopsys DWC ETHER XGMAC Software Driver and documentation
  87  *     (hereinafter "Software") is an unsupported proprietary work of Synopsys,
  88  *     Inc. unless otherwise expressly agreed to in writing between Synopsys
  89  *     and you.
  90  *
  91  *     The Software IS NOT an item of Licensed Software or Licensed Product
  92  *     under any End User Software License Agreement or Agreement for Licensed
  93  *     Product with Synopsys or any supplement thereto.  Permission is hereby
  94  *     granted, free of charge, to any person obtaining a copy of this software
  95  *     annotated with this license and the Software, to deal in the Software
  96  *     without restriction, including without limitation the rights to use,
  97  *     copy, modify, merge, publish, distribute, sublicense, and/or sell copies
  98  *     of the Software, and to permit persons to whom the Software is furnished
  99  *     to do so, subject to the following conditions:
 100  *
 101  *     The above copyright notice and this permission notice shall be included
 102  *     in all copies or substantial portions of the Software.
 103  *
 104  *     THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
 105  *     BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 106  *     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 107  *     PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
 108  *     BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 109  *     CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 110  *     SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 111  *     INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 112  *     CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 113  *     ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 114  *     THE POSSIBILITY OF SUCH DAMAGE.
 115  */
 116 
 117 #include <linux/phy.h>
 118 #include <linux/mdio.h>
 119 #include <linux/clk.h>
 120 #include <linux/bitrev.h>
 121 #include <linux/crc32.h>
 122 #include <linux/crc32poly.h>
 123 
 124 #include "xgbe.h"
 125 #include "xgbe-common.h"
 126 
 127 static inline unsigned int xgbe_get_max_frame(struct xgbe_prv_data *pdata)
 128 {
 129         return pdata->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
 130 }
 131 
 132 static unsigned int xgbe_usec_to_riwt(struct xgbe_prv_data *pdata,
 133                                       unsigned int usec)
 134 {
 135         unsigned long rate;
 136         unsigned int ret;
 137 
 138         DBGPR("-->xgbe_usec_to_riwt\n");
 139 
 140         rate = pdata->sysclk_rate;
 141 
 142         /*
 143          * Convert the input usec value to the watchdog timer value. Each
 144          * watchdog timer value is equivalent to 256 clock cycles.
 145          * Calculate the required value as:
 146          *   ( usec * ( system_clock_mhz / 10^6 ) / 256
 147          */
 148         ret = (usec * (rate / 1000000)) / 256;
 149 
 150         DBGPR("<--xgbe_usec_to_riwt\n");
 151 
 152         return ret;
 153 }
 154 
 155 static unsigned int xgbe_riwt_to_usec(struct xgbe_prv_data *pdata,
 156                                       unsigned int riwt)
 157 {
 158         unsigned long rate;
 159         unsigned int ret;
 160 
 161         DBGPR("-->xgbe_riwt_to_usec\n");
 162 
 163         rate = pdata->sysclk_rate;
 164 
 165         /*
 166          * Convert the input watchdog timer value to the usec value. Each
 167          * watchdog timer value is equivalent to 256 clock cycles.
 168          * Calculate the required value as:
 169          *   ( riwt * 256 ) / ( system_clock_mhz / 10^6 )
 170          */
 171         ret = (riwt * 256) / (rate / 1000000);
 172 
 173         DBGPR("<--xgbe_riwt_to_usec\n");
 174 
 175         return ret;
 176 }
 177 
 178 static int xgbe_config_pbl_val(struct xgbe_prv_data *pdata)
 179 {
 180         unsigned int pblx8, pbl;
 181         unsigned int i;
 182 
 183         pblx8 = DMA_PBL_X8_DISABLE;
 184         pbl = pdata->pbl;
 185 
 186         if (pdata->pbl > 32) {
 187                 pblx8 = DMA_PBL_X8_ENABLE;
 188                 pbl >>= 3;
 189         }
 190 
 191         for (i = 0; i < pdata->channel_count; i++) {
 192                 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, PBLX8,
 193                                        pblx8);
 194 
 195                 if (pdata->channel[i]->tx_ring)
 196                         XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR,
 197                                                PBL, pbl);
 198 
 199                 if (pdata->channel[i]->rx_ring)
 200                         XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR,
 201                                                PBL, pbl);
 202         }
 203 
 204         return 0;
 205 }
 206 
 207 static int xgbe_config_osp_mode(struct xgbe_prv_data *pdata)
 208 {
 209         unsigned int i;
 210 
 211         for (i = 0; i < pdata->channel_count; i++) {
 212                 if (!pdata->channel[i]->tx_ring)
 213                         break;
 214 
 215                 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, OSP,
 216                                        pdata->tx_osp_mode);
 217         }
 218 
 219         return 0;
 220 }
 221 
 222 static int xgbe_config_rsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
 223 {
 224         unsigned int i;
 225 
 226         for (i = 0; i < pdata->rx_q_count; i++)
 227                 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RSF, val);
 228 
 229         return 0;
 230 }
 231 
 232 static int xgbe_config_tsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
 233 {
 234         unsigned int i;
 235 
 236         for (i = 0; i < pdata->tx_q_count; i++)
 237                 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TSF, val);
 238 
 239         return 0;
 240 }
 241 
 242 static int xgbe_config_rx_threshold(struct xgbe_prv_data *pdata,
 243                                     unsigned int val)
 244 {
 245         unsigned int i;
 246 
 247         for (i = 0; i < pdata->rx_q_count; i++)
 248                 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RTC, val);
 249 
 250         return 0;
 251 }
 252 
 253 static int xgbe_config_tx_threshold(struct xgbe_prv_data *pdata,
 254                                     unsigned int val)
 255 {
 256         unsigned int i;
 257 
 258         for (i = 0; i < pdata->tx_q_count; i++)
 259                 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TTC, val);
 260 
 261         return 0;
 262 }
 263 
 264 static int xgbe_config_rx_coalesce(struct xgbe_prv_data *pdata)
 265 {
 266         unsigned int i;
 267 
 268         for (i = 0; i < pdata->channel_count; i++) {
 269                 if (!pdata->channel[i]->rx_ring)
 270                         break;
 271 
 272                 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RIWT, RWT,
 273                                        pdata->rx_riwt);
 274         }
 275 
 276         return 0;
 277 }
 278 
 279 static int xgbe_config_tx_coalesce(struct xgbe_prv_data *pdata)
 280 {
 281         return 0;
 282 }
 283 
 284 static void xgbe_config_rx_buffer_size(struct xgbe_prv_data *pdata)
 285 {
 286         unsigned int i;
 287 
 288         for (i = 0; i < pdata->channel_count; i++) {
 289                 if (!pdata->channel[i]->rx_ring)
 290                         break;
 291 
 292                 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, RBSZ,
 293                                        pdata->rx_buf_size);
 294         }
 295 }
 296 
 297 static void xgbe_config_tso_mode(struct xgbe_prv_data *pdata)
 298 {
 299         unsigned int i;
 300 
 301         for (i = 0; i < pdata->channel_count; i++) {
 302                 if (!pdata->channel[i]->tx_ring)
 303                         break;
 304 
 305                 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, TSE, 1);
 306         }
 307 }
 308 
 309 static void xgbe_config_sph_mode(struct xgbe_prv_data *pdata)
 310 {
 311         unsigned int i;
 312 
 313         for (i = 0; i < pdata->channel_count; i++) {
 314                 if (!pdata->channel[i]->rx_ring)
 315                         break;
 316 
 317                 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 1);
 318         }
 319 
 320         XGMAC_IOWRITE_BITS(pdata, MAC_RCR, HDSMS, XGBE_SPH_HDSMS_SIZE);
 321 }
 322 
 323 static int xgbe_write_rss_reg(struct xgbe_prv_data *pdata, unsigned int type,
 324                               unsigned int index, unsigned int val)
 325 {
 326         unsigned int wait;
 327         int ret = 0;
 328 
 329         mutex_lock(&pdata->rss_mutex);
 330 
 331         if (XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) {
 332                 ret = -EBUSY;
 333                 goto unlock;
 334         }
 335 
 336         XGMAC_IOWRITE(pdata, MAC_RSSDR, val);
 337 
 338         XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, RSSIA, index);
 339         XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, ADDRT, type);
 340         XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, CT, 0);
 341         XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, OB, 1);
 342 
 343         wait = 1000;
 344         while (wait--) {
 345                 if (!XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB))
 346                         goto unlock;
 347 
 348                 usleep_range(1000, 1500);
 349         }
 350 
 351         ret = -EBUSY;
 352 
 353 unlock:
 354         mutex_unlock(&pdata->rss_mutex);
 355 
 356         return ret;
 357 }
 358 
 359 static int xgbe_write_rss_hash_key(struct xgbe_prv_data *pdata)
 360 {
 361         unsigned int key_regs = sizeof(pdata->rss_key) / sizeof(u32);
 362         unsigned int *key = (unsigned int *)&pdata->rss_key;
 363         int ret;
 364 
 365         while (key_regs--) {
 366                 ret = xgbe_write_rss_reg(pdata, XGBE_RSS_HASH_KEY_TYPE,
 367                                          key_regs, *key++);
 368                 if (ret)
 369                         return ret;
 370         }
 371 
 372         return 0;
 373 }
 374 
 375 static int xgbe_write_rss_lookup_table(struct xgbe_prv_data *pdata)
 376 {
 377         unsigned int i;
 378         int ret;
 379 
 380         for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) {
 381                 ret = xgbe_write_rss_reg(pdata,
 382                                          XGBE_RSS_LOOKUP_TABLE_TYPE, i,
 383                                          pdata->rss_table[i]);
 384                 if (ret)
 385                         return ret;
 386         }
 387 
 388         return 0;
 389 }
 390 
 391 static int xgbe_set_rss_hash_key(struct xgbe_prv_data *pdata, const u8 *key)
 392 {
 393         memcpy(pdata->rss_key, key, sizeof(pdata->rss_key));
 394 
 395         return xgbe_write_rss_hash_key(pdata);
 396 }
 397 
 398 static int xgbe_set_rss_lookup_table(struct xgbe_prv_data *pdata,
 399                                      const u32 *table)
 400 {
 401         unsigned int i;
 402 
 403         for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++)
 404                 XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, table[i]);
 405 
 406         return xgbe_write_rss_lookup_table(pdata);
 407 }
 408 
 409 static int xgbe_enable_rss(struct xgbe_prv_data *pdata)
 410 {
 411         int ret;
 412 
 413         if (!pdata->hw_feat.rss)
 414                 return -EOPNOTSUPP;
 415 
 416         /* Program the hash key */
 417         ret = xgbe_write_rss_hash_key(pdata);
 418         if (ret)
 419                 return ret;
 420 
 421         /* Program the lookup table */
 422         ret = xgbe_write_rss_lookup_table(pdata);
 423         if (ret)
 424                 return ret;
 425 
 426         /* Set the RSS options */
 427         XGMAC_IOWRITE(pdata, MAC_RSSCR, pdata->rss_options);
 428 
 429         /* Enable RSS */
 430         XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 1);
 431 
 432         return 0;
 433 }
 434 
 435 static int xgbe_disable_rss(struct xgbe_prv_data *pdata)
 436 {
 437         if (!pdata->hw_feat.rss)
 438                 return -EOPNOTSUPP;
 439 
 440         XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 0);
 441 
 442         return 0;
 443 }
 444 
 445 static void xgbe_config_rss(struct xgbe_prv_data *pdata)
 446 {
 447         int ret;
 448 
 449         if (!pdata->hw_feat.rss)
 450                 return;
 451 
 452         if (pdata->netdev->features & NETIF_F_RXHASH)
 453                 ret = xgbe_enable_rss(pdata);
 454         else
 455                 ret = xgbe_disable_rss(pdata);
 456 
 457         if (ret)
 458                 netdev_err(pdata->netdev,
 459                            "error configuring RSS, RSS disabled\n");
 460 }
 461 
 462 static bool xgbe_is_pfc_queue(struct xgbe_prv_data *pdata,
 463                               unsigned int queue)
 464 {
 465         unsigned int prio, tc;
 466 
 467         for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) {
 468                 /* Does this queue handle the priority? */
 469                 if (pdata->prio2q_map[prio] != queue)
 470                         continue;
 471 
 472                 /* Get the Traffic Class for this priority */
 473                 tc = pdata->ets->prio_tc[prio];
 474 
 475                 /* Check if PFC is enabled for this traffic class */
 476                 if (pdata->pfc->pfc_en & (1 << tc))
 477                         return true;
 478         }
 479 
 480         return false;
 481 }
 482 
 483 static void xgbe_set_vxlan_id(struct xgbe_prv_data *pdata)
 484 {
 485         /* Program the VXLAN port */
 486         XGMAC_IOWRITE_BITS(pdata, MAC_TIR, TNID, pdata->vxlan_port);
 487 
 488         netif_dbg(pdata, drv, pdata->netdev, "VXLAN tunnel id set to %hx\n",
 489                   pdata->vxlan_port);
 490 }
 491 
 492 static void xgbe_enable_vxlan(struct xgbe_prv_data *pdata)
 493 {
 494         if (!pdata->hw_feat.vxn)
 495                 return;
 496 
 497         /* Program the VXLAN port */
 498         xgbe_set_vxlan_id(pdata);
 499 
 500         /* Allow for IPv6/UDP zero-checksum VXLAN packets */
 501         XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VUCC, 1);
 502 
 503         /* Enable VXLAN tunneling mode */
 504         XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNM, 0);
 505         XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNE, 1);
 506 
 507         netif_dbg(pdata, drv, pdata->netdev, "VXLAN acceleration enabled\n");
 508 }
 509 
 510 static void xgbe_disable_vxlan(struct xgbe_prv_data *pdata)
 511 {
 512         if (!pdata->hw_feat.vxn)
 513                 return;
 514 
 515         /* Disable tunneling mode */
 516         XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNE, 0);
 517 
 518         /* Clear IPv6/UDP zero-checksum VXLAN packets setting */
 519         XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VUCC, 0);
 520 
 521         /* Clear the VXLAN port */
 522         XGMAC_IOWRITE_BITS(pdata, MAC_TIR, TNID, 0);
 523 
 524         netif_dbg(pdata, drv, pdata->netdev, "VXLAN acceleration disabled\n");
 525 }
 526 
 527 static int xgbe_disable_tx_flow_control(struct xgbe_prv_data *pdata)
 528 {
 529         unsigned int max_q_count, q_count;
 530         unsigned int reg, reg_val;
 531         unsigned int i;
 532 
 533         /* Clear MTL flow control */
 534         for (i = 0; i < pdata->rx_q_count; i++)
 535                 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 0);
 536 
 537         /* Clear MAC flow control */
 538         max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
 539         q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
 540         reg = MAC_Q0TFCR;
 541         for (i = 0; i < q_count; i++) {
 542                 reg_val = XGMAC_IOREAD(pdata, reg);
 543                 XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 0);
 544                 XGMAC_IOWRITE(pdata, reg, reg_val);
 545 
 546                 reg += MAC_QTFCR_INC;
 547         }
 548 
 549         return 0;
 550 }
 551 
 552 static int xgbe_enable_tx_flow_control(struct xgbe_prv_data *pdata)
 553 {
 554         struct ieee_pfc *pfc = pdata->pfc;
 555         struct ieee_ets *ets = pdata->ets;
 556         unsigned int max_q_count, q_count;
 557         unsigned int reg, reg_val;
 558         unsigned int i;
 559 
 560         /* Set MTL flow control */
 561         for (i = 0; i < pdata->rx_q_count; i++) {
 562                 unsigned int ehfc = 0;
 563 
 564                 if (pdata->rx_rfd[i]) {
 565                         /* Flow control thresholds are established */
 566                         if (pfc && ets) {
 567                                 if (xgbe_is_pfc_queue(pdata, i))
 568                                         ehfc = 1;
 569                         } else {
 570                                 ehfc = 1;
 571                         }
 572                 }
 573 
 574                 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, ehfc);
 575 
 576                 netif_dbg(pdata, drv, pdata->netdev,
 577                           "flow control %s for RXq%u\n",
 578                           ehfc ? "enabled" : "disabled", i);
 579         }
 580 
 581         /* Set MAC flow control */
 582         max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
 583         q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
 584         reg = MAC_Q0TFCR;
 585         for (i = 0; i < q_count; i++) {
 586                 reg_val = XGMAC_IOREAD(pdata, reg);
 587 
 588                 /* Enable transmit flow control */
 589                 XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 1);
 590                 /* Set pause time */
 591                 XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, PT, 0xffff);
 592 
 593                 XGMAC_IOWRITE(pdata, reg, reg_val);
 594 
 595                 reg += MAC_QTFCR_INC;
 596         }
 597 
 598         return 0;
 599 }
 600 
 601 static int xgbe_disable_rx_flow_control(struct xgbe_prv_data *pdata)
 602 {
 603         XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 0);
 604 
 605         return 0;
 606 }
 607 
 608 static int xgbe_enable_rx_flow_control(struct xgbe_prv_data *pdata)
 609 {
 610         XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 1);
 611 
 612         return 0;
 613 }
 614 
 615 static int xgbe_config_tx_flow_control(struct xgbe_prv_data *pdata)
 616 {
 617         struct ieee_pfc *pfc = pdata->pfc;
 618 
 619         if (pdata->tx_pause || (pfc && pfc->pfc_en))
 620                 xgbe_enable_tx_flow_control(pdata);
 621         else
 622                 xgbe_disable_tx_flow_control(pdata);
 623 
 624         return 0;
 625 }
 626 
 627 static int xgbe_config_rx_flow_control(struct xgbe_prv_data *pdata)
 628 {
 629         struct ieee_pfc *pfc = pdata->pfc;
 630 
 631         if (pdata->rx_pause || (pfc && pfc->pfc_en))
 632                 xgbe_enable_rx_flow_control(pdata);
 633         else
 634                 xgbe_disable_rx_flow_control(pdata);
 635 
 636         return 0;
 637 }
 638 
 639 static void xgbe_config_flow_control(struct xgbe_prv_data *pdata)
 640 {
 641         struct ieee_pfc *pfc = pdata->pfc;
 642 
 643         xgbe_config_tx_flow_control(pdata);
 644         xgbe_config_rx_flow_control(pdata);
 645 
 646         XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, PFCE,
 647                            (pfc && pfc->pfc_en) ? 1 : 0);
 648 }
 649 
