root/drivers/net/ethernet/sfc/ptp.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. efx_ptp_use_mac_tx_timestamps
  2. efx_ptp_want_txqs
  3. efx_ptp_describe_stats
  4. efx_ptp_update_stats
  5. efx_ptp_ns_to_s_ns
  6. efx_ptp_s_ns_to_ktime_correction
  7. efx_ptp_ns_to_s27
  8. efx_ptp_s27_to_ktime
  9. efx_ptp_s27_to_ktime_correction
  10. efx_ptp_ns_to_s_qns
  11. efx_ptp_s_qns_to_ktime_correction
  12. efx_ptp_channel
  13. last_sync_timestamp_major
  14. efx_ptp_mac_nic_to_ktime_correction
  15. efx_ptp_nic_to_kernel_time
  16. efx_ptp_get_attributes
  17. efx_ptp_get_timestamp_corrections
  18. efx_ptp_enable
  19. efx_ptp_disable
  20. efx_ptp_deliver_rx_queue
  21. efx_ptp_handle_no_channel
  22. efx_ptp_send_times
  23. efx_ptp_read_timeset
  24. efx_ptp_process_times
  25. efx_ptp_synchronize
  26. efx_ptp_xmit_skb_queue
  27. efx_ptp_xmit_skb_mc
  28. efx_ptp_drop_time_expired_events
  29. efx_ptp_match_rx
  30. efx_ptp_process_events
  31. efx_ptp_process_rx
  32. efx_ptp_remove_multicast_filters
  33. efx_ptp_insert_multicast_filters
  34. efx_ptp_start
  35. efx_ptp_stop
  36. efx_ptp_restart
  37. efx_ptp_pps_worker
  38. efx_ptp_worker
  39. efx_ptp_probe
  40. efx_ptp_probe_channel
  41. efx_ptp_remove
  42. efx_ptp_remove_channel
  43. efx_ptp_get_channel_name
  44. efx_ptp_is_ptp_tx
  45. efx_ptp_rx
  46. efx_ptp_tx
  47. efx_ptp_get_mode
  48. efx_ptp_change_mode
  49. efx_ptp_ts_init
  50. efx_ptp_get_ts_info
  51. efx_ptp_set_ts_config
  52. efx_ptp_get_ts_config
  53. ptp_event_failure
  54. ptp_event_rx
  55. ptp_event_fault
  56. ptp_event_pps
  57. efx_ptp_event
  58. efx_time_sync_event
  59. efx_rx_buf_timestamp_minor
  60. __efx_rx_skb_attach_timestamp
  61. efx_phc_adjfreq
  62. efx_phc_adjtime
  63. efx_phc_gettime
  64. efx_phc_settime
  65. efx_phc_enable
  66. efx_ptp_defer_probe_with_channel
  67. efx_ptp_start_datapath
  68. efx_ptp_stop_datapath

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /****************************************************************************
   3  * Driver for Solarflare network controllers and boards
   4  * Copyright 2011-2013 Solarflare Communications Inc.
   5  */
   6 
   7 /* Theory of operation:
   8  *
   9  * PTP support is assisted by firmware running on the MC, which provides
  10  * the hardware timestamping capabilities.  Both transmitted and received
  11  * PTP event packets are queued onto internal queues for subsequent processing;
  12  * this is because the MC operations are relatively long and would block
  13  * block NAPI/interrupt operation.
  14  *
  15  * Receive event processing:
  16  *      The event contains the packet's UUID and sequence number, together
  17  *      with the hardware timestamp.  The PTP receive packet queue is searched
  18  *      for this UUID/sequence number and, if found, put on a pending queue.
  19  *      Packets not matching are delivered without timestamps (MCDI events will
  20  *      always arrive after the actual packet).
  21  *      It is important for the operation of the PTP protocol that the ordering
  22  *      of packets between the event and general port is maintained.
  23  *
  24  * Work queue processing:
  25  *      If work waiting, synchronise host/hardware time
  26  *
  27  *      Transmit: send packet through MC, which returns the transmission time
  28  *      that is converted to an appropriate timestamp.
  29  *
  30  *      Receive: the packet's reception time is converted to an appropriate
  31  *      timestamp.
  32  */
  33 #include <linux/ip.h>
  34 #include <linux/udp.h>
  35 #include <linux/time.h>
  36 #include <linux/ktime.h>
  37 #include <linux/module.h>
  38 #include <linux/net_tstamp.h>
  39 #include <linux/pps_kernel.h>
  40 #include <linux/ptp_clock_kernel.h>
  41 #include "net_driver.h"
  42 #include "efx.h"
  43 #include "mcdi.h"
  44 #include "mcdi_pcol.h"
  45 #include "io.h"
  46 #include "farch_regs.h"
  47 #include "nic.h"
  48 
  49 /* Maximum number of events expected to make up a PTP event */
  50 #define MAX_EVENT_FRAGS                 3
  51 
  52 /* Maximum delay, ms, to begin synchronisation */
  53 #define MAX_SYNCHRONISE_WAIT_MS         2
  54 
  55 /* How long, at most, to spend synchronising */
  56 #define SYNCHRONISE_PERIOD_NS           250000
  57 
  58 /* How often to update the shared memory time */
  59 #define SYNCHRONISATION_GRANULARITY_NS  200
  60 
  61 /* Minimum permitted length of a (corrected) synchronisation time */
  62 #define DEFAULT_MIN_SYNCHRONISATION_NS  120
  63 
  64 /* Maximum permitted length of a (corrected) synchronisation time */
  65 #define MAX_SYNCHRONISATION_NS          1000
  66 
  67 /* How many (MC) receive events that can be queued */
  68 #define MAX_RECEIVE_EVENTS              8
  69 
  70 /* Length of (modified) moving average. */
  71 #define AVERAGE_LENGTH                  16
  72 
  73 /* How long an unmatched event or packet can be held */
  74 #define PKT_EVENT_LIFETIME_MS           10
  75 
  76 /* Offsets into PTP packet for identification.  These offsets are from the
  77  * start of the IP header, not the MAC header.  Note that neither PTP V1 nor
  78  * PTP V2 permit the use of IPV4 options.
  79  */
  80 #define PTP_DPORT_OFFSET        22
  81 
  82 #define PTP_V1_VERSION_LENGTH   2
  83 #define PTP_V1_VERSION_OFFSET   28
  84 
  85 #define PTP_V1_UUID_LENGTH      6
  86 #define PTP_V1_UUID_OFFSET      50
  87 
  88 #define PTP_V1_SEQUENCE_LENGTH  2
  89 #define PTP_V1_SEQUENCE_OFFSET  58
  90 
  91 /* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
  92  * includes IP header.
  93  */
  94 #define PTP_V1_MIN_LENGTH       64
  95 
  96 #define PTP_V2_VERSION_LENGTH   1
  97 #define PTP_V2_VERSION_OFFSET   29
  98 
  99 #define PTP_V2_UUID_LENGTH      8
 100 #define PTP_V2_UUID_OFFSET      48
 101 
 102 /* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
 103  * the MC only captures the last six bytes of the clock identity. These values
 104  * reflect those, not the ones used in the standard.  The standard permits
 105  * mapping of V1 UUIDs to V2 UUIDs with these same values.
 106  */
 107 #define PTP_V2_MC_UUID_LENGTH   6
 108 #define PTP_V2_MC_UUID_OFFSET   50
 109 
 110 #define PTP_V2_SEQUENCE_LENGTH  2
 111 #define PTP_V2_SEQUENCE_OFFSET  58
 112 
 113 /* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
 114  * includes IP header.
 115  */
 116 #define PTP_V2_MIN_LENGTH       63
 117 
 118 #define PTP_MIN_LENGTH          63
 119 
 120 #define PTP_ADDRESS             0xe0000181      /* 224.0.1.129 */
 121 #define PTP_EVENT_PORT          319
 122 #define PTP_GENERAL_PORT        320
 123 
 124 /* Annoyingly the format of the version numbers are different between
 125  * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
 126  */
 127 #define PTP_VERSION_V1          1
 128 
 129 #define PTP_VERSION_V2          2
 130 #define PTP_VERSION_V2_MASK     0x0f
 131 
 132 enum ptp_packet_state {
 133         PTP_PACKET_STATE_UNMATCHED = 0,
 134         PTP_PACKET_STATE_MATCHED,
 135         PTP_PACKET_STATE_TIMED_OUT,
 136         PTP_PACKET_STATE_MATCH_UNWANTED
 137 };
 138 
 139 /* NIC synchronised with single word of time only comprising
 140  * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
 141  */
 142 #define MC_NANOSECOND_BITS      30
 143 #define MC_NANOSECOND_MASK      ((1 << MC_NANOSECOND_BITS) - 1)
 144 #define MC_SECOND_MASK          ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
 145 
 146 /* Maximum parts-per-billion adjustment that is acceptable */
 147 #define MAX_PPB                 1000000
 148 
 149 /* Precalculate scale word to avoid long long division at runtime */
 150 /* This is equivalent to 2^66 / 10^9. */
 151 #define PPB_SCALE_WORD  ((1LL << (57)) / 1953125LL)
 152 
 153 /* How much to shift down after scaling to convert to FP40 */
 154 #define PPB_SHIFT_FP40          26
 155 /* ... and FP44. */
 156 #define PPB_SHIFT_FP44          22
 157 
 158 #define PTP_SYNC_ATTEMPTS       4
 159 
 160 /**
 161  * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
 162  * @words: UUID and (partial) sequence number
 163  * @expiry: Time after which the packet should be delivered irrespective of
 164  *            event arrival.
