root/drivers/net/ethernet/cavium/thunder/nicvf_main.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. nicvf_netdev_qidx
  2. nicvf_reg_write
  3. nicvf_reg_read
  4. nicvf_queue_reg_write
  5. nicvf_queue_reg_read
  6. nicvf_write_to_mbx
  7. nicvf_send_msg_to_pf
  8. nicvf_check_pf_ready
  9. nicvf_send_cfg_done
  10. nicvf_read_bgx_stats
  11. nicvf_handle_mbx_intr
  12. nicvf_hw_set_mac_addr
  13. nicvf_config_cpi
  14. nicvf_get_rss_size
  15. nicvf_config_rss
  16. nicvf_set_rss_key
  17. nicvf_rss_init
  18. nicvf_request_sqs
  19. nicvf_send_vf_struct
  20. nicvf_get_primary_vf_struct
  21. nicvf_set_real_num_queues
  22. nicvf_init_resources
  23. nicvf_xdp_rx
  24. nicvf_snd_ptp_handler
  25. nicvf_snd_pkt_handler
  26. nicvf_set_rxhash
  27. nicvf_set_rxtstamp
  28. nicvf_rcv_pkt_handler
  29. nicvf_cq_intr_handler
  30. nicvf_poll
  31. nicvf_handle_qs_err
  32. nicvf_dump_intr_status
  33. nicvf_misc_intr_handler
  34. nicvf_intr_handler
  35. nicvf_rbdr_intr_handler
  36. nicvf_qs_err_intr_handler
  37. nicvf_set_irq_affinity
  38. nicvf_register_interrupts
  39. nicvf_unregister_interrupts
  40. nicvf_register_misc_interrupt
  41. nicvf_xmit
  42. nicvf_free_cq_poll
  43. nicvf_stop
  44. nicvf_config_hw_rx_tstamp
  45. nicvf_update_hw_max_frs
  46. nicvf_link_status_check_task
  47. nicvf_open
  48. nicvf_change_mtu
  49. nicvf_set_mac_address
  50. nicvf_update_lmac_stats
  51. nicvf_update_stats
  52. nicvf_get_stats64
  53. nicvf_tx_timeout
  54. nicvf_reset_task
  55. nicvf_config_loopback
  56. nicvf_fix_features
  57. nicvf_set_features
  58. nicvf_set_xdp_queues
  59. nicvf_xdp_setup
  60. nicvf_xdp
  61. nicvf_config_hwtstamp
  62. nicvf_ioctl
  63. __nicvf_set_rx_mode_task
  64. nicvf_set_rx_mode_task
  65. nicvf_set_rx_mode
  66. nicvf_probe
  67. nicvf_remove
  68. nicvf_shutdown
  69. nicvf_init_module
  70. nicvf_cleanup_module

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Copyright (C) 2015 Cavium, Inc.
   4  */
   5 
   6 #include <linux/module.h>
   7 #include <linux/interrupt.h>
   8 #include <linux/pci.h>
   9 #include <linux/netdevice.h>
  10 #include <linux/if_vlan.h>
  11 #include <linux/etherdevice.h>
  12 #include <linux/ethtool.h>
  13 #include <linux/log2.h>
  14 #include <linux/prefetch.h>
  15 #include <linux/irq.h>
  16 #include <linux/iommu.h>
  17 #include <linux/bpf.h>
  18 #include <linux/bpf_trace.h>
  19 #include <linux/filter.h>
  20 #include <linux/net_tstamp.h>
  21 #include <linux/workqueue.h>
  22 
  23 #include "nic_reg.h"
  24 #include "nic.h"
  25 #include "nicvf_queues.h"
  26 #include "thunder_bgx.h"
  27 #include "../common/cavium_ptp.h"
  28 
  29 #define DRV_NAME        "nicvf"
  30 #define DRV_VERSION     "1.0"
  31 
  32 /* NOTE: Packets bigger than 1530 are split across multiple pages and XDP needs
  33  * the buffer to be contiguous. Allow XDP to be set up only if we don't exceed
  34  * this value, keeping headroom for the 14 byte Ethernet header and two
  35  * VLAN tags (for QinQ)
  36  */
  37 #define MAX_XDP_MTU     (1530 - ETH_HLEN - VLAN_HLEN * 2)
  38 
  39 /* Supported devices */
  40 static const struct pci_device_id nicvf_id_table[] = {
  41         { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
  42                          PCI_DEVICE_ID_THUNDER_NIC_VF,
  43                          PCI_VENDOR_ID_CAVIUM,
  44                          PCI_SUBSYS_DEVID_88XX_NIC_VF) },
  45         { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
  46                          PCI_DEVICE_ID_THUNDER_PASS1_NIC_VF,
  47                          PCI_VENDOR_ID_CAVIUM,
  48                          PCI_SUBSYS_DEVID_88XX_PASS1_NIC_VF) },
  49         { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
  50                          PCI_DEVICE_ID_THUNDER_NIC_VF,
  51                          PCI_VENDOR_ID_CAVIUM,
  52                          PCI_SUBSYS_DEVID_81XX_NIC_VF) },
  53         { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
  54                          PCI_DEVICE_ID_THUNDER_NIC_VF,
  55                          PCI_VENDOR_ID_CAVIUM,
  56                          PCI_SUBSYS_DEVID_83XX_NIC_VF) },
  57         { 0, }  /* end of table */
  58 };
  59 
  60 MODULE_AUTHOR("Sunil Goutham");
  61 MODULE_DESCRIPTION("Cavium Thunder NIC Virtual Function Driver");
  62 MODULE_LICENSE("GPL v2");
  63 MODULE_VERSION(DRV_VERSION);
  64 MODULE_DEVICE_TABLE(pci, nicvf_id_table);
  65 
  66 static int debug = 0x00;
  67 module_param(debug, int, 0644);
  68 MODULE_PARM_DESC(debug, "Debug message level bitmap");
  69 
  70 static int cpi_alg = CPI_ALG_NONE;
  71 module_param(cpi_alg, int, 0444);
  72 MODULE_PARM_DESC(cpi_alg,
  73                  "PFC algorithm (0=none, 1=VLAN, 2=VLAN16, 3=IP Diffserv)");
  74 
  75 static inline u8 nicvf_netdev_qidx(struct nicvf *nic, u8 qidx)
  76 {
  77         if (nic->sqs_mode)
  78                 return qidx + ((nic->sqs_id + 1) * MAX_CMP_QUEUES_PER_QS);
  79         else
  80                 return qidx;
  81 }
  82 
  83 /* The Cavium ThunderX network controller can *only* be found in SoCs
  84  * containing the ThunderX ARM64 CPU implementation.  All accesses to the device
  85  * registers on this platform are implicitly strongly ordered with respect
  86  * to memory accesses. So writeq_relaxed() and readq_relaxed() are safe to use
  87  * with no memory barriers in this driver.  The readq()/writeq() functions add
  88  * explicit ordering operation which in this case are redundant, and only
  89  * add overhead.
  90  */
  91 
  92 /* Register read/write APIs */
  93 void nicvf_reg_write(struct nicvf *nic, u64 offset, u64 val)
  94 {
  95         writeq_relaxed(val, nic->reg_base + offset);
  96 }
  97 
  98 u64 nicvf_reg_read(struct nicvf *nic, u64 offset)
  99 {
 100         return readq_relaxed(nic->reg_base + offset);
 101 }
 102 
 103 void nicvf_queue_reg_write(struct nicvf *nic, u64 offset,
 104                            u64 qidx, u64 val)
 105 {
 106         void __iomem *addr = nic->reg_base + offset;
 107 
 108         writeq_relaxed(val, addr + (qidx << NIC_Q_NUM_SHIFT));
 109 }
 110 
 111 u64 nicvf_queue_reg_read(struct nicvf *nic, u64 offset, u64 qidx)
 112 {
 113         void __iomem *addr = nic->reg_base + offset;
 114 
 115         return readq_relaxed(addr + (qidx << NIC_Q_NUM_SHIFT));
 116 }
 117 
 118 /* VF -> PF mailbox communication */
 119 static void nicvf_write_to_mbx(struct nicvf *nic, union nic_mbx *mbx)
 120 {
 121         u64 *msg = (u64 *)mbx;
 122 
 123         nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 0, msg[0]);
 124         nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 8, msg[1]);
 125 }
 126 
 127 int nicvf_send_msg_to_pf(struct nicvf *nic, union nic_mbx *mbx)
 128 {
 129         int timeout = NIC_MBOX_MSG_TIMEOUT;
 130         int sleep = 10;
 131         int ret = 0;
 132 
 133         mutex_lock(&nic->rx_mode_mtx);
 134 
 135         nic->pf_acked = false;
 136         nic->pf_nacked = false;
 137 
 138         nicvf_write_to_mbx(nic, mbx);
 139 
 140         /* Wait for previous message to be acked, timeout 2sec */
 141         while (!nic->pf_acked) {
 142                 if (nic->pf_nacked) {
 143                         netdev_err(nic->netdev,
 144                                    "PF NACK to mbox msg 0x%02x from VF%d\n",
 145                                    (mbx->msg.msg & 0xFF), nic->vf_id);
 146                         ret = -EINVAL;
 147                         break;
 148                 }
 149                 msleep(sleep);
 150                 if (nic->pf_acked)
 151                         break;
 152                 timeout -= sleep;
 153                 if (!timeout) {
 154                         netdev_err(nic->netdev,
 155                                    "PF didn't ACK to mbox msg 0x%02x from VF%d\n",
 156                                    (mbx->msg.msg & 0xFF), nic->vf_id);
 157                         ret = -EBUSY;
 158                         break;
 159                 }
 160         }
 161         mutex_unlock(&nic->rx_mode_mtx);
 162         return ret;
 163 }
 164 
 165 /* Checks if VF is able to comminicate with PF
 166 * and also gets the VNIC number this VF is associated to.
 167 */
 168 static int nicvf_check_pf_ready(struct nicvf *nic)
 169 {
 170         union nic_mbx mbx = {};
 171 
 172         mbx.msg.msg = NIC_MBOX_MSG_READY;
 173         if (nicvf_send_msg_to_pf(nic, &mbx)) {
 174                 netdev_err(nic->netdev,
 175                            "PF didn't respond to READY msg\n");
 176                 return 0;
 177         }
 178 
 179         return 1;
 180 }
 181 
 182 static void nicvf_send_cfg_done(struct nicvf *nic)
 183 {
 184         union nic_mbx mbx = {};
 185 
 186         mbx.msg.msg = NIC_MBOX_MSG_CFG_DONE;
 187         if (nicvf_send_msg_to_pf(nic, &mbx)) {
 188                 netdev_err(nic->netdev,
 189                            "PF didn't respond to CFG DONE msg\n");
 190         }
 191 }
 192 
 193 static void nicvf_read_bgx_stats(struct nicvf *nic, struct bgx_stats_msg *bgx)
 194 {
 195         if (bgx->rx)
 196                 nic->bgx_stats.rx_stats[bgx->idx] = bgx->stats;
 197         else
 198                 nic->bgx_stats.tx_stats[bgx->idx] = bgx->stats;
 199 }
 200 
 201 static void  nicvf_handle_mbx_intr(struct nicvf *nic)
 202 {
 203         union nic_mbx mbx = {};
 204         u64 *mbx_data;
 205         u64 mbx_addr;
 206         int i;
 207 
 208         mbx_addr = NIC_VF_PF_MAILBOX_0_1;
 209         mbx_data = (u64 *)&mbx;
 210 
 211         for (i = 0; i < NIC_PF_VF_MAILBOX_SIZE; i++) {
 212                 *mbx_data = nicvf_reg_read(nic, mbx_addr);
 213                 mbx_data++;
 214                 mbx_addr += sizeof(u64);
 215         }
 216 
 217         netdev_dbg(nic->netdev, "Mbox message: msg: 0x%x\n", mbx.msg.msg);
 218         switch (mbx.msg.msg) {
 219         case NIC_MBOX_MSG_READY:
 220                 nic->pf_acked = true;
 221                 nic->vf_id = mbx.nic_cfg.vf_id & 0x7F;
 222                 nic->tns_mode = mbx.nic_cfg.tns_mode & 0x7F;
 223                 nic->node = mbx.nic_cfg.node_id;
 224                 if (!nic->set_mac_pending)
 225                         ether_addr_copy(nic->netdev->dev_addr,
 226                                         mbx.nic_cfg.mac_addr);
 227                 nic->sqs_mode = mbx.nic_cfg.sqs_mode;
 228                 nic->loopback_supported = mbx.nic_cfg.loopback_supported;
 229                 nic->link_up = false;
 230                 nic->duplex = 0;
 231                 nic->speed = 0;
 232                 break;
 233         case NIC_MBOX_MSG_ACK:
 234                 nic->pf_acked = true;
 235                 break;
 236         case NIC_MBOX_MSG_NACK:
 237                 nic->pf_nacked = true;
 238                 break;
 239         case NIC_MBOX_MSG_RSS_SIZE:
 240                 nic->rss_info.rss_size = mbx.rss_size.ind_tbl_size;
 241                 nic->pf_acked = true;
 242                 break;
 243         case NIC_MBOX_MSG_BGX_STATS:
 244                 nicvf_read_bgx_stats(nic, &mbx.bgx_stats);
 245                 nic->pf_acked = true;
 246                 break;
 247         case NIC_MBOX_MSG_BGX_LINK_CHANGE:
 248                 nic->pf_acked = true;
 249                 if (nic->link_up != mbx.link_status.link_up) {
 250                         nic->link_up = mbx.link_status.link_up;
 251                         nic->duplex = mbx.link_status.duplex;
 252                         nic->speed = mbx.link_status.speed;
 253                         nic->mac_type = mbx.link_status.mac_type;
 254                         if (nic->link_up) {
 255                                 netdev_info(nic->netdev,
 256                                             "Link is Up %d Mbps %s duplex\n",
 257                                             nic->speed,
 258                                             nic->duplex == DUPLEX_FULL ?
