root/drivers/net/ethernet/sfc/tx_tso.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. prefetch_ptr
  2. efx_tx_queue_insert
  3. efx_tso_check_protocol
  4. tso_start
  5. tso_get_fragment
  6. tso_fill_packet_with_fragment
  7. tso_start_new_packet
  8. efx_enqueue_skb_tso

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /****************************************************************************
   3  * Driver for Solarflare network controllers and boards
   4  * Copyright 2005-2006 Fen Systems Ltd.
   5  * Copyright 2005-2015 Solarflare Communications Inc.
   6  */
   7 
   8 #include <linux/pci.h>
   9 #include <linux/tcp.h>
  10 #include <linux/ip.h>
  11 #include <linux/in.h>
  12 #include <linux/ipv6.h>
  13 #include <linux/slab.h>
  14 #include <net/ipv6.h>
  15 #include <linux/if_ether.h>
  16 #include <linux/highmem.h>
  17 #include <linux/moduleparam.h>
  18 #include <linux/cache.h>
  19 #include "net_driver.h"
  20 #include "efx.h"
  21 #include "io.h"
  22 #include "nic.h"
  23 #include "tx.h"
  24 #include "workarounds.h"
  25 #include "ef10_regs.h"
  26 
  27 /* Efx legacy TCP segmentation acceleration.
  28  *
  29  * Utilises firmware support to go faster than GSO (but not as fast as TSOv2).
  30  *
  31  * Requires TX checksum offload support.
  32  */
  33 
  34 #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
  35 
  36 /**
  37  * struct tso_state - TSO state for an SKB
  38  * @out_len: Remaining length in current segment
  39  * @seqnum: Current sequence number
  40  * @ipv4_id: Current IPv4 ID, host endian
  41  * @packet_space: Remaining space in current packet
  42  * @dma_addr: DMA address of current position
  43  * @in_len: Remaining length in current SKB fragment
  44  * @unmap_len: Length of SKB fragment
  45  * @unmap_addr: DMA address of SKB fragment
  46  * @protocol: Network protocol (after any VLAN header)
  47  * @ip_off: Offset of IP header
  48  * @tcp_off: Offset of TCP header
  49  * @header_len: Number of bytes of header
  50  * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
  51  * @header_dma_addr: Header DMA address
  52  * @header_unmap_len: Header DMA mapped length
  53  *
  54  * The state used during segmentation.  It is put into this data structure
  55  * just to make it easy to pass into inline functions.
  56  */
  57 struct tso_state {
  58         /* Output position */
  59         unsigned int out_len;
  60         unsigned int seqnum;
  61         u16 ipv4_id;
  62         unsigned int packet_space;
  63 
  64         /* Input position */
  65         dma_addr_t dma_addr;
  66         unsigned int in_len;
  67         unsigned int unmap_len;
  68         dma_addr_t unmap_addr;
  69 
  70         __be16 protocol;
  71         unsigned int ip_off;
  72         unsigned int tcp_off;
  73         unsigned int header_len;
  74         unsigned int ip_base_len;
  75         dma_addr_t header_dma_addr;
  76         unsigned int header_unmap_len;
  77 };
  78 
  79 static inline void prefetch_ptr(struct efx_tx_queue *tx_queue)
  80 {
  81         unsigned int insert_ptr = efx_tx_queue_get_insert_index(tx_queue);
  82         char *ptr;
  83 
  84         ptr = (char *) (tx_queue->buffer + insert_ptr);
  85         prefetch(ptr);
  86         prefetch(ptr + 0x80);
  87 
  88         ptr = (char *) (((efx_qword_t *)tx_queue->txd.buf.addr) + insert_ptr);
  89         prefetch(ptr);
  90         prefetch(ptr + 0x80);
  91 }
  92 
  93 /**
  94  * efx_tx_queue_insert - push descriptors onto the TX queue
  95  * @tx_queue:           Efx TX queue
  96  * @dma_addr:           DMA address of fragment
  97  * @len:                Length of fragment
  98  * @final_buffer:       The final buffer inserted into the queue
  99  *
 100  * Push descriptors onto the TX queue.