 650 static void xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata)
 651 {
 652         struct xgbe_channel *channel;
 653         unsigned int i, ver;
 654 
 655         /* Set the interrupt mode if supported */
 656         if (pdata->channel_irq_mode)
 657                 XGMAC_IOWRITE_BITS(pdata, DMA_MR, INTM,
 658                                    pdata->channel_irq_mode);
 659 
 660         ver = XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER);
 661 
 662         for (i = 0; i < pdata->channel_count; i++) {
 663                 channel = pdata->channel[i];
 664 
 665                 /* Clear all the interrupts which are set */
 666                 XGMAC_DMA_IOWRITE(channel, DMA_CH_SR,
 667                                   XGMAC_DMA_IOREAD(channel, DMA_CH_SR));
 668 
 669                 /* Clear all interrupt enable bits */
 670                 channel->curr_ier = 0;
 671 
 672                 /* Enable following interrupts
 673                  *   NIE  - Normal Interrupt Summary Enable
 674                  *   AIE  - Abnormal Interrupt Summary Enable
 675                  *   FBEE - Fatal Bus Error Enable
 676                  */
 677                 if (ver < 0x21) {
 678                         XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE20, 1);
 679                         XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE20, 1);
 680                 } else {
 681                         XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE, 1);
 682                         XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE, 1);
 683                 }
 684                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
 685 
 686                 if (channel->tx_ring) {
 687                         /* Enable the following Tx interrupts
 688                          *   TIE  - Transmit Interrupt Enable (unless using
 689                          *          per channel interrupts in edge triggered
 690                          *          mode)
 691                          */
 692                         if (!pdata->per_channel_irq || pdata->channel_irq_mode)
 693                                 XGMAC_SET_BITS(channel->curr_ier,
 694                                                DMA_CH_IER, TIE, 1);
 695                 }
 696                 if (channel->rx_ring) {
 697                         /* Enable following Rx interrupts
 698                          *   RBUE - Receive Buffer Unavailable Enable
 699                          *   RIE  - Receive Interrupt Enable (unless using
 700                          *          per channel interrupts in edge triggered
 701                          *          mode)
 702                          */
 703                         XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
 704                         if (!pdata->per_channel_irq || pdata->channel_irq_mode)
 705                                 XGMAC_SET_BITS(channel->curr_ier,
 706                                                DMA_CH_IER, RIE, 1);
 707                 }
 708 
 709                 XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
 710         }
 711 }
 712 
 713 static void xgbe_enable_mtl_interrupts(struct xgbe_prv_data *pdata)
 714 {
 715         unsigned int mtl_q_isr;
 716         unsigned int q_count, i;
 717 
 718         q_count = max(pdata->hw_feat.tx_q_cnt, pdata->hw_feat.rx_q_cnt);
 719         for (i = 0; i < q_count; i++) {
 720                 /* Clear all the interrupts which are set */
 721                 mtl_q_isr = XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR);
 722                 XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_ISR, mtl_q_isr);
 723 
 724                 /* No MTL interrupts to be enabled */
 725                 XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_IER, 0);
 726         }
 727 }
 728 
 729 static void xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata)
 730 {
 731         unsigned int mac_ier = 0;
 732 
 733         /* Enable Timestamp interrupt */
 734         XGMAC_SET_BITS(mac_ier, MAC_IER, TSIE, 1);
 735 
 736         XGMAC_IOWRITE(pdata, MAC_IER, mac_ier);
 737 
 738         /* Enable all counter interrupts */
 739         XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff);
 740         XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff);
 741 
 742         /* Enable MDIO single command completion interrupt */
 743         XGMAC_IOWRITE_BITS(pdata, MAC_MDIOIER, SNGLCOMPIE, 1);
 744 }
 745 
 746 static void xgbe_enable_ecc_interrupts(struct xgbe_prv_data *pdata)
 747 {
 748         unsigned int ecc_isr, ecc_ier = 0;
 749 
 750         if (!pdata->vdata->ecc_support)
 751                 return;
 752 
 753         /* Clear all the interrupts which are set */
 754         ecc_isr = XP_IOREAD(pdata, XP_ECC_ISR);
 755         XP_IOWRITE(pdata, XP_ECC_ISR, ecc_isr);
 756 
 757         /* Enable ECC interrupts */
 758         XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_DED, 1);
 759         XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_SEC, 1);
 760         XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_DED, 1);
 761         XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_SEC, 1);
 762         XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_DED, 1);
 763         XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_SEC, 1);
 764 
 765         XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
 766 }
 767 
 768 static void xgbe_disable_ecc_ded(struct xgbe_prv_data *pdata)
 769 {
 770         unsigned int ecc_ier;
 771 
 772         ecc_ier = XP_IOREAD(pdata, XP_ECC_IER);
 773 
 774         /* Disable ECC DED interrupts */
 775         XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_DED, 0);
 776         XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_DED, 0);
 777         XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_DED, 0);
 778 
 779         XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
 780 }
 781 
 782 static void xgbe_disable_ecc_sec(struct xgbe_prv_data *pdata,
 783                                  enum xgbe_ecc_sec sec)
 784 {
 785         unsigned int ecc_ier;
 786 
 787         ecc_ier = XP_IOREAD(pdata, XP_ECC_IER);
 788 
 789         /* Disable ECC SEC interrupt */
 790         switch (sec) {
 791         case XGBE_ECC_SEC_TX:
 792         XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_SEC, 0);
 793                 break;
 794         case XGBE_ECC_SEC_RX:
 795         XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_SEC, 0);
 796                 break;
 797         case XGBE_ECC_SEC_DESC:
 798         XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_SEC, 0);
 799                 break;
 800         }
 801 
 802         XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
 803 }
 804 
 805 static int xgbe_set_speed(struct xgbe_prv_data *pdata, int speed)
 806 {
 807         unsigned int ss;
 808 
 809         switch (speed) {
 810         case SPEED_1000:
 811                 ss = 0x03;
 812                 break;
 813         case SPEED_2500:
 814                 ss = 0x02;
 815                 break;
 816         case SPEED_10000:
 817                 ss = 0x00;
 818                 break;
 819         default:
 820                 return -EINVAL;
 821         }
 822 
 823         if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) != ss)
 824                 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, ss);
 825 
 826         return 0;
 827 }
 828 
 829 static int xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
 830 {
 831         /* Put the VLAN tag in the Rx descriptor */
 832         XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLRXS, 1);
 833 
 834         /* Don't check the VLAN type */
 835         XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, DOVLTC, 1);
 836 
 837         /* Check only C-TAG (0x8100) packets */
 838         XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ERSVLM, 0);
 839 
 840         /* Don't consider an S-TAG (0x88A8) packet as a VLAN packet */
 841         XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ESVL, 0);
 842 
 843         /* Enable VLAN tag stripping */
 844         XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0x3);
 845 
 846         return 0;
 847 }
 848 
 849 static int xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
 850 {
 851         XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0);
 852 
 853         return 0;
 854 }
 855 
 856 static int xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
 857 {
 858         /* Enable VLAN filtering */
 859         XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1);
 860 
 861         /* Enable VLAN Hash Table filtering */
 862         XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTHM, 1);
 863 
 864         /* Disable VLAN tag inverse matching */
 865         XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTIM, 0);
 866 
 867         /* Only filter on the lower 12-bits of the VLAN tag */
 868         XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ETV, 1);
 869 
 870         /* In order for the VLAN Hash Table filtering to be effective,
 871          * the VLAN tag identifier in the VLAN Tag Register must not
 872          * be zero.  Set the VLAN tag identifier to "1" to enable the
 873          * VLAN Hash Table filtering.  This implies that a VLAN tag of
 874          * 1 will always pass filtering.
 875          */
 876         XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VL, 1);
 877 
 878         return 0;
 879 }
 880 
 881 static int xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
 882 {
 883         /* Disable VLAN filtering */
 884         XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0);
 885 
 886         return 0;
 887 }
 888 
 889 static u32 xgbe_vid_crc32_le(__le16 vid_le)
 890 {
 891         u32 crc = ~0;
 892         u32 temp = 0;
 893         unsigned char *data = (unsigned char *)&vid_le;
 894         unsigned char data_byte = 0;
 895         int i, bits;
 896 
 897         bits = get_bitmask_order(VLAN_VID_MASK);
 898         for (i = 0; i < bits; i++) {
 899                 if ((i % 8) == 0)
 900                         data_byte = data[i / 8];
 901 
 902                 temp = ((crc & 1) ^ data_byte) & 1;
 903                 crc >>= 1;
 904                 data_byte >>= 1;
 905 
 906                 if (temp)
 907                         crc ^= CRC32_POLY_LE;
 908         }
 909 
 910         return crc;
 911 }
 912 
 913 static int xgbe_update_vlan_hash_table(struct xgbe_prv_data *pdata)
 914 {
 915         u32 crc;
 916         u16 vid;
 917         __le16 vid_le;
 918         u16 vlan_hash_table = 0;
 919 
 920         /* Generate the VLAN Hash Table value */
 921         for_each_set_bit(vid, pdata->active_vlans, VLAN_N_VID) {
 922                 /* Get the CRC32 value of the VLAN ID */
 923                 vid_le = cpu_to_le16(vid);
 924                 crc = bitrev32(~xgbe_vid_crc32_le(vid_le)) >> 28;
 925 
 926                 vlan_hash_table |= (1 << crc);
 927         }
 928 
 929         /* Set the VLAN Hash Table filtering register */
 930         XGMAC_IOWRITE_BITS(pdata, MAC_VLANHTR, VLHT, vlan_hash_table);
 931 
 932         return 0;
 933 }
 934 
 935 static int xgbe_set_promiscuous_mode(struct xgbe_prv_data *pdata,
 936                                      unsigned int enable)
 937 {
 938         unsigned int val = enable ? 1 : 0;
 939 
 940         if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == val)
 941                 return 0;
 942 
 943         netif_dbg(pdata, drv, pdata->netdev, "%s promiscuous mode\n",
 944                   enable ? "entering" : "leaving");
 945         XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, val);
 946 
 947         /* Hardware will still perform VLAN filtering in promiscuous mode */
 948         if (enable) {
 949                 xgbe_disable_rx_vlan_filtering(pdata);
 950         } else {
 951                 if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
 952                         xgbe_enable_rx_vlan_filtering(pdata);
 953         }
 954 
 955         return 0;
 956 }
 957 
 958 static int xgbe_set_all_multicast_mode(struct xgbe_prv_data *pdata,
 959                                        unsigned int enable)
 960 {
 961         unsigned int val = enable ? 1 : 0;
 962 
 963         if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PM) == val)
 964                 return 0;
 965 
 966         netif_dbg(pdata, drv, pdata->netdev, "%s allmulti mode\n",
 967                   enable ? "entering" : "leaving");
 968         XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PM, val);
 969 
 970         return 0;
 971 }
 972 
 973 static void xgbe_set_mac_reg(struct xgbe_prv_data *pdata,
 974                              struct netdev_hw_addr *ha, unsigned int *mac_reg)
 975 {
 976         unsigned int mac_addr_hi, mac_addr_lo;
 977         u8 *mac_addr;
 978 
 979         mac_addr_lo = 0;
 980         mac_addr_hi = 0;
 981 
 982         if (ha) {
 983                 mac_addr = (u8 *)&mac_addr_lo;
 984                 mac_addr[0] = ha->addr[0];
 985                 mac_addr[1] = ha->addr[1];
 986                 mac_addr[2] = ha->addr[2];
 987                 mac_addr[3] = ha->addr[3];
 988                 mac_addr = (u8 *)&mac_addr_hi;
 989                 mac_addr[0] = ha->addr[4];
 990                 mac_addr[1] = ha->addr[5];
 991 
 992                 netif_dbg(pdata, drv, pdata->netdev,
 993                           "adding mac address %pM at %#x\n",
 994                           ha->addr, *mac_reg);
 995 
 996                 XGMAC_SET_BITS(mac_addr_hi, MAC_MACA1HR, AE, 1);
 997         }
 998 
 999         XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_hi);
1000         *mac_reg += MAC_MACA_INC;
1001         XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_lo);
1002         *mac_reg += MAC_MACA_INC;
1003 }
1004 
1005 static void xgbe_set_mac_addn_addrs(struct xgbe_prv_data *pdata)
1006 {
1007         struct net_device *netdev = pdata->netdev;
1008         struct netdev_hw_addr *ha;
1009         unsigned int mac_reg;
1010         unsigned int addn_macs;
1011 
1012         mac_reg = MAC_MACA1HR;
1013         addn_macs = pdata->hw_feat.addn_mac;
1014 
1015         if (netdev_uc_count(netdev) > addn_macs) {
1016                 xgbe_set_promiscuous_mode(pdata, 1);
1017         } else {
1018                 netdev_for_each_uc_addr(ha, netdev) {
1019                         xgbe_set_mac_reg(pdata, ha, &mac_reg);
1020                         addn_macs--;
1021                 }
1022 
1023                 if (netdev_mc_count(netdev) > addn_macs) {
1024                         xgbe_set_all_multicast_mode(pdata, 1);
1025                 } else {
1026                         netdev_for_each_mc_addr(ha, netdev) {
1027                                 xgbe_set_mac_reg(pdata, ha, &mac_reg);
1028                                 addn_macs--;
1029                         }
1030                 }
1031         }
1032 
1033         /* Clear remaining additional MAC address entries */
1034         while (addn_macs--)
1035                 xgbe_set_mac_reg(pdata, NULL, &mac_reg);
1036 }
1037 
1038 static void xgbe_set_mac_hash_table(struct xgbe_prv_data *pdata)
1039 {
1040         struct net_device *netdev = pdata->netdev;
1041         struct netdev_hw_addr *ha;
1042         unsigned int hash_reg;
1043         unsigned int hash_table_shift, hash_table_count;
1044         u32 hash_table[XGBE_MAC_HASH_TABLE_SIZE];
1045         u32 crc;
1046         unsigned int i;
1047 
1048         hash_table_shift = 26 - (pdata->hw_feat.hash_table_size >> 7);
1049         hash_table_count = pdata->hw_feat.hash_table_size / 32;
1050         memset(hash_table, 0, sizeof(hash_table));
1051 
1052         /* Build the MAC Hash Table register values */
1053         netdev_for_each_uc_addr(ha, netdev) {
1054                 crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
1055                 crc >>= hash_table_shift;
1056                 hash_table[crc >> 5] |= (1 << (crc & 0x1f));
1057         }
1058 
1059         netdev_for_each_mc_addr(ha, netdev) {
1060                 crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
1061                 crc >>= hash_table_shift;
1062                 hash_table[crc >> 5] |= (1 << (crc & 0x1f));
1063         }
1064 
1065         /* Set the MAC Hash Table registers */
1066         hash_reg = MAC_HTR0;
1067         for (i = 0; i < hash_table_count; i++) {
1068                 XGMAC_IOWRITE(pdata, hash_reg, hash_table[i]);
1069                 hash_reg += MAC_HTR_INC;
1070         }
1071 }
1072 
1073 static int xgbe_add_mac_addresses(struct xgbe_prv_data *pdata)
1074 {
1075         if (pdata->hw_feat.hash_table_size)
1076                 xgbe_set_mac_hash_table(pdata);
1077         else
1078                 xgbe_set_mac_addn_addrs(pdata);
1079 
1080         return 0;
1081 }
1082 
1083 static int xgbe_set_mac_address(struct xgbe_prv_data *pdata, u8 *addr)
1084 {
1085         unsigned int mac_addr_hi, mac_addr_lo;
1086 
1087         mac_addr_hi = (addr[5] <<  8) | (addr[4] <<  0);
1088         mac_addr_lo = (addr[3] << 24) | (addr[2] << 16) |
1089                       (addr[1] <<  8) | (addr[0] <<  0);
1090 
1091         XGMAC_IOWRITE(pdata, MAC_MACA0HR, mac_addr_hi);
1092         XGMAC_IOWRITE(pdata, MAC_MACA0LR, mac_addr_lo);
1093 
1094         return 0;
1095 }
1096 
1097 static int xgbe_config_rx_mode(struct xgbe_prv_data *pdata)
1098 {
1099         struct net_device *netdev = pdata->netdev;
1100         unsigned int pr_mode, am_mode;
1101 
1102         pr_mode = ((netdev->flags & IFF_PROMISC) != 0);
1103         am_mode = ((netdev->flags & IFF_ALLMULTI) != 0);
1104 
1105         xgbe_set_promiscuous_mode(pdata, pr_mode);
1106         xgbe_set_all_multicast_mode(pdata, am_mode);
1107 
1108         xgbe_add_mac_addresses(pdata);
1109 
1110         return 0;
1111 }
1112 
1113 static int xgbe_clr_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
1114 {
1115         unsigned int reg;
1116 
1117         if (gpio > 15)
1118                 return -EINVAL;
1119 
1120         reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
1121 
1122         reg &= ~(1 << (gpio + 16));
1123         XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
1124 
1125         return 0;
1126 }
1127 
1128 static int xgbe_set_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
1129 {
1130         unsigned int reg;
1131 
1132         if (gpio > 15)
1133                 return -EINVAL;
1134 
1135         reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
1136 
1137         reg |= (1 << (gpio + 16));
1138         XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
1139 
1140         return 0;
1141 }
1142 
1143 static int xgbe_read_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad,
1144                                  int mmd_reg)
1145 {
1146         unsigned long flags;
1147         unsigned int mmd_address, index, offset;
1148         int mmd_data;
1149 
1150         if (mmd_reg & MII_ADDR_C45)
1151                 mmd_address = mmd_reg & ~MII_ADDR_C45;
1152         else
1153                 mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1154 
1155         /* The PCS registers are accessed using mmio. The underlying
1156          * management interface uses indirect addressing to access the MMD
1157          * register sets. This requires accessing of the PCS register in two
1158          * phases, an address phase and a data phase.