 259                                             "Full" : "Half");
 260                                 netif_carrier_on(nic->netdev);
 261                                 netif_tx_start_all_queues(nic->netdev);
 262                         } else {
 263                                 netdev_info(nic->netdev, "Link is Down\n");
 264                                 netif_carrier_off(nic->netdev);
 265                                 netif_tx_stop_all_queues(nic->netdev);
 266                         }
 267                 }
 268                 break;
 269         case NIC_MBOX_MSG_ALLOC_SQS:
 270                 nic->sqs_count = mbx.sqs_alloc.qs_count;
 271                 nic->pf_acked = true;
 272                 break;
 273         case NIC_MBOX_MSG_SNICVF_PTR:
 274                 /* Primary VF: make note of secondary VF's pointer
 275                  * to be used while packet transmission.
 276                  */
 277                 nic->snicvf[mbx.nicvf.sqs_id] =
 278                         (struct nicvf *)mbx.nicvf.nicvf;
 279                 nic->pf_acked = true;
 280                 break;
 281         case NIC_MBOX_MSG_PNICVF_PTR:
 282                 /* Secondary VF/Qset: make note of primary VF's pointer
 283                  * to be used while packet reception, to handover packet
 284                  * to primary VF's netdev.
 285                  */
 286                 nic->pnicvf = (struct nicvf *)mbx.nicvf.nicvf;
 287                 nic->pf_acked = true;
 288                 break;
 289         case NIC_MBOX_MSG_PFC:
 290                 nic->pfc.autoneg = mbx.pfc.autoneg;
 291                 nic->pfc.fc_rx = mbx.pfc.fc_rx;
 292                 nic->pfc.fc_tx = mbx.pfc.fc_tx;
 293                 nic->pf_acked = true;
 294                 break;
 295         default:
 296                 netdev_err(nic->netdev,
 297                            "Invalid message from PF, msg 0x%x\n", mbx.msg.msg);
 298                 break;
 299         }
 300         nicvf_clear_intr(nic, NICVF_INTR_MBOX, 0);
 301 }
 302 
 303 static int nicvf_hw_set_mac_addr(struct nicvf *nic, struct net_device *netdev)
 304 {
 305         union nic_mbx mbx = {};
 306 
 307         mbx.mac.msg = NIC_MBOX_MSG_SET_MAC;
 308         mbx.mac.vf_id = nic->vf_id;
 309         ether_addr_copy(mbx.mac.mac_addr, netdev->dev_addr);
 310 
 311         return nicvf_send_msg_to_pf(nic, &mbx);
 312 }
 313 
 314 static void nicvf_config_cpi(struct nicvf *nic)
 315 {
 316         union nic_mbx mbx = {};
 317 
 318         mbx.cpi_cfg.msg = NIC_MBOX_MSG_CPI_CFG;
 319         mbx.cpi_cfg.vf_id = nic->vf_id;
 320         mbx.cpi_cfg.cpi_alg = nic->cpi_alg;
 321         mbx.cpi_cfg.rq_cnt = nic->qs->rq_cnt;
 322 
 323         nicvf_send_msg_to_pf(nic, &mbx);
 324 }
 325 
 326 static void nicvf_get_rss_size(struct nicvf *nic)
 327 {
 328         union nic_mbx mbx = {};
 329 
 330         mbx.rss_size.msg = NIC_MBOX_MSG_RSS_SIZE;
 331         mbx.rss_size.vf_id = nic->vf_id;
 332         nicvf_send_msg_to_pf(nic, &mbx);
 333 }
 334 
 335 void nicvf_config_rss(struct nicvf *nic)
 336 {
 337         union nic_mbx mbx = {};
 338         struct nicvf_rss_info *rss = &nic->rss_info;
 339         int ind_tbl_len = rss->rss_size;
 340         int i, nextq = 0;
 341 
 342         mbx.rss_cfg.vf_id = nic->vf_id;
 343         mbx.rss_cfg.hash_bits = rss->hash_bits;
 344         while (ind_tbl_len) {
 345                 mbx.rss_cfg.tbl_offset = nextq;
 346                 mbx.rss_cfg.tbl_len = min(ind_tbl_len,
 347                                                RSS_IND_TBL_LEN_PER_MBX_MSG);
 348                 mbx.rss_cfg.msg = mbx.rss_cfg.tbl_offset ?
 349                           NIC_MBOX_MSG_RSS_CFG_CONT : NIC_MBOX_MSG_RSS_CFG;
 350 
 351                 for (i = 0; i < mbx.rss_cfg.tbl_len; i++)
 352                         mbx.rss_cfg.ind_tbl[i] = rss->ind_tbl[nextq++];
 353 
 354                 nicvf_send_msg_to_pf(nic, &mbx);
 355 
 356                 ind_tbl_len -= mbx.rss_cfg.tbl_len;
 357         }
 358 }
 359 
 360 void nicvf_set_rss_key(struct nicvf *nic)
 361 {
 362         struct nicvf_rss_info *rss = &nic->rss_info;
 363         u64 key_addr = NIC_VNIC_RSS_KEY_0_4;
 364         int idx;
 365 
 366         for (idx = 0; idx < RSS_HASH_KEY_SIZE; idx++) {
 367                 nicvf_reg_write(nic, key_addr, rss->key[idx]);
 368                 key_addr += sizeof(u64);
 369         }
 370 }
 371 
 372 static int nicvf_rss_init(struct nicvf *nic)
 373 {
 374         struct nicvf_rss_info *rss = &nic->rss_info;
 375         int idx;
 376 
 377         nicvf_get_rss_size(nic);
 378 
 379         if (cpi_alg != CPI_ALG_NONE) {
 380                 rss->enable = false;
 381                 rss->hash_bits = 0;
 382                 return 0;
 383         }
 384 
 385         rss->enable = true;
 386 
 387         netdev_rss_key_fill(rss->key, RSS_HASH_KEY_SIZE * sizeof(u64));
 388         nicvf_set_rss_key(nic);
 389 
 390         rss->cfg = RSS_IP_HASH_ENA | RSS_TCP_HASH_ENA | RSS_UDP_HASH_ENA;
 391         nicvf_reg_write(nic, NIC_VNIC_RSS_CFG, rss->cfg);
 392 
 393         rss->hash_bits =  ilog2(rounddown_pow_of_two(rss->rss_size));
 394 
 395         for (idx = 0; idx < rss->rss_size; idx++)
 396                 rss->ind_tbl[idx] = ethtool_rxfh_indir_default(idx,
 397                                                                nic->rx_queues);
 398         nicvf_config_rss(nic);
 399         return 1;
 400 }
 401 
 402 /* Request PF to allocate additional Qsets */
 403 static void nicvf_request_sqs(struct nicvf *nic)
 404 {
 405         union nic_mbx mbx = {};
 406         int sqs;
 407         int sqs_count = nic->sqs_count;
 408         int rx_queues = 0, tx_queues = 0;
 409 
 410         /* Only primary VF should request */
 411         if (nic->sqs_mode ||  !nic->sqs_count)
 412                 return;
 413 
 414         mbx.sqs_alloc.msg = NIC_MBOX_MSG_ALLOC_SQS;
 415         mbx.sqs_alloc.vf_id = nic->vf_id;
 416         mbx.sqs_alloc.qs_count = nic->sqs_count;
 417         if (nicvf_send_msg_to_pf(nic, &mbx)) {
 418                 /* No response from PF */
 419                 nic->sqs_count = 0;
 420                 return;
 421         }
 422 
 423         /* Return if no Secondary Qsets available */
 424         if (!nic->sqs_count)
 425                 return;
 426 
 427         if (nic->rx_queues > MAX_RCV_QUEUES_PER_QS)
 428                 rx_queues = nic->rx_queues - MAX_RCV_QUEUES_PER_QS;
 429 
 430         tx_queues = nic->tx_queues + nic->xdp_tx_queues;
 431         if (tx_queues > MAX_SND_QUEUES_PER_QS)
 432                 tx_queues = tx_queues - MAX_SND_QUEUES_PER_QS;
 433 
 434         /* Set no of Rx/Tx queues in each of the SQsets */
 435         for (sqs = 0; sqs < nic->sqs_count; sqs++) {
 436                 mbx.nicvf.msg = NIC_MBOX_MSG_SNICVF_PTR;
 437                 mbx.nicvf.vf_id = nic->vf_id;
 438                 mbx.nicvf.sqs_id = sqs;
 439                 nicvf_send_msg_to_pf(nic, &mbx);
 440 
 441                 nic->snicvf[sqs]->sqs_id = sqs;
 442                 if (rx_queues > MAX_RCV_QUEUES_PER_QS) {
 443                         nic->snicvf[sqs]->qs->rq_cnt = MAX_RCV_QUEUES_PER_QS;
 444                         rx_queues -= MAX_RCV_QUEUES_PER_QS;
 445                 } else {
 446                         nic->snicvf[sqs]->qs->rq_cnt = rx_queues;
 447                         rx_queues = 0;
 448                 }
 449 
 450                 if (tx_queues > MAX_SND_QUEUES_PER_QS) {
 451                         nic->snicvf[sqs]->qs->sq_cnt = MAX_SND_QUEUES_PER_QS;
 452                         tx_queues -= MAX_SND_QUEUES_PER_QS;
 453                 } else {
 454                         nic->snicvf[sqs]->qs->sq_cnt = tx_queues;
 455                         tx_queues = 0;
 456                 }
 457 
 458                 nic->snicvf[sqs]->qs->cq_cnt =
 459                 max(nic->snicvf[sqs]->qs->rq_cnt, nic->snicvf[sqs]->qs->sq_cnt);
 460 
 461                 /* Initialize secondary Qset's queues and its interrupts */
 462                 nicvf_open(nic->snicvf[sqs]->netdev);
 463         }
 464 
 465         /* Update stack with actual Rx/Tx queue count allocated */
 466         if (sqs_count != nic->sqs_count)
 467                 nicvf_set_real_num_queues(nic->netdev,
 468                                           nic->tx_queues, nic->rx_queues);
 469 }
 470 
 471 /* Send this Qset's nicvf pointer to PF.