 101  */
 102 static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
 103                                 dma_addr_t dma_addr, unsigned int len,
 104                                 struct efx_tx_buffer **final_buffer)
 105 {
 106         struct efx_tx_buffer *buffer;
 107         unsigned int dma_len;
 108 
 109         EFX_WARN_ON_ONCE_PARANOID(len <= 0);
 110 
 111         while (1) {
 112                 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
 113                 ++tx_queue->insert_count;
 114 
 115                 EFX_WARN_ON_ONCE_PARANOID(tx_queue->insert_count -
 116                                           tx_queue->read_count >=
 117                                           tx_queue->efx->txq_entries);
 118 
 119                 buffer->dma_addr = dma_addr;
 120 
 121                 dma_len = tx_queue->efx->type->tx_limit_len(tx_queue,
 122                                 dma_addr, len);
 123 
 124                 /* If there's space for everything this is our last buffer. */
 125                 if (dma_len >= len)
 126                         break;
 127 
 128                 buffer->len = dma_len;
 129                 buffer->flags = EFX_TX_BUF_CONT;
 130                 dma_addr += dma_len;
 131                 len -= dma_len;
 132         }
 133 
 134         EFX_WARN_ON_ONCE_PARANOID(!len);
 135         buffer->len = len;
 136         *final_buffer = buffer;
 137 }
 138 
 139 /*
 140  * Verify that our various assumptions about sk_buffs and the conditions
 141  * under which TSO will be attempted hold true.  Return the protocol number.
 142  */
 143 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
 144 {
 145         __be16 protocol = skb->protocol;
 146 
 147         EFX_WARN_ON_ONCE_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
 148                                   protocol);
 149         if (protocol == htons(ETH_P_8021Q)) {
 150                 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
 151 
 152                 protocol = veh->h_vlan_encapsulated_proto;
 153         }
 154 
 155         if (protocol == htons(ETH_P_IP)) {
 156                 EFX_WARN_ON_ONCE_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
 157         } else {
 158                 EFX_WARN_ON_ONCE_PARANOID(protocol != htons(ETH_P_IPV6));
 159                 EFX_WARN_ON_ONCE_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
 160         }
 161         EFX_WARN_ON_ONCE_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data) +
 162                                    (tcp_hdr(skb)->doff << 2u)) >
 163                                   skb_headlen(skb));
 164 
 165         return protocol;
 166 }
 167 
 168 /* Parse the SKB header and initialise state. */
 169 static int tso_start(struct tso_state *st, struct efx_nic *efx,
 170                      struct efx_tx_queue *tx_queue,
 171                      const struct sk_buff *skb)
 172 {
 173         struct device *dma_dev = &efx->pci_dev->dev;
 174         unsigned int header_len, in_len;
 175         dma_addr_t dma_addr;
 176 
 177         st->ip_off = skb_network_header(skb) - skb->data;
 178         st->tcp_off = skb_transport_header(skb) - skb->data;
 179         header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
 180         in_len = skb_headlen(skb) - header_len;
 181         st->header_len = header_len;
 182         st->in_len = in_len;
 183         if (st->protocol == htons(ETH_P_IP)) {
 184                 st->ip_base_len = st->header_len - st->ip_off;
 185                 st->ipv4_id = ntohs(ip_hdr(skb)->id);
 186         } else {
 187                 st->ip_base_len = st->header_len - st->tcp_off;
 188                 st->ipv4_id = 0;
 189         }
 190         st->seqnum = ntohl(tcp_hdr(skb)->seq);
 191 
 192         EFX_WARN_ON_ONCE_PARANOID(tcp_hdr(skb)->urg);
 193         EFX_WARN_ON_ONCE_PARANOID(tcp_hdr(skb)->syn);
 194         EFX_WARN_ON_ONCE_PARANOID(tcp_hdr(skb)->rst);
 195 
 196         st->out_len = skb->len - header_len;
 197 
 198         dma_addr = dma_map_single(dma_dev, skb->data,
 199                                   skb_headlen(skb), DMA_TO_DEVICE);
 200         st->header_dma_addr = dma_addr;
 201         st->header_unmap_len = skb_headlen(skb);
 202         st->dma_addr = dma_addr + header_len;
 203         st->unmap_len = 0;
 204 
 205         return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
 206 }
 207 
 208 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
 209                             skb_frag_t *frag)
 210 {
 211         st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
 212                                           skb_frag_size(frag), DMA_TO_DEVICE);
 213         if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
 214                 st->unmap_len = skb_frag_size(frag);
 215                 st->in_len = skb_frag_size(frag);
 216                 st->dma_addr = st->unmap_addr;
 217                 return 0;
 218         }
 219         return -ENOMEM;
 220 }
 221 
 222 
 223 /**
 224  * tso_fill_packet_with_fragment - form descriptors for the current fragment
 225  * @tx_queue:           Efx TX queue
 226  * @skb:                Socket buffer
 227  * @st:                 TSO state
 228  *
 229  * Form descriptors for the current fragment, until we reach the end
 230  * of fragment or end-of-packet.