1159          *
1160          * The mmio interface is based on 16-bit offsets and values. All
1161          * register offsets must therefore be adjusted by left shifting the
1162          * offset 1 bit and reading 16 bits of data.
1163          */
1164         mmd_address <<= 1;
1165         index = mmd_address & ~pdata->xpcs_window_mask;
1166         offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1167 
1168         spin_lock_irqsave(&pdata->xpcs_lock, flags);
1169         XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1170         mmd_data = XPCS16_IOREAD(pdata, offset);
1171         spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1172 
1173         return mmd_data;
1174 }
1175 
1176 static void xgbe_write_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad,
1177                                    int mmd_reg, int mmd_data)
1178 {
1179         unsigned long flags;
1180         unsigned int mmd_address, index, offset;
1181 
1182         if (mmd_reg & MII_ADDR_C45)
1183                 mmd_address = mmd_reg & ~MII_ADDR_C45;
1184         else
1185                 mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1186 
1187         /* The PCS registers are accessed using mmio. The underlying
1188          * management interface uses indirect addressing to access the MMD
1189          * register sets. This requires accessing of the PCS register in two
1190          * phases, an address phase and a data phase.
1191          *
1192          * The mmio interface is based on 16-bit offsets and values. All
1193          * register offsets must therefore be adjusted by left shifting the
1194          * offset 1 bit and writing 16 bits of data.
1195          */
1196         mmd_address <<= 1;
1197         index = mmd_address & ~pdata->xpcs_window_mask;
1198         offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1199 
1200         spin_lock_irqsave(&pdata->xpcs_lock, flags);
1201         XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1202         XPCS16_IOWRITE(pdata, offset, mmd_data);
1203         spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1204 }
1205 
1206 static int xgbe_read_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad,
1207                                  int mmd_reg)
1208 {
1209         unsigned long flags;
1210         unsigned int mmd_address;
1211         int mmd_data;
1212 
1213         if (mmd_reg & MII_ADDR_C45)
1214                 mmd_address = mmd_reg & ~MII_ADDR_C45;
1215         else
1216                 mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1217 
1218         /* The PCS registers are accessed using mmio. The underlying APB3
1219          * management interface uses indirect addressing to access the MMD
1220          * register sets. This requires accessing of the PCS register in two
1221          * phases, an address phase and a data phase.
1222          *
1223          * The mmio interface is based on 32-bit offsets and values. All
1224          * register offsets must therefore be adjusted by left shifting the
1225          * offset 2 bits and reading 32 bits of data.
1226          */
1227         spin_lock_irqsave(&pdata->xpcs_lock, flags);
1228         XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1229         mmd_data = XPCS32_IOREAD(pdata, (mmd_address & 0xff) << 2);
1230         spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1231 
1232         return mmd_data;
1233 }
1234 
1235 static void xgbe_write_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad,
1236                                    int mmd_reg, int mmd_data)
1237 {
1238         unsigned int mmd_address;
1239         unsigned long flags;
1240 
1241         if (mmd_reg & MII_ADDR_C45)
1242                 mmd_address = mmd_reg & ~MII_ADDR_C45;
1243         else
1244                 mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1245 
1246         /* The PCS registers are accessed using mmio. The underlying APB3
1247          * management interface uses indirect addressing to access the MMD
1248          * register sets. This requires accessing of the PCS register in two
1249          * phases, an address phase and a data phase.
1250          *
1251          * The mmio interface is based on 32-bit offsets and values. All
1252          * register offsets must therefore be adjusted by left shifting the
1253          * offset 2 bits and writing 32 bits of data.
1254          */
1255         spin_lock_irqsave(&pdata->xpcs_lock, flags);
1256         XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1257         XPCS32_IOWRITE(pdata, (mmd_address & 0xff) << 2, mmd_data);
1258         spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1259 }
1260 
1261 static int xgbe_read_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
1262                               int mmd_reg)
1263 {
1264         switch (pdata->vdata->xpcs_access) {
1265         case XGBE_XPCS_ACCESS_V1:
1266                 return xgbe_read_mmd_regs_v1(pdata, prtad, mmd_reg);
1267 
1268         case XGBE_XPCS_ACCESS_V2:
1269         default:
1270                 return xgbe_read_mmd_regs_v2(pdata, prtad, mmd_reg);
1271         }
1272 }
1273 
1274 static void xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
1275                                 int mmd_reg, int mmd_data)
1276 {
1277         switch (pdata->vdata->xpcs_access) {
1278         case XGBE_XPCS_ACCESS_V1:
1279                 return xgbe_write_mmd_regs_v1(pdata, prtad, mmd_reg, mmd_data);
1280 
1281         case XGBE_XPCS_ACCESS_V2:
1282         default:
1283                 return xgbe_write_mmd_regs_v2(pdata, prtad, mmd_reg, mmd_data);
1284         }
1285 }
1286 
1287 static unsigned int xgbe_create_mdio_sca(int port, int reg)
1288 {
1289         unsigned int mdio_sca, da;
1290 
1291         da = (reg & MII_ADDR_C45) ? reg >> 16 : 0;
1292 
1293         mdio_sca = 0;
1294         XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, RA, reg);
1295         XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, PA, port);
1296         XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, DA, da);
1297 
1298         return mdio_sca;
1299 }
1300 
1301 static int xgbe_write_ext_mii_regs(struct xgbe_prv_data *pdata, int addr,
1302                                    int reg, u16 val)
1303 {
1304         unsigned int mdio_sca, mdio_sccd;
1305 
1306         reinit_completion(&pdata->mdio_complete);
1307 
1308         mdio_sca = xgbe_create_mdio_sca(addr, reg);
1309         XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1310 
1311         mdio_sccd = 0;
1312         XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, DATA, val);
1313         XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 1);
1314         XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1315         XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1316 
1317         if (!wait_for_completion_timeout(&pdata->mdio_complete, HZ)) {
1318                 netdev_err(pdata->netdev, "mdio write operation timed out\n");
1319                 return -ETIMEDOUT;
1320         }
1321 
1322         return 0;
1323 }
1324 
1325 static int xgbe_read_ext_mii_regs(struct xgbe_prv_data *pdata, int addr,
1326                                   int reg)
1327 {
1328         unsigned int mdio_sca, mdio_sccd;
1329 
1330         reinit_completion(&pdata->mdio_complete);
1331 
1332         mdio_sca = xgbe_create_mdio_sca(addr, reg);
1333         XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1334 
1335         mdio_sccd = 0;
1336         XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 3);
1337         XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1338         XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1339 
1340         if (!wait_for_completion_timeout(&pdata->mdio_complete, HZ)) {
1341                 netdev_err(pdata->netdev, "mdio read operation timed out\n");
1342                 return -ETIMEDOUT;
1343         }
1344 
1345         return XGMAC_IOREAD_BITS(pdata, MAC_MDIOSCCDR, DATA);
1346 }
1347 
1348 static int xgbe_set_ext_mii_mode(struct xgbe_prv_data *pdata, unsigned int port,
1349                                  enum xgbe_mdio_mode mode)
1350 {
1351         unsigned int reg_val = XGMAC_IOREAD(pdata, MAC_MDIOCL22R);
1352 
1353         switch (mode) {
1354         case XGBE_MDIO_MODE_CL22:
1355                 if (port > XGMAC_MAX_C22_PORT)
1356                         return -EINVAL;
1357                 reg_val |= (1 << port);
1358                 break;
1359         case XGBE_MDIO_MODE_CL45:
1360                 break;
1361         default:
1362                 return -EINVAL;
1363         }
1364 
1365         XGMAC_IOWRITE(pdata, MAC_MDIOCL22R, reg_val);
1366 
1367         return 0;
1368 }
1369 
1370 static int xgbe_tx_complete(struct xgbe_ring_desc *rdesc)
1371 {
1372         return !XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN);
1373 }
1374 
1375 static int xgbe_disable_rx_csum(struct xgbe_prv_data *pdata)
1376 {
1377         XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 0);
1378 
1379         return 0;
1380 }
1381 
1382 static int xgbe_enable_rx_csum(struct xgbe_prv_data *pdata)
1383 {
1384         XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 1);
1385 
1386         return 0;
1387 }
1388 
1389 static void xgbe_tx_desc_reset(struct xgbe_ring_data *rdata)
1390 {
1391         struct xgbe_ring_desc *rdesc = rdata->rdesc;
1392 
1393         /* Reset the Tx descriptor
1394          *   Set buffer 1 (lo) address to zero
1395          *   Set buffer 1 (hi) address to zero
1396          *   Reset all other control bits (IC, TTSE, B2L & B1L)
1397          *   Reset all other control bits (OWN, CTXT, FD, LD, CPC, CIC, etc)
1398          */
1399         rdesc->desc0 = 0;
1400         rdesc->desc1 = 0;
1401         rdesc->desc2 = 0;
1402         rdesc->desc3 = 0;
1403 
1404         /* Make sure ownership is written to the descriptor */
1405         dma_wmb();
1406 }
1407 
1408 static void xgbe_tx_desc_init(struct xgbe_channel *channel)
1409 {
1410         struct xgbe_ring *ring = channel->tx_ring;
1411         struct xgbe_ring_data *rdata;
1412         int i;
1413         int start_index = ring->cur;
1414 
1415         DBGPR("-->tx_desc_init\n");
1416 
1417         /* Initialze all descriptors */
1418         for (i = 0; i < ring->rdesc_count; i++) {
1419                 rdata = XGBE_GET_DESC_DATA(ring, i);
1420 
1421                 /* Initialize Tx descriptor */
1422                 xgbe_tx_desc_reset(rdata);
1423         }
1424 
1425         /* Update the total number of Tx descriptors */
1426         XGMAC_DMA_IOWRITE(channel, DMA_CH_TDRLR, ring->rdesc_count - 1);
1427 
1428         /* Update the starting address of descriptor ring */
1429         rdata = XGBE_GET_DESC_DATA(ring, start_index);
1430         XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_HI,
1431                           upper_32_bits(rdata->rdesc_dma));
1432         XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_LO,
1433                           lower_32_bits(rdata->rdesc_dma));
1434 
1435         DBGPR("<--tx_desc_init\n");
1436 }
1437 
1438 static void xgbe_rx_desc_reset(struct xgbe_prv_data *pdata,
1439                                struct xgbe_ring_data *rdata, unsigned int index)
1440 {
1441         struct xgbe_ring_desc *rdesc = rdata->rdesc;
1442         unsigned int rx_usecs = pdata->rx_usecs;
1443         unsigned int rx_frames = pdata->rx_frames;
1444         unsigned int inte;
1445         dma_addr_t hdr_dma, buf_dma;
1446 
1447         if (!rx_usecs && !rx_frames) {
1448                 /* No coalescing, interrupt for every descriptor */
1449                 inte = 1;
1450         } else {
1451                 /* Set interrupt based on Rx frame coalescing setting */
1452                 if (rx_frames && !((index + 1) % rx_frames))
1453                         inte = 1;
1454                 else
1455                         inte = 0;
1456         }
1457 
1458         /* Reset the Rx descriptor
1459          *   Set buffer 1 (lo) address to header dma address (lo)
1460          *   Set buffer 1 (hi) address to header dma address (hi)
1461          *   Set buffer 2 (lo) address to buffer dma address (lo)
1462          *   Set buffer 2 (hi) address to buffer dma address (hi) and
1463          *     set control bits OWN and INTE
1464          */
1465         hdr_dma = rdata->rx.hdr.dma_base + rdata->rx.hdr.dma_off;
1466         buf_dma = rdata->rx.buf.dma_base + rdata->rx.buf.dma_off;
1467         rdesc->desc0 = cpu_to_le32(lower_32_bits(hdr_dma));
1468         rdesc->desc1 = cpu_to_le32(upper_32_bits(hdr_dma));
1469         rdesc->desc2 = cpu_to_le32(lower_32_bits(buf_dma));
1470         rdesc->desc3 = cpu_to_le32(upper_32_bits(buf_dma));
1471 
1472         XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, INTE, inte);
1473 
1474         /* Since the Rx DMA engine is likely running, make sure everything
1475          * is written to the descriptor(s) before setting the OWN bit
1476          * for the descriptor
1477          */
1478         dma_wmb();
1479 
1480         XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN, 1);
1481 
1482         /* Make sure ownership is written to the descriptor */
1483         dma_wmb();
1484 }
1485 
1486 static void xgbe_rx_desc_init(struct xgbe_channel *channel)
1487 {
1488         struct xgbe_prv_data *pdata = channel->pdata;
1489         struct xgbe_ring *ring = channel->rx_ring;
1490         struct xgbe_ring_data *rdata;
1491         unsigned int start_index = ring->cur;
1492         unsigned int i;
1493 
1494         DBGPR("-->rx_desc_init\n");
1495 
1496         /* Initialize all descriptors */
1497         for (i = 0; i < ring->rdesc_count; i++) {
1498                 rdata = XGBE_GET_DESC_DATA(ring, i);
1499 
1500                 /* Initialize Rx descriptor */
1501                 xgbe_rx_desc_reset(pdata, rdata, i);
1502         }
1503 
1504         /* Update the total number of Rx descriptors */
1505         XGMAC_DMA_IOWRITE(channel, DMA_CH_RDRLR, ring->rdesc_count - 1);
1506 
1507         /* Update the starting address of descriptor ring */
1508         rdata = XGBE_GET_DESC_DATA(ring, start_index);
1509         XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_HI,
1510                           upper_32_bits(rdata->rdesc_dma));
1511         XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_LO,
1512                           lower_32_bits(rdata->rdesc_dma));
1513 
1514         /* Update the Rx Descriptor Tail Pointer */
1515         rdata = XGBE_GET_DESC_DATA(ring, start_index + ring->rdesc_count - 1);
1516         XGMAC_DMA_IOWRITE(channel, DMA_CH_RDTR_LO,
1517                           lower_32_bits(rdata->rdesc_dma));
1518 
1519         DBGPR("<--rx_desc_init\n");
1520 }
1521 
1522 static void xgbe_update_tstamp_addend(struct xgbe_prv_data *pdata,
1523                                       unsigned int addend)
1524 {
1525         unsigned int count = 10000;
1526 
1527         /* Set the addend register value and tell the device */
1528         XGMAC_IOWRITE(pdata, MAC_TSAR, addend);
1529         XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSADDREG, 1);
1530 
1531         /* Wait for addend update to complete */
1532         while (--count && XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSADDREG))
1533                 udelay(5);
1534 
1535         if (!count)
1536                 netdev_err(pdata->netdev,
1537                            "timed out updating timestamp addend register\n");
1538 }
1539 
1540 static void xgbe_set_tstamp_time(struct xgbe_prv_data *pdata, unsigned int sec,
1541                                  unsigned int nsec)
1542 {
1543         unsigned int count = 10000;
1544 
1545         /* Set the time values and tell the device */
1546         XGMAC_IOWRITE(pdata, MAC_STSUR, sec);
1547         XGMAC_IOWRITE(pdata, MAC_STNUR, nsec);
1548         XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSINIT, 1);
1549 
1550         /* Wait for time update to complete */
1551         while (--count && XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSINIT))
1552                 udelay(5);
1553 
1554         if (!count)
1555                 netdev_err(pdata->netdev, "timed out initializing timestamp\n");
1556 }
1557 
1558 static u64 xgbe_get_tstamp_time(struct xgbe_prv_data *pdata)
1559 {
1560         u64 nsec;
1561 
1562         nsec = XGMAC_IOREAD(pdata, MAC_STSR);