 472  * PF inturn sends primary VF's nicvf struct to secondary Qsets/VFs
 473  * so that packets received by these Qsets can use primary VF's netdev
 474  */
 475 static void nicvf_send_vf_struct(struct nicvf *nic)
 476 {
 477         union nic_mbx mbx = {};
 478 
 479         mbx.nicvf.msg = NIC_MBOX_MSG_NICVF_PTR;
 480         mbx.nicvf.sqs_mode = nic->sqs_mode;
 481         mbx.nicvf.nicvf = (u64)nic;
 482         nicvf_send_msg_to_pf(nic, &mbx);
 483 }
 484 
 485 static void nicvf_get_primary_vf_struct(struct nicvf *nic)
 486 {
 487         union nic_mbx mbx = {};
 488 
 489         mbx.nicvf.msg = NIC_MBOX_MSG_PNICVF_PTR;
 490         nicvf_send_msg_to_pf(nic, &mbx);
 491 }
 492 
 493 int nicvf_set_real_num_queues(struct net_device *netdev,
 494                               int tx_queues, int rx_queues)
 495 {
 496         int err = 0;
 497 
 498         err = netif_set_real_num_tx_queues(netdev, tx_queues);
 499         if (err) {
 500                 netdev_err(netdev,
 501                            "Failed to set no of Tx queues: %d\n", tx_queues);
 502                 return err;
 503         }
 504 
 505         err = netif_set_real_num_rx_queues(netdev, rx_queues);
 506         if (err)
 507                 netdev_err(netdev,
 508                            "Failed to set no of Rx queues: %d\n", rx_queues);
 509         return err;
 510 }
 511 
 512 static int nicvf_init_resources(struct nicvf *nic)
 513 {
 514         int err;
 515 
 516         /* Enable Qset */
 517         nicvf_qset_config(nic, true);
 518 
 519         /* Initialize queues and HW for data transfer */
 520         err = nicvf_config_data_transfer(nic, true);
 521         if (err) {
 522                 netdev_err(nic->netdev,
 523                            "Failed to alloc/config VF's QSet resources\n");
 524                 return err;
 525         }
 526 
 527         return 0;
 528 }
 529 
 530 static inline bool nicvf_xdp_rx(struct nicvf *nic, struct bpf_prog *prog,
 531                                 struct cqe_rx_t *cqe_rx, struct snd_queue *sq,
 532                                 struct rcv_queue *rq, struct sk_buff **skb)
 533 {
 534         struct xdp_buff xdp;
 535         struct page *page;
 536         u32 action;
 537         u16 len, offset = 0;
 538         u64 dma_addr, cpu_addr;
 539         void *orig_data;
 540 
 541         /* Retrieve packet buffer's DMA address and length */
 542         len = *((u16 *)((void *)cqe_rx + (3 * sizeof(u64))));
 543         dma_addr = *((u64 *)((void *)cqe_rx + (7 * sizeof(u64))));
 544 
 545         cpu_addr = nicvf_iova_to_phys(nic, dma_addr);
 546         if (!cpu_addr)
 547                 return false;
 548         cpu_addr = (u64)phys_to_virt(cpu_addr);
 549         page = virt_to_page((void *)cpu_addr);
 550 
 551         xdp.data_hard_start = page_address(page);
 552         xdp.data = (void *)cpu_addr;
 553         xdp_set_data_meta_invalid(&xdp);
 554         xdp.data_end = xdp.data + len;
 555         xdp.rxq = &rq->xdp_rxq;
 556         orig_data = xdp.data;
 557 
 558         rcu_read_lock();
 559         action = bpf_prog_run_xdp(prog, &xdp);
 560         rcu_read_unlock();
 561 
 562         len = xdp.data_end - xdp.data;
 563         /* Check if XDP program has changed headers */
 564         if (orig_data != xdp.data) {
 565                 offset = orig_data - xdp.data;
 566                 dma_addr -= offset;
 567         }
 568 
 569         switch (action) {
 570         case XDP_PASS:
 571                 /* Check if it's a recycled page, if not
 572                  * unmap the DMA mapping.
 573                  *
 574                  * Recycled page holds an extra reference.
 575                  */
 576                 if (page_ref_count(page) == 1) {
 577                         dma_addr &= PAGE_MASK;
 578                         dma_unmap_page_attrs(&nic->pdev->dev, dma_addr,
 579                                              RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
 580                                              DMA_FROM_DEVICE,
 581                                              DMA_ATTR_SKIP_CPU_SYNC);
 582                 }
 583 
 584                 /* Build SKB and pass on packet to network stack */
 585                 *skb = build_skb(xdp.data,
 586                                  RCV_FRAG_LEN - cqe_rx->align_pad + offset);
 587                 if (!*skb)
 588                         put_page(page);
 589                 else
 590                         skb_put(*skb, len);
 591                 return false;
 592         case XDP_TX:
 593                 nicvf_xdp_sq_append_pkt(nic, sq, (u64)xdp.data, dma_addr, len);
 594                 return true;
 595         default:
 596                 bpf_warn_invalid_xdp_action(action);
 597                 /* fall through */
 598         case XDP_ABORTED:
 599                 trace_xdp_exception(nic->netdev, prog, action);
 600                 /* fall through */
 601         case XDP_DROP:
 602                 /* Check if it's a recycled page, if not
 603                  * unmap the DMA mapping.
 604                  *
 605                  * Recycled page holds an extra reference.
 606                  */
 607                 if (page_ref_count(page) == 1) {
 608                         dma_addr &= PAGE_MASK;
 609                         dma_unmap_page_attrs(&nic->pdev->dev, dma_addr,
 610                                              RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
 611                                              DMA_FROM_DEVICE,
 612                                              DMA_ATTR_SKIP_CPU_SYNC);
 613                 }
 614                 put_page(page);
 615                 return true;
 616         }
 617         return false;
 618 }
 619 
 620 static void nicvf_snd_ptp_handler(struct net_device *netdev,
 621                                   struct cqe_send_t *cqe_tx)
 622 {
 623         struct nicvf *nic = netdev_priv(netdev);
 624         struct skb_shared_hwtstamps ts;
 625         u64 ns;
 626 
 627         nic = nic->pnicvf;
 628 
 629         /* Sync for 'ptp_skb' */
 630         smp_rmb();
 631 
 632         /* New timestamp request can be queued now */
 633         atomic_set(&nic->tx_ptp_skbs, 0);
 634 
 635         /* Check for timestamp requested skb */
 636         if (!nic->ptp_skb)
 637                 return;
 638 
 639         /* Check if timestamping is timedout, which is set to 10us */
 640         if (cqe_tx->send_status == CQ_TX_ERROP_TSTMP_TIMEOUT ||
 641             cqe_tx->send_status == CQ_TX_ERROP_TSTMP_CONFLICT)
 642                 goto no_tstamp;
 643 
 644         /* Get the timestamp */
 645         memset(&ts, 0, sizeof(ts));
 646         ns = cavium_ptp_tstamp2time(nic->ptp_clock, cqe_tx->ptp_timestamp);
 647         ts.hwtstamp = ns_to_ktime(ns);
 648         skb_tstamp_tx(nic->ptp_skb, &ts);
 649 
 650 no_tstamp:
 651         /* Free the original skb */
 652         dev_kfree_skb_any(nic->ptp_skb);
 653         nic->ptp_skb = NULL;
 654         /* Sync 'ptp_skb' */
 655         smp_wmb();
 656 }
 657 
 658 static void nicvf_snd_pkt_handler(struct net_device *netdev,
 659                                   struct cqe_send_t *cqe_tx,
 660                                   int budget, int *subdesc_cnt,
 661                                   unsigned int *tx_pkts, unsigned int *tx_bytes)
 662 {
 663         struct sk_buff *skb = NULL;
 664         struct page *page;
 665         struct nicvf *nic = netdev_priv(netdev);
 666         struct snd_queue *sq;
 667         struct sq_hdr_subdesc *hdr;
 668         struct sq_hdr_subdesc *tso_sqe;
 669 
 670         sq = &nic->qs->sq[cqe_tx->sq_idx];
 671 
 672         hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr);
 673         if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER)
 674                 return;
 675 
 676         /* Check for errors */
 677         if (cqe_tx->send_status)
 678                 nicvf_check_cqe_tx_errs(nic->pnicvf, cqe_tx);
 679 
 680         /* Is this a XDP designated Tx queue */
 681         if (sq->is_xdp) {
 682                 page = (struct page *)sq->xdp_page[cqe_tx->sqe_ptr];
 683                 /* Check if it's recycled page or else unmap DMA mapping */
 684                 if (page && (page_ref_count(page) == 1))
 685                         nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr,
 686                                                  hdr->subdesc_cnt);
 687 
 688                 /* Release page reference for recycling */
 689                 if (page)
 690                         put_page(page);
 691                 sq->xdp_page[cqe_tx->sqe_ptr] = (u64)NULL;
 692                 *subdesc_cnt += hdr->subdesc_cnt + 1;
 693                 return;
 694         }
 695 
 696         skb = (struct sk_buff *)sq->skbuff[cqe_tx->sqe_ptr];
 697         if (skb) {
 698                 /* Check for dummy descriptor used for HW TSO offload on 88xx */
 699                 if (hdr->dont_send) {
 700                         /* Get actual TSO descriptors and free them */
 701                         tso_sqe =
 702                          (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2);
 703                         nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2,
 704                                                  tso_sqe->subdesc_cnt);
 705                         *subdesc_cnt += tso_sqe->subdesc_cnt + 1;
 706                 } else {
 707                         nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr,
 708                                                  hdr->subdesc_cnt);
 709                 }
 710                 *subdesc_cnt += hdr->subdesc_cnt + 1;
 711                 prefetch(skb);
 712                 (*tx_pkts)++;
 713                 *tx_bytes += skb->len;
 714                 /* If timestamp is requested for this skb, don't free it */
 715                 if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
 716                     !nic->pnicvf->ptp_skb)
 717                         nic->pnicvf->ptp_skb = skb;
 718                 else
 719                         napi_consume_skb(skb, budget);
 720                 sq->skbuff[cqe_tx->sqe_ptr] = (u64)NULL;
 721         } else {
 722                 /* In case of SW TSO on 88xx, only last segment will have
 723                  * a SKB attached, so just free SQEs here.