 231  */
 232 static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
 233                                           const struct sk_buff *skb,
 234                                           struct tso_state *st)
 235 {
 236         struct efx_tx_buffer *buffer;
 237         int n;
 238 
 239         if (st->in_len == 0)
 240                 return;
 241         if (st->packet_space == 0)
 242                 return;
 243 
 244         EFX_WARN_ON_ONCE_PARANOID(st->in_len <= 0);
 245         EFX_WARN_ON_ONCE_PARANOID(st->packet_space <= 0);
 246 
 247         n = min(st->in_len, st->packet_space);
 248 
 249         st->packet_space -= n;
 250         st->out_len -= n;
 251         st->in_len -= n;
 252 
 253         efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
 254 
 255         if (st->out_len == 0) {
 256                 /* Transfer ownership of the skb */
 257                 buffer->skb = skb;
 258                 buffer->flags = EFX_TX_BUF_SKB;
 259         } else if (st->packet_space != 0) {
 260                 buffer->flags = EFX_TX_BUF_CONT;
 261         }
 262 
 263         if (st->in_len == 0) {
 264                 /* Transfer ownership of the DMA mapping */
 265                 buffer->unmap_len = st->unmap_len;
 266                 buffer->dma_offset = buffer->unmap_len - buffer->len;
 267                 st->unmap_len = 0;
 268         }
 269 
 270         st->dma_addr += n;
 271 }
 272 
 273 
 274 #define TCP_FLAGS_OFFSET 13
 275 
 276 /**
 277  * tso_start_new_packet - generate a new header and prepare for the new packet
 278  * @tx_queue:           Efx TX queue
 279  * @skb:                Socket buffer
 280  * @st:                 TSO state
 281  *
 282  * Generate a new header and prepare for the new packet.  Return 0 on
 283  * success, or -%ENOMEM if failed to alloc header, or other negative error.
 284  */
 285 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
 286                                 const struct sk_buff *skb,
 287                                 struct tso_state *st)
 288 {
 289         struct efx_tx_buffer *buffer =
 290                 efx_tx_queue_get_insert_buffer(tx_queue);
 291         bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
 292         u8 tcp_flags_mask, tcp_flags;
 293 
 294         if (!is_last) {
 295                 st->packet_space = skb_shinfo(skb)->gso_size;
 296                 tcp_flags_mask = 0x09; /* mask out FIN and PSH */
 297         } else {
 298                 st->packet_space = st->out_len;
 299                 tcp_flags_mask = 0x00;
 300         }
 301 
 302         if (WARN_ON(!st->header_unmap_len))
 303                 return -EINVAL;
 304         /* Send the original headers with a TSO option descriptor
 305          * in front
 306          */
 307         tcp_flags = ((u8 *)tcp_hdr(skb))[TCP_FLAGS_OFFSET] & ~tcp_flags_mask;
 308 
 309         buffer->flags = EFX_TX_BUF_OPTION;
 310         buffer->len = 0;
 311         buffer->unmap_len = 0;
 312         EFX_POPULATE_QWORD_5(buffer->option,
 313                              ESF_DZ_TX_DESC_IS_OPT, 1,
 314                              ESF_DZ_TX_OPTION_TYPE,
 315                              ESE_DZ_TX_OPTION_DESC_TSO,
 316                              ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
 317                              ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
 318                              ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
 319         ++tx_queue->insert_count;
 320 
 321         /* We mapped the headers in tso_start().  Unmap them
 322          * when the last segment is completed.