1563         nsec *= NSEC_PER_SEC;
1564         nsec += XGMAC_IOREAD(pdata, MAC_STNR);
1565 
1566         return nsec;
1567 }
1568 
1569 static u64 xgbe_get_tx_tstamp(struct xgbe_prv_data *pdata)
1570 {
1571         unsigned int tx_snr, tx_ssr;
1572         u64 nsec;
1573 
1574         if (pdata->vdata->tx_tstamp_workaround) {
1575                 tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR);
1576                 tx_ssr = XGMAC_IOREAD(pdata, MAC_TXSSR);
1577         } else {
1578                 tx_ssr = XGMAC_IOREAD(pdata, MAC_TXSSR);
1579                 tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR);
1580         }
1581 
1582         if (XGMAC_GET_BITS(tx_snr, MAC_TXSNR, TXTSSTSMIS))
1583                 return 0;
1584 
1585         nsec = tx_ssr;
1586         nsec *= NSEC_PER_SEC;
1587         nsec += tx_snr;
1588 
1589         return nsec;
1590 }
1591 
1592 static void xgbe_get_rx_tstamp(struct xgbe_packet_data *packet,
1593                                struct xgbe_ring_desc *rdesc)
1594 {
1595         u64 nsec;
1596 
1597         if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSA) &&
1598             !XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSD)) {
1599                 nsec = le32_to_cpu(rdesc->desc1);
1600                 nsec <<= 32;
1601                 nsec |= le32_to_cpu(rdesc->desc0);
1602                 if (nsec != 0xffffffffffffffffULL) {
1603                         packet->rx_tstamp = nsec;
1604                         XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1605                                        RX_TSTAMP, 1);
1606                 }
1607         }
1608 }
1609 
1610 static int xgbe_config_tstamp(struct xgbe_prv_data *pdata,
1611                               unsigned int mac_tscr)
1612 {
1613         /* Set one nano-second accuracy */
1614         XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCTRLSSR, 1);
1615 
1616         /* Set fine timestamp update */
1617         XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCFUPDT, 1);
1618 
1619         /* Overwrite earlier timestamps */
1620         XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TXTSSTSM, 1);
1621 
1622         XGMAC_IOWRITE(pdata, MAC_TSCR, mac_tscr);
1623 
1624         /* Exit if timestamping is not enabled */
1625         if (!XGMAC_GET_BITS(mac_tscr, MAC_TSCR, TSENA))
1626                 return 0;
1627 
1628         /* Initialize time registers */
1629         XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SSINC, XGBE_TSTAMP_SSINC);
1630         XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SNSINC, XGBE_TSTAMP_SNSINC);
1631         xgbe_update_tstamp_addend(pdata, pdata->tstamp_addend);
1632         xgbe_set_tstamp_time(pdata, 0, 0);
1633 
1634         /* Initialize the timecounter */
1635         timecounter_init(&pdata->tstamp_tc, &pdata->tstamp_cc,
1636                          ktime_to_ns(ktime_get_real()));
1637 
1638         return 0;
1639 }
1640 
1641 static void xgbe_tx_start_xmit(struct xgbe_channel *channel,
1642                                struct xgbe_ring *ring)
1643 {
1644         struct xgbe_prv_data *pdata = channel->pdata;
1645         struct xgbe_ring_data *rdata;
1646 
1647         /* Make sure everything is written before the register write */
1648         wmb();
1649 
1650         /* Issue a poll command to Tx DMA by writing address
1651          * of next immediate free descriptor */
1652         rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1653         XGMAC_DMA_IOWRITE(channel, DMA_CH_TDTR_LO,
1654                           lower_32_bits(rdata->rdesc_dma));
1655 
1656         /* Start the Tx timer */
1657         if (pdata->tx_usecs && !channel->tx_timer_active) {
1658                 channel->tx_timer_active = 1;
1659                 mod_timer(&channel->tx_timer,
1660                           jiffies + usecs_to_jiffies(pdata->tx_usecs));
1661         }
1662 
1663         ring->tx.xmit_more = 0;
1664 }
1665 
1666 static void xgbe_dev_xmit(struct xgbe_channel *channel)
1667 {
1668         struct xgbe_prv_data *pdata = channel->pdata;
1669         struct xgbe_ring *ring = channel->tx_ring;
1670         struct xgbe_ring_data *rdata;
1671         struct xgbe_ring_desc *rdesc;
1672         struct xgbe_packet_data *packet = &ring->packet_data;
1673         unsigned int tx_packets, tx_bytes;
1674         unsigned int csum, tso, vlan, vxlan;
1675         unsigned int tso_context, vlan_context;
1676         unsigned int tx_set_ic;
1677         int start_index = ring->cur;
1678         int cur_index = ring->cur;
1679         int i;
1680 
1681         DBGPR("-->xgbe_dev_xmit\n");
1682 
1683         tx_packets = packet->tx_packets;
1684         tx_bytes = packet->tx_bytes;
1685 
1686         csum = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1687                               CSUM_ENABLE);
1688         tso = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1689                              TSO_ENABLE);
1690         vlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1691                               VLAN_CTAG);
1692         vxlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1693                                VXLAN);
1694 
1695         if (tso && (packet->mss != ring->tx.cur_mss))
1696                 tso_context = 1;
1697         else
1698                 tso_context = 0;
1699 
1700         if (vlan && (packet->vlan_ctag != ring->tx.cur_vlan_ctag))
1701                 vlan_context = 1;
1702         else
1703                 vlan_context = 0;
1704 
1705         /* Determine if an interrupt should be generated for this Tx:
1706          *   Interrupt:
1707          *     - Tx frame count exceeds the frame count setting
1708          *     - Addition of Tx frame count to the frame count since the
1709          *       last interrupt was set exceeds the frame count setting
1710          *   No interrupt:
1711          *     - No frame count setting specified (ethtool -C ethX tx-frames 0)
1712          *     - Addition of Tx frame count to the frame count since the
1713          *       last interrupt was set does not exceed the frame count setting
1714          */
1715         ring->coalesce_count += tx_packets;
1716         if (!pdata->tx_frames)
1717                 tx_set_ic = 0;
1718         else if (tx_packets > pdata->tx_frames)
1719                 tx_set_ic = 1;
1720         else if ((ring->coalesce_count % pdata->tx_frames) < tx_packets)
1721                 tx_set_ic = 1;
1722         else
1723                 tx_set_ic = 0;
1724 
1725         rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1726         rdesc = rdata->rdesc;
1727 
1728         /* Create a context descriptor if this is a TSO packet */
1729         if (tso_context || vlan_context) {
1730                 if (tso_context) {
1731                         netif_dbg(pdata, tx_queued, pdata->netdev,
1732                                   "TSO context descriptor, mss=%u\n",
1733                                   packet->mss);
1734 
1735                         /* Set the MSS size */
1736                         XGMAC_SET_BITS_LE(rdesc->desc2, TX_CONTEXT_DESC2,
1737                                           MSS, packet->mss);
1738 
1739                         /* Mark it as a CONTEXT descriptor */
1740                         XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1741                                           CTXT, 1);
1742 
1743                         /* Indicate this descriptor contains the MSS */
1744                         XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1745                                           TCMSSV, 1);
1746 
1747                         ring->tx.cur_mss = packet->mss;
1748                 }
1749 
1750                 if (vlan_context) {
1751                         netif_dbg(pdata, tx_queued, pdata->netdev,
1752                                   "VLAN context descriptor, ctag=%u\n",
1753                                   packet->vlan_ctag);
1754 
1755                         /* Mark it as a CONTEXT descriptor */
1756                         XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1757                                           CTXT, 1);
1758 
1759                         /* Set the VLAN tag */
1760                         XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1761                                           VT, packet->vlan_ctag);
1762 
1763                         /* Indicate this descriptor contains the VLAN tag */
1764                         XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1765                                           VLTV, 1);
1766 
1767                         ring->tx.cur_vlan_ctag = packet->vlan_ctag;
1768                 }
1769 
1770                 cur_index++;
1771                 rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1772                 rdesc = rdata->rdesc;
1773         }
1774 
1775         /* Update buffer address (for TSO this is the header) */
1776         rdesc->desc0 =  cpu_to_le32(lower_32_bits(rdata->skb_dma));
1777         rdesc->desc1 =  cpu_to_le32(upper_32_bits(rdata->skb_dma));
1778 
1779         /* Update the buffer length */
1780         XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1781                           rdata->skb_dma_len);
1782 
1783         /* VLAN tag insertion check */
1784         if (vlan)
1785                 XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, VTIR,
1786                                   TX_NORMAL_DESC2_VLAN_INSERT);
1787 
1788         /* Timestamp enablement check */
1789         if (XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, PTP))
1790                 XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, TTSE, 1);
1791 
1792         /* Mark it as First Descriptor */
1793         XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FD, 1);
1794 
1795         /* Mark it as a NORMAL descriptor */
1796         XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1797 
1798         /* Set OWN bit if not the first descriptor */
1799         if (cur_index != start_index)
1800                 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1801 
1802         if (tso) {
1803                 /* Enable TSO */
1804                 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TSE, 1);
1805                 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPPL,
1806                                   packet->tcp_payload_len);
1807                 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPHDRLEN,
1808                                   packet->tcp_header_len / 4);
1809 
1810                 pdata->ext_stats.tx_tso_packets += tx_packets;
1811         } else {
1812                 /* Enable CRC and Pad Insertion */
1813                 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CPC, 0);
1814 
1815                 /* Enable HW CSUM */
1816                 if (csum)
1817                         XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1818                                           CIC, 0x3);
1819 
1820                 /* Set the total length to be transmitted */
1821                 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FL,
1822                                   packet->length);
1823         }
1824 
1825         if (vxlan) {
1826                 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, VNP,
1827                                   TX_NORMAL_DESC3_VXLAN_PACKET);
1828 
1829                 pdata->ext_stats.tx_vxlan_packets += packet->tx_packets;
1830         }
1831 
1832         for (i = cur_index - start_index + 1; i < packet->rdesc_count; i++) {
1833                 cur_index++;
1834                 rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1835                 rdesc = rdata->rdesc;
1836 
1837                 /* Update buffer address */
1838                 rdesc->desc0 = cpu_to_le32(lower_32_bits(rdata->skb_dma));
1839                 rdesc->desc1 = cpu_to_le32(upper_32_bits(rdata->skb_dma));
1840 
1841                 /* Update the buffer length */
1842                 XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1843                                   rdata->skb_dma_len);
1844 
1845                 /* Set OWN bit */
1846                 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1847 
1848                 /* Mark it as NORMAL descriptor */
1849                 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1850 
1851                 /* Enable HW CSUM */
1852                 if (csum)
1853                         XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1854                                           CIC, 0x3);
1855         }
1856 
1857         /* Set LAST bit for the last descriptor */
1858         XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD, 1);
1859 
1860         /* Set IC bit based on Tx coalescing settings */
1861         if (tx_set_ic)
1862                 XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, IC, 1);
1863 
1864         /* Save the Tx info to report back during cleanup */
1865         rdata->tx.packets = tx_packets;
1866         rdata->tx.bytes = tx_bytes;
1867 
1868         pdata->ext_stats.txq_packets[channel->queue_index] += tx_packets;
1869         pdata->ext_stats.txq_bytes[channel->queue_index] += tx_bytes;
1870 
1871         /* In case the Tx DMA engine is running, make sure everything
1872          * is written to the descriptor(s) before setting the OWN bit
1873          * for the first descriptor
1874          */
1875         dma_wmb();
1876 
1877         /* Set OWN bit for the first descriptor */
1878         rdata = XGBE_GET_DESC_DATA(ring, start_index);
1879         rdesc = rdata->rdesc;
1880         XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1881 
1882         if (netif_msg_tx_queued(pdata))
1883                 xgbe_dump_tx_desc(pdata, ring, start_index,
1884                                   packet->rdesc_count, 1);
1885 
1886         /* Make sure ownership is written to the descriptor */
1887         smp_wmb();
1888 
1889         ring->cur = cur_index + 1;
1890         if (!netdev_xmit_more() ||
1891             netif_xmit_stopped(netdev_get_tx_queue(pdata->netdev,
1892                                                    channel->queue_index)))
1893                 xgbe_tx_start_xmit(channel, ring);
1894         else
1895                 ring->tx.xmit_more = 1;
1896 
1897         DBGPR("  %s: descriptors %u to %u written\n",
1898               channel->name, start_index & (ring->rdesc_count - 1),
1899               (ring->cur - 1) & (ring->rdesc_count - 1));
1900 
1901         DBGPR("<--xgbe_dev_xmit\n");
1902 }
1903 
1904 static int xgbe_dev_read(struct xgbe_channel *channel)
1905 {
1906         struct xgbe_prv_data *pdata = channel->pdata;
1907         struct xgbe_ring *ring = channel->rx_ring;
1908         struct xgbe_ring_data *rdata;
1909         struct xgbe_ring_desc *rdesc;
1910         struct xgbe_packet_data *packet = &ring->packet_data;
1911         struct net_device *netdev = pdata->netdev;
1912         unsigned int err, etlt, l34t;
1913 
1914         DBGPR("-->xgbe_dev_read: cur = %d\n", ring->cur);
1915 
1916         rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1917         rdesc = rdata->rdesc;
1918 
1919         /* Check for data availability */
1920         if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN))
1921                 return 1;
1922 
1923         /* Make sure descriptor fields are read after reading the OWN bit */
1924         dma_rmb();
1925 
1926         if (netif_msg_rx_status(pdata))
1927                 xgbe_dump_rx_desc(pdata, ring, ring->cur);
1928 
1929         if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT)) {
1930                 /* Timestamp Context Descriptor */
1931                 xgbe_get_rx_tstamp(packet, rdesc);
1932 
1933                 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1934                                CONTEXT, 1);
1935                 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1936                                CONTEXT_NEXT, 0);
1937                 return 0;
1938         }
1939 
1940         /* Normal Descriptor, be sure Context Descriptor bit is off */
1941         XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 0);
1942 
1943         /* Indicate if a Context Descriptor is next */
1944         if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA))