 165  * @state: The state of the packet - whether it is ready for processing or
 166  *         whether that is of no interest.
 167  */
 168 struct efx_ptp_match {
 169         u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
 170         unsigned long expiry;
 171         enum ptp_packet_state state;
 172 };
 173 
 174 /**
 175  * struct efx_ptp_event_rx - A PTP receive event (from MC)
 176  * @seq0: First part of (PTP) UUID
 177  * @seq1: Second part of (PTP) UUID and sequence number
 178  * @hwtimestamp: Event timestamp
 179  */
 180 struct efx_ptp_event_rx {
 181         struct list_head link;
 182         u32 seq0;
 183         u32 seq1;
 184         ktime_t hwtimestamp;
 185         unsigned long expiry;
 186 };
 187 
 188 /**
 189  * struct efx_ptp_timeset - Synchronisation between host and MC
 190  * @host_start: Host time immediately before hardware timestamp taken
 191  * @major: Hardware timestamp, major
 192  * @minor: Hardware timestamp, minor
 193  * @host_end: Host time immediately after hardware timestamp taken
 194  * @wait: Number of NIC clock ticks between hardware timestamp being read and
 195  *          host end time being seen
 196  * @window: Difference of host_end and host_start
 197  * @valid: Whether this timeset is valid
 198  */
 199 struct efx_ptp_timeset {
 200         u32 host_start;
 201         u32 major;
 202         u32 minor;
 203         u32 host_end;
 204         u32 wait;
 205         u32 window;     /* Derived: end - start, allowing for wrap */
 206 };
 207 
 208 /**
 209  * struct efx_ptp_data - Precision Time Protocol (PTP) state
 210  * @efx: The NIC context
 211  * @channel: The PTP channel (Siena only)
 212  * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
 213  *      separate events)
 214  * @rxq: Receive SKB queue (awaiting timestamps)
 215  * @txq: Transmit SKB queue
 216  * @evt_list: List of MC receive events awaiting packets
 217  * @evt_free_list: List of free events
 218  * @evt_lock: Lock for manipulating evt_list and evt_free_list
 219  * @rx_evts: Instantiated events (on evt_list and evt_free_list)
 220  * @workwq: Work queue for processing pending PTP operations
 221  * @work: Work task
 222  * @reset_required: A serious error has occurred and the PTP task needs to be
 223  *                  reset (disable, enable).
 224  * @rxfilter_event: Receive filter when operating
 225  * @rxfilter_general: Receive filter when operating
 226  * @config: Current timestamp configuration
 227  * @enabled: PTP operation enabled
 228  * @mode: Mode in which PTP operating (PTP version)
 229  * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
 230  * @nic_to_kernel_time: Function to convert from NIC to kernel time
 231  * @nic_time.minor_max: Wrap point for NIC minor times
 232  * @nic_time.sync_event_diff_min: Minimum acceptable difference between time
 233  * in packet prefix and last MCDI time sync event i.e. how much earlier than
 234  * the last sync event time a packet timestamp can be.
 235  * @nic_time.sync_event_diff_max: Maximum acceptable difference between time
 236  * in packet prefix and last MCDI time sync event i.e. how much later than
 237  * the last sync event time a packet timestamp can be.
 238  * @nic_time.sync_event_minor_shift: Shift required to make minor time from
 239  * field in MCDI time sync event.
 240  * @min_synchronisation_ns: Minimum acceptable corrected sync window
 241  * @capabilities: Capabilities flags from the NIC
 242  * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit
 243  *                         timestamps
 244  * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive
 245  *                         timestamps
 246  * @ts_corrections.pps_out: PPS output error (information only)
 247  * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
 248  * @ts_corrections.general_tx: Required driver correction of general packet
 249  *                             transmit timestamps
 250  * @ts_corrections.general_rx: Required driver correction of general packet
 251  *                             receive timestamps
 252  * @evt_frags: Partly assembled PTP events
 253  * @evt_frag_idx: Current fragment number
 254  * @evt_code: Last event code
 255  * @start: Address at which MC indicates ready for synchronisation
 256  * @host_time_pps: Host time at last PPS
 257  * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion
 258  * frequency adjustment into a fixed point fractional nanosecond format.
 259  * @current_adjfreq: Current ppb adjustment.
 260  * @phc_clock: Pointer to registered phc device (if primary function)
 261  * @phc_clock_info: Registration structure for phc device
 262  * @pps_work: pps work task for handling pps events
 263  * @pps_workwq: pps work queue
 264  * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
 265  * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
 266  *         allocations in main data path).
 267  * @good_syncs: Number of successful synchronisations.
 268  * @fast_syncs: Number of synchronisations requiring short delay
 269  * @bad_syncs: Number of failed synchronisations.
 270  * @sync_timeouts: Number of synchronisation timeouts
 271  * @no_time_syncs: Number of synchronisations with no good times.
 272  * @invalid_sync_windows: Number of sync windows with bad durations.
 273  * @undersize_sync_windows: Number of corrected sync windows that are too small
 274  * @oversize_sync_windows: Number of corrected sync windows that are too large
 275  * @rx_no_timestamp: Number of packets received without a timestamp.
 276  * @timeset: Last set of synchronisation statistics.
 277  * @xmit_skb: Transmit SKB function.
 278  */
 279 struct efx_ptp_data {
 280         struct efx_nic *efx;
 281         struct efx_channel *channel;
 282         bool rx_ts_inline;
 283         struct sk_buff_head rxq;
 284         struct sk_buff_head txq;
 285         struct list_head evt_list;
 286         struct list_head evt_free_list;
 287         spinlock_t evt_lock;
 288         struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
 289         struct workqueue_struct *workwq;
 290         struct work_struct work;
 291         bool reset_required;
 292         u32 rxfilter_event;
 293         u32 rxfilter_general;
 294         bool rxfilter_installed;
 295         struct hwtstamp_config config;
 296         bool enabled;
 297         unsigned int mode;
 298         void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
 299         ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
 300                                       s32 correction);
 301         struct {
 302                 u32 minor_max;
 303                 u32 sync_event_diff_min;
 304                 u32 sync_event_diff_max;
 305                 unsigned int sync_event_minor_shift;
 306         } nic_time;
 307         unsigned int min_synchronisation_ns;
 308         unsigned int capabilities;
 309         struct {
 310                 s32 ptp_tx;
 311                 s32 ptp_rx;
 312                 s32 pps_out;
 313                 s32 pps_in;
 314                 s32 general_tx;
 315                 s32 general_rx;
 316         } ts_corrections;
 317         efx_qword_t evt_frags[MAX_EVENT_FRAGS];
 318         int evt_frag_idx;
 319         int evt_code;
 320         struct efx_buffer start;
 321         struct pps_event_time host_time_pps;
 322         unsigned int adjfreq_ppb_shift;
 323         s64 current_adjfreq;
 324         struct ptp_clock *phc_clock;
 325         struct ptp_clock_info phc_clock_info;
 326         struct work_struct pps_work;
 327         struct workqueue_struct *pps_workwq;
 328         bool nic_ts_enabled;
 329         _MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX);
 330 
 331         unsigned int good_syncs;
 332         unsigned int fast_syncs;
 333         unsigned int bad_syncs;
 334         unsigned int sync_timeouts;
 335         unsigned int no_time_syncs;
 336         unsigned int invalid_sync_windows;
 337         unsigned int undersize_sync_windows;
 338         unsigned int oversize_sync_windows;
 339         unsigned int rx_no_timestamp;
 340         struct efx_ptp_timeset
 341         timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
 342         void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb);
 343 };
 344 
 345 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
 346 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
 347 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts);
 348 static int efx_phc_settime(struct ptp_clock_info *ptp,
 349                            const struct timespec64 *e_ts);
 350 static int efx_phc_enable(struct ptp_clock_info *ptp,
 351                           struct ptp_clock_request *request, int on);
 352 
 353 bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx)
 354 {
 355         struct efx_ef10_nic_data *nic_data = efx->nic_data;
 356 
 357         return ((efx_nic_rev(efx) >= EFX_REV_HUNT_A0) &&
 358                 (nic_data->datapath_caps2 &
 359                  (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_MAC_TIMESTAMPING_LBN)
 360                 ));
 361 }
 362 
 363 /* PTP 'extra' channel is still a traffic channel, but we only create TX queues
 364  * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit.
 365  */
 366 static bool efx_ptp_want_txqs(struct efx_channel *channel)
 367 {
 368         return efx_ptp_use_mac_tx_timestamps(channel->efx);
 369 }
 370 
 371 #define PTP_SW_STAT(ext_name, field_name)                               \
 372         { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
 373 #define PTP_MC_STAT(ext_name, mcdi_name)                                \
 374         { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
 375 static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
 376         PTP_SW_STAT(ptp_good_syncs, good_syncs),
 377         PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
 378         PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
 379         PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
 380         PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
 381         PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
 382         PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
 383         PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
 384         PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
 385         PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
 386         PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
 387         PTP_MC_STAT(ptp_timestamp_packets, TS),
 388         PTP_MC_STAT(ptp_filter_matches, FM),
 389         PTP_MC_STAT(ptp_non_filter_matches, NFM),
 390 };
 391 #define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
 392 static const unsigned long efx_ptp_stat_mask[] = {
 393         [0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
 394 };
 395 
 396 size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings)
 397 {
 398         if (!efx->ptp_data)
 399                 return 0;
 400 
 401         return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
 402                                       efx_ptp_stat_mask, strings);
 403 }
 404 
 405 size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats)
 406 {
 407         MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
 408         MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
 409         size_t i;
 410         int rc;
 411 
 412         if (!efx->ptp_data)
 413                 return 0;
 414 
 415         /* Copy software statistics */
 416         for (i = 0; i < PTP_STAT_COUNT; i++) {
 417                 if (efx_ptp_stat_desc[i].dma_width)
 418                         continue;
 419                 stats[i] = *(unsigned int *)((char *)efx->ptp_data +
 420                                              efx_ptp_stat_desc[i].offset);
 421         }
 422 
 423         /* Fetch MC statistics.  We *must* fill in all statistics or
 424          * risk leaking kernel memory to userland, so if the MCDI
 425          * request fails we pretend we got zeroes.