 724                  */
 725                 if (!nic->hw_tso)
 726                         *subdesc_cnt += hdr->subdesc_cnt + 1;
 727         }
 728 }
 729 
 730 static inline void nicvf_set_rxhash(struct net_device *netdev,
 731                                     struct cqe_rx_t *cqe_rx,
 732                                     struct sk_buff *skb)
 733 {
 734         u8 hash_type;
 735         u32 hash;
 736 
 737         if (!(netdev->features & NETIF_F_RXHASH))
 738                 return;
 739 
 740         switch (cqe_rx->rss_alg) {
 741         case RSS_ALG_TCP_IP:
 742         case RSS_ALG_UDP_IP:
 743                 hash_type = PKT_HASH_TYPE_L4;
 744                 hash = cqe_rx->rss_tag;
 745                 break;
 746         case RSS_ALG_IP:
 747                 hash_type = PKT_HASH_TYPE_L3;
 748                 hash = cqe_rx->rss_tag;
 749                 break;
 750         default:
 751                 hash_type = PKT_HASH_TYPE_NONE;
 752                 hash = 0;
 753         }
 754 
 755         skb_set_hash(skb, hash, hash_type);
 756 }
 757 
 758 static inline void nicvf_set_rxtstamp(struct nicvf *nic, struct sk_buff *skb)
 759 {
 760         u64 ns;
 761 
 762         if (!nic->ptp_clock || !nic->hw_rx_tstamp)
 763                 return;
 764 
 765         /* The first 8 bytes is the timestamp */
 766         ns = cavium_ptp_tstamp2time(nic->ptp_clock,
 767                                     be64_to_cpu(*(__be64 *)skb->data));
 768         skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
 769 
 770         __skb_pull(skb, 8);
 771 }
 772 
 773 static void nicvf_rcv_pkt_handler(struct net_device *netdev,
 774                                   struct napi_struct *napi,
 775                                   struct cqe_rx_t *cqe_rx,
 776                                   struct snd_queue *sq, struct rcv_queue *rq)
 777 {
 778         struct sk_buff *skb = NULL;
 779         struct nicvf *nic = netdev_priv(netdev);
 780         struct nicvf *snic = nic;
 781         int err = 0;
 782         int rq_idx;
 783 
 784         rq_idx = nicvf_netdev_qidx(nic, cqe_rx->rq_idx);
 785 
 786         if (nic->sqs_mode) {
 787                 /* Use primary VF's 'nicvf' struct */
 788                 nic = nic->pnicvf;
 789                 netdev = nic->netdev;
 790         }
 791 
 792         /* Check for errors */
 793         if (cqe_rx->err_level || cqe_rx->err_opcode) {
 794                 err = nicvf_check_cqe_rx_errs(nic, cqe_rx);
 795                 if (err && !cqe_rx->rb_cnt)
 796                         return;
 797         }
 798 
 799         /* For XDP, ignore pkts spanning multiple pages */
 800         if (nic->xdp_prog && (cqe_rx->rb_cnt == 1)) {
 801                 /* Packet consumed by XDP */
 802                 if (nicvf_xdp_rx(snic, nic->xdp_prog, cqe_rx, sq, rq, &skb))
 803                         return;
 804         } else {
 805                 skb = nicvf_get_rcv_skb(snic, cqe_rx,
 806                                         nic->xdp_prog ? true : false);
 807         }
 808 
 809         if (!skb)
 810                 return;
 811 
 812         if (netif_msg_pktdata(nic)) {
 813                 netdev_info(nic->netdev, "skb 0x%p, len=%d\n", skb, skb->len);
 814                 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 1,
 815                                skb->data, skb->len, true);
 816         }
 817 
 818         /* If error packet, drop it here */
 819         if (err) {
 820                 dev_kfree_skb_any(skb);
 821                 return;
 822         }
 823 
 824         nicvf_set_rxtstamp(nic, skb);
 825         nicvf_set_rxhash(netdev, cqe_rx, skb);
 826 
 827         skb_record_rx_queue(skb, rq_idx);
 828         if (netdev->hw_features & NETIF_F_RXCSUM) {
 829                 /* HW by default verifies TCP/UDP/SCTP checksums */
 830                 skb->ip_summed = CHECKSUM_UNNECESSARY;
 831         } else {
 832                 skb_checksum_none_assert(skb);
 833         }
 834 
 835         skb->protocol = eth_type_trans(skb, netdev);
 836 
 837         /* Check for stripped VLAN */
 838         if (cqe_rx->vlan_found && cqe_rx->vlan_stripped)
 839                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 840                                        ntohs((__force __be16)cqe_rx->vlan_tci));
 841 
 842         if (napi && (netdev->features & NETIF_F_GRO))
 843                 napi_gro_receive(napi, skb);
 844         else
 845                 netif_receive_skb(skb);
 846 }
 847 
 848 static int nicvf_cq_intr_handler(struct net_device *netdev, u8 cq_idx,
 849                                  struct napi_struct *napi, int budget)
 850 {
 851         int processed_cqe, work_done = 0, tx_done = 0;
 852         int cqe_count, cqe_head;
 853         int subdesc_cnt = 0;
 854         struct nicvf *nic = netdev_priv(netdev);
 855         struct queue_set *qs = nic->qs;
 856         struct cmp_queue *cq = &qs->cq[cq_idx];
 857         struct cqe_rx_t *cq_desc;
 858         struct netdev_queue *txq;
 859         struct snd_queue *sq = &qs->sq[cq_idx];
 860         struct rcv_queue *rq = &qs->rq[cq_idx];
 861         unsigned int tx_pkts = 0, tx_bytes = 0, txq_idx;
 862 
 863         spin_lock_bh(&cq->lock);
 864 loop:
 865         processed_cqe = 0;
 866         /* Get no of valid CQ entries to process */
 867         cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx);
 868         cqe_count &= CQ_CQE_COUNT;
 869         if (!cqe_count)
 870                 goto done;
 871 
 872         /* Get head of the valid CQ entries */
 873         cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9;
 874         cqe_head &= 0xFFFF;
 875 
 876         while (processed_cqe < cqe_count) {
 877                 /* Get the CQ descriptor */
 878                 cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head);
 879                 cqe_head++;
 880                 cqe_head &= (cq->dmem.q_len - 1);
 881                 /* Initiate prefetch for next descriptor */
 882                 prefetch((struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head));
 883 
 884                 if ((work_done >= budget) && napi &&
 885                     (cq_desc->cqe_type != CQE_TYPE_SEND)) {
 886                         break;
 887                 }
 888 
 889                 switch (cq_desc->cqe_type) {
 890                 case CQE_TYPE_RX:
 891                         nicvf_rcv_pkt_handler(netdev, napi, cq_desc, sq, rq);
 892                         work_done++;
 893                 break;
 894                 case CQE_TYPE_SEND:
 895                         nicvf_snd_pkt_handler(netdev, (void *)cq_desc,
 896                                               budget, &subdesc_cnt,
 897                                               &tx_pkts, &tx_bytes);
 898                         tx_done++;
 899                 break;
 900                 case CQE_TYPE_SEND_PTP:
 901                         nicvf_snd_ptp_handler(netdev, (void *)cq_desc);
 902                 break;
 903                 case CQE_TYPE_INVALID:
 904                 case CQE_TYPE_RX_SPLIT:
 905                 case CQE_TYPE_RX_TCP:
 906                         /* Ignore for now */
 907                 break;
 908                 }
 909                 processed_cqe++;
 910         }
 911 
 912         /* Ring doorbell to inform H/W to reuse processed CQEs */
 913         nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR,
 914                               cq_idx, processed_cqe);
 915 
 916         if ((work_done < budget) && napi)
 917                 goto loop;
 918 
 919 done:
 920         /* Update SQ's descriptor free count */
 921         if (subdesc_cnt)
 922                 nicvf_put_sq_desc(sq, subdesc_cnt);
 923 
 924         txq_idx = nicvf_netdev_qidx(nic, cq_idx);
 925         /* Handle XDP TX queues */
 926         if (nic->pnicvf->xdp_prog) {
 927                 if (txq_idx < nic->pnicvf->xdp_tx_queues) {
 928                         nicvf_xdp_sq_doorbell(nic, sq, cq_idx);
 929                         goto out;
 930                 }
 931                 nic = nic->pnicvf;
 932                 txq_idx -= nic->pnicvf->xdp_tx_queues;
 933         }
 934 
 935         /* Wakeup TXQ if its stopped earlier due to SQ full */
 936         if (tx_done ||
 937             (atomic_read(&sq->free_cnt) >= MIN_SQ_DESC_PER_PKT_XMIT)) {
 938                 netdev = nic->pnicvf->netdev;
 939                 txq = netdev_get_tx_queue(netdev, txq_idx);
 940                 if (tx_pkts)
 941                         netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
 942 
 943                 /* To read updated queue and carrier status */
 944                 smp_mb();
 945                 if (netif_tx_queue_stopped(txq) && netif_carrier_ok(netdev)) {
 946                         netif_tx_wake_queue(txq);
 947                         nic = nic->pnicvf;
 948                         this_cpu_inc(nic->drv_stats->txq_wake);
 949                         netif_warn(nic, tx_err, netdev,
 950                                    "Transmit queue wakeup SQ%d\n", txq_idx);
 951                 }
 952         }
 953 
 954 out:
 955         spin_unlock_bh(&cq->lock);
 956         return work_done;
 957 }
 958 
 959 static int nicvf_poll(struct napi_struct *napi, int budget)
 960 {
 961         u64  cq_head;
 962         int  work_done = 0;
 963         struct net_device *netdev = napi->dev;
 964         struct nicvf *nic = netdev_priv(netdev);
 965         struct nicvf_cq_poll *cq;
 966 
 967         cq = container_of(napi, struct nicvf_cq_poll, napi);
 968         work_done = nicvf_cq_intr_handler(netdev, cq->cq_idx, napi, budget);
 969 
 970         if (work_done < budget) {
 971                 /* Slow packet rate, exit polling */
 972                 napi_complete_done(napi, work_done);
 973                 /* Re-enable interrupts */
 974                 cq_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD,
 975                                                cq->cq_idx);
 976                 nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
 977                 nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_HEAD,
 978                                       cq->cq_idx, cq_head);
 979                 nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
 980         }
 981         return work_done;
 982 }
 983 
 984 /* Qset error interrupt handler
 985  *
 986  * As of now only CQ errors are handled
 987  */
 988 static void nicvf_handle_qs_err(unsigned long data)
 989 {
 990         struct nicvf *nic = (struct nicvf *)data;
 991         struct queue_set *qs = nic->qs;
 992         int qidx;
 993         u64 status;
 994 
 995         netif_tx_disable(nic->netdev);
 996 
 997         /* Check if it is CQ err */
 998         for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
 999                 status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS,
1000                                               qidx);
1001                 if (!(status & CQ_ERR_MASK))
1002                         continue;
1003                 /* Process already queued CQEs and reconfig CQ */
1004                 nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1005                 nicvf_sq_disable(nic, qidx);
1006                 nicvf_cq_intr_handler(nic->netdev, qidx, NULL, 0);
1007                 nicvf_cmp_queue_config(nic, qs, qidx, true);
1008                 nicvf_sq_free_used_descs(nic->netdev, &qs->sq[qidx], qidx);
1009                 nicvf_sq_enable(nic, &qs->sq[qidx], qidx);
1010 
1011                 nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
1012         }
1013 
1014         netif_tx_start_all_queues(nic->netdev);
1015         /* Re-enable Qset error interrupt */
1016         nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
1017 }
1018 
1019 static void nicvf_dump_intr_status(struct nicvf *nic)
1020 {
1021         netif_info(nic, intr, nic->netdev, "interrupt status 0x%llx\n",
1022                    nicvf_reg_read(nic, NIC_VF_INT));
1023 }
1024 
1025 static irqreturn_t nicvf_misc_intr_handler(int irq, void *nicvf_irq)
1026 {
1027         struct nicvf *nic = (struct nicvf *)nicvf_irq;
1028         u64 intr;
1029 
1030         nicvf_dump_intr_status(nic);
1031 
1032         intr = nicvf_reg_read(nic, NIC_VF_INT);
1033         /* Check for spurious interrupt */
1034         if (!(intr & NICVF_INTR_MBOX_MASK))
1035                 return IRQ_HANDLED;
1036 
1037         nicvf_handle_mbx_intr(nic);
1038 
1039         return IRQ_HANDLED;
1040 }
1041 