1945                 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1946                                CONTEXT_NEXT, 1);
1947 
1948         /* Get the header length */
1949         if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, FD)) {
1950                 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1951                                FIRST, 1);
1952                 rdata->rx.hdr_len = XGMAC_GET_BITS_LE(rdesc->desc2,
1953                                                       RX_NORMAL_DESC2, HL);
1954                 if (rdata->rx.hdr_len)
1955                         pdata->ext_stats.rx_split_header_packets++;
1956         } else {
1957                 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1958                                FIRST, 0);
1959         }
1960 
1961         /* Get the RSS hash */
1962         if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, RSV)) {
1963                 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1964                                RSS_HASH, 1);
1965 
1966                 packet->rss_hash = le32_to_cpu(rdesc->desc1);
1967 
1968                 l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
1969                 switch (l34t) {
1970                 case RX_DESC3_L34T_IPV4_TCP:
1971                 case RX_DESC3_L34T_IPV4_UDP:
1972                 case RX_DESC3_L34T_IPV6_TCP:
1973                 case RX_DESC3_L34T_IPV6_UDP:
1974                         packet->rss_hash_type = PKT_HASH_TYPE_L4;
1975                         break;
1976                 default:
1977                         packet->rss_hash_type = PKT_HASH_TYPE_L3;
1978                 }
1979         }
1980 
1981         /* Not all the data has been transferred for this packet */
1982         if (!XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD))
1983                 return 0;
1984 
1985         /* This is the last of the data for this packet */
1986         XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1987                        LAST, 1);
1988 
1989         /* Get the packet length */
1990         rdata->rx.len = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, PL);
1991 
1992         /* Set checksum done indicator as appropriate */
1993         if (netdev->features & NETIF_F_RXCSUM) {
1994                 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1995                                CSUM_DONE, 1);
1996                 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1997                                TNPCSUM_DONE, 1);
1998         }
1999 
2000         /* Set the tunneled packet indicator */
2001         if (XGMAC_GET_BITS_LE(rdesc->desc2, RX_NORMAL_DESC2, TNP)) {
2002                 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2003                                TNP, 1);
2004                 pdata->ext_stats.rx_vxlan_packets++;
2005 
2006                 l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
2007                 switch (l34t) {
2008                 case RX_DESC3_L34T_IPV4_UNKNOWN:
2009                 case RX_DESC3_L34T_IPV6_UNKNOWN:
2010                         XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2011                                        TNPCSUM_DONE, 0);
2012                         break;
2013                 }
2014         }
2015 
2016         /* Check for errors (only valid in last descriptor) */
2017         err = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ES);
2018         etlt = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ETLT);
2019         netif_dbg(pdata, rx_status, netdev, "err=%u, etlt=%#x\n", err, etlt);
2020 
2021         if (!err || !etlt) {
2022                 /* No error if err is 0 or etlt is 0 */
2023                 if ((etlt == 0x09) &&
2024                     (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
2025                         XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2026                                        VLAN_CTAG, 1);
2027                         packet->vlan_ctag = XGMAC_GET_BITS_LE(rdesc->desc0,
2028                                                               RX_NORMAL_DESC0,
2029                                                               OVT);
2030                         netif_dbg(pdata, rx_status, netdev, "vlan-ctag=%#06x\n",
2031                                   packet->vlan_ctag);
2032                 }
2033         } else {
2034                 unsigned int tnp = XGMAC_GET_BITS(packet->attributes,
2035                                                   RX_PACKET_ATTRIBUTES, TNP);
2036 
2037                 if ((etlt == 0x05) || (etlt == 0x06)) {
2038                         XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2039                                        CSUM_DONE, 0);
2040                         XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2041                                        TNPCSUM_DONE, 0);
2042                         pdata->ext_stats.rx_csum_errors++;
2043                 } else if (tnp && ((etlt == 0x09) || (etlt == 0x0a))) {
2044                         XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2045                                        CSUM_DONE, 0);
2046                         XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2047                                        TNPCSUM_DONE, 0);
2048                         pdata->ext_stats.rx_vxlan_csum_errors++;
2049                 } else {
2050                         XGMAC_SET_BITS(packet->errors, RX_PACKET_ERRORS,
2051                                        FRAME, 1);
2052                 }
2053         }
2054 
2055         pdata->ext_stats.rxq_packets[channel->queue_index]++;
2056         pdata->ext_stats.rxq_bytes[channel->queue_index] += rdata->rx.len;
2057 
2058         DBGPR("<--xgbe_dev_read: %s - descriptor=%u (cur=%d)\n", channel->name,
2059               ring->cur & (ring->rdesc_count - 1), ring->cur);
2060 
2061         return 0;
2062 }
2063 
2064 static int xgbe_is_context_desc(struct xgbe_ring_desc *rdesc)
2065 {
2066         /* Rx and Tx share CTXT bit, so check TDES3.CTXT bit */
2067         return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT);
2068 }
2069 
2070 static int xgbe_is_last_desc(struct xgbe_ring_desc *rdesc)
2071 {
2072         /* Rx and Tx share LD bit, so check TDES3.LD bit */
2073         return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD);
2074 }
2075 
2076 static int xgbe_enable_int(struct xgbe_channel *channel,
2077                            enum xgbe_int int_id)
2078 {
2079         switch (int_id) {
2080         case XGMAC_INT_DMA_CH_SR_TI:
2081                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
2082                 break;
2083         case XGMAC_INT_DMA_CH_SR_TPS:
2084                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 1);
2085                 break;
2086         case XGMAC_INT_DMA_CH_SR_TBU:
2087                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 1);
2088                 break;
2089         case XGMAC_INT_DMA_CH_SR_RI:
2090                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
2091                 break;
2092         case XGMAC_INT_DMA_CH_SR_RBU:
2093                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
2094                 break;
2095         case XGMAC_INT_DMA_CH_SR_RPS:
2096                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 1);
2097                 break;
2098         case XGMAC_INT_DMA_CH_SR_TI_RI:
2099                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
2100                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
2101                 break;
2102         case XGMAC_INT_DMA_CH_SR_FBE:
2103                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
2104                 break;
2105         case XGMAC_INT_DMA_ALL:
2106                 channel->curr_ier |= channel->saved_ier;
2107                 break;
2108         default:
2109                 return -1;
2110         }
2111 
2112         XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
2113 
2114         return 0;
2115 }
2116 
2117 static int xgbe_disable_int(struct xgbe_channel *channel,
2118                             enum xgbe_int int_id)
2119 {
2120         switch (int_id) {
2121         case XGMAC_INT_DMA_CH_SR_TI:
2122                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
2123                 break;
2124         case XGMAC_INT_DMA_CH_SR_TPS:
2125                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 0);
2126                 break;
2127         case XGMAC_INT_DMA_CH_SR_TBU:
2128                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 0);
2129                 break;
2130         case XGMAC_INT_DMA_CH_SR_RI:
2131                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
2132                 break;
2133         case XGMAC_INT_DMA_CH_SR_RBU:
2134                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 0);
2135                 break;
2136         case XGMAC_INT_DMA_CH_SR_RPS:
2137                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 0);
2138                 break;
2139         case XGMAC_INT_DMA_CH_SR_TI_RI:
2140                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
2141                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
2142                 break;
2143         case XGMAC_INT_DMA_CH_SR_FBE:
2144                 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 0);
2145                 break;
2146         case XGMAC_INT_DMA_ALL:
2147                 channel->saved_ier = channel->curr_ier;
2148                 channel->curr_ier = 0;
2149                 break;
2150         default:
2151                 return -1;
2152         }
2153 
2154         XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
2155 
2156         return 0;
2157 }
2158 
2159 static int __xgbe_exit(struct xgbe_prv_data *pdata)
2160 {
2161         unsigned int count = 2000;
2162 
2163         DBGPR("-->xgbe_exit\n");
2164 
2165         /* Issue a software reset */
2166         XGMAC_IOWRITE_BITS(pdata, DMA_MR, SWR, 1);
2167         usleep_range(10, 15);
2168 
2169         /* Poll Until Poll Condition */
2170         while (--count && XGMAC_IOREAD_BITS(pdata, DMA_MR, SWR))
2171                 usleep_range(500, 600);
2172 
2173         if (!count)
2174                 return -EBUSY;
2175 
2176         DBGPR("<--xgbe_exit\n");
2177 
2178         return 0;
2179 }
2180 
2181 static int xgbe_exit(struct xgbe_prv_data *pdata)
2182 {
2183         int ret;
2184 
2185         /* To guard against possible incorrectly generated interrupts,
2186          * issue the software reset twice.
2187          */
2188         ret = __xgbe_exit(pdata);
2189         if (ret)
2190                 return ret;
2191 
2192         return __xgbe_exit(pdata);
2193 }
2194 
2195 static int xgbe_flush_tx_queues(struct xgbe_prv_data *pdata)
2196 {
2197         unsigned int i, count;
2198 
2199         if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) < 0x21)
2200                 return 0;
2201 
2202         for (i = 0; i < pdata->tx_q_count; i++)
2203                 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, FTQ, 1);
2204 
2205         /* Poll Until Poll Condition */
2206         for (i = 0; i < pdata->tx_q_count; i++) {
2207                 count = 2000;
2208                 while (--count && XGMAC_MTL_IOREAD_BITS(pdata, i,
2209                                                         MTL_Q_TQOMR, FTQ))
2210                         usleep_range(500, 600);
2211 
2212                 if (!count)
2213                         return -EBUSY;
2214         }
2215 
2216         return 0;
2217 }
2218 
2219 static void xgbe_config_dma_bus(struct xgbe_prv_data *pdata)
2220 {
2221         unsigned int sbmr;
2222 
2223         sbmr = XGMAC_IOREAD(pdata, DMA_SBMR);
2224 
2225         /* Set enhanced addressing mode */
2226         XGMAC_SET_BITS(sbmr, DMA_SBMR, EAME, 1);
2227 
2228         /* Set the System Bus mode */
2229         XGMAC_SET_BITS(sbmr, DMA_SBMR, UNDEF, 1);
2230         XGMAC_SET_BITS(sbmr, DMA_SBMR, BLEN, pdata->blen >> 2);
2231         XGMAC_SET_BITS(sbmr, DMA_SBMR, AAL, pdata->aal);
2232         XGMAC_SET_BITS(sbmr, DMA_SBMR, RD_OSR_LMT, pdata->rd_osr_limit - 1);
2233         XGMAC_SET_BITS(sbmr, DMA_SBMR, WR_OSR_LMT, pdata->wr_osr_limit - 1);
2234 
2235         XGMAC_IOWRITE(pdata, DMA_SBMR, sbmr);
2236 
2237         /* Set descriptor fetching threshold */
2238         if (pdata->vdata->tx_desc_prefetch)
2239                 XGMAC_IOWRITE_BITS(pdata, DMA_TXEDMACR, TDPS,
2240                                    pdata->vdata->tx_desc_prefetch);
2241 
2242         if (pdata->vdata->rx_desc_prefetch)
2243                 XGMAC_IOWRITE_BITS(pdata, DMA_RXEDMACR, RDPS,
2244                                    pdata->vdata->rx_desc_prefetch);
2245 }
2246 
2247 static void xgbe_config_dma_cache(struct xgbe_prv_data *pdata)
2248 {
2249         XGMAC_IOWRITE(pdata, DMA_AXIARCR, pdata->arcr);
2250         XGMAC_IOWRITE(pdata, DMA_AXIAWCR, pdata->awcr);
2251         if (pdata->awarcr)
2252                 XGMAC_IOWRITE(pdata, DMA_AXIAWARCR, pdata->awarcr);
2253 }
2254 
2255 static void xgbe_config_mtl_mode(struct xgbe_prv_data *pdata)
2256 {
2257         unsigned int i;
2258 
2259         /* Set Tx to weighted round robin scheduling algorithm */
2260         XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_WRR);
2261 
2262         /* Set Tx traffic classes to use WRR algorithm with equal weights */
2263         for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
2264                 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2265                                        MTL_TSA_ETS);
2266                 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1);
2267         }
2268 
2269         /* Set Rx to strict priority algorithm */
2270         XGMAC_IOWRITE_BITS(pdata, MTL_OMR, RAA, MTL_RAA_SP);
2271 }
2272 
2273 static void xgbe_queue_flow_control_threshold(struct xgbe_prv_data *pdata,
2274                                               unsigned int queue,
2275                                               unsigned int q_fifo_size)
2276 {
2277         unsigned int frame_fifo_size;
2278         unsigned int rfa, rfd;
2279 
2280         frame_fifo_size = XGMAC_FLOW_CONTROL_ALIGN(xgbe_get_max_frame(pdata));
2281 
2282         if (pdata->pfcq[queue] && (q_fifo_size > pdata->pfc_rfa)) {
2283                 /* PFC is active for this queue */
2284                 rfa = pdata->pfc_rfa;
2285                 rfd = rfa + frame_fifo_size;
2286                 if (rfd > XGMAC_FLOW_CONTROL_MAX)
2287                         rfd = XGMAC_FLOW_CONTROL_MAX;
2288                 if (rfa >= XGMAC_FLOW_CONTROL_MAX)
2289                         rfa = XGMAC_FLOW_CONTROL_MAX - XGMAC_FLOW_CONTROL_UNIT;
2290         } else {
2291                 /* This path deals with just maximum frame sizes which are
2292                  * limited to a jumbo frame of 9,000 (plus headers, etc.)
2293                  * so we can never exceed the maximum allowable RFA/RFD
2294                  * values.
2295                  */
2296                 if (q_fifo_size <= 2048) {
2297                         /* rx_rfd to zero to signal no flow control */
2298                         pdata->rx_rfa[queue] = 0;
2299                         pdata->rx_rfd[queue] = 0;
2300                         return;
2301                 }
2302 
2303                 if (q_fifo_size <= 4096) {
2304                         /* Between 2048 and 4096 */
2305                         pdata->rx_rfa[queue] = 0;       /* Full - 1024 bytes */
2306                         pdata->rx_rfd[queue] = 1;       /* Full - 1536 bytes */
2307                         return;
2308                 }
2309 
2310                 if (q_fifo_size <= frame_fifo_size) {
2311                         /* Between 4096 and max-frame */
2312                         pdata->rx_rfa[queue] = 2;       /* Full - 2048 bytes */
2313                         pdata->rx_rfd[queue] = 5;       /* Full - 3584 bytes */
2314                         return;
2315                 }
2316 
2317                 if (q_fifo_size <= (frame_fifo_size * 3)) {
2318                         /* Between max-frame and 3 max-frames,
2319                          * trigger if we get just over a frame of data and
2320                          * resume when we have just under half a frame left.