 426          */
 427         MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
 428         MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 429         rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 430                           outbuf, sizeof(outbuf), NULL);
 431         if (rc)
 432                 memset(outbuf, 0, sizeof(outbuf));
 433         efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
 434                              efx_ptp_stat_mask,
 435                              stats, _MCDI_PTR(outbuf, 0), false);
 436 
 437         return PTP_STAT_COUNT;
 438 }
 439 
 440 /* For Siena platforms NIC time is s and ns */
 441 static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor)
 442 {
 443         struct timespec64 ts = ns_to_timespec64(ns);
 444         *nic_major = (u32)ts.tv_sec;
 445         *nic_minor = ts.tv_nsec;
 446 }
 447 
 448 static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor,
 449                                                 s32 correction)
 450 {
 451         ktime_t kt = ktime_set(nic_major, nic_minor);
 452         if (correction >= 0)
 453                 kt = ktime_add_ns(kt, (u64)correction);
 454         else
 455                 kt = ktime_sub_ns(kt, (u64)-correction);
 456         return kt;
 457 }
 458 
 459 /* To convert from s27 format to ns we multiply then divide by a power of 2.
 460  * For the conversion from ns to s27, the operation is also converted to a
 461  * multiply and shift.
 462  */
 463 #define S27_TO_NS_SHIFT (27)
 464 #define NS_TO_S27_MULT  (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
 465 #define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT)
 466 #define S27_MINOR_MAX   (1 << S27_TO_NS_SHIFT)
 467 
 468 /* For Huntington platforms NIC time is in seconds and fractions of a second
 469  * where the minor register only uses 27 bits in units of 2^-27s.
 470  */
 471 static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
 472 {
 473         struct timespec64 ts = ns_to_timespec64(ns);
 474         u32 maj = (u32)ts.tv_sec;
 475         u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
 476                          (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);
 477 
 478         /* The conversion can result in the minor value exceeding the maximum.
 479          * In this case, round up to the next second.
 480          */
 481         if (min >= S27_MINOR_MAX) {
 482                 min -= S27_MINOR_MAX;
 483                 maj++;
 484         }
 485 
 486         *nic_major = maj;
 487         *nic_minor = min;
 488 }
 489 
 490 static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
 491 {
 492         u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
 493                         (1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
 494         return ktime_set(nic_major, ns);
 495 }
 496 
 497 static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
 498                                                s32 correction)
 499 {
 500         /* Apply the correction and deal with carry */
 501         nic_minor += correction;
 502         if ((s32)nic_minor < 0) {
 503                 nic_minor += S27_MINOR_MAX;
 504                 nic_major--;
 505         } else if (nic_minor >= S27_MINOR_MAX) {
 506                 nic_minor -= S27_MINOR_MAX;
 507                 nic_major++;
 508         }
 509 
 510         return efx_ptp_s27_to_ktime(nic_major, nic_minor);
 511 }
 512 
 513 /* For Medford2 platforms the time is in seconds and quarter nanoseconds. */
 514 static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor)
 515 {
 516         struct timespec64 ts = ns_to_timespec64(ns);
 517 
 518         *nic_major = (u32)ts.tv_sec;
 519         *nic_minor = ts.tv_nsec * 4;
 520 }
 521 
 522 static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor,
 523                                                  s32 correction)
 524 {
 525         ktime_t kt;
 526 
 527         nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4);
 528         correction = DIV_ROUND_CLOSEST(correction, 4);
 529 
 530         kt = ktime_set(nic_major, nic_minor);
 531 
 532         if (correction >= 0)
 533                 kt = ktime_add_ns(kt, (u64)correction);
 534         else
 535                 kt = ktime_sub_ns(kt, (u64)-correction);
 536         return kt;
 537 }
 538 
 539 struct efx_channel *efx_ptp_channel(struct efx_nic *efx)
 540 {
 541         return efx->ptp_data ? efx->ptp_data->channel : NULL;
 542 }
 543 
 544 static u32 last_sync_timestamp_major(struct efx_nic *efx)
 545 {
 546         struct efx_channel *channel = efx_ptp_channel(efx);
 547         u32 major = 0;
 548 
 549         if (channel)
 550                 major = channel->sync_timestamp_major;
 551         return major;
 552 }
 553 
 554 /* The 8000 series and later can provide the time from the MAC, which is only
 555  * 48 bits long and provides meta-information in the top 2 bits.
 556  */
 557 static ktime_t
 558 efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx,
 559                                     struct efx_ptp_data *ptp,
 560                                     u32 nic_major, u32 nic_minor,
 561                                     s32 correction)
 562 {
 563         u32 sync_timestamp;
 564         ktime_t kt = { 0 };
 565         s16 delta;
 566 
 567         if (!(nic_major & 0x80000000)) {
 568                 WARN_ON_ONCE(nic_major >> 16);
 569 
 570                 /* Medford provides 48 bits of timestamp, so we must get the top
 571                  * 16 bits from the timesync event state.
 572                  *
 573                  * We only have the lower 16 bits of the time now, but we do
 574                  * have a full resolution timestamp at some point in past. As
 575                  * long as the difference between the (real) now and the sync
 576                  * is less than 2^15, then we can reconstruct the difference
 577                  * between those two numbers using only the lower 16 bits of
 578                  * each.
 579                  *
 580                  * Put another way
 581                  *
 582                  * a - b = ((a mod k) - b) mod k
 583                  *
 584                  * when -k/2 < (a-b) < k/2. In our case k is 2^16. We know
 585                  * (a mod k) and b, so can calculate the delta, a - b.
 586                  *
 587                  */
 588                 sync_timestamp = last_sync_timestamp_major(efx);
 589 
 590                 /* Because delta is s16 this does an implicit mask down to
 591                  * 16 bits which is what we need, assuming
 592                  * MEDFORD_TX_SECS_EVENT_BITS is 16. delta is signed so that
 593                  * we can deal with the (unlikely) case of sync timestamps
 594                  * arriving from the future.
 595                  */
 596                 delta = nic_major - sync_timestamp;
 597 
 598                 /* Recover the fully specified time now, by applying the offset
 599                  * to the (fully specified) sync time.
 600                  */
 601                 nic_major = sync_timestamp + delta;
 602 
 603                 kt = ptp->nic_to_kernel_time(nic_major, nic_minor,
 604                                              correction);
 605         }
 606         return kt;
 607 }
 608 
 609 ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue)
 610 {
 611         struct efx_nic *efx = tx_queue->efx;
 612         struct efx_ptp_data *ptp = efx->ptp_data;
 613         ktime_t kt;
 614 
 615         if (efx_ptp_use_mac_tx_timestamps(efx))
 616                 kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp,
 617                                 tx_queue->completed_timestamp_major,
 618                                 tx_queue->completed_timestamp_minor,
 619                                 ptp->ts_corrections.general_tx);
 620         else
 621                 kt = ptp->nic_to_kernel_time(
 622                                 tx_queue->completed_timestamp_major,
 623                                 tx_queue->completed_timestamp_minor,
 624                                 ptp->ts_corrections.general_tx);
 625         return kt;
 626 }
 627 
 628 /* Get PTP attributes and set up time conversions */
 629 static int efx_ptp_get_attributes(struct efx_nic *efx)
 630 {
 631         MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
 632         MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
 633         struct efx_ptp_data *ptp = efx->ptp_data;
 634         int rc;
 635         u32 fmt;
 636         size_t out_len;
 637 
 638         /* Get the PTP attributes. If the NIC doesn't support the operation we
 639          * use the default format for compatibility with older NICs i.e.
 640          * seconds and nanoseconds.
 641          */
 642         MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
 643         MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 644         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 645                                 outbuf, sizeof(outbuf), &out_len);
 646         if (rc == 0) {
 647                 fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
 648         } else if (rc == -EINVAL) {
 649                 fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
 650         } else if (rc == -EPERM) {
 651                 netif_info(efx, probe, efx->net_dev, "no PTP support\n");
 652                 return rc;
 653         } else {
 654                 efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf),
 655                                        outbuf, sizeof(outbuf), rc);
 656                 return rc;
 657         }
 658 
 659         switch (fmt) {
 660         case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION:
 661                 ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
 662                 ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
 663                 ptp->nic_time.minor_max = 1 << 27;
 664                 ptp->nic_time.sync_event_minor_shift = 19;
 665                 break;
 666         case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS:
 667                 ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns;
 668                 ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction;
 669                 ptp->nic_time.minor_max = 1000000000;
 670                 ptp->nic_time.sync_event_minor_shift = 22;
 671                 break;
 672         case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS:
 673                 ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns;
 674                 ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction;
 675                 ptp->nic_time.minor_max = 4000000000UL;
 676                 ptp->nic_time.sync_event_minor_shift = 24;
 677                 break;
 678         default:
 679                 return -ERANGE;
 680         }
 681 
 682         /* Precalculate acceptable difference between the minor time in the
 683          * packet prefix and the last MCDI time sync event. We expect the
 684          * packet prefix timestamp to be after of sync event by up to one
 685          * sync event interval (0.25s) but we allow it to exceed this by a
 686          * fuzz factor of (0.1s)
 687          */
 688         ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max
 689                 - (ptp->nic_time.minor_max / 10);
 690         ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4)
 691                 + (ptp->nic_time.minor_max / 10);
 692 
 693         /* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older
 694          * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return
 695          * a value to use for the minimum acceptable corrected synchronization
 696          * window and may return further capabilities.