1042 static irqreturn_t nicvf_intr_handler(int irq, void *cq_irq)
1043 {
1044         struct nicvf_cq_poll *cq_poll = (struct nicvf_cq_poll *)cq_irq;
1045         struct nicvf *nic = cq_poll->nicvf;
1046         int qidx = cq_poll->cq_idx;
1047 
1048         nicvf_dump_intr_status(nic);
1049 
1050         /* Disable interrupts */
1051         nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1052 
1053         /* Schedule NAPI */
1054         napi_schedule_irqoff(&cq_poll->napi);
1055 
1056         /* Clear interrupt */
1057         nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
1058 
1059         return IRQ_HANDLED;
1060 }
1061 
1062 static irqreturn_t nicvf_rbdr_intr_handler(int irq, void *nicvf_irq)
1063 {
1064         struct nicvf *nic = (struct nicvf *)nicvf_irq;
1065         u8 qidx;
1066 
1067 
1068         nicvf_dump_intr_status(nic);
1069 
1070         /* Disable RBDR interrupt and schedule softirq */
1071         for (qidx = 0; qidx < nic->qs->rbdr_cnt; qidx++) {
1072                 if (!nicvf_is_intr_enabled(nic, NICVF_INTR_RBDR, qidx))
1073                         continue;
1074                 nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
1075                 tasklet_hi_schedule(&nic->rbdr_task);
1076                 /* Clear interrupt */
1077                 nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
1078         }
1079 
1080         return IRQ_HANDLED;
1081 }
1082 
1083 static irqreturn_t nicvf_qs_err_intr_handler(int irq, void *nicvf_irq)
1084 {
1085         struct nicvf *nic = (struct nicvf *)nicvf_irq;
1086 
1087         nicvf_dump_intr_status(nic);
1088 
1089         /* Disable Qset err interrupt and schedule softirq */
1090         nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
1091         tasklet_hi_schedule(&nic->qs_err_task);
1092         nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
1093 
1094         return IRQ_HANDLED;
1095 }
1096 
1097 static void nicvf_set_irq_affinity(struct nicvf *nic)
1098 {
1099         int vec, cpu;
1100 
1101         for (vec = 0; vec < nic->num_vec; vec++) {
1102                 if (!nic->irq_allocated[vec])
1103                         continue;
1104 
1105                 if (!zalloc_cpumask_var(&nic->affinity_mask[vec], GFP_KERNEL))
1106                         return;
1107                  /* CQ interrupts */
1108                 if (vec < NICVF_INTR_ID_SQ)
1109                         /* Leave CPU0 for RBDR and other interrupts */
1110                         cpu = nicvf_netdev_qidx(nic, vec) + 1;
1111                 else
1112                         cpu = 0;
1113 
1114                 cpumask_set_cpu(cpumask_local_spread(cpu, nic->node),
1115                                 nic->affinity_mask[vec]);
1116                 irq_set_affinity_hint(pci_irq_vector(nic->pdev, vec),
1117                                       nic->affinity_mask[vec]);
1118         }
1119 }
1120 
1121 static int nicvf_register_interrupts(struct nicvf *nic)
1122 {
1123         int irq, ret = 0;
1124 
1125         for_each_cq_irq(irq)
1126                 sprintf(nic->irq_name[irq], "%s-rxtx-%d",
1127                         nic->pnicvf->netdev->name,
1128                         nicvf_netdev_qidx(nic, irq));
1129 
1130         for_each_sq_irq(irq)
1131                 sprintf(nic->irq_name[irq], "%s-sq-%d",
1132                         nic->pnicvf->netdev->name,
1133                         nicvf_netdev_qidx(nic, irq - NICVF_INTR_ID_SQ));
1134 
1135         for_each_rbdr_irq(irq)
1136                 sprintf(nic->irq_name[irq], "%s-rbdr-%d",
1137                         nic->pnicvf->netdev->name,
1138                         nic->sqs_mode ? (nic->sqs_id + 1) : 0);
1139 
1140         /* Register CQ interrupts */
1141         for (irq = 0; irq < nic->qs->cq_cnt; irq++) {
1142                 ret = request_irq(pci_irq_vector(nic->pdev, irq),
1143                                   nicvf_intr_handler,
1144                                   0, nic->irq_name[irq], nic->napi[irq]);
1145                 if (ret)
1146                         goto err;
1147                 nic->irq_allocated[irq] = true;
1148         }
1149 
1150         /* Register RBDR interrupt */
1151         for (irq = NICVF_INTR_ID_RBDR;
1152              irq < (NICVF_INTR_ID_RBDR + nic->qs->rbdr_cnt); irq++) {
1153                 ret = request_irq(pci_irq_vector(nic->pdev, irq),
1154                                   nicvf_rbdr_intr_handler,
1155                                   0, nic->irq_name[irq], nic);
1156                 if (ret)
1157                         goto err;
1158                 nic->irq_allocated[irq] = true;
1159         }
1160 
1161         /* Register QS error interrupt */
1162         sprintf(nic->irq_name[NICVF_INTR_ID_QS_ERR], "%s-qset-err-%d",
1163                 nic->pnicvf->netdev->name,
1164                 nic->sqs_mode ? (nic->sqs_id + 1) : 0);
1165         irq = NICVF_INTR_ID_QS_ERR;
1166         ret = request_irq(pci_irq_vector(nic->pdev, irq),
1167                           nicvf_qs_err_intr_handler,
1168                           0, nic->irq_name[irq], nic);
1169         if (ret)
1170                 goto err;
1171 
1172         nic->irq_allocated[irq] = true;
1173 
1174         /* Set IRQ affinities */
1175         nicvf_set_irq_affinity(nic);
1176 
1177 err:
1178         if (ret)
1179                 netdev_err(nic->netdev, "request_irq failed, vector %d\n", irq);
1180 
1181         return ret;
1182 }
1183 
1184 static void nicvf_unregister_interrupts(struct nicvf *nic)
1185 {
1186         struct pci_dev *pdev = nic->pdev;
1187         int irq;
1188 
1189         /* Free registered interrupts */
1190         for (irq = 0; irq < nic->num_vec; irq++) {
1191                 if (!nic->irq_allocated[irq])
1192                         continue;
1193 
1194                 irq_set_affinity_hint(pci_irq_vector(pdev, irq), NULL);
1195                 free_cpumask_var(nic->affinity_mask[irq]);
1196 
1197                 if (irq < NICVF_INTR_ID_SQ)
1198                         free_irq(pci_irq_vector(pdev, irq), nic->napi[irq]);
1199                 else
1200                         free_irq(pci_irq_vector(pdev, irq), nic);
1201 
1202                 nic->irq_allocated[irq] = false;
1203         }
1204 
1205         /* Disable MSI-X */
1206         pci_free_irq_vectors(pdev);
1207         nic->num_vec = 0;
1208 }
1209 
1210 /* Initialize MSIX vectors and register MISC interrupt.
1211  * Send READY message to PF to check if its alive
1212  */
1213 static int nicvf_register_misc_interrupt(struct nicvf *nic)
1214 {
1215         int ret = 0;
1216         int irq = NICVF_INTR_ID_MISC;
1217 
1218         /* Return if mailbox interrupt is already registered */
1219         if (nic->pdev->msix_enabled)
1220                 return 0;
1221 
1222         /* Enable MSI-X */
1223         nic->num_vec = pci_msix_vec_count(nic->pdev);
1224         ret = pci_alloc_irq_vectors(nic->pdev, nic->num_vec, nic->num_vec,
1225                                     PCI_IRQ_MSIX);
1226         if (ret < 0) {
1227                 netdev_err(nic->netdev,
1228                            "Req for #%d msix vectors failed\n", nic->num_vec);
1229                 return 1;
1230         }
1231 
1232         sprintf(nic->irq_name[irq], "%s Mbox", "NICVF");
1233         /* Register Misc interrupt */
1234         ret = request_irq(pci_irq_vector(nic->pdev, irq),
1235                           nicvf_misc_intr_handler, 0, nic->irq_name[irq], nic);
1236 
1237         if (ret)
1238                 return ret;
1239         nic->irq_allocated[irq] = true;
1240 
1241         /* Enable mailbox interrupt */
1242         nicvf_enable_intr(nic, NICVF_INTR_MBOX, 0);
1243 
1244         /* Check if VF is able to communicate with PF */
1245         if (!nicvf_check_pf_ready(nic)) {
1246                 nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1247                 nicvf_unregister_interrupts(nic);
1248                 return 1;
1249         }
1250 
1251         return 0;
1252 }
1253 
1254 static netdev_tx_t nicvf_xmit(struct sk_buff *skb, struct net_device *netdev)
1255 {
1256         struct nicvf *nic = netdev_priv(netdev);
1257         int qid = skb_get_queue_mapping(skb);
1258         struct netdev_queue *txq = netdev_get_tx_queue(netdev, qid);
1259         struct nicvf *snic;
1260         struct snd_queue *sq;
1261         int tmp;
1262 
1263         /* Check for minimum packet length */
1264         if (skb->len <= ETH_HLEN) {
1265                 dev_kfree_skb(skb);
1266                 return NETDEV_TX_OK;
1267         }
1268 
1269         /* In XDP case, initial HW tx queues are used for XDP,
1270          * but stack's queue mapping starts at '0', so skip the
1271          * Tx queues attached to Rx queues for XDP.
1272          */
1273         if (nic->xdp_prog)
1274                 qid += nic->xdp_tx_queues;
1275 
1276         snic = nic;
1277         /* Get secondary Qset's SQ structure */
1278         if (qid >= MAX_SND_QUEUES_PER_QS) {
1279                 tmp = qid / MAX_SND_QUEUES_PER_QS;
1280                 snic = (struct nicvf *)nic->snicvf[tmp - 1];
1281                 if (!snic) {
1282                         netdev_warn(nic->netdev,
1283                                     "Secondary Qset#%d's ptr not initialized\n",
1284                                     tmp - 1);
1285                         dev_kfree_skb(skb);
1286                         return NETDEV_TX_OK;
1287                 }
1288                 qid = qid % MAX_SND_QUEUES_PER_QS;
1289         }
1290 
1291         sq = &snic->qs->sq[qid];
1292         if (!netif_tx_queue_stopped(txq) &&
1293             !nicvf_sq_append_skb(snic, sq, skb, qid)) {
1294                 netif_tx_stop_queue(txq);
1295 
1296                 /* Barrier, so that stop_queue visible to other cpus */
1297                 smp_mb();
1298 
1299                 /* Check again, incase another cpu freed descriptors */
1300                 if (atomic_read(&sq->free_cnt) > MIN_SQ_DESC_PER_PKT_XMIT) {
1301                         netif_tx_wake_queue(txq);
1302                 } else {
1303                         this_cpu_inc(nic->drv_stats->txq_stop);
1304                         netif_warn(nic, tx_err, netdev,
1305                                    "Transmit ring full, stopping SQ%d\n", qid);
1306                 }
1307                 return NETDEV_TX_BUSY;
1308         }
1309 
1310         return NETDEV_TX_OK;
1311 }
1312 
1313 static inline void nicvf_free_cq_poll(struct nicvf *nic)
1314 {
1315         struct nicvf_cq_poll *cq_poll;
1316         int qidx;
1317 
1318         for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
1319                 cq_poll = nic->napi[qidx];
1320                 if (!cq_poll)
1321                         continue;
1322                 nic->napi[qidx] = NULL;
1323                 kfree(cq_poll);
1324         }
1325 }
1326 
1327 int nicvf_stop(struct net_device *netdev)
1328 {
1329         int irq, qidx;
1330         struct nicvf *nic = netdev_priv(netdev);
1331         struct queue_set *qs = nic->qs;
1332         struct nicvf_cq_poll *cq_poll = NULL;
1333         union nic_mbx mbx = {};
1334 
1335         /* wait till all queued set_rx_mode tasks completes */
1336         if (nic->nicvf_rx_mode_wq) {
1337                 cancel_delayed_work_sync(&nic->link_change_work);
1338                 drain_workqueue(nic->nicvf_rx_mode_wq);
1339         }
1340 
1341         mbx.msg.msg = NIC_MBOX_MSG_SHUTDOWN;
1342         nicvf_send_msg_to_pf(nic, &mbx);
1343 
1344         netif_carrier_off(netdev);
1345         netif_tx_stop_all_queues(nic->netdev);
1346         nic->link_up = false;
1347 
1348         /* Teardown secondary qsets first */
1349         if (!nic->sqs_mode) {
1350                 for (qidx = 0; qidx < nic->sqs_count; qidx++) {
1351                         if (!nic->snicvf[qidx])
1352                                 continue;
1353                         nicvf_stop(nic->snicvf[qidx]->netdev);
1354                         nic->snicvf[qidx] = NULL;
1355                 }
1356         }
1357 
1358         /* Disable RBDR & QS error interrupts */
1359         for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1360                 nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
1361                 nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
1362         }
1363         nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
1364         nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
1365 
1366         /* Wait for pending IRQ handlers to finish */
1367         for (irq = 0; irq < nic->num_vec; irq++)