2321                          */
2322                         rfa = q_fifo_size - frame_fifo_size;
2323                         rfd = rfa + (frame_fifo_size / 2);
2324                 } else {
2325                         /* Above 3 max-frames - trigger when just over
2326                          * 2 frames of space available
2327                          */
2328                         rfa = frame_fifo_size * 2;
2329                         rfa += XGMAC_FLOW_CONTROL_UNIT;
2330                         rfd = rfa + frame_fifo_size;
2331                 }
2332         }
2333 
2334         pdata->rx_rfa[queue] = XGMAC_FLOW_CONTROL_VALUE(rfa);
2335         pdata->rx_rfd[queue] = XGMAC_FLOW_CONTROL_VALUE(rfd);
2336 }
2337 
2338 static void xgbe_calculate_flow_control_threshold(struct xgbe_prv_data *pdata,
2339                                                   unsigned int *fifo)
2340 {
2341         unsigned int q_fifo_size;
2342         unsigned int i;
2343 
2344         for (i = 0; i < pdata->rx_q_count; i++) {
2345                 q_fifo_size = (fifo[i] + 1) * XGMAC_FIFO_UNIT;
2346 
2347                 xgbe_queue_flow_control_threshold(pdata, i, q_fifo_size);
2348         }
2349 }
2350 
2351 static void xgbe_config_flow_control_threshold(struct xgbe_prv_data *pdata)
2352 {
2353         unsigned int i;
2354 
2355         for (i = 0; i < pdata->rx_q_count; i++) {
2356                 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFA,
2357                                        pdata->rx_rfa[i]);
2358                 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFD,
2359                                        pdata->rx_rfd[i]);
2360         }
2361 }
2362 
2363 static unsigned int xgbe_get_tx_fifo_size(struct xgbe_prv_data *pdata)
2364 {
2365         /* The configured value may not be the actual amount of fifo RAM */
2366         return min_t(unsigned int, pdata->tx_max_fifo_size,
2367                      pdata->hw_feat.tx_fifo_size);
2368 }
2369 
2370 static unsigned int xgbe_get_rx_fifo_size(struct xgbe_prv_data *pdata)
2371 {
2372         /* The configured value may not be the actual amount of fifo RAM */
2373         return min_t(unsigned int, pdata->rx_max_fifo_size,
2374                      pdata->hw_feat.rx_fifo_size);
2375 }
2376 
2377 static void xgbe_calculate_equal_fifo(unsigned int fifo_size,
2378                                       unsigned int queue_count,
2379                                       unsigned int *fifo)
2380 {
2381         unsigned int q_fifo_size;
2382         unsigned int p_fifo;
2383         unsigned int i;
2384 
2385         q_fifo_size = fifo_size / queue_count;
2386 
2387         /* Calculate the fifo setting by dividing the queue's fifo size
2388          * by the fifo allocation increment (with 0 representing the
2389          * base allocation increment so decrement the result by 1).
2390          */
2391         p_fifo = q_fifo_size / XGMAC_FIFO_UNIT;
2392         if (p_fifo)
2393                 p_fifo--;
2394 
2395         /* Distribute the fifo equally amongst the queues */
2396         for (i = 0; i < queue_count; i++)
2397                 fifo[i] = p_fifo;
2398 }
2399 
2400 static unsigned int xgbe_set_nonprio_fifos(unsigned int fifo_size,
2401                                            unsigned int queue_count,
2402                                            unsigned int *fifo)
2403 {
2404         unsigned int i;
2405 
2406         BUILD_BUG_ON_NOT_POWER_OF_2(XGMAC_FIFO_MIN_ALLOC);
2407 
2408         if (queue_count <= IEEE_8021QAZ_MAX_TCS)
2409                 return fifo_size;
2410 
2411         /* Rx queues 9 and up are for specialized packets,
2412          * such as PTP or DCB control packets, etc. and
2413          * don't require a large fifo
2414          */
2415         for (i = IEEE_8021QAZ_MAX_TCS; i < queue_count; i++) {
2416                 fifo[i] = (XGMAC_FIFO_MIN_ALLOC / XGMAC_FIFO_UNIT) - 1;
2417                 fifo_size -= XGMAC_FIFO_MIN_ALLOC;
2418         }
2419 
2420         return fifo_size;
2421 }
2422 
2423 static unsigned int xgbe_get_pfc_delay(struct xgbe_prv_data *pdata)
2424 {
2425         unsigned int delay;
2426 
2427         /* If a delay has been provided, use that */
2428         if (pdata->pfc->delay)
2429                 return pdata->pfc->delay / 8;
2430 
2431         /* Allow for two maximum size frames */
2432         delay = xgbe_get_max_frame(pdata);
2433         delay += XGMAC_ETH_PREAMBLE;
2434         delay *= 2;
2435 
2436         /* Allow for PFC frame */
2437         delay += XGMAC_PFC_DATA_LEN;
2438         delay += ETH_HLEN + ETH_FCS_LEN;
2439         delay += XGMAC_ETH_PREAMBLE;
2440 
2441         /* Allow for miscellaneous delays (LPI exit, cable, etc.) */
2442         delay += XGMAC_PFC_DELAYS;
2443 
2444         return delay;
2445 }
2446 
2447 static unsigned int xgbe_get_pfc_queues(struct xgbe_prv_data *pdata)
2448 {
2449         unsigned int count, prio_queues;
2450         unsigned int i;
2451 
2452         if (!pdata->pfc->pfc_en)
2453                 return 0;
2454 
2455         count = 0;
2456         prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2457         for (i = 0; i < prio_queues; i++) {
2458                 if (!xgbe_is_pfc_queue(pdata, i))
2459                         continue;
2460 
2461                 pdata->pfcq[i] = 1;
2462                 count++;
2463         }
2464 
2465         return count;
2466 }
2467 
2468 static void xgbe_calculate_dcb_fifo(struct xgbe_prv_data *pdata,
2469                                     unsigned int fifo_size,
2470                                     unsigned int *fifo)
2471 {
2472         unsigned int q_fifo_size, rem_fifo, addn_fifo;
2473         unsigned int prio_queues;
2474         unsigned int pfc_count;
2475         unsigned int i;
2476 
2477         q_fifo_size = XGMAC_FIFO_ALIGN(xgbe_get_max_frame(pdata));
2478         prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2479         pfc_count = xgbe_get_pfc_queues(pdata);
2480 
2481         if (!pfc_count || ((q_fifo_size * prio_queues) > fifo_size)) {
2482                 /* No traffic classes with PFC enabled or can't do lossless */
2483                 xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
2484                 return;
2485         }
2486 
2487         /* Calculate how much fifo we have to play with */
2488         rem_fifo = fifo_size - (q_fifo_size * prio_queues);
2489 
2490         /* Calculate how much more than base fifo PFC needs, which also
2491          * becomes the threshold activation point (RFA)
2492          */
2493         pdata->pfc_rfa = xgbe_get_pfc_delay(pdata);
2494         pdata->pfc_rfa = XGMAC_FLOW_CONTROL_ALIGN(pdata->pfc_rfa);
2495 
2496         if (pdata->pfc_rfa > q_fifo_size) {
2497                 addn_fifo = pdata->pfc_rfa - q_fifo_size;
2498                 addn_fifo = XGMAC_FIFO_ALIGN(addn_fifo);
2499         } else {
2500                 addn_fifo = 0;
2501         }
2502 
2503         /* Calculate DCB fifo settings:
2504          *   - distribute remaining fifo between the VLAN priority
2505          *     queues based on traffic class PFC enablement and overall
2506          *     priority (0 is lowest priority, so start at highest)
2507          */
2508         i = prio_queues;
2509         while (i > 0) {
2510                 i--;
2511 
2512                 fifo[i] = (q_fifo_size / XGMAC_FIFO_UNIT) - 1;
2513 
2514                 if (!pdata->pfcq[i] || !addn_fifo)
2515                         continue;
2516 
2517                 if (addn_fifo > rem_fifo) {
2518                         netdev_warn(pdata->netdev,
2519                                     "RXq%u cannot set needed fifo size\n", i);
2520                         if (!rem_fifo)
2521                                 continue;
2522 
2523                         addn_fifo = rem_fifo;
2524                 }
2525 
2526                 fifo[i] += (addn_fifo / XGMAC_FIFO_UNIT);
2527                 rem_fifo -= addn_fifo;
2528         }
2529 
2530         if (rem_fifo) {
2531                 unsigned int inc_fifo = rem_fifo / prio_queues;
2532 
2533                 /* Distribute remaining fifo across queues */
2534                 for (i = 0; i < prio_queues; i++)
2535                         fifo[i] += (inc_fifo / XGMAC_FIFO_UNIT);
2536         }
2537 }
2538 
2539 static void xgbe_config_tx_fifo_size(struct xgbe_prv_data *pdata)
2540 {
2541         unsigned int fifo_size;
2542         unsigned int fifo[XGBE_MAX_QUEUES];
2543         unsigned int i;
2544 
2545         fifo_size = xgbe_get_tx_fifo_size(pdata);
2546 
2547         xgbe_calculate_equal_fifo(fifo_size, pdata->tx_q_count, fifo);
2548 
2549         for (i = 0; i < pdata->tx_q_count; i++)
2550                 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TQS, fifo[i]);
2551 
2552         netif_info(pdata, drv, pdata->netdev,
2553                    "%d Tx hardware queues, %d byte fifo per queue\n",
2554                    pdata->tx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
2555 }
2556 
2557 static void xgbe_config_rx_fifo_size(struct xgbe_prv_data *pdata)
2558 {
2559         unsigned int fifo_size;
2560         unsigned int fifo[XGBE_MAX_QUEUES];
2561         unsigned int prio_queues;
2562         unsigned int i;
2563 
2564         /* Clear any DCB related fifo/queue information */
2565         memset(pdata->pfcq, 0, sizeof(pdata->pfcq));
2566         pdata->pfc_rfa = 0;
2567 
2568         fifo_size = xgbe_get_rx_fifo_size(pdata);
2569         prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2570 
2571         /* Assign a minimum fifo to the non-VLAN priority queues */
2572         fifo_size = xgbe_set_nonprio_fifos(fifo_size, pdata->rx_q_count, fifo);
2573 
2574         if (pdata->pfc && pdata->ets)
2575                 xgbe_calculate_dcb_fifo(pdata, fifo_size, fifo);
2576         else
2577                 xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
2578 
2579         for (i = 0; i < pdata->rx_q_count; i++)
2580                 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RQS, fifo[i]);
2581 
2582         xgbe_calculate_flow_control_threshold(pdata, fifo);
2583         xgbe_config_flow_control_threshold(pdata);
2584 
2585         if (pdata->pfc && pdata->ets && pdata->pfc->pfc_en) {
2586                 netif_info(pdata, drv, pdata->netdev,
2587                            "%u Rx hardware queues\n", pdata->rx_q_count);
2588                 for (i = 0; i < pdata->rx_q_count; i++)
2589                         netif_info(pdata, drv, pdata->netdev,
2590                                    "RxQ%u, %u byte fifo queue\n", i,
2591                                    ((fifo[i] + 1) * XGMAC_FIFO_UNIT));
2592         } else {
2593                 netif_info(pdata, drv, pdata->netdev,
2594                            "%u Rx hardware queues, %u byte fifo per queue\n",
2595                            pdata->rx_q_count,
2596                            ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
2597         }
2598 }
2599 
2600 static void xgbe_config_queue_mapping(struct xgbe_prv_data *pdata)
2601 {
2602         unsigned int qptc, qptc_extra, queue;
2603         unsigned int prio_queues;
2604         unsigned int ppq, ppq_extra, prio;
2605         unsigned int mask;
2606         unsigned int i, j, reg, reg_val;
2607 
2608         /* Map the MTL Tx Queues to Traffic Classes
2609          *   Note: Tx Queues >= Traffic Classes
2610          */
2611         qptc = pdata->tx_q_count / pdata->hw_feat.tc_cnt;
2612         qptc_extra = pdata->tx_q_count % pdata->hw_feat.tc_cnt;
2613 
2614         for (i = 0, queue = 0; i < pdata->hw_feat.tc_cnt; i++) {
2615                 for (j = 0; j < qptc; j++) {
2616                         netif_dbg(pdata, drv, pdata->netdev,
2617                                   "TXq%u mapped to TC%u\n", queue, i);
2618                         XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2619                                                Q2TCMAP, i);
2620                         pdata->q2tc_map[queue++] = i;
2621                 }
2622 
2623                 if (i < qptc_extra) {
2624                         netif_dbg(pdata, drv, pdata->netdev,
2625                                   "TXq%u mapped to TC%u\n", queue, i);
2626                         XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2627                                                Q2TCMAP, i);
2628                         pdata->q2tc_map[queue++] = i;
2629                 }
2630         }
2631 
2632         /* Map the 8 VLAN priority values to available MTL Rx queues */
2633         prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2634         ppq = IEEE_8021QAZ_MAX_TCS / prio_queues;
2635         ppq_extra = IEEE_8021QAZ_MAX_TCS % prio_queues;
2636 
2637         reg = MAC_RQC2R;
2638         reg_val = 0;
2639         for (i = 0, prio = 0; i < prio_queues;) {
2640                 mask = 0;
2641                 for (j = 0; j < ppq; j++) {
2642                         netif_dbg(pdata, drv, pdata->netdev,
2643                                   "PRIO%u mapped to RXq%u\n", prio, i);
2644                         mask |= (1 << prio);
2645                         pdata->prio2q_map[prio++] = i;
2646                 }
2647 
2648                 if (i < ppq_extra) {
2649                         netif_dbg(pdata, drv, pdata->netdev,
2650                                   "PRIO%u mapped to RXq%u\n", prio, i);
2651                         mask |= (1 << prio);
2652                         pdata->prio2q_map[prio++] = i;
2653                 }
2654 
2655                 reg_val |= (mask << ((i++ % MAC_RQC2_Q_PER_REG) << 3));
2656 
2657                 if ((i % MAC_RQC2_Q_PER_REG) && (i != prio_queues))
2658                         continue;
2659 
2660                 XGMAC_IOWRITE(pdata, reg, reg_val);
2661                 reg += MAC_RQC2_INC;
2662                 reg_val = 0;
2663         }
2664 
2665         /* Select dynamic mapping of MTL Rx queue to DMA Rx channel */
2666         reg = MTL_RQDCM0R;
2667         reg_val = 0;
2668         for (i = 0; i < pdata->rx_q_count;) {
2669                 reg_val |= (0x80 << ((i++ % MTL_RQDCM_Q_PER_REG) << 3));
2670 
2671                 if ((i % MTL_RQDCM_Q_PER_REG) && (i != pdata->rx_q_count))
2672                         continue;
2673 
2674                 XGMAC_IOWRITE(pdata, reg, reg_val);
2675 
2676                 reg += MTL_RQDCM_INC;
2677                 reg_val = 0;
2678         }
2679 }
2680 
2681 static void xgbe_config_tc(struct xgbe_prv_data *pdata)
2682 {
2683         unsigned int offset, queue, prio;
2684         u8 i;
2685 
2686         netdev_reset_tc(pdata->netdev);
2687         if (!pdata->num_tcs)
2688                 return;
2689 
2690         netdev_set_num_tc(pdata->netdev, pdata->num_tcs);
2691 
2692         for (i = 0, queue = 0, offset = 0; i < pdata->num_tcs; i++) {
2693                 while ((queue < pdata->tx_q_count) &&
2694                        (pdata->q2tc_map[queue] == i))
2695                         queue++;
2696 
2697                 netif_dbg(pdata, drv, pdata->netdev, "TC%u using TXq%u-%u\n",
2698                           i, offset, queue - 1);
2699                 netdev_set_tc_queue(pdata->netdev, i, queue - offset, offset);
2700                 offset = queue;
2701         }
2702 
2703         if (!pdata->ets)
2704                 return;
2705 
2706         for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++)
2707                 netdev_set_prio_tc_map(pdata->netdev, prio,
2708                                        pdata->ets->prio_tc[prio]);
2709 }
2710 
2711 static void xgbe_config_dcb_tc(struct xgbe_prv_data *pdata)
2712 {
2713         struct ieee_ets *ets = pdata->ets;
2714         unsigned int total_weight, min_weight, weight;
2715         unsigned int mask, reg, reg_val;
2716         unsigned int i, prio;
2717 
2718         if (!ets)
2719                 return;
2720 
2721         /* Set Tx to deficit weighted round robin scheduling algorithm (when
2722          * traffic class is using ETS algorithm)
2723          */
2724         XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_DWRR);
2725 
2726         /* Set Traffic Class algorithms */
2727         total_weight = pdata->netdev->mtu * pdata->hw_feat.tc_cnt;
2728         min_weight = total_weight / 100;
2729         if (!min_weight)
2730                 min_weight = 1;
2731 
2732         for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
2733                 /* Map the priorities to the traffic class */
2734                 mask = 0;
2735                 for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) {
2736                         if (ets->prio_tc[prio] == i)
2737                                 mask |= (1 << prio);
2738                 }
2739                 mask &= 0xff;
2740 
2741                 netif_dbg(pdata, drv, pdata->netdev, "TC%u PRIO mask=%#x\n",
2742                           i, mask);
2743                 reg = MTL_TCPM0R + (MTL_TCPM_INC * (i / MTL_TCPM_TC_PER_REG));
2744                 reg_val = XGMAC_IOREAD(pdata, reg);
2745 
2746                 reg_val &= ~(0xff << ((i % MTL_TCPM_TC_PER_REG) << 3));
2747                 reg_val |= (mask << ((i % MTL_TCPM_TC_PER_REG) << 3));
2748 
2749                 XGMAC_IOWRITE(pdata, reg, reg_val);
2750 
2751                 /* Set the traffic class algorithm */
2752                 switch (ets->tc_tsa[i]) {
2753                 case IEEE_8021QAZ_TSA_STRICT:
2754                         netif_dbg(pdata, drv, pdata->netdev,
2755                                   "TC%u using SP\n", i);
2756                         XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2757                                                MTL_TSA_SP);
2758                         break;
2759                 case IEEE_8021QAZ_TSA_ETS:
2760                         weight = total_weight * ets->tc_tx_bw[i] / 100;
2761                         weight = clamp(weight, min_weight, total_weight);
2762 
2763                         netif_dbg(pdata, drv, pdata->netdev,
2764                                   "TC%u using DWRR (weight %u)\n", i, weight);
2765                         XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2766                                                MTL_TSA_ETS);
2767                         XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW,
2768                                                weight);
2769                         break;
2770                 }
2771         }
2772 
2773         xgbe_config_tc(pdata);
2774 }
2775 
2776 static void xgbe_config_dcb_pfc(struct xgbe_prv_data *pdata)
2777 {
2778         if (!test_bit(XGBE_DOWN, &pdata->dev_state)) {
2779                 /* Just stop the Tx queues while Rx fifo is changed */
2780                 netif_tx_stop_all_queues(pdata->netdev);
2781 
2782                 /* Suspend Rx so that fifo's can be adjusted */
2783                 pdata->hw_if.disable_rx(pdata);
2784         }
2785 
2786         xgbe_config_rx_fifo_size(pdata);
2787         xgbe_config_flow_control(pdata);
2788 
2789         if (!test_bit(XGBE_DOWN, &pdata->dev_state)) {
2790                 /* Resume Rx */
2791                 pdata->hw_if.enable_rx(pdata);
2792 
2793                 /* Resume Tx queues */
2794                 netif_tx_start_all_queues(pdata->netdev);
2795         }
2796 }
2797 
2798 static void xgbe_config_mac_address(struct xgbe_prv_data *pdata)
2799 {
2800         xgbe_set_mac_address(pdata, pdata->netdev->dev_addr);
2801 
2802         /* Filtering is done using perfect filtering and hash filtering */
2803         if (pdata->hw_feat.hash_table_size) {
2804                 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HPF, 1);
2805                 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HUC, 1);
2806                 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HMC, 1);
2807         }
2808 }
2809 
2810 static void xgbe_config_jumbo_enable(struct xgbe_prv_data *pdata)
2811 {
2812         unsigned int val;
2813 
2814         val = (pdata->netdev->mtu > XGMAC_STD_PACKET_MTU) ? 1 : 0;
2815 