 697          * If we have the extra information store it. For older firmware that
 698          * does not implement the extended command use the default value.
 699          */
 700         if (rc == 0 &&
 701             out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST)
 702                 ptp->min_synchronisation_ns =
 703                         MCDI_DWORD(outbuf,
 704                                    PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
 705         else
 706                 ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;
 707 
 708         if (rc == 0 &&
 709             out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
 710                 ptp->capabilities = MCDI_DWORD(outbuf,
 711                                         PTP_OUT_GET_ATTRIBUTES_CAPABILITIES);
 712         else
 713                 ptp->capabilities = 0;
 714 
 715         /* Set up the shift for conversion between frequency
 716          * adjustments in parts-per-billion and the fixed-point
 717          * fractional ns format that the adapter uses.
 718          */
 719         if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN))
 720                 ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44;
 721         else
 722                 ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40;
 723 
 724         return 0;
 725 }
 726 
 727 /* Get PTP timestamp corrections */
 728 static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
 729 {
 730         MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
 731         MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN);
 732         int rc;
 733         size_t out_len;
 734 
 735         /* Get the timestamp corrections from the NIC. If this operation is
 736          * not supported (older NICs) then no correction is required.
 737          */
 738         MCDI_SET_DWORD(inbuf, PTP_IN_OP,
 739                        MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
 740         MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 741 
 742         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 743                                 outbuf, sizeof(outbuf), &out_len);
 744         if (rc == 0) {
 745                 efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf,
 746                         PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
 747                 efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf,
 748                         PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
 749                 efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
 750                         PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
 751                 efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
 752                         PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
 753 
 754                 if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) {
 755                         efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD(
 756                                 outbuf,
 757                                 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX);
 758                         efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD(
 759                                 outbuf,
 760                                 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX);
 761                 } else {
 762                         efx->ptp_data->ts_corrections.general_tx =
 763                                 efx->ptp_data->ts_corrections.ptp_tx;
 764                         efx->ptp_data->ts_corrections.general_rx =
 765                                 efx->ptp_data->ts_corrections.ptp_rx;
 766                 }
 767         } else if (rc == -EINVAL) {
 768                 efx->ptp_data->ts_corrections.ptp_tx = 0;
 769                 efx->ptp_data->ts_corrections.ptp_rx = 0;
 770                 efx->ptp_data->ts_corrections.pps_out = 0;
 771                 efx->ptp_data->ts_corrections.pps_in = 0;
 772                 efx->ptp_data->ts_corrections.general_tx = 0;
 773                 efx->ptp_data->ts_corrections.general_rx = 0;
 774         } else {
 775                 efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf,
 776                                        sizeof(outbuf), rc);
 777                 return rc;
 778         }
 779 
 780         return 0;
 781 }
 782 
 783 /* Enable MCDI PTP support. */
 784 static int efx_ptp_enable(struct efx_nic *efx)
 785 {
 786         MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
 787         MCDI_DECLARE_BUF_ERR(outbuf);
 788         int rc;
 789 
 790         MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
 791         MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 792         MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
 793                        efx->ptp_data->channel ?
 794                        efx->ptp_data->channel->channel : 0);
 795         MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
 796 
 797         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 798                                 outbuf, sizeof(outbuf), NULL);
 799         rc = (rc == -EALREADY) ? 0 : rc;
 800         if (rc)
 801                 efx_mcdi_display_error(efx, MC_CMD_PTP,
 802                                        MC_CMD_PTP_IN_ENABLE_LEN,
 803                                        outbuf, sizeof(outbuf), rc);
 804         return rc;
 805 }
 806 
 807 /* Disable MCDI PTP support.
 808  *
 809  * Note that this function should never rely on the presence of ptp_data -
 810  * may be called before that exists.
 811  */
 812 static int efx_ptp_disable(struct efx_nic *efx)
 813 {
 814         MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
 815         MCDI_DECLARE_BUF_ERR(outbuf);
 816         int rc;
 817 
 818         MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
 819         MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 820         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 821                                 outbuf, sizeof(outbuf), NULL);
 822         rc = (rc == -EALREADY) ? 0 : rc;
 823         /* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
 824          * should only have been called during probe.
 825          */
 826         if (rc == -ENOSYS || rc == -EPERM)
 827                 netif_info(efx, probe, efx->net_dev, "no PTP support\n");
 828         else if (rc)
 829                 efx_mcdi_display_error(efx, MC_CMD_PTP,
 830                                        MC_CMD_PTP_IN_DISABLE_LEN,
 831                                        outbuf, sizeof(outbuf), rc);
 832         return rc;
 833 }
 834 
 835 static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
 836 {
 837         struct sk_buff *skb;
 838 
 839         while ((skb = skb_dequeue(q))) {
 840                 local_bh_disable();
 841                 netif_receive_skb(skb);
 842                 local_bh_enable();
 843         }
 844 }
 845 
 846 static void efx_ptp_handle_no_channel(struct efx_nic *efx)
 847 {
 848         netif_err(efx, drv, efx->net_dev,
 849                   "ERROR: PTP requires MSI-X and 1 additional interrupt"
 850                   "vector. PTP disabled\n");
 851 }
 852 
 853 /* Repeatedly send the host time to the MC which will capture the hardware
 854  * time.
 855  */
 856 static void efx_ptp_send_times(struct efx_nic *efx,
 857                                struct pps_event_time *last_time)
 858 {
 859         struct pps_event_time now;
 860         struct timespec64 limit;
 861         struct efx_ptp_data *ptp = efx->ptp_data;
 862         int *mc_running = ptp->start.addr;
 863 
 864         pps_get_ts(&now);
 865         limit = now.ts_real;
 866         timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
 867 
 868         /* Write host time for specified period or until MC is done */
 869         while ((timespec64_compare(&now.ts_real, &limit) < 0) &&
 870                READ_ONCE(*mc_running)) {
 871                 struct timespec64 update_time;
 872                 unsigned int host_time;
 873 
 874                 /* Don't update continuously to avoid saturating the PCIe bus */
 875                 update_time = now.ts_real;
 876                 timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
 877                 do {
 878                         pps_get_ts(&now);
 879                 } while ((timespec64_compare(&now.ts_real, &update_time) < 0) &&
 880                          READ_ONCE(*mc_running));
 881 
 882                 /* Synchronise NIC with single word of time only */
 883                 host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
 884                              now.ts_real.tv_nsec);
 885                 /* Update host time in NIC memory */
 886                 efx->type->ptp_write_host_time(efx, host_time);
 887         }
 888         *last_time = now;
 889 }
 890 
 891 /* Read a timeset from the MC's results and partial process. */
 892 static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
 893                                  struct efx_ptp_timeset *timeset)
 894 {
 895         unsigned start_ns, end_ns;
 896 
 897         timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
 898         timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
 899         timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
 900         timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
 901         timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
 902 
 903         /* Ignore seconds */
 904         start_ns = timeset->host_start & MC_NANOSECOND_MASK;
 905         end_ns = timeset->host_end & MC_NANOSECOND_MASK;
 906         /* Allow for rollover */
 907         if (end_ns < start_ns)
 908                 end_ns += NSEC_PER_SEC;
 909         /* Determine duration of operation */
 910         timeset->window = end_ns - start_ns;
 911 }
 912 
 913 /* Process times received from MC.
 914  *
 915  * Extract times from returned results, and establish the minimum value
 916  * seen.  The minimum value represents the "best" possible time and events
 917  * too much greater than this are rejected - the machine is, perhaps, too
 918  * busy. A number of readings are taken so that, hopefully, at least one good
 919  * synchronisation will be seen in the results.
 920  */
 921 static int
 922 efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
 923                       size_t response_length,
 924                       const struct pps_event_time *last_time)
 925 {
 926         unsigned number_readings =
 927                 MCDI_VAR_ARRAY_LEN(response_length,
 928                                    PTP_OUT_SYNCHRONIZE_TIMESET);
 929         unsigned i;
 930         unsigned ngood = 0;
 931         unsigned last_good = 0;
 932         struct efx_ptp_data *ptp = efx->ptp_data;
 933         u32 last_sec;
 934         u32 start_sec;
 935         struct timespec64 delta;
 936         ktime_t mc_time;
 937 
 938         if (number_readings == 0)
 939                 return -EAGAIN;
 940 
 941         /* Read the set of results and find the last good host-MC
 942          * synchronization result. The MC times when it finishes reading the
 943          * host time so the corrected window time should be fairly constant
 944          * for a given platform. Increment stats for any results that appear
 945          * to be erroneous.