1368                 synchronize_irq(pci_irq_vector(nic->pdev, irq));
1369 
1370         tasklet_kill(&nic->rbdr_task);
1371         tasklet_kill(&nic->qs_err_task);
1372         if (nic->rb_work_scheduled)
1373                 cancel_delayed_work_sync(&nic->rbdr_work);
1374 
1375         for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
1376                 cq_poll = nic->napi[qidx];
1377                 if (!cq_poll)
1378                         continue;
1379                 napi_synchronize(&cq_poll->napi);
1380                 /* CQ intr is enabled while napi_complete,
1381                  * so disable it now
1382                  */
1383                 nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1384                 nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
1385                 napi_disable(&cq_poll->napi);
1386                 netif_napi_del(&cq_poll->napi);
1387         }
1388 
1389         netif_tx_disable(netdev);
1390 
1391         for (qidx = 0; qidx < netdev->num_tx_queues; qidx++)
1392                 netdev_tx_reset_queue(netdev_get_tx_queue(netdev, qidx));
1393 
1394         /* Free resources */
1395         nicvf_config_data_transfer(nic, false);
1396 
1397         /* Disable HW Qset */
1398         nicvf_qset_config(nic, false);
1399 
1400         /* disable mailbox interrupt */
1401         nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1402 
1403         nicvf_unregister_interrupts(nic);
1404 
1405         nicvf_free_cq_poll(nic);
1406 
1407         /* Free any pending SKB saved to receive timestamp */
1408         if (nic->ptp_skb) {
1409                 dev_kfree_skb_any(nic->ptp_skb);
1410                 nic->ptp_skb = NULL;
1411         }
1412 
1413         /* Clear multiqset info */
1414         nic->pnicvf = nic;
1415 
1416         return 0;
1417 }
1418 
1419 static int nicvf_config_hw_rx_tstamp(struct nicvf *nic, bool enable)
1420 {
1421         union nic_mbx mbx = {};
1422 
1423         mbx.ptp.msg = NIC_MBOX_MSG_PTP_CFG;
1424         mbx.ptp.enable = enable;
1425 
1426         return nicvf_send_msg_to_pf(nic, &mbx);
1427 }
1428 
1429 static int nicvf_update_hw_max_frs(struct nicvf *nic, int mtu)
1430 {
1431         union nic_mbx mbx = {};
1432 
1433         mbx.frs.msg = NIC_MBOX_MSG_SET_MAX_FRS;
1434         mbx.frs.max_frs = mtu;
1435         mbx.frs.vf_id = nic->vf_id;
1436 
1437         return nicvf_send_msg_to_pf(nic, &mbx);
1438 }
1439 
1440 static void nicvf_link_status_check_task(struct work_struct *work_arg)
1441 {
1442         struct nicvf *nic = container_of(work_arg,
1443                                          struct nicvf,
1444                                          link_change_work.work);
1445         union nic_mbx mbx = {};
1446         mbx.msg.msg = NIC_MBOX_MSG_BGX_LINK_CHANGE;
1447         nicvf_send_msg_to_pf(nic, &mbx);
1448         queue_delayed_work(nic->nicvf_rx_mode_wq,
1449                            &nic->link_change_work, 2 * HZ);
1450 }
1451 
1452 int nicvf_open(struct net_device *netdev)
1453 {
1454         int cpu, err, qidx;
1455         struct nicvf *nic = netdev_priv(netdev);
1456         struct queue_set *qs = nic->qs;
1457         struct nicvf_cq_poll *cq_poll = NULL;
1458 
1459         /* wait till all queued set_rx_mode tasks completes if any */
1460         if (nic->nicvf_rx_mode_wq)
1461                 drain_workqueue(nic->nicvf_rx_mode_wq);
1462 
1463         netif_carrier_off(netdev);
1464 
1465         err = nicvf_register_misc_interrupt(nic);
1466         if (err)
1467                 return err;
1468 
1469         /* Register NAPI handler for processing CQEs */
1470         for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1471                 cq_poll = kzalloc(sizeof(*cq_poll), GFP_KERNEL);
1472                 if (!cq_poll) {
1473                         err = -ENOMEM;
1474                         goto napi_del;
1475                 }
1476                 cq_poll->cq_idx = qidx;
1477                 cq_poll->nicvf = nic;
1478                 netif_napi_add(netdev, &cq_poll->napi, nicvf_poll,
1479                                NAPI_POLL_WEIGHT);
1480                 napi_enable(&cq_poll->napi);
1481                 nic->napi[qidx] = cq_poll;
1482         }
1483 
1484         /* Check if we got MAC address from PF or else generate a radom MAC */
1485         if (!nic->sqs_mode && is_zero_ether_addr(netdev->dev_addr)) {
1486                 eth_hw_addr_random(netdev);
1487                 nicvf_hw_set_mac_addr(nic, netdev);
1488         }
1489 
1490         if (nic->set_mac_pending) {
1491                 nic->set_mac_pending = false;
1492                 nicvf_hw_set_mac_addr(nic, netdev);
1493         }
1494 
1495         /* Init tasklet for handling Qset err interrupt */
1496         tasklet_init(&nic->qs_err_task, nicvf_handle_qs_err,
1497                      (unsigned long)nic);
1498 
1499         /* Init RBDR tasklet which will refill RBDR */
1500         tasklet_init(&nic->rbdr_task, nicvf_rbdr_task,
1501                      (unsigned long)nic);
1502         INIT_DELAYED_WORK(&nic->rbdr_work, nicvf_rbdr_work);
1503 
1504         /* Configure CPI alorithm */
1505         nic->cpi_alg = cpi_alg;
1506         if (!nic->sqs_mode)
1507                 nicvf_config_cpi(nic);
1508 
1509         nicvf_request_sqs(nic);
1510         if (nic->sqs_mode)
1511                 nicvf_get_primary_vf_struct(nic);
1512 
1513         /* Configure PTP timestamp */
1514         if (nic->ptp_clock)
1515                 nicvf_config_hw_rx_tstamp(nic, nic->hw_rx_tstamp);
1516         atomic_set(&nic->tx_ptp_skbs, 0);
1517         nic->ptp_skb = NULL;
1518 
1519         /* Configure receive side scaling and MTU */
1520         if (!nic->sqs_mode) {
1521                 nicvf_rss_init(nic);
1522                 err = nicvf_update_hw_max_frs(nic, netdev->mtu);
1523                 if (err)
1524                         goto cleanup;
1525 
1526                 /* Clear percpu stats */
1527                 for_each_possible_cpu(cpu)
1528                         memset(per_cpu_ptr(nic->drv_stats, cpu), 0,
1529                                sizeof(struct nicvf_drv_stats));
1530         }
1531 
1532         err = nicvf_register_interrupts(nic);
1533         if (err)
1534                 goto cleanup;
1535 
1536         /* Initialize the queues */
1537         err = nicvf_init_resources(nic);
1538         if (err)
1539                 goto cleanup;
1540 
1541         /* Make sure queue initialization is written */
1542         wmb();
1543 
1544         nicvf_reg_write(nic, NIC_VF_INT, -1);
1545         /* Enable Qset err interrupt */
1546         nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
1547 
1548         /* Enable completion queue interrupt */
1549         for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1550                 nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
1551 
1552         /* Enable RBDR threshold interrupt */
1553         for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1554                 nicvf_enable_intr(nic, NICVF_INTR_RBDR, qidx);
1555 
1556         /* Send VF config done msg to PF */
1557         nicvf_send_cfg_done(nic);
1558 
1559         if (nic->nicvf_rx_mode_wq) {
1560                 INIT_DELAYED_WORK(&nic->link_change_work,
1561                                   nicvf_link_status_check_task);
1562                 queue_delayed_work(nic->nicvf_rx_mode_wq,
1563                                    &nic->link_change_work, 0);
1564         }
1565 
1566         return 0;
1567 cleanup:
1568         nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1569         nicvf_unregister_interrupts(nic);
1570         tasklet_kill(&nic->qs_err_task);
1571         tasklet_kill(&nic->rbdr_task);
1572 napi_del:
1573         for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1574                 cq_poll = nic->napi[qidx];
1575                 if (!cq_poll)
1576                         continue;
1577                 napi_disable(&cq_poll->napi);
1578                 netif_napi_del(&cq_poll->napi);
1579         }
1580         nicvf_free_cq_poll(nic);
1581         return err;
1582 }
1583 
1584 static int nicvf_change_mtu(struct net_device *netdev, int new_mtu)
1585 {
1586         struct nicvf *nic = netdev_priv(netdev);
1587         int orig_mtu = netdev->mtu;
1588 
1589         /* For now just support only the usual MTU sized frames,
1590          * plus some headroom for VLAN, QinQ.
1591          */
1592         if (nic->xdp_prog && new_mtu > MAX_XDP_MTU) {
1593                 netdev_warn(netdev, "Jumbo frames not yet supported with XDP, current MTU %d.\n",
1594                             netdev->mtu);
1595                 return -EINVAL;
1596         }
1597 
1598         netdev->mtu = new_mtu;
1599 
1600         if (!netif_running(netdev))
1601                 return 0;
1602 
1603         if (nicvf_update_hw_max_frs(nic, new_mtu)) {
1604                 netdev->mtu = orig_mtu;
1605                 return -EINVAL;
1606         }
1607 
1608         return 0;
1609 }
1610 
1611 static int nicvf_set_mac_address(struct net_device *netdev, void *p)
1612 {
1613         struct sockaddr *addr = p;
1614         struct nicvf *nic = netdev_priv(netdev);
1615 
1616         if (!is_valid_ether_addr(addr->sa_data))
1617                 return -EADDRNOTAVAIL;
1618 
1619         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1620 
1621         if (nic->pdev->msix_enabled) {
1622                 if (nicvf_hw_set_mac_addr(nic, netdev))
1623                         return -EBUSY;
1624         } else {
1625                 nic->set_mac_pending = true;
1626         }
1627 
1628         return 0;
1629 }
1630 
1631 void nicvf_update_lmac_stats(struct nicvf *nic)
1632 {
1633         int stat = 0;
1634         union nic_mbx mbx = {};
1635 
1636         if (!netif_running(nic->netdev))
1637                 return;
1638 
1639         mbx.bgx_stats.msg = NIC_MBOX_MSG_BGX_STATS;
1640         mbx.bgx_stats.vf_id = nic->vf_id;
1641         /* Rx stats */
1642         mbx.bgx_stats.rx = 1;
1643         while (stat < BGX_RX_STATS_COUNT) {
1644                 mbx.bgx_stats.idx = stat;
1645                 if (nicvf_send_msg_to_pf(nic, &mbx))
1646                         return;
1647                 stat++;
1648         }
1649 
1650         stat = 0;
1651 
1652         /* Tx stats */
1653         mbx.bgx_stats.rx = 0;
1654         while (stat < BGX_TX_STATS_COUNT) {
1655                 mbx.bgx_stats.idx = stat;
1656                 if (nicvf_send_msg_to_pf(nic, &mbx))
1657                         return;
1658                 stat++;
1659         }
1660 }
1661 
1662 void nicvf_update_stats(struct nicvf *nic)
1663 {
1664         int qidx, cpu;
1665         u64 tmp_stats = 0;
1666         struct nicvf_hw_stats *stats = &nic->hw_stats;
1667         struct nicvf_drv_stats *drv_stats;
1668         struct queue_set *qs = nic->qs;
1669 
1670 #define GET_RX_STATS(reg) \
1671         nicvf_reg_read(nic, NIC_VNIC_RX_STAT_0_13 | (reg << 3))
1672 #define GET_TX_STATS(reg) \
1673         nicvf_reg_read(nic, NIC_VNIC_TX_STAT_0_4 | (reg << 3))
1674 
1675         stats->rx_bytes = GET_RX_STATS(RX_OCTS);
1676         stats->rx_ucast_frames = GET_RX_STATS(RX_UCAST);
1677         stats->rx_bcast_frames = GET_RX_STATS(RX_BCAST);
1678         stats->rx_mcast_frames = GET_RX_STATS(RX_MCAST);
1679         stats->rx_fcs_errors = GET_RX_STATS(RX_FCS);
1680         stats->rx_l2_errors = GET_RX_STATS(RX_L2ERR);
1681         stats->rx_drop_red = GET_RX_STATS(RX_RED);
1682         stats->rx_drop_red_bytes = GET_RX_STATS(RX_RED_OCTS);
1683         stats->rx_drop_overrun = GET_RX_STATS(RX_ORUN);
1684         stats->rx_drop_overrun_bytes = GET_RX_STATS(RX_ORUN_OCTS);
1685         stats->rx_drop_bcast = GET_RX_STATS(RX_DRP_BCAST);
1686         stats->rx_drop_mcast = GET_RX_STATS(RX_DRP_MCAST);
1687         stats->rx_drop_l3_bcast = GET_RX_STATS(RX_DRP_L3BCAST);
1688         stats->rx_drop_l3_mcast = GET_RX_STATS(RX_DRP_L3MCAST);
1689 
1690         stats->tx_bytes = GET_TX_STATS(TX_OCTS);
1691         stats->tx_ucast_frames = GET_TX_STATS(TX_UCAST);
1692         stats->tx_bcast_frames = GET_TX_STATS(TX_BCAST);
1693         stats->tx_mcast_frames = GET_TX_STATS(TX_MCAST);
1694         stats->tx_drops = GET_TX_STATS(TX_DROP);
1695 
1696         /* On T88 pass 2.0, the dummy SQE added for TSO notification
1697          * via CQE has 'dont_send' set. Hence HW drops the pkt pointed
1698          * pointed by dummy SQE and results in tx_drops counter being
1699          * incremented. Subtracting it from tx_tso counter will give
1700          * exact tx_drops counter.