2816         XGMAC_IOWRITE_BITS(pdata, MAC_RCR, JE, val);
2817 }
2818 
2819 static void xgbe_config_mac_speed(struct xgbe_prv_data *pdata)
2820 {
2821         xgbe_set_speed(pdata, pdata->phy_speed);
2822 }
2823 
2824 static void xgbe_config_checksum_offload(struct xgbe_prv_data *pdata)
2825 {
2826         if (pdata->netdev->features & NETIF_F_RXCSUM)
2827                 xgbe_enable_rx_csum(pdata);
2828         else
2829                 xgbe_disable_rx_csum(pdata);
2830 }
2831 
2832 static void xgbe_config_vlan_support(struct xgbe_prv_data *pdata)
2833 {
2834         /* Indicate that VLAN Tx CTAGs come from context descriptors */
2835         XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, CSVL, 0);
2836         XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, VLTI, 1);
2837 
2838         /* Set the current VLAN Hash Table register value */
2839         xgbe_update_vlan_hash_table(pdata);
2840 
2841         if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
2842                 xgbe_enable_rx_vlan_filtering(pdata);
2843         else
2844                 xgbe_disable_rx_vlan_filtering(pdata);
2845 
2846         if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
2847                 xgbe_enable_rx_vlan_stripping(pdata);
2848         else
2849                 xgbe_disable_rx_vlan_stripping(pdata);
2850 }
2851 
2852 static u64 xgbe_mmc_read(struct xgbe_prv_data *pdata, unsigned int reg_lo)
2853 {
2854         bool read_hi;
2855         u64 val;
2856 
2857         if (pdata->vdata->mmc_64bit) {
2858                 switch (reg_lo) {
2859                 /* These registers are always 32 bit */
2860                 case MMC_RXRUNTERROR:
2861                 case MMC_RXJABBERERROR:
2862                 case MMC_RXUNDERSIZE_G:
2863                 case MMC_RXOVERSIZE_G:
2864                 case MMC_RXWATCHDOGERROR:
2865                         read_hi = false;
2866                         break;
2867 
2868                 default:
2869                         read_hi = true;
2870                 }
2871         } else {
2872                 switch (reg_lo) {
2873                 /* These registers are always 64 bit */
2874                 case MMC_TXOCTETCOUNT_GB_LO:
2875                 case MMC_TXOCTETCOUNT_G_LO:
2876                 case MMC_RXOCTETCOUNT_GB_LO:
2877                 case MMC_RXOCTETCOUNT_G_LO:
2878                         read_hi = true;
2879                         break;
2880 
2881                 default:
2882                         read_hi = false;
2883                 }
2884         }
2885 
2886         val = XGMAC_IOREAD(pdata, reg_lo);
2887 
2888         if (read_hi)
2889                 val |= ((u64)XGMAC_IOREAD(pdata, reg_lo + 4) << 32);
2890 
2891         return val;
2892 }
2893 
2894 static void xgbe_tx_mmc_int(struct xgbe_prv_data *pdata)
2895 {
2896         struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2897         unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_TISR);
2898 
2899         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_GB))
2900                 stats->txoctetcount_gb +=
2901                         xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2902 
2903         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_GB))
2904                 stats->txframecount_gb +=
2905                         xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2906 
2907         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_G))
2908                 stats->txbroadcastframes_g +=
2909                         xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2910 
2911         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_G))
2912                 stats->txmulticastframes_g +=
2913                         xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2914 
2915         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX64OCTETS_GB))
2916                 stats->tx64octets_gb +=
2917                         xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2918 
2919         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX65TO127OCTETS_GB))
2920                 stats->tx65to127octets_gb +=
2921                         xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2922 
2923         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX128TO255OCTETS_GB))
2924                 stats->tx128to255octets_gb +=
2925                         xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2926 
2927         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX256TO511OCTETS_GB))
2928                 stats->tx256to511octets_gb +=
2929                         xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2930 
2931         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX512TO1023OCTETS_GB))
2932                 stats->tx512to1023octets_gb +=
2933                         xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2934 
2935         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX1024TOMAXOCTETS_GB))
2936                 stats->tx1024tomaxoctets_gb +=
2937                         xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2938 
2939         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNICASTFRAMES_GB))
2940                 stats->txunicastframes_gb +=
2941                         xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2942 
2943         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_GB))
2944                 stats->txmulticastframes_gb +=
2945                         xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
2946 
2947         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_GB))
2948                 stats->txbroadcastframes_g +=
2949                         xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
2950 
2951         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNDERFLOWERROR))
2952                 stats->txunderflowerror +=
2953                         xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
2954 
2955         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_G))
2956                 stats->txoctetcount_g +=
2957                         xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
2958 
2959         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_G))
2960                 stats->txframecount_g +=
2961                         xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
2962 
2963         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXPAUSEFRAMES))
2964                 stats->txpauseframes +=
2965                         xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
2966 
2967         if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXVLANFRAMES_G))
2968                 stats->txvlanframes_g +=
2969                         xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
2970 }
2971 
2972 static void xgbe_rx_mmc_int(struct xgbe_prv_data *pdata)
2973 {
2974         struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2975         unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_RISR);
2976 
2977         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFRAMECOUNT_GB))
2978                 stats->rxframecount_gb +=
2979                         xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
2980 
2981         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_GB))
2982                 stats->rxoctetcount_gb +=
2983                         xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
2984 
2985         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_G))
2986                 stats->rxoctetcount_g +=
2987                         xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
2988 
2989         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXBROADCASTFRAMES_G))
2990                 stats->rxbroadcastframes_g +=
2991                         xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
2992 
2993         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXMULTICASTFRAMES_G))
2994                 stats->rxmulticastframes_g +=
2995                         xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
2996 
2997         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXCRCERROR))
2998                 stats->rxcrcerror +=
2999                         xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
3000 
3001         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXRUNTERROR))
3002                 stats->rxrunterror +=
3003                         xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
3004 
3005         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXJABBERERROR))
3006                 stats->rxjabbererror +=
3007                         xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
3008 
3009         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNDERSIZE_G))
3010                 stats->rxundersize_g +=
3011                         xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
3012 
3013         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOVERSIZE_G))
3014                 stats->rxoversize_g +=
3015                         xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
3016 
3017         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX64OCTETS_GB))
3018                 stats->rx64octets_gb +=
3019                         xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
3020 
3021         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX65TO127OCTETS_GB))
3022                 stats->rx65to127octets_gb +=
3023                         xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
3024 
3025         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX128TO255OCTETS_GB))
3026                 stats->rx128to255octets_gb +=
3027                         xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
3028 
3029         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX256TO511OCTETS_GB))
3030                 stats->rx256to511octets_gb +=
3031                         xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
3032 
3033         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX512TO1023OCTETS_GB))
3034                 stats->rx512to1023octets_gb +=
3035                         xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
3036 
3037         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX1024TOMAXOCTETS_GB))
3038                 stats->rx1024tomaxoctets_gb +=
3039                         xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
3040 
3041         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNICASTFRAMES_G))
3042                 stats->rxunicastframes_g +=
3043                         xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
3044 
3045         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXLENGTHERROR))
3046                 stats->rxlengtherror +=
3047                         xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
3048 
3049         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOUTOFRANGETYPE))
3050                 stats->rxoutofrangetype +=
3051                         xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
3052 
3053         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXPAUSEFRAMES))
3054                 stats->rxpauseframes +=
3055                         xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
3056 
3057         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFIFOOVERFLOW))
3058                 stats->rxfifooverflow +=
3059                         xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
3060 
3061         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXVLANFRAMES_GB))
3062                 stats->rxvlanframes_gb +=
3063                         xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
3064 
3065         if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXWATCHDOGERROR))
3066                 stats->rxwatchdogerror +=
3067                         xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
3068 }
3069 
3070 static void xgbe_read_mmc_stats(struct xgbe_prv_data *pdata)
3071 {
3072         struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
3073 
3074         /* Freeze counters */
3075         XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 1);
3076 
3077         stats->txoctetcount_gb +=
3078                 xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
3079 
3080         stats->txframecount_gb +=
3081                 xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
3082 
3083         stats->txbroadcastframes_g +=
3084                 xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
3085 
3086         stats->txmulticastframes_g +=
3087                 xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
3088 
3089         stats->tx64octets_gb +=
3090                 xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
3091 
3092         stats->tx65to127octets_gb +=
3093                 xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
3094 
3095         stats->tx128to255octets_gb +=
3096                 xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
3097 
3098         stats->tx256to511octets_gb +=
3099                 xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
3100 
3101         stats->tx512to1023octets_gb +=
3102                 xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
3103 
3104         stats->tx1024tomaxoctets_gb +=
3105                 xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
3106 
3107         stats->txunicastframes_gb +=
3108                 xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
3109 
3110         stats->txmulticastframes_gb +=
3111                 xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
3112 
3113         stats->txbroadcastframes_g +=
3114                 xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
3115 
3116         stats->txunderflowerror +=
3117                 xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
3118 
3119         stats->txoctetcount_g +=
3120                 xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
3121 
3122         stats->txframecount_g +=
3123                 xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
3124 
3125         stats->txpauseframes +=
3126                 xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
3127 
3128         stats->txvlanframes_g +=
3129                 xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
3130 
3131         stats->rxframecount_gb +=
3132                 xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
3133 
3134         stats->rxoctetcount_gb +=
3135                 xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
3136 
3137         stats->rxoctetcount_g +=
3138                 xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
3139 
3140         stats->rxbroadcastframes_g +=
3141                 xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
3142 
3143         stats->rxmulticastframes_g +=
3144                 xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
3145 
3146         stats->rxcrcerror +=
3147                 xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
3148 
3149         stats->rxrunterror +=
3150                 xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
3151 
3152         stats->rxjabbererror +=
3153                 xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
3154 
3155         stats->rxundersize_g +=
3156                 xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
3157 
3158         stats->rxoversize_g +=
3159                 xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
3160 
3161         stats->rx64octets_gb +=
3162                 xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
3163 
3164         stats->rx65to127octets_gb +=
3165                 xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
3166 
3167         stats->rx128to255octets_gb +=
3168                 xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
3169 
3170         stats->rx256to511octets_gb +=
3171                 xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
3172 
3173         stats->rx512to1023octets_gb +=
3174                 xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
3175 
3176         stats->rx1024tomaxoctets_gb +=
3177                 xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
3178 
3179         stats->rxunicastframes_g +=
3180                 xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
3181 
3182         stats->rxlengtherror +=
3183                 xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
3184 
3185         stats->rxoutofrangetype +=
3186                 xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
3187 
3188         stats->rxpauseframes +=
3189                 xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
3190 
3191         stats->rxfifooverflow +=
3192                 xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
3193 
3194         stats->rxvlanframes_gb +=
3195                 xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
3196 
3197         stats->rxwatchdogerror +=
3198                 xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
3199 
3200         /* Un-freeze counters */
3201         XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 0);
3202 }
3203 
3204 static void xgbe_config_mmc(struct xgbe_prv_data *pdata)
3205 {
3206         /* Set counters to reset on read */
3207         XGMAC_IOWRITE_BITS(pdata, MMC_CR, ROR, 1);
3208 
3209         /* Reset the counters */
3210         XGMAC_IOWRITE_BITS(pdata, MMC_CR, CR, 1);
3211 }
3212 
3213 static void xgbe_txq_prepare_tx_stop(struct xgbe_prv_data *pdata,
3214                                      unsigned int queue)
3215 {
3216         unsigned int tx_status;
3217         unsigned long tx_timeout;
3218 
3219         /* The Tx engine cannot be stopped if it is actively processing
3220          * packets. Wait for the Tx queue to empty the Tx fifo.  Don't
3221          * wait forever though...
3222          */
3223         tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3224         while (time_before(jiffies, tx_timeout)) {
3225                 tx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_TQDR);
3226                 if ((XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TRCSTS) != 1) &&
3227                     (XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TXQSTS) == 0))
3228                         break;
3229 
3230                 usleep_range(500, 1000);
3231         }
3232 
3233         if (!time_before(jiffies, tx_timeout))
3234                 netdev_info(pdata->netdev,
3235                             "timed out waiting for Tx queue %u to empty\n",
3236                             queue);
3237 }
3238 
3239 static void xgbe_prepare_tx_stop(struct xgbe_prv_data *pdata,
3240                                  unsigned int queue)
3241 {
3242         unsigned int tx_dsr, tx_pos, tx_qidx;
3243         unsigned int tx_status;
3244         unsigned long tx_timeout;
3245 
3246         if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) > 0x20)
3247                 return xgbe_txq_prepare_tx_stop(pdata, queue);
3248 
3249         /* Calculate the status register to read and the position within */
3250         if (queue < DMA_DSRX_FIRST_QUEUE) {
3251                 tx_dsr = DMA_DSR0;
3252                 tx_pos = (queue * DMA_DSR_Q_WIDTH) + DMA_DSR0_TPS_START;
3253         } else {
3254                 tx_qidx = queue - DMA_DSRX_FIRST_QUEUE;
3255 
3256                 tx_dsr = DMA_DSR1 + ((tx_qidx / DMA_DSRX_QPR) * DMA_DSRX_INC);
3257                 tx_pos = ((tx_qidx % DMA_DSRX_QPR) * DMA_DSR_Q_WIDTH) +
3258                          DMA_DSRX_TPS_START;
3259         }
3260 
3261         /* The Tx engine cannot be stopped if it is actively processing
3262          * descriptors. Wait for the Tx engine to enter the stopped or
3263          * suspended state.  Don't wait forever though...