 946          */
 947         for (i = 0; i < number_readings; i++) {
 948                 s32 window, corrected;
 949                 struct timespec64 wait;
 950 
 951                 efx_ptp_read_timeset(
 952                         MCDI_ARRAY_STRUCT_PTR(synch_buf,
 953                                               PTP_OUT_SYNCHRONIZE_TIMESET, i),
 954                         &ptp->timeset[i]);
 955 
 956                 wait = ktime_to_timespec64(
 957                         ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
 958                 window = ptp->timeset[i].window;
 959                 corrected = window - wait.tv_nsec;
 960 
 961                 /* We expect the uncorrected synchronization window to be at
 962                  * least as large as the interval between host start and end
 963                  * times. If it is smaller than this then this is mostly likely
 964                  * to be a consequence of the host's time being adjusted.
 965                  * Check that the corrected sync window is in a reasonable
 966                  * range. If it is out of range it is likely to be because an
 967                  * interrupt or other delay occurred between reading the system
 968                  * time and writing it to MC memory.
 969                  */
 970                 if (window < SYNCHRONISATION_GRANULARITY_NS) {
 971                         ++ptp->invalid_sync_windows;
 972                 } else if (corrected >= MAX_SYNCHRONISATION_NS) {
 973                         ++ptp->oversize_sync_windows;
 974                 } else if (corrected < ptp->min_synchronisation_ns) {
 975                         ++ptp->undersize_sync_windows;
 976                 } else {
 977                         ngood++;
 978                         last_good = i;
 979                 }
 980         }
 981 
 982         if (ngood == 0) {
 983                 netif_warn(efx, drv, efx->net_dev,
 984                            "PTP no suitable synchronisations\n");
 985                 return -EAGAIN;
 986         }
 987 
 988         /* Calculate delay from last good sync (host time) to last_time.
 989          * It is possible that the seconds rolled over between taking
 990          * the start reading and the last value written by the host.  The
 991          * timescales are such that a gap of more than one second is never
 992          * expected.  delta is *not* normalised.
 993          */
 994         start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
 995         last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
 996         if (start_sec != last_sec &&
 997             ((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
 998                 netif_warn(efx, hw, efx->net_dev,
 999                            "PTP bad synchronisation seconds\n");
1000                 return -EAGAIN;
1001         }
1002         delta.tv_sec = (last_sec - start_sec) & 1;
1003         delta.tv_nsec =
1004                 last_time->ts_real.tv_nsec -
1005                 (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
1006 
1007         /* Convert the NIC time at last good sync into kernel time.
1008          * No correction is required - this time is the output of a
1009          * firmware process.
1010          */
1011         mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
1012                                           ptp->timeset[last_good].minor, 0);
1013 
1014         /* Calculate delay from NIC top of second to last_time */
1015         delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec;
1016 
1017         /* Set PPS timestamp to match NIC top of second */
1018         ptp->host_time_pps = *last_time;
1019         pps_sub_ts(&ptp->host_time_pps, delta);
1020 
1021         return 0;
1022 }
1023 
1024 /* Synchronize times between the host and the MC */
1025 static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
1026 {
1027         struct efx_ptp_data *ptp = efx->ptp_data;
1028         MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
1029         size_t response_length;
1030         int rc;
1031         unsigned long timeout;
1032         struct pps_event_time last_time = {};
1033         unsigned int loops = 0;
1034         int *start = ptp->start.addr;
1035 
1036         MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
1037         MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
1038         MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
1039                        num_readings);
1040         MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
1041                        ptp->start.dma_addr);
1042 
1043         /* Clear flag that signals MC ready */
1044         WRITE_ONCE(*start, 0);
1045         rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
1046                                 MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
1047         EFX_WARN_ON_ONCE_PARANOID(rc);
1048 
1049         /* Wait for start from MCDI (or timeout) */
1050         timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
1051         while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) {
1052                 udelay(20);     /* Usually start MCDI execution quickly */
1053                 loops++;
1054         }
1055 
1056         if (loops <= 1)
1057                 ++ptp->fast_syncs;
1058         if (!time_before(jiffies, timeout))
1059                 ++ptp->sync_timeouts;
1060 
1061         if (READ_ONCE(*start))
1062                 efx_ptp_send_times(efx, &last_time);
1063 
1064         /* Collect results */
1065         rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
1066                                  MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
1067                                  synch_buf, sizeof(synch_buf),
1068                                  &response_length);
1069         if (rc == 0) {
1070                 rc = efx_ptp_process_times(efx, synch_buf, response_length,
1071                                            &last_time);
1072                 if (rc == 0)
1073                         ++ptp->good_syncs;
1074                 else
1075                         ++ptp->no_time_syncs;
1076         }
1077 
1078         /* Increment the bad syncs counter if the synchronize fails, whatever
1079          * the reason.
1080          */
1081         if (rc != 0)
1082                 ++ptp->bad_syncs;
1083 
1084         return rc;
1085 }
1086 
1087 /* Transmit a PTP packet via the dedicated hardware timestamped queue. */
1088 static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb)
1089 {
1090         struct efx_ptp_data *ptp_data = efx->ptp_data;
1091         struct efx_tx_queue *tx_queue;
1092         u8 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
1093 
1094         tx_queue = &ptp_data->channel->tx_queue[type];
1095         if (tx_queue && tx_queue->timestamping) {
1096                 efx_enqueue_skb(tx_queue, skb);
1097         } else {
1098                 WARN_ONCE(1, "PTP channel has no timestamped tx queue\n");
1099                 dev_kfree_skb_any(skb);
1100         }
1101 }
1102 
1103 /* Transmit a PTP packet, via the MCDI interface, to the wire. */
1104 static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb)
1105 {
1106         struct efx_ptp_data *ptp_data = efx->ptp_data;
1107         struct skb_shared_hwtstamps timestamps;
1108         int rc = -EIO;
1109         MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
1110         size_t len;
1111 
1112         MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
1113         MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
1114         MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
1115         if (skb_shinfo(skb)->nr_frags != 0) {
1116                 rc = skb_linearize(skb);
1117                 if (rc != 0)
1118                         goto fail;
1119         }
1120 
1121         if (skb->ip_summed == CHECKSUM_PARTIAL) {
1122                 rc = skb_checksum_help(skb);
1123                 if (rc != 0)
1124                         goto fail;
1125         }
1126         skb_copy_from_linear_data(skb,
1127                                   MCDI_PTR(ptp_data->txbuf,
1128                                            PTP_IN_TRANSMIT_PACKET),
1129                                   skb->len);
1130         rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
1131                           ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
1132                           txtime, sizeof(txtime), &len);
1133         if (rc != 0)
1134                 goto fail;
1135 
1136         memset(&timestamps, 0, sizeof(timestamps));
1137         timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
1138                 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
1139                 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
1140                 ptp_data->ts_corrections.ptp_tx);
1141 
1142         skb_tstamp_tx(skb, &timestamps);
1143 
1144         rc = 0;
1145 
1146 fail:
1147         dev_kfree_skb_any(skb);
1148 
1149         return;
1150 }
1151 
1152 static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
1153 {
1154         struct efx_ptp_data *ptp = efx->ptp_data;
1155         struct list_head *cursor;
1156         struct list_head *next;
1157 
1158         if (ptp->rx_ts_inline)
1159                 return;
1160 
1161         /* Drop time-expired events */
1162         spin_lock_bh(&ptp->evt_lock);
1163         if (!list_empty(&ptp->evt_list)) {
1164                 list_for_each_safe(cursor, next, &ptp->evt_list) {
1165                         struct efx_ptp_event_rx *evt;
1166 
1167                         evt = list_entry(cursor, struct efx_ptp_event_rx,
1168                                          link);
1169                         if (time_after(jiffies, evt->expiry)) {
1170                                 list_move(&evt->link, &ptp->evt_free_list);
1171                                 netif_warn(efx, hw, efx->net_dev,
1172                                            "PTP rx event dropped\n");
1173                         }
1174                 }
1175         }
1176         spin_unlock_bh(&ptp->evt_lock);
1177 }
1178 
1179 static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
1180                                               struct sk_buff *skb)
1181 {
1182         struct efx_ptp_data *ptp = efx->ptp_data;
1183         bool evts_waiting;
1184         struct list_head *cursor;
1185         struct list_head *next;
1186         struct efx_ptp_match *match;
1187         enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
1188 
1189         WARN_ON_ONCE(ptp->rx_ts_inline);
1190 
1191         spin_lock_bh(&ptp->evt_lock);
1192         evts_waiting = !list_empty(&ptp->evt_list);
1193         spin_unlock_bh(&ptp->evt_lock);
1194 
1195         if (!evts_waiting)
1196                 return PTP_PACKET_STATE_UNMATCHED;
1197 
1198         match = (struct efx_ptp_match *)skb->cb;
1199         /* Look for a matching timestamp in the event queue */
1200         spin_lock_bh(&ptp->evt_lock);
1201         list_for_each_safe(cursor, next, &ptp->evt_list) {
1202                 struct efx_ptp_event_rx *evt;
1203 
1204                 evt = list_entry(cursor, struct efx_ptp_event_rx, link);
1205                 if ((evt->seq0 == match->words[0]) &&
1206                     (evt->seq1 == match->words[1])) {
1207                         struct skb_shared_hwtstamps *timestamps;
1208 
1209                         /* Match - add in hardware timestamp */
1210                         timestamps = skb_hwtstamps(skb);
1211                         timestamps->hwtstamp = evt->hwtimestamp;
1212 
1213                         match->state = PTP_PACKET_STATE_MATCHED;
1214                         rc = PTP_PACKET_STATE_MATCHED;
1215                         list_move(&evt->link, &ptp->evt_free_list);
1216                         break;
1217                 }
1218         }
1219         spin_unlock_bh(&ptp->evt_lock);
1220 
1221         return rc;
1222 }
1223 
1224 /* Process any queued receive events and corresponding packets
1225  *
1226  * q is returned with all the packets that are ready for delivery.