1701          */
1702         if (nic->t88 && nic->hw_tso) {
1703                 for_each_possible_cpu(cpu) {
1704                         drv_stats = per_cpu_ptr(nic->drv_stats, cpu);
1705                         tmp_stats += drv_stats->tx_tso;
1706                 }
1707                 stats->tx_drops = tmp_stats - stats->tx_drops;
1708         }
1709         stats->tx_frames = stats->tx_ucast_frames +
1710                            stats->tx_bcast_frames +
1711                            stats->tx_mcast_frames;
1712         stats->rx_frames = stats->rx_ucast_frames +
1713                            stats->rx_bcast_frames +
1714                            stats->rx_mcast_frames;
1715         stats->rx_drops = stats->rx_drop_red +
1716                           stats->rx_drop_overrun;
1717 
1718         /* Update RQ and SQ stats */
1719         for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1720                 nicvf_update_rq_stats(nic, qidx);
1721         for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1722                 nicvf_update_sq_stats(nic, qidx);
1723 }
1724 
1725 static void nicvf_get_stats64(struct net_device *netdev,
1726                               struct rtnl_link_stats64 *stats)
1727 {
1728         struct nicvf *nic = netdev_priv(netdev);
1729         struct nicvf_hw_stats *hw_stats = &nic->hw_stats;
1730 
1731         nicvf_update_stats(nic);
1732 
1733         stats->rx_bytes = hw_stats->rx_bytes;
1734         stats->rx_packets = hw_stats->rx_frames;
1735         stats->rx_dropped = hw_stats->rx_drops;
1736         stats->multicast = hw_stats->rx_mcast_frames;
1737 
1738         stats->tx_bytes = hw_stats->tx_bytes;
1739         stats->tx_packets = hw_stats->tx_frames;
1740         stats->tx_dropped = hw_stats->tx_drops;
1741 
1742 }
1743 
1744 static void nicvf_tx_timeout(struct net_device *dev)
1745 {
1746         struct nicvf *nic = netdev_priv(dev);
1747 
1748         netif_warn(nic, tx_err, dev, "Transmit timed out, resetting\n");
1749 
1750         this_cpu_inc(nic->drv_stats->tx_timeout);
1751         schedule_work(&nic->reset_task);
1752 }
1753 
1754 static void nicvf_reset_task(struct work_struct *work)
1755 {
1756         struct nicvf *nic;
1757 
1758         nic = container_of(work, struct nicvf, reset_task);
1759 
1760         if (!netif_running(nic->netdev))
1761                 return;
1762 
1763         nicvf_stop(nic->netdev);
1764         nicvf_open(nic->netdev);
1765         netif_trans_update(nic->netdev);
1766 }
1767 
1768 static int nicvf_config_loopback(struct nicvf *nic,
1769                                  netdev_features_t features)
1770 {
1771         union nic_mbx mbx = {};
1772 
1773         mbx.lbk.msg = NIC_MBOX_MSG_LOOPBACK;
1774         mbx.lbk.vf_id = nic->vf_id;
1775         mbx.lbk.enable = (features & NETIF_F_LOOPBACK) != 0;
1776 
1777         return nicvf_send_msg_to_pf(nic, &mbx);
1778 }
1779 
1780 static netdev_features_t nicvf_fix_features(struct net_device *netdev,
1781                                             netdev_features_t features)
1782 {
1783         struct nicvf *nic = netdev_priv(netdev);
1784 
1785         if ((features & NETIF_F_LOOPBACK) &&
1786             netif_running(netdev) && !nic->loopback_supported)
1787                 features &= ~NETIF_F_LOOPBACK;
1788 
1789         return features;
1790 }
1791 
1792 static int nicvf_set_features(struct net_device *netdev,
1793                               netdev_features_t features)
1794 {
1795         struct nicvf *nic = netdev_priv(netdev);
1796         netdev_features_t changed = features ^ netdev->features;
1797 
1798         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1799                 nicvf_config_vlan_stripping(nic, features);
1800 
1801         if ((changed & NETIF_F_LOOPBACK) && netif_running(netdev))
1802                 return nicvf_config_loopback(nic, features);
1803 
1804         return 0;
1805 }
1806 
1807 static void nicvf_set_xdp_queues(struct nicvf *nic, bool bpf_attached)
1808 {
1809         u8 cq_count, txq_count;
1810 
1811         /* Set XDP Tx queue count same as Rx queue count */
1812         if (!bpf_attached)
1813                 nic->xdp_tx_queues = 0;
1814         else
1815                 nic->xdp_tx_queues = nic->rx_queues;
1816 
1817         /* If queue count > MAX_CMP_QUEUES_PER_QS, then additional qsets
1818          * needs to be allocated, check how many.
1819          */
1820         txq_count = nic->xdp_tx_queues + nic->tx_queues;
1821         cq_count = max(nic->rx_queues, txq_count);
1822         if (cq_count > MAX_CMP_QUEUES_PER_QS) {
1823                 nic->sqs_count = roundup(cq_count, MAX_CMP_QUEUES_PER_QS);
1824                 nic->sqs_count = (nic->sqs_count / MAX_CMP_QUEUES_PER_QS) - 1;
1825         } else {
1826                 nic->sqs_count = 0;
1827         }
1828 
1829         /* Set primary Qset's resources */
1830         nic->qs->rq_cnt = min_t(u8, nic->rx_queues, MAX_RCV_QUEUES_PER_QS);
1831         nic->qs->sq_cnt = min_t(u8, txq_count, MAX_SND_QUEUES_PER_QS);
1832         nic->qs->cq_cnt = max_t(u8, nic->qs->rq_cnt, nic->qs->sq_cnt);
1833 
1834         /* Update stack */
1835         nicvf_set_real_num_queues(nic->netdev, nic->tx_queues, nic->rx_queues);
1836 }
1837 
1838 static int nicvf_xdp_setup(struct nicvf *nic, struct bpf_prog *prog)
1839 {
1840         struct net_device *dev = nic->netdev;
1841         bool if_up = netif_running(nic->netdev);
1842         struct bpf_prog *old_prog;
1843         bool bpf_attached = false;
1844         int ret = 0;
1845 
1846         /* For now just support only the usual MTU sized frames,
1847          * plus some headroom for VLAN, QinQ.
1848          */
1849         if (prog && dev->mtu > MAX_XDP_MTU) {
1850                 netdev_warn(dev, "Jumbo frames not yet supported with XDP, current MTU %d.\n",
1851                             dev->mtu);
1852                 return -EOPNOTSUPP;
1853         }
1854 
1855         /* ALL SQs attached to CQs i.e same as RQs, are treated as
1856          * XDP Tx queues and more Tx queues are allocated for
1857          * network stack to send pkts out.
1858          *
1859          * No of Tx queues are either same as Rx queues or whatever
1860          * is left in max no of queues possible.
1861          */
1862         if ((nic->rx_queues + nic->tx_queues) > nic->max_queues) {
1863                 netdev_warn(dev,
1864                             "Failed to attach BPF prog, RXQs + TXQs > Max %d\n",
1865                             nic->max_queues);
1866                 return -ENOMEM;
1867         }
1868 
1869         if (if_up)
1870                 nicvf_stop(nic->netdev);
1871 
1872         old_prog = xchg(&nic->xdp_prog, prog);
1873         /* Detach old prog, if any */
1874         if (old_prog)
1875                 bpf_prog_put(old_prog);
1876 
1877         if (nic->xdp_prog) {
1878                 /* Attach BPF program */
1879                 nic->xdp_prog = bpf_prog_add(nic->xdp_prog, nic->rx_queues - 1);
1880                 if (!IS_ERR(nic->xdp_prog)) {
1881                         bpf_attached = true;
1882                 } else {
1883                         ret = PTR_ERR(nic->xdp_prog);
1884                         nic->xdp_prog = NULL;
1885                 }
1886         }
1887 
1888         /* Calculate Tx queues needed for XDP and network stack */
1889         nicvf_set_xdp_queues(nic, bpf_attached);
1890 
1891         if (if_up) {
1892                 /* Reinitialize interface, clean slate */
1893                 nicvf_open(nic->netdev);
1894                 netif_trans_update(nic->netdev);
1895         }
1896 
1897         return ret;
1898 }
1899 
1900 static int nicvf_xdp(struct net_device *netdev, struct netdev_bpf *xdp)
1901 {
1902         struct nicvf *nic = netdev_priv(netdev);
1903 
1904         /* To avoid checks while retrieving buffer address from CQE_RX,
1905          * do not support XDP for T88 pass1.x silicons which are anyway
1906          * not in use widely.
1907          */
1908         if (pass1_silicon(nic->pdev))
1909                 return -EOPNOTSUPP;
1910 
1911         switch (xdp->command) {
1912         case XDP_SETUP_PROG:
1913                 return nicvf_xdp_setup(nic, xdp->prog);
1914         case XDP_QUERY_PROG:
1915                 xdp->prog_id = nic->xdp_prog ? nic->xdp_prog->aux->id : 0;
1916                 return 0;
1917         default:
1918                 return -EINVAL;
1919         }
1920 }
1921 
1922 static int nicvf_config_hwtstamp(struct net_device *netdev, struct ifreq *ifr)
1923 {
1924         struct hwtstamp_config config;
1925         struct nicvf *nic = netdev_priv(netdev);
1926 
1927         if (!nic->ptp_clock)
1928                 return -ENODEV;
1929 
1930         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1931                 return -EFAULT;
1932 
1933         /* reserved for future extensions */
1934         if (config.flags)
1935                 return -EINVAL;
1936 
1937         switch (config.tx_type) {
1938         case HWTSTAMP_TX_OFF:
1939         case HWTSTAMP_TX_ON:
1940                 break;
1941         default:
1942                 return -ERANGE;
1943         }
1944 
1945         switch (config.rx_filter) {
1946         case HWTSTAMP_FILTER_NONE:
1947                 nic->hw_rx_tstamp = false;
1948                 break;
1949         case HWTSTAMP_FILTER_ALL:
1950         case HWTSTAMP_FILTER_SOME:
1951         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1952         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1953         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1954         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1955         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1956         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1957         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1958         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1959         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1960         case HWTSTAMP_FILTER_PTP_V2_EVENT:
1961         case HWTSTAMP_FILTER_PTP_V2_SYNC:
1962         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1963                 nic->hw_rx_tstamp = true;
1964                 config.rx_filter = HWTSTAMP_FILTER_ALL;
1965                 break;
1966         default:
1967                 return -ERANGE;
1968         }
1969 
1970         if (netif_running(netdev))
1971                 nicvf_config_hw_rx_tstamp(nic, nic->hw_rx_tstamp);
1972 
1973         if (copy_to_user(ifr->ifr_data, &config, sizeof(config)))
1974                 return -EFAULT;
1975 
1976         return 0;
1977 }
1978 
1979 static int nicvf_ioctl(struct net_device *netdev, struct ifreq *req, int cmd)
1980 {
1981         switch (cmd) {
1982         case SIOCSHWTSTAMP:
1983                 return nicvf_config_hwtstamp(netdev, req);
1984         default:
1985                 return -EOPNOTSUPP;
1986         }
1987 }
1988 
1989 static void __nicvf_set_rx_mode_task(u8 mode, struct xcast_addr_list *mc_addrs,
1990                                      struct nicvf *nic)
1991 {
1992         union nic_mbx mbx = {};
1993         int idx;
1994 
1995         /* From the inside of VM code flow we have only 128 bits memory
1996          * available to send message to host's PF, so send all mc addrs
1997          * one by one, starting from flush command in case if kernel
1998          * requests to configure specific MAC filtering
1999          */
2000 
2001         /* flush DMAC filters and reset RX mode */
2002         mbx.xcast.msg = NIC_MBOX_MSG_RESET_XCAST;
2003         if (nicvf_send_msg_to_pf(nic, &mbx) < 0)
2004                 goto free_mc;
2005 
2006         if (mode & BGX_XCAST_MCAST_FILTER) {
2007                 /* once enabling filtering, we need to signal to PF to add
2008                  * its' own LMAC to the filter to accept packets for it.
2009                  */
2010                 mbx.xcast.msg = NIC_MBOX_MSG_ADD_MCAST;
2011                 mbx.xcast.mac = 0;
2012                 if (nicvf_send_msg_to_pf(nic, &mbx) < 0)
2013                         goto free_mc;
2014         }
2015 
2016         /* check if we have any specific MACs to be added to PF DMAC filter */
2017         if (mc_addrs) {
2018                 /* now go through kernel list of MACs and add them one by one */
2019                 for (idx = 0; idx < mc_addrs->count; idx++) {
2020                         mbx.xcast.msg = NIC_MBOX_MSG_ADD_MCAST;
2021                         mbx.xcast.mac = mc_addrs->mc[idx];
2022                         if (nicvf_send_msg_to_pf(nic, &mbx) < 0)
2023                                 goto free_mc;
2024                 }
2025         }
2026 
2027         /* and finally set rx mode for PF accordingly */
2028         mbx.xcast.msg = NIC_MBOX_MSG_SET_XCAST;
2029         mbx.xcast.mode = mode;
2030 
2031         nicvf_send_msg_to_pf(nic, &mbx);
2032 free_mc:
2033         kfree(mc_addrs);
2034 }
2035 
2036 static void nicvf_set_rx_mode_task(struct work_struct *work_arg)
2037 {
2038         struct nicvf_work *vf_work = container_of(work_arg, struct nicvf_work,
2039                                                   work);
2040         struct nicvf *nic = container_of(vf_work, struct nicvf, rx_mode_work);
2041         u8 mode;
2042         struct xcast_addr_list *mc;
2043 
2044         if (!vf_work)
2045                 return;
2046 
2047         /* Save message data locally to prevent them from
2048          * being overwritten by next ndo_set_rx_mode call().