 323          */
 324         buffer = efx_tx_queue_get_insert_buffer(tx_queue);
 325         buffer->dma_addr = st->header_dma_addr;
 326         buffer->len = st->header_len;
 327         if (is_last) {
 328                 buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
 329                 buffer->unmap_len = st->header_unmap_len;
 330                 buffer->dma_offset = 0;
 331                 /* Ensure we only unmap them once in case of a
 332                  * later DMA mapping error and rollback
 333                  */
 334                 st->header_unmap_len = 0;
 335         } else {
 336                 buffer->flags = EFX_TX_BUF_CONT;
 337                 buffer->unmap_len = 0;
 338         }
 339         ++tx_queue->insert_count;
 340 
 341         st->seqnum += skb_shinfo(skb)->gso_size;
 342 
 343         /* Linux leaves suitable gaps in the IP ID space for us to fill. */
 344         ++st->ipv4_id;
 345 
 346         return 0;
 347 }
 348 
 349 /**
 350  * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
 351  * @tx_queue:           Efx TX queue
 352  * @skb:                Socket buffer
 353  * @data_mapped:        Did we map the data? Always set to true
 354  *                      by this on success.
 355  *
 356  * Context: You must hold netif_tx_lock() to call this function.
 357  *
 358  * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
 359  * @skb was not enqueued.  @skb is consumed unless return value is
 360  * %EINVAL.
 361  */
 362 int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
 363                         struct sk_buff *skb,
 364                         bool *data_mapped)
 365 {
 366         struct efx_nic *efx = tx_queue->efx;
 367         int frag_i, rc;
 368         struct tso_state state;
 369 
 370         if (tx_queue->tso_version != 1)
 371                 return -EINVAL;
 372 
 373         prefetch(skb->data);
 374 
 375         /* Find the packet protocol and sanity-check it */
 376         state.protocol = efx_tso_check_protocol(skb);
 377 
 378         EFX_WARN_ON_ONCE_PARANOID(tx_queue->write_count != tx_queue->insert_count);
 379 
 380         rc = tso_start(&state, efx, tx_queue, skb);
 381         if (rc)
 382                 goto fail;
 383 
 384         if (likely(state.in_len == 0)) {
 385                 /* Grab the first payload fragment. */
 386                 EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->nr_frags < 1);
 387                 frag_i = 0;
 388                 rc = tso_get_fragment(&state, efx,
 389                                       skb_shinfo(skb)->frags + frag_i);
 390                 if (rc)
 391                         goto fail;
 392         } else {
 393                 /* Payload starts in the header area. */
 394                 frag_i = -1;
 395         }
 396 
 397         rc = tso_start_new_packet(tx_queue, skb, &state);
 398         if (rc)
 399                 goto fail;
 400 
 401         prefetch_ptr(tx_queue);
 402 
 403         while (1) {
 404                 tso_fill_packet_with_fragment(tx_queue, skb, &state);
 405 
 406                 /* Move onto the next fragment? */
 407                 if (state.in_len == 0) {
 408                         if (++frag_i >= skb_shinfo(skb)->nr_frags)
 409                                 /* End of payload reached. */
 410                                 break;
 411                         rc = tso_get_fragment(&state, efx,
 412                                               skb_shinfo(skb)->frags + frag_i);
 413                         if (rc)
 414                                 goto fail;
 415                 }
 416 
 417                 /* Start at new packet? */
 418                 if (state.packet_space == 0) {
 419                         rc = tso_start_new_packet(tx_queue, skb, &state);
 420                         if (rc)
 421                                 goto fail;
 422                 }
 423         }
 424 
 425         *data_mapped = true;
 426 
 427         return 0;
 428 
 429 fail:
 430         if (rc == -ENOMEM)
 431                 netif_err(efx, tx_err, efx->net_dev,
 432                           "Out of memory for TSO headers, or DMA mapping error\n");
 433         else
 434                 netif_err(efx, tx_err, efx->net_dev, "TSO failed, rc = %d\n", rc);
 435 
 436         /* Free the DMA mapping we were in the process of writing out */
 437         if (state.unmap_len) {
 438                 dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
 439                                state.unmap_len, DMA_TO_DEVICE);
 440         }
 441 
 442         /* Free the header DMA mapping */
 443         if (state.header_unmap_len)
 444                 dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
 445                                  state.header_unmap_len, DMA_TO_DEVICE);
 446 
 447         return rc;
 448 }

/* [<][>][^][v][top][bottom][index][help] */