1227  */
1228 static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
1229 {
1230         struct efx_ptp_data *ptp = efx->ptp_data;
1231         struct sk_buff *skb;
1232 
1233         while ((skb = skb_dequeue(&ptp->rxq))) {
1234                 struct efx_ptp_match *match;
1235 
1236                 match = (struct efx_ptp_match *)skb->cb;
1237                 if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
1238                         __skb_queue_tail(q, skb);
1239                 } else if (efx_ptp_match_rx(efx, skb) ==
1240                            PTP_PACKET_STATE_MATCHED) {
1241                         __skb_queue_tail(q, skb);
1242                 } else if (time_after(jiffies, match->expiry)) {
1243                         match->state = PTP_PACKET_STATE_TIMED_OUT;
1244                         ++ptp->rx_no_timestamp;
1245                         __skb_queue_tail(q, skb);
1246                 } else {
1247                         /* Replace unprocessed entry and stop */
1248                         skb_queue_head(&ptp->rxq, skb);
1249                         break;
1250                 }
1251         }
1252 }
1253 
1254 /* Complete processing of a received packet */
1255 static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
1256 {
1257         local_bh_disable();
1258         netif_receive_skb(skb);
1259         local_bh_enable();
1260 }
1261 
1262 static void efx_ptp_remove_multicast_filters(struct efx_nic *efx)
1263 {
1264         struct efx_ptp_data *ptp = efx->ptp_data;
1265 
1266         if (ptp->rxfilter_installed) {
1267                 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1268                                           ptp->rxfilter_general);
1269                 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1270                                           ptp->rxfilter_event);
1271                 ptp->rxfilter_installed = false;
1272         }
1273 }
1274 
1275 static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
1276 {
1277         struct efx_ptp_data *ptp = efx->ptp_data;
1278         struct efx_filter_spec rxfilter;
1279         int rc;
1280 
1281         if (!ptp->channel || ptp->rxfilter_installed)
1282                 return 0;
1283 
1284         /* Must filter on both event and general ports to ensure
1285          * that there is no packet re-ordering.
1286          */
1287         efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1288                            efx_rx_queue_index(
1289                                    efx_channel_get_rx_queue(ptp->channel)));
1290         rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1291                                        htonl(PTP_ADDRESS),
1292                                        htons(PTP_EVENT_PORT));
1293         if (rc != 0)
1294                 return rc;
1295 
1296         rc = efx_filter_insert_filter(efx, &rxfilter, true);
1297         if (rc < 0)
1298                 return rc;
1299         ptp->rxfilter_event = rc;
1300 
1301         efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1302                            efx_rx_queue_index(
1303                                    efx_channel_get_rx_queue(ptp->channel)));
1304         rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1305                                        htonl(PTP_ADDRESS),
1306                                        htons(PTP_GENERAL_PORT));
1307         if (rc != 0)
1308                 goto fail;
1309 
1310         rc = efx_filter_insert_filter(efx, &rxfilter, true);
1311         if (rc < 0)
1312                 goto fail;
1313         ptp->rxfilter_general = rc;
1314 
1315         ptp->rxfilter_installed = true;
1316         return 0;
1317 
1318 fail:
1319         efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1320                                   ptp->rxfilter_event);
1321         return rc;
1322 }
1323 
1324 static int efx_ptp_start(struct efx_nic *efx)
1325 {
1326         struct efx_ptp_data *ptp = efx->ptp_data;
1327         int rc;
1328 
1329         ptp->reset_required = false;
1330 
1331         rc = efx_ptp_insert_multicast_filters(efx);
1332         if (rc)
1333                 return rc;
1334 
1335         rc = efx_ptp_enable(efx);
1336         if (rc != 0)
1337                 goto fail;
1338 
1339         ptp->evt_frag_idx = 0;
1340         ptp->current_adjfreq = 0;
1341 
1342         return 0;
1343 
1344 fail:
1345         efx_ptp_remove_multicast_filters(efx);
1346         return rc;
1347 }
1348 
1349 static int efx_ptp_stop(struct efx_nic *efx)
1350 {
1351         struct efx_ptp_data *ptp = efx->ptp_data;
1352         struct list_head *cursor;
1353         struct list_head *next;
1354         int rc;
1355 
1356         if (ptp == NULL)
1357                 return 0;
1358 
1359         rc = efx_ptp_disable(efx);
1360 
1361         efx_ptp_remove_multicast_filters(efx);
1362 
1363         /* Make sure RX packets are really delivered */
1364         efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
1365         skb_queue_purge(&efx->ptp_data->txq);
1366 
1367         /* Drop any pending receive events */
1368         spin_lock_bh(&efx->ptp_data->evt_lock);
1369         list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
1370                 list_move(cursor, &efx->ptp_data->evt_free_list);
1371         }
1372         spin_unlock_bh(&efx->ptp_data->evt_lock);
1373 
1374         return rc;
1375 }
1376 
1377 static int efx_ptp_restart(struct efx_nic *efx)
1378 {
1379         if (efx->ptp_data && efx->ptp_data->enabled)
1380                 return efx_ptp_start(efx);
1381         return 0;
1382 }
1383 
1384 static void efx_ptp_pps_worker(struct work_struct *work)
1385 {
1386         struct efx_ptp_data *ptp =
1387                 container_of(work, struct efx_ptp_data, pps_work);
1388         struct efx_nic *efx = ptp->efx;
1389         struct ptp_clock_event ptp_evt;
1390 
1391         if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
1392                 return;
1393 
1394         ptp_evt.type = PTP_CLOCK_PPSUSR;
1395         ptp_evt.pps_times = ptp->host_time_pps;
1396         ptp_clock_event(ptp->phc_clock, &ptp_evt);
1397 }
1398 
1399 static void efx_ptp_worker(struct work_struct *work)
1400 {
1401         struct efx_ptp_data *ptp_data =
1402                 container_of(work, struct efx_ptp_data, work);
1403         struct efx_nic *efx = ptp_data->efx;
1404         struct sk_buff *skb;
1405         struct sk_buff_head tempq;
1406 
1407         if (ptp_data->reset_required) {
1408                 efx_ptp_stop(efx);
1409                 efx_ptp_start(efx);
1410                 return;
1411         }
1412 
1413         efx_ptp_drop_time_expired_events(efx);
1414 
1415         __skb_queue_head_init(&tempq);
1416         efx_ptp_process_events(efx, &tempq);
1417 
1418         while ((skb = skb_dequeue(&ptp_data->txq)))
1419                 ptp_data->xmit_skb(efx, skb);
1420 
1421         while ((skb = __skb_dequeue(&tempq)))
1422                 efx_ptp_process_rx(efx, skb);
1423 }
1424 
1425 static const struct ptp_clock_info efx_phc_clock_info = {
1426         .owner          = THIS_MODULE,
1427         .name           = "sfc",
1428         .max_adj        = MAX_PPB,
1429         .n_alarm        = 0,
1430         .n_ext_ts       = 0,
1431         .n_per_out      = 0,
1432         .n_pins         = 0,
1433         .pps            = 1,
1434         .adjfreq        = efx_phc_adjfreq,
1435         .adjtime        = efx_phc_adjtime,
1436         .gettime64      = efx_phc_gettime,
1437         .settime64      = efx_phc_settime,
1438         .enable         = efx_phc_enable,
1439 };
1440 
1441 /* Initialise PTP state. */
1442 int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
1443 {
1444         struct efx_ptp_data *ptp;
1445         int rc = 0;
1446         unsigned int pos;
1447 
1448         ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
1449         efx->ptp_data = ptp;
1450         if (!efx->ptp_data)
1451                 return -ENOMEM;
1452 
1453         ptp->efx = efx;
1454         ptp->channel = channel;
1455         ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
1456 
1457         rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
1458         if (rc != 0)
1459                 goto fail1;
1460 
1461         skb_queue_head_init(&ptp->rxq);
1462         skb_queue_head_init(&ptp->txq);
1463         ptp->workwq = create_singlethread_workqueue("sfc_ptp");
1464         if (!ptp->workwq) {
1465                 rc = -ENOMEM;
1466                 goto fail2;
1467         }
1468 
1469         if (efx_ptp_use_mac_tx_timestamps(efx)) {
1470                 ptp->xmit_skb = efx_ptp_xmit_skb_queue;
1471                 /* Request sync events on this channel. */
1472                 channel->sync_events_state = SYNC_EVENTS_QUIESCENT;
1473         } else {
1474                 ptp->xmit_skb = efx_ptp_xmit_skb_mc;
1475         }
1476 
1477         INIT_WORK(&ptp->work, efx_ptp_worker);
1478         ptp->config.flags = 0;
1479         ptp->config.tx_type = HWTSTAMP_TX_OFF;
1480         ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
1481         INIT_LIST_HEAD(&ptp->evt_list);
1482         INIT_LIST_HEAD(&ptp->evt_free_list);
1483         spin_lock_init(&ptp->evt_lock);
1484         for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
1485                 list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
1486 
1487         /* Get the NIC PTP attributes and set up time conversions */
1488         rc = efx_ptp_get_attributes(efx);
1489         if (rc < 0)
1490                 goto fail3;
1491 
1492         /* Get the timestamp corrections */
1493         rc = efx_ptp_get_timestamp_corrections(efx);
1494         if (rc < 0)
1495                 goto fail3;
1496 
1497         if (efx->mcdi->fn_flags &
1498             (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
1499                 ptp->phc_clock_info = efx_phc_clock_info;
1500                 ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
1501                                                     &efx->pci_dev->dev);
1502                 if (IS_ERR(ptp->phc_clock)) {
1503                         rc = PTR_ERR(ptp->phc_clock);
1504                         goto fail3;
1505                 } else if (ptp->phc_clock) {
1506                         INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
1507                         ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
1508                         if (!ptp->pps_workwq) {
1509                                 rc = -ENOMEM;
1510                                 goto fail4;
1511                         }
1512                 }
1513         }
1514         ptp->nic_ts_enabled = false;
1515 
1516         return 0;
1517 fail4:
1518         ptp_clock_unregister(efx->ptp_data->phc_clock);
1519 
1520 fail3:
1521         destroy_workqueue(efx->ptp_data->workwq);
1522 
1523 fail2:
1524         efx_nic_free_buffer(efx, &ptp->start);
1525 
1526 fail1:
1527         kfree(efx->ptp_data);
1528         efx->ptp_data = NULL;
1529 
1530         return rc;
1531 }
1532 
1533 /* Initialise PTP channel.