3264          */
3265         tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3266         while (time_before(jiffies, tx_timeout)) {
3267                 tx_status = XGMAC_IOREAD(pdata, tx_dsr);
3268                 tx_status = GET_BITS(tx_status, tx_pos, DMA_DSR_TPS_WIDTH);
3269                 if ((tx_status == DMA_TPS_STOPPED) ||
3270                     (tx_status == DMA_TPS_SUSPENDED))
3271                         break;
3272 
3273                 usleep_range(500, 1000);
3274         }
3275 
3276         if (!time_before(jiffies, tx_timeout))
3277                 netdev_info(pdata->netdev,
3278                             "timed out waiting for Tx DMA channel %u to stop\n",
3279                             queue);
3280 }
3281 
3282 static void xgbe_enable_tx(struct xgbe_prv_data *pdata)
3283 {
3284         unsigned int i;
3285 
3286         /* Enable each Tx DMA channel */
3287         for (i = 0; i < pdata->channel_count; i++) {
3288                 if (!pdata->channel[i]->tx_ring)
3289                         break;
3290 
3291                 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
3292         }
3293 
3294         /* Enable each Tx queue */
3295         for (i = 0; i < pdata->tx_q_count; i++)
3296                 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN,
3297                                        MTL_Q_ENABLED);
3298 
3299         /* Enable MAC Tx */
3300         XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
3301 }
3302 
3303 static void xgbe_disable_tx(struct xgbe_prv_data *pdata)
3304 {
3305         unsigned int i;
3306 
3307         /* Prepare for Tx DMA channel stop */
3308         for (i = 0; i < pdata->tx_q_count; i++)
3309                 xgbe_prepare_tx_stop(pdata, i);
3310 
3311         /* Disable MAC Tx */
3312         XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
3313 
3314         /* Disable each Tx queue */
3315         for (i = 0; i < pdata->tx_q_count; i++)
3316                 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 0);
3317 
3318         /* Disable each Tx DMA channel */
3319         for (i = 0; i < pdata->channel_count; i++) {
3320                 if (!pdata->channel[i]->tx_ring)
3321                         break;
3322 
3323                 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
3324         }
3325 }
3326 
3327 static void xgbe_prepare_rx_stop(struct xgbe_prv_data *pdata,
3328                                  unsigned int queue)
3329 {
3330         unsigned int rx_status;
3331         unsigned long rx_timeout;
3332 
3333         /* The Rx engine cannot be stopped if it is actively processing
3334          * packets. Wait for the Rx queue to empty the Rx fifo.  Don't
3335          * wait forever though...
3336          */
3337         rx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3338         while (time_before(jiffies, rx_timeout)) {
3339                 rx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_RQDR);
3340                 if ((XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, PRXQ) == 0) &&
3341                     (XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, RXQSTS) == 0))
3342                         break;
3343 
3344                 usleep_range(500, 1000);
3345         }
3346 
3347         if (!time_before(jiffies, rx_timeout))
3348                 netdev_info(pdata->netdev,
3349                             "timed out waiting for Rx queue %u to empty\n",
3350                             queue);
3351 }
3352 
3353 static void xgbe_enable_rx(struct xgbe_prv_data *pdata)
3354 {
3355         unsigned int reg_val, i;
3356 
3357         /* Enable each Rx DMA channel */
3358         for (i = 0; i < pdata->channel_count; i++) {
3359                 if (!pdata->channel[i]->rx_ring)
3360                         break;
3361 
3362                 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
3363         }
3364 
3365         /* Enable each Rx queue */
3366         reg_val = 0;
3367         for (i = 0; i < pdata->rx_q_count; i++)
3368                 reg_val |= (0x02 << (i << 1));
3369         XGMAC_IOWRITE(pdata, MAC_RQC0R, reg_val);
3370 
3371         /* Enable MAC Rx */
3372         XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 1);
3373         XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 1);
3374         XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 1);
3375         XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 1);
3376 }
3377 
3378 static void xgbe_disable_rx(struct xgbe_prv_data *pdata)
3379 {
3380         unsigned int i;
3381 
3382         /* Disable MAC Rx */
3383         XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 0);
3384         XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 0);
3385         XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 0);
3386         XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 0);
3387 
3388         /* Prepare for Rx DMA channel stop */
3389         for (i = 0; i < pdata->rx_q_count; i++)
3390                 xgbe_prepare_rx_stop(pdata, i);
3391 
3392         /* Disable each Rx queue */
3393         XGMAC_IOWRITE(pdata, MAC_RQC0R, 0);
3394 
3395         /* Disable each Rx DMA channel */
3396         for (i = 0; i < pdata->channel_count; i++) {
3397                 if (!pdata->channel[i]->rx_ring)
3398                         break;
3399 
3400                 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
3401         }
3402 }
3403 
3404 static void xgbe_powerup_tx(struct xgbe_prv_data *pdata)
3405 {
3406         unsigned int i;
3407 
3408         /* Enable each Tx DMA channel */
3409         for (i = 0; i < pdata->channel_count; i++) {
3410                 if (!pdata->channel[i]->tx_ring)
3411                         break;
3412 
3413                 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
3414         }
3415 
3416         /* Enable MAC Tx */
3417         XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
3418 }
3419 
3420 static void xgbe_powerdown_tx(struct xgbe_prv_data *pdata)
3421 {
3422         unsigned int i;
3423 
3424         /* Prepare for Tx DMA channel stop */
3425         for (i = 0; i < pdata->tx_q_count; i++)
3426                 xgbe_prepare_tx_stop(pdata, i);
3427 
3428         /* Disable MAC Tx */
3429         XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
3430 
3431         /* Disable each Tx DMA channel */
3432         for (i = 0; i < pdata->channel_count; i++) {
3433                 if (!pdata->channel[i]->tx_ring)
3434                         break;
3435 
3436                 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
3437         }
3438 }
3439 
3440 static void xgbe_powerup_rx(struct xgbe_prv_data *pdata)
3441 {
3442         unsigned int i;
3443 
3444         /* Enable each Rx DMA channel */
3445         for (i = 0; i < pdata->channel_count; i++) {
3446                 if (!pdata->channel[i]->rx_ring)
3447                         break;
3448 
3449                 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
3450         }
3451 }
3452 
3453 static void xgbe_powerdown_rx(struct xgbe_prv_data *pdata)
3454 {
3455         unsigned int i;
3456 
3457         /* Disable each Rx DMA channel */
3458         for (i = 0; i < pdata->channel_count; i++) {
3459                 if (!pdata->channel[i]->rx_ring)
3460                         break;
3461 
3462                 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
3463         }
3464 }
3465 
3466 static int xgbe_init(struct xgbe_prv_data *pdata)
3467 {
3468         struct xgbe_desc_if *desc_if = &pdata->desc_if;
3469         int ret;
3470 
3471         DBGPR("-->xgbe_init\n");
3472 
3473         /* Flush Tx queues */
3474         ret = xgbe_flush_tx_queues(pdata);
3475         if (ret) {
3476                 netdev_err(pdata->netdev, "error flushing TX queues\n");
3477                 return ret;
3478         }
3479 
3480         /*
3481          * Initialize DMA related features
3482          */
3483         xgbe_config_dma_bus(pdata);
3484         xgbe_config_dma_cache(pdata);
3485         xgbe_config_osp_mode(pdata);
3486         xgbe_config_pbl_val(pdata);
3487         xgbe_config_rx_coalesce(pdata);
3488         xgbe_config_tx_coalesce(pdata);
3489         xgbe_config_rx_buffer_size(pdata);
3490         xgbe_config_tso_mode(pdata);
3491         xgbe_config_sph_mode(pdata);
3492         xgbe_config_rss(pdata);
3493         desc_if->wrapper_tx_desc_init(pdata);
3494         desc_if->wrapper_rx_desc_init(pdata);
3495         xgbe_enable_dma_interrupts(pdata);
3496 
3497         /*
3498          * Initialize MTL related features
3499          */
3500         xgbe_config_mtl_mode(pdata);
3501         xgbe_config_queue_mapping(pdata);
3502         xgbe_config_tsf_mode(pdata, pdata->tx_sf_mode);
3503         xgbe_config_rsf_mode(pdata, pdata->rx_sf_mode);
3504         xgbe_config_tx_threshold(pdata, pdata->tx_threshold);
3505         xgbe_config_rx_threshold(pdata, pdata->rx_threshold);
3506         xgbe_config_tx_fifo_size(pdata);
3507         xgbe_config_rx_fifo_size(pdata);
3508         /*TODO: Error Packet and undersized good Packet forwarding enable
3509                 (FEP and FUP)
3510          */
3511         xgbe_config_dcb_tc(pdata);
3512         xgbe_enable_mtl_interrupts(pdata);
3513 
3514         /*
3515          * Initialize MAC related features
3516          */
3517         xgbe_config_mac_address(pdata);
3518         xgbe_config_rx_mode(pdata);
3519         xgbe_config_jumbo_enable(pdata);
3520         xgbe_config_flow_control(pdata);
3521         xgbe_config_mac_speed(pdata);
3522         xgbe_config_checksum_offload(pdata);
3523         xgbe_config_vlan_support(pdata);
3524         xgbe_config_mmc(pdata);
3525         xgbe_enable_mac_interrupts(pdata);
3526 
3527         /*
3528          * Initialize ECC related features
3529          */
3530         xgbe_enable_ecc_interrupts(pdata);
3531 
3532         DBGPR("<--xgbe_init\n");
3533 
3534         return 0;
3535 }
3536 
3537 void xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if)
3538 {
3539         DBGPR("-->xgbe_init_function_ptrs\n");
3540 
3541         hw_if->tx_complete = xgbe_tx_complete;
3542 
3543         hw_if->set_mac_address = xgbe_set_mac_address;
3544         hw_if->config_rx_mode = xgbe_config_rx_mode;
3545 
3546         hw_if->enable_rx_csum = xgbe_enable_rx_csum;
3547         hw_if->disable_rx_csum = xgbe_disable_rx_csum;
3548 
3549         hw_if->enable_rx_vlan_stripping = xgbe_enable_rx_vlan_stripping;
3550         hw_if->disable_rx_vlan_stripping = xgbe_disable_rx_vlan_stripping;
3551         hw_if->enable_rx_vlan_filtering = xgbe_enable_rx_vlan_filtering;
3552         hw_if->disable_rx_vlan_filtering = xgbe_disable_rx_vlan_filtering;
3553         hw_if->update_vlan_hash_table = xgbe_update_vlan_hash_table;
3554 
3555         hw_if->read_mmd_regs = xgbe_read_mmd_regs;
3556         hw_if->write_mmd_regs = xgbe_write_mmd_regs;
3557 
3558         hw_if->set_speed = xgbe_set_speed;
3559 
3560         hw_if->set_ext_mii_mode = xgbe_set_ext_mii_mode;
3561         hw_if->read_ext_mii_regs = xgbe_read_ext_mii_regs;
3562         hw_if->write_ext_mii_regs = xgbe_write_ext_mii_regs;
3563 
3564         hw_if->set_gpio = xgbe_set_gpio;
3565         hw_if->clr_gpio = xgbe_clr_gpio;
3566 
3567         hw_if->enable_tx = xgbe_enable_tx;
3568         hw_if->disable_tx = xgbe_disable_tx;
3569         hw_if->enable_rx = xgbe_enable_rx;
3570         hw_if->disable_rx = xgbe_disable_rx;
3571 
3572         hw_if->powerup_tx = xgbe_powerup_tx;
3573         hw_if->powerdown_tx = xgbe_powerdown_tx;
3574         hw_if->powerup_rx = xgbe_powerup_rx;
3575         hw_if->powerdown_rx = xgbe_powerdown_rx;
3576 
3577         hw_if->dev_xmit = xgbe_dev_xmit;
3578         hw_if->dev_read = xgbe_dev_read;
3579         hw_if->enable_int = xgbe_enable_int;
3580         hw_if->disable_int = xgbe_disable_int;
3581         hw_if->init = xgbe_init;
3582         hw_if->exit = xgbe_exit;
3583 
3584         /* Descriptor related Sequences have to be initialized here */
3585         hw_if->tx_desc_init = xgbe_tx_desc_init;
3586         hw_if->rx_desc_init = xgbe_rx_desc_init;
3587         hw_if->tx_desc_reset = xgbe_tx_desc_reset;
3588         hw_if->rx_desc_reset = xgbe_rx_desc_reset;
3589         hw_if->is_last_desc = xgbe_is_last_desc;
3590         hw_if->is_context_desc = xgbe_is_context_desc;
3591         hw_if->tx_start_xmit = xgbe_tx_start_xmit;
3592 
3593         /* For FLOW ctrl */
3594         hw_if->config_tx_flow_control = xgbe_config_tx_flow_control;
3595         hw_if->config_rx_flow_control = xgbe_config_rx_flow_control;
3596 
3597         /* For RX coalescing */
3598         hw_if->config_rx_coalesce = xgbe_config_rx_coalesce;
3599         hw_if->config_tx_coalesce = xgbe_config_tx_coalesce;
3600         hw_if->usec_to_riwt = xgbe_usec_to_riwt;
3601         hw_if->riwt_to_usec = xgbe_riwt_to_usec;
3602 
3603         /* For RX and TX threshold config */
3604         hw_if->config_rx_threshold = xgbe_config_rx_threshold;
3605         hw_if->config_tx_threshold = xgbe_config_tx_threshold;
3606 
3607         /* For RX and TX Store and Forward Mode config */
3608         hw_if->config_rsf_mode = xgbe_config_rsf_mode;
3609         hw_if->config_tsf_mode = xgbe_config_tsf_mode;
3610 
3611         /* For TX DMA Operating on Second Frame config */
3612         hw_if->config_osp_mode = xgbe_config_osp_mode;
3613 
3614         /* For MMC statistics support */
3615         hw_if->tx_mmc_int = xgbe_tx_mmc_int;
3616         hw_if->rx_mmc_int = xgbe_rx_mmc_int;
3617         hw_if->read_mmc_stats = xgbe_read_mmc_stats;
3618 
3619         /* For PTP config */
3620         hw_if->config_tstamp = xgbe_config_tstamp;
3621         hw_if->update_tstamp_addend = xgbe_update_tstamp_addend;
3622         hw_if->set_tstamp_time = xgbe_set_tstamp_time;
3623         hw_if->get_tstamp_time = xgbe_get_tstamp_time;
3624         hw_if->get_tx_tstamp = xgbe_get_tx_tstamp;
3625 
3626         /* For Data Center Bridging config */
3627         hw_if->config_tc = xgbe_config_tc;
3628         hw_if->config_dcb_tc = xgbe_config_dcb_tc;
3629         hw_if->config_dcb_pfc = xgbe_config_dcb_pfc;
3630 
3631         /* For Receive Side Scaling */
3632         hw_if->enable_rss = xgbe_enable_rss;
3633         hw_if->disable_rss = xgbe_disable_rss;
3634         hw_if->set_rss_hash_key = xgbe_set_rss_hash_key;
3635         hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table;
3636 
3637         /* For ECC */
3638         hw_if->disable_ecc_ded = xgbe_disable_ecc_ded;
3639         hw_if->disable_ecc_sec = xgbe_disable_ecc_sec;
3640 
3641         /* For VXLAN */
3642         hw_if->enable_vxlan = xgbe_enable_vxlan;
3643         hw_if->disable_vxlan = xgbe_disable_vxlan;
3644         hw_if->set_vxlan_id = xgbe_set_vxlan_id;
3645 
3646         DBGPR("<--xgbe_init_function_ptrs\n");
3647 }

/* [<][>][^][v][top][bottom][index][help] */