2049          */
2050         spin_lock(&nic->rx_mode_wq_lock);
2051         mode = vf_work->mode;
2052         mc = vf_work->mc;
2053         vf_work->mc = NULL;
2054         spin_unlock(&nic->rx_mode_wq_lock);
2055 
2056         __nicvf_set_rx_mode_task(mode, mc, nic);
2057 }
2058 
2059 static void nicvf_set_rx_mode(struct net_device *netdev)
2060 {
2061         struct nicvf *nic = netdev_priv(netdev);
2062         struct netdev_hw_addr *ha;
2063         struct xcast_addr_list *mc_list = NULL;
2064         u8 mode = 0;
2065 
2066         if (netdev->flags & IFF_PROMISC) {
2067                 mode = BGX_XCAST_BCAST_ACCEPT | BGX_XCAST_MCAST_ACCEPT;
2068         } else {
2069                 if (netdev->flags & IFF_BROADCAST)
2070                         mode |= BGX_XCAST_BCAST_ACCEPT;
2071 
2072                 if (netdev->flags & IFF_ALLMULTI) {
2073                         mode |= BGX_XCAST_MCAST_ACCEPT;
2074                 } else if (netdev->flags & IFF_MULTICAST) {
2075                         mode |= BGX_XCAST_MCAST_FILTER;
2076                         /* here we need to copy mc addrs */
2077                         if (netdev_mc_count(netdev)) {
2078                                 mc_list = kmalloc(offsetof(typeof(*mc_list),
2079                                                            mc[netdev_mc_count(netdev)]),
2080                                                   GFP_ATOMIC);
2081                                 if (unlikely(!mc_list))
2082                                         return;
2083                                 mc_list->count = 0;
2084                                 netdev_hw_addr_list_for_each(ha, &netdev->mc) {
2085                                         mc_list->mc[mc_list->count] =
2086                                                 ether_addr_to_u64(ha->addr);
2087                                         mc_list->count++;
2088                                 }
2089                         }
2090                 }
2091         }
2092         spin_lock(&nic->rx_mode_wq_lock);
2093         kfree(nic->rx_mode_work.mc);
2094         nic->rx_mode_work.mc = mc_list;
2095         nic->rx_mode_work.mode = mode;
2096         queue_work(nic->nicvf_rx_mode_wq, &nic->rx_mode_work.work);
2097         spin_unlock(&nic->rx_mode_wq_lock);
2098 }
2099 
2100 static const struct net_device_ops nicvf_netdev_ops = {
2101         .ndo_open               = nicvf_open,
2102         .ndo_stop               = nicvf_stop,
2103         .ndo_start_xmit         = nicvf_xmit,
2104         .ndo_change_mtu         = nicvf_change_mtu,
2105         .ndo_set_mac_address    = nicvf_set_mac_address,
2106         .ndo_get_stats64        = nicvf_get_stats64,
2107         .ndo_tx_timeout         = nicvf_tx_timeout,
2108         .ndo_fix_features       = nicvf_fix_features,
2109         .ndo_set_features       = nicvf_set_features,
2110         .ndo_bpf                = nicvf_xdp,
2111         .ndo_do_ioctl           = nicvf_ioctl,
2112         .ndo_set_rx_mode        = nicvf_set_rx_mode,
2113 };
2114 
2115 static int nicvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2116 {
2117         struct device *dev = &pdev->dev;
2118         struct net_device *netdev;
2119         struct nicvf *nic;
2120         int    err, qcount;
2121         u16    sdevid;
2122         struct cavium_ptp *ptp_clock;
2123 
2124         ptp_clock = cavium_ptp_get();
2125         if (IS_ERR(ptp_clock)) {
2126                 if (PTR_ERR(ptp_clock) == -ENODEV)
2127                         /* In virtualized environment we proceed without ptp */
2128                         ptp_clock = NULL;
2129                 else
2130                         return PTR_ERR(ptp_clock);
2131         }
2132 
2133         err = pci_enable_device(pdev);
2134         if (err) {
2135                 dev_err(dev, "Failed to enable PCI device\n");
2136                 return err;
2137         }
2138 
2139         err = pci_request_regions(pdev, DRV_NAME);
2140         if (err) {
2141                 dev_err(dev, "PCI request regions failed 0x%x\n", err);
2142                 goto err_disable_device;
2143         }
2144 
2145         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(48));
2146         if (err) {
2147                 dev_err(dev, "Unable to get usable DMA configuration\n");
2148                 goto err_release_regions;
2149         }
2150 
2151         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48));
2152         if (err) {
2153                 dev_err(dev, "unable to get 48-bit DMA for consistent allocations\n");
2154                 goto err_release_regions;
2155         }
2156 
2157         qcount = netif_get_num_default_rss_queues();
2158 
2159         /* Restrict multiqset support only for host bound VFs */
2160         if (pdev->is_virtfn) {
2161                 /* Set max number of queues per VF */
2162                 qcount = min_t(int, num_online_cpus(),
2163                                (MAX_SQS_PER_VF + 1) * MAX_CMP_QUEUES_PER_QS);
2164         }
2165 
2166         netdev = alloc_etherdev_mqs(sizeof(struct nicvf), qcount, qcount);
2167         if (!netdev) {
2168                 err = -ENOMEM;
2169                 goto err_release_regions;
2170         }
2171 
2172         pci_set_drvdata(pdev, netdev);
2173 
2174         SET_NETDEV_DEV(netdev, &pdev->dev);
2175 
2176         nic = netdev_priv(netdev);
2177         nic->netdev = netdev;
2178         nic->pdev = pdev;
2179         nic->pnicvf = nic;
2180         nic->max_queues = qcount;
2181         /* If no of CPUs are too low, there won't be any queues left
2182          * for XDP_TX, hence double it.
2183          */
2184         if (!nic->t88)
2185                 nic->max_queues *= 2;
2186         nic->ptp_clock = ptp_clock;
2187 
2188         /* MAP VF's configuration registers */
2189         nic->reg_base = pcim_iomap(pdev, PCI_CFG_REG_BAR_NUM, 0);
2190         if (!nic->reg_base) {
2191                 dev_err(dev, "Cannot map config register space, aborting\n");
2192                 err = -ENOMEM;
2193                 goto err_free_netdev;
2194         }
2195 
2196         nic->drv_stats = netdev_alloc_pcpu_stats(struct nicvf_drv_stats);
2197         if (!nic->drv_stats) {
2198                 err = -ENOMEM;
2199                 goto err_free_netdev;
2200         }
2201 
2202         err = nicvf_set_qset_resources(nic);
2203         if (err)
2204                 goto err_free_netdev;
2205 
2206         /* Check if PF is alive and get MAC address for this VF */
2207         err = nicvf_register_misc_interrupt(nic);
2208         if (err)
2209                 goto err_free_netdev;
2210 
2211         nicvf_send_vf_struct(nic);
2212 
2213         if (!pass1_silicon(nic->pdev))
2214                 nic->hw_tso = true;
2215 
2216         /* Get iommu domain for iova to physical addr conversion */
2217         nic->iommu_domain = iommu_get_domain_for_dev(dev);
2218 
2219         pci_read_config_word(nic->pdev, PCI_SUBSYSTEM_ID, &sdevid);
2220         if (sdevid == 0xA134)
2221                 nic->t88 = true;
2222 
2223         /* Check if this VF is in QS only mode */
2224         if (nic->sqs_mode)
2225                 return 0;
2226 
2227         err = nicvf_set_real_num_queues(netdev, nic->tx_queues, nic->rx_queues);
2228         if (err)
2229                 goto err_unregister_interrupts;
2230 
2231         netdev->hw_features = (NETIF_F_RXCSUM | NETIF_F_SG |
2232                                NETIF_F_TSO | NETIF_F_GRO | NETIF_F_TSO6 |
2233                                NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2234                                NETIF_F_HW_VLAN_CTAG_RX);
2235 
2236         netdev->hw_features |= NETIF_F_RXHASH;
2237 
2238         netdev->features |= netdev->hw_features;
2239         netdev->hw_features |= NETIF_F_LOOPBACK;
2240 
2241         netdev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM |
2242                                 NETIF_F_IPV6_CSUM | NETIF_F_TSO | NETIF_F_TSO6;
2243 
2244         netdev->netdev_ops = &nicvf_netdev_ops;
2245         netdev->watchdog_timeo = NICVF_TX_TIMEOUT;
2246 
2247         /* MTU range: 64 - 9200 */
2248         netdev->min_mtu = NIC_HW_MIN_FRS;
2249         netdev->max_mtu = NIC_HW_MAX_FRS;
2250 
2251         INIT_WORK(&nic->reset_task, nicvf_reset_task);
2252 
2253         nic->nicvf_rx_mode_wq = alloc_ordered_workqueue("nicvf_rx_mode_wq_VF%d",
2254                                                         WQ_MEM_RECLAIM,
2255                                                         nic->vf_id);
2256         if (!nic->nicvf_rx_mode_wq) {
2257                 err = -ENOMEM;
2258                 dev_err(dev, "Failed to allocate work queue\n");
2259                 goto err_unregister_interrupts;
2260         }
2261 
2262         INIT_WORK(&nic->rx_mode_work.work, nicvf_set_rx_mode_task);
2263         spin_lock_init(&nic->rx_mode_wq_lock);
2264         mutex_init(&nic->rx_mode_mtx);
2265 
2266         err = register_netdev(netdev);
2267         if (err) {
2268                 dev_err(dev, "Failed to register netdevice\n");
2269                 goto err_unregister_interrupts;
2270         }
2271 
2272         nic->msg_enable = debug;
2273 
2274         nicvf_set_ethtool_ops(netdev);
2275 
2276         return 0;
2277 
2278 err_unregister_interrupts:
2279         nicvf_unregister_interrupts(nic);
2280 err_free_netdev:
2281         pci_set_drvdata(pdev, NULL);
2282         if (nic->drv_stats)
2283                 free_percpu(nic->drv_stats);
2284         free_netdev(netdev);
2285 err_release_regions:
2286         pci_release_regions(pdev);
2287 err_disable_device:
2288         pci_disable_device(pdev);
2289         return err;
2290 }
2291 
2292 static void nicvf_remove(struct pci_dev *pdev)
2293 {
2294         struct net_device *netdev = pci_get_drvdata(pdev);
2295         struct nicvf *nic;
2296         struct net_device *pnetdev;
2297 
2298         if (!netdev)
2299                 return;
2300 
2301         nic = netdev_priv(netdev);
2302         pnetdev = nic->pnicvf->netdev;
2303 
2304         /* Check if this Qset is assigned to different VF.
2305          * If yes, clean primary and all secondary Qsets.
2306          */
2307         if (pnetdev && (pnetdev->reg_state == NETREG_REGISTERED))
2308                 unregister_netdev(pnetdev);
2309         if (nic->nicvf_rx_mode_wq) {
2310                 destroy_workqueue(nic->nicvf_rx_mode_wq);
2311                 nic->nicvf_rx_mode_wq = NULL;
2312         }
2313         nicvf_unregister_interrupts(nic);
2314         pci_set_drvdata(pdev, NULL);
2315         if (nic->drv_stats)
2316                 free_percpu(nic->drv_stats);
2317         cavium_ptp_put(nic->ptp_clock);
2318         free_netdev(netdev);
2319         pci_release_regions(pdev);
2320         pci_disable_device(pdev);
2321 }
2322 
2323 static void nicvf_shutdown(struct pci_dev *pdev)
2324 {
2325         nicvf_remove(pdev);
2326 }
2327 
2328 static struct pci_driver nicvf_driver = {
2329         .name = DRV_NAME,
2330         .id_table = nicvf_id_table,
2331         .probe = nicvf_probe,
2332         .remove = nicvf_remove,
2333         .shutdown = nicvf_shutdown,
2334 };
2335 
2336 static int __init nicvf_init_module(void)
2337 {
2338         pr_info("%s, ver %s\n", DRV_NAME, DRV_VERSION);
2339         return pci_register_driver(&nicvf_driver);
2340 }
2341 
2342 static void __exit nicvf_cleanup_module(void)
2343 {
2344         pci_unregister_driver(&nicvf_driver);
2345 }
2346 
2347 module_init(nicvf_init_module);
2348 module_exit(nicvf_cleanup_module);

/* [<][>][^][v][top][bottom][index][help] */