1534  *
1535  * Setting core_index to zero causes the queue to be initialised and doesn't
1536  * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
1537  */
1538 static int efx_ptp_probe_channel(struct efx_channel *channel)
1539 {
1540         struct efx_nic *efx = channel->efx;
1541         int rc;
1542 
1543         channel->irq_moderation_us = 0;
1544         channel->rx_queue.core_index = 0;
1545 
1546         rc = efx_ptp_probe(efx, channel);
1547         /* Failure to probe PTP is not fatal; this channel will just not be
1548          * used for anything.
1549          * In the case of EPERM, efx_ptp_probe will print its own message (in
1550          * efx_ptp_get_attributes()), so we don't need to.
1551          */
1552         if (rc && rc != -EPERM)
1553                 netif_warn(efx, drv, efx->net_dev,
1554                            "Failed to probe PTP, rc=%d\n", rc);
1555         return 0;
1556 }
1557 
1558 void efx_ptp_remove(struct efx_nic *efx)
1559 {
1560         if (!efx->ptp_data)
1561                 return;
1562 
1563         (void)efx_ptp_disable(efx);
1564 
1565         cancel_work_sync(&efx->ptp_data->work);
1566         if (efx->ptp_data->pps_workwq)
1567                 cancel_work_sync(&efx->ptp_data->pps_work);
1568 
1569         skb_queue_purge(&efx->ptp_data->rxq);
1570         skb_queue_purge(&efx->ptp_data->txq);
1571 
1572         if (efx->ptp_data->phc_clock) {
1573                 destroy_workqueue(efx->ptp_data->pps_workwq);
1574                 ptp_clock_unregister(efx->ptp_data->phc_clock);
1575         }
1576 
1577         destroy_workqueue(efx->ptp_data->workwq);
1578 
1579         efx_nic_free_buffer(efx, &efx->ptp_data->start);
1580         kfree(efx->ptp_data);
1581         efx->ptp_data = NULL;
1582 }
1583 
1584 static void efx_ptp_remove_channel(struct efx_channel *channel)
1585 {
1586         efx_ptp_remove(channel->efx);
1587 }
1588 
1589 static void efx_ptp_get_channel_name(struct efx_channel *channel,
1590                                      char *buf, size_t len)
1591 {
1592         snprintf(buf, len, "%s-ptp", channel->efx->name);
1593 }
1594 
1595 /* Determine whether this packet should be processed by the PTP module
1596  * or transmitted conventionally.
1597  */
1598 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1599 {
1600         return efx->ptp_data &&
1601                 efx->ptp_data->enabled &&
1602                 skb->len >= PTP_MIN_LENGTH &&
1603                 skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
1604                 likely(skb->protocol == htons(ETH_P_IP)) &&
1605                 skb_transport_header_was_set(skb) &&
1606                 skb_network_header_len(skb) >= sizeof(struct iphdr) &&
1607                 ip_hdr(skb)->protocol == IPPROTO_UDP &&
1608                 skb_headlen(skb) >=
1609                 skb_transport_offset(skb) + sizeof(struct udphdr) &&
1610                 udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
1611 }
1612 
1613 /* Receive a PTP packet.  Packets are queued until the arrival of
1614  * the receive timestamp from the MC - this will probably occur after the
1615  * packet arrival because of the processing in the MC.
1616  */
1617 static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
1618 {
1619         struct efx_nic *efx = channel->efx;
1620         struct efx_ptp_data *ptp = efx->ptp_data;
1621         struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
1622         u8 *match_data_012, *match_data_345;
1623         unsigned int version;
1624         u8 *data;
1625 
1626         match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1627 
1628         /* Correct version? */
1629         if (ptp->mode == MC_CMD_PTP_MODE_V1) {
1630                 if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
1631                         return false;
1632                 }
1633                 data = skb->data;
1634                 version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]);
1635                 if (version != PTP_VERSION_V1) {
1636                         return false;
1637                 }
1638 
1639                 /* PTP V1 uses all six bytes of the UUID to match the packet
1640                  * to the timestamp
1641                  */
1642                 match_data_012 = data + PTP_V1_UUID_OFFSET;
1643                 match_data_345 = data + PTP_V1_UUID_OFFSET + 3;
1644         } else {
1645                 if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
1646                         return false;
1647                 }
1648                 data = skb->data;
1649                 version = data[PTP_V2_VERSION_OFFSET];
1650                 if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
1651                         return false;
1652                 }
1653 
1654                 /* The original V2 implementation uses bytes 2-7 of
1655                  * the UUID to match the packet to the timestamp. This
1656                  * discards two of the bytes of the MAC address used
1657                  * to create the UUID (SF bug 33070).  The PTP V2
1658                  * enhanced mode fixes this issue and uses bytes 0-2
1659                  * and byte 5-7 of the UUID.
1660                  */
1661                 match_data_345 = data + PTP_V2_UUID_OFFSET + 5;
1662                 if (ptp->mode == MC_CMD_PTP_MODE_V2) {
1663                         match_data_012 = data + PTP_V2_UUID_OFFSET + 2;
1664                 } else {
1665                         match_data_012 = data + PTP_V2_UUID_OFFSET + 0;
1666                         BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
1667                 }
1668         }
1669 
1670         /* Does this packet require timestamping? */
1671         if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1672                 match->state = PTP_PACKET_STATE_UNMATCHED;
1673 
1674                 /* We expect the sequence number to be in the same position in
1675                  * the packet for PTP V1 and V2
1676                  */
1677                 BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1678                 BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1679 
1680                 /* Extract UUID/Sequence information */
1681                 match->words[0] = (match_data_012[0]         |
1682                                    (match_data_012[1] << 8)  |
1683                                    (match_data_012[2] << 16) |
1684                                    (match_data_345[0] << 24));
1685                 match->words[1] = (match_data_345[1]         |
1686                                    (match_data_345[2] << 8)  |
1687                                    (data[PTP_V1_SEQUENCE_OFFSET +
1688                                          PTP_V1_SEQUENCE_LENGTH - 1] <<
1689                                     16));
1690         } else {
1691                 match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1692         }
1693 
1694         skb_queue_tail(&ptp->rxq, skb);
1695         queue_work(ptp->workwq, &ptp->work);
1696 
1697         return true;
1698 }
1699 
1700 /* Transmit a PTP packet.  This has to be transmitted by the MC
1701  * itself, through an MCDI call.  MCDI calls aren't permitted
1702  * in the transmit path so defer the actual transmission to a suitable worker.
1703  */
1704 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1705 {
1706         struct efx_ptp_data *ptp = efx->ptp_data;
1707 
1708         skb_queue_tail(&ptp->txq, skb);
1709 
1710         if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1711             (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1712                 efx_xmit_hwtstamp_pending(skb);
1713         queue_work(ptp->workwq, &ptp->work);
1714 
1715         return NETDEV_TX_OK;
1716 }
1717 
1718 int efx_ptp_get_mode(struct efx_nic *efx)
1719 {
1720         return efx->ptp_data->mode;
1721 }
1722 
1723 int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1724                         unsigned int new_mode)
1725 {
1726         if ((enable_wanted != efx->ptp_data->enabled) ||
1727             (enable_wanted && (efx->ptp_data->mode != new_mode))) {
1728                 int rc = 0;
1729 
1730                 if (enable_wanted) {
1731                         /* Change of mode requires disable */
1732                         if (efx->ptp_data->enabled &&
1733                             (efx->ptp_data->mode != new_mode)) {
1734                                 efx->ptp_data->enabled = false;
1735                                 rc = efx_ptp_stop(efx);
1736                                 if (rc != 0)
1737                                         return rc;
1738                         }
1739 
1740                         /* Set new operating mode and establish
1741                          * baseline synchronisation, which must
1742                          * succeed.
1743                          */
1744                         efx->ptp_data->mode = new_mode;
1745                         if (netif_running(efx->net_dev))
1746                                 rc = efx_ptp_start(efx);
1747                         if (rc == 0) {
1748                                 rc = efx_ptp_synchronize(efx,
1749                                                          PTP_SYNC_ATTEMPTS * 2);
1750                                 if (rc != 0)
1751                                         efx_ptp_stop(efx);
1752                         }
1753                 } else {
1754                         rc = efx_ptp_stop(efx);
1755                 }
1756 
1757                 if (rc != 0)
1758                         return rc;
1759 
1760                 efx->ptp_data->enabled = enable_wanted;
1761         }
1762 
1763         return 0;
1764 }
1765 
1766 static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1767 {
1768         int rc;
1769 
1770         if (init->flags)
1771                 return -EINVAL;
1772 
1773         if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1774             (init->tx_type != HWTSTAMP_TX_ON))
1775                 return -ERANGE;
1776 
1777         rc = efx->type->ptp_set_ts_config(efx, init);
1778         if (rc)
1779                 return rc;
1780 
1781         efx->ptp_data->config = *init;
1782         return 0;
1783 }
1784 
1785 void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
1786 {
1787         struct efx_ptp_data *ptp = efx->ptp_data;
1788         struct efx_nic *primary = efx->primary;
1789 
1790         ASSERT_RTNL();
1791 
1792         if (!ptp)
1793                 return;
1794 
1795         ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
1796                                      SOF_TIMESTAMPING_RX_HARDWARE |
1797                                      SOF_TIMESTAMPING_RAW_HARDWARE);
1798         /* Check licensed features.  If we don't have the license for TX
1799          * timestamps, the NIC will not support them.
1800          */
1801         if (efx_ptp_use_mac_tx_timestamps(efx)) {
1802                 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1803 
1804                 if (!(nic_data->licensed_features &
1805                       (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN)))
1806                         ts_info->so_timestamping &=
1807                                 ~SOF_TIMESTAMPING_TX_HARDWARE;
1808         }
1809         if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
1810                 ts_info->phc_index =
1811                         ptp_clock_index(primary->ptp_data->phc_clock);
1812         ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1813         ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
1814 }
1815 
1816 int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1817 {
1818         struct hwtstamp_config config;
1819         int rc;
1820 
1821         /* Not a PTP enabled port */
1822         if (!efx->ptp_data)
1823                 return -EOPNOTSUPP;
1824 
1825         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1826                 return -EFAULT;
1827 
1828         rc = efx_ptp_ts_init(efx, &config);
1829         if (rc != 0)
1830                 return rc;
1831 
1832         return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1833                 ? -EFAULT : 0;
1834 }
1835 
1836 int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1837 {
1838         if (!efx->ptp_data)
1839                 return -EOPNOTSUPP;
1840 
1841         return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
1842                             sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
1843 }
1844 
1845 static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1846 {
1847         struct efx_ptp_data *ptp = efx->ptp_data;
1848 
1849         netif_err(efx, hw, efx->net_dev,
1850                 "PTP unexpected event length: got %d expected %d\n",
1851                 ptp->evt_frag_idx, expected_frag_len);
1852         ptp->reset_required = true;
1853         queue_work(ptp->workwq, &ptp->work);
1854 }
1855 
1856 /* Process a completed receive event.  Put it on the event queue and
1857  * start worker thread.  This is required because event and their
1858  * correspoding packets may come in either order.
1859  */
1860 static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
1861 {
1862         struct efx_ptp_event_rx *evt = NULL;
1863 
1864         if (WARN_ON_ONCE(ptp->rx_ts_inline))
1865                 return;
1866 
1867         if (ptp->evt_frag_idx != 3) {
1868                 ptp_event_failure(efx, 3);
1869                 return;
1870         }
1871 
1872         spin_lock_bh(&ptp->evt_lock);
1873         if (!list_empty(&ptp->evt_free_list)) {
1874                 evt = list_first_entry(&ptp->evt_free_list,
1875                                        struct efx_ptp_event_rx, link);
1876                 list_del(&evt->link);
1877 
1878                 evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
1879                 evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
1880                                              MCDI_EVENT_SRC)        |
1881                              (EFX_QWORD_FIELD(ptp->evt_frags[1],
1882                                               MCDI_EVENT_SRC) << 8) |
1883                              (EFX_QWORD_FIELD(ptp->evt_frags[0],
1884                                               MCDI_EVENT_SRC) << 16));
1885                 evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time(
1886                         EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
1887                         EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA),
1888                         ptp->ts_corrections.ptp_rx);
1889                 evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1890                 list_add_tail(&evt->link, &ptp->evt_list);
1891 
1892                 queue_work(ptp->workwq, &ptp->work);
1893         } else if (net_ratelimit()) {
1894                 /* Log a rate-limited warning message. */
1895                 netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n");
1896         }
1897         spin_unlock_bh(&ptp->evt_lock);
1898 }
1899 
1900 static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1901 {
1902         int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1903         if (ptp->evt_frag_idx != 1) {
1904                 ptp_event_failure(efx, 1);
1905                 return;
1906         }
1907 
1908         netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1909 }
1910 
1911 static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1912 {
1913         if (ptp->nic_ts_enabled)
1914                 queue_work(ptp->pps_workwq, &ptp->pps_work);
1915 }
1916 
1917 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1918 {
1919         struct efx_ptp_data *ptp = efx->ptp_data;
1920         int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1921 
1922         if (!ptp) {
1923                 if (!efx->ptp_warned) {
1924                         netif_warn(efx, drv, efx->net_dev,
1925                                    "Received PTP event but PTP not set up\n");
1926                         efx->ptp_warned = true;
1927                 }
1928                 return;
1929         }
1930 
1931         if (!ptp->enabled)
1932                 return;
1933 
1934         if (ptp->evt_frag_idx == 0) {
1935                 ptp->evt_code = code;
1936         } else if (ptp->evt_code != code) {
1937                 netif_err(efx, hw, efx->net_dev,
1938                           "PTP out of sequence event %d\n", code);
1939                 ptp->evt_frag_idx = 0;
1940         }
1941 
1942         ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1943         if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1944                 /* Process resulting event */
1945                 switch (code) {
1946                 case MCDI_EVENT_CODE_PTP_RX:
1947                         ptp_event_rx(efx, ptp);
1948                         break;
1949                 case MCDI_EVENT_CODE_PTP_FAULT:
1950                         ptp_event_fault(efx, ptp);
1951                         break;
1952                 case MCDI_EVENT_CODE_PTP_PPS:
1953                         ptp_event_pps(efx, ptp);
1954                         break;
1955                 default:
1956                         netif_err(efx, hw, efx->net_dev,
1957                                   "PTP unknown event %d\n", code);
1958                         break;
1959                 }
1960                 ptp->evt_frag_idx = 0;
1961         } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1962                 netif_err(efx, hw, efx->net_dev,
1963                           "PTP too many event fragments\n");
1964                 ptp->evt_frag_idx = 0;
1965         }
1966 }
1967 
1968 void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
1969 {
1970         struct efx_nic *efx = channel->efx;
1971         struct efx_ptp_data *ptp = efx->ptp_data;
1972 
1973         /* When extracting the sync timestamp minor value, we should discard
1974          * the least significant two bits. These are not required in order
1975          * to reconstruct full-range timestamps and they are optionally used
1976          * to report status depending on the options supplied when subscribing
1977          * for sync events.
1978          */
1979         channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
1980         channel->sync_timestamp_minor =
1981                 (MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC)
1982                         << ptp->nic_time.sync_event_minor_shift;
1983 
1984         /* if sync events have been disabled then we want to silently ignore
1985          * this event, so throw away result.
1986          */
1987         (void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
1988                        SYNC_EVENTS_VALID);
1989 }
1990 
1991 static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
1992 {
1993 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
1994         return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
1995 #else
1996         const u8 *data = eh + efx->rx_packet_ts_offset;
1997         return (u32)data[0]       |
1998                (u32)data[1] << 8  |
1999                (u32)data[2] << 16 |
2000                (u32)data[3] << 24;
2001 #endif
2002 }
2003 
2004 void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
2005                                    struct sk_buff *skb)
2006 {
2007         struct efx_nic *efx = channel->efx;
2008         struct efx_ptp_data *ptp = efx->ptp_data;
2009         u32 pkt_timestamp_major, pkt_timestamp_minor;
2010         u32 diff, carry;
2011         struct skb_shared_hwtstamps *timestamps;
2012 
2013         if (channel->sync_events_state != SYNC_EVENTS_VALID)
2014                 return;
2015 
2016         pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb));
2017 
2018         /* get the difference between the packet and sync timestamps,
2019          * modulo one second
2020          */
2021         diff = pkt_timestamp_minor - channel->sync_timestamp_minor;
2022         if (pkt_timestamp_minor < channel->sync_timestamp_minor)
2023                 diff += ptp->nic_time.minor_max;
2024 
2025         /* do we roll over a second boundary and need to carry the one? */
2026         carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ?
2027                 1 : 0;
2028 
2029         if (diff <= ptp->nic_time.sync_event_diff_max) {
2030                 /* packet is ahead of the sync event by a quarter of a second or
2031                  * less (allowing for fuzz)
2032                  */
2033                 pkt_timestamp_major = channel->sync_timestamp_major + carry;
2034         } else if (diff >= ptp->nic_time.sync_event_diff_min) {
2035                 /* packet is behind the sync event but within the fuzz factor.
2036                  * This means the RX packet and sync event crossed as they were
2037                  * placed on the event queue, which can sometimes happen.
2038                  */
2039                 pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
2040         } else {
2041                 /* it's outside tolerance in both directions. this might be
2042                  * indicative of us missing sync events for some reason, so
2043                  * we'll call it an error rather than risk giving a bogus
2044                  * timestamp.
2045                  */
2046                 netif_vdbg(efx, drv, efx->net_dev,
2047                           "packet timestamp %x too far from sync event %x:%x\n",
2048                           pkt_timestamp_minor, channel->sync_timestamp_major,
2049                           channel->sync_timestamp_minor);
2050                 return;
2051         }
2052 
2053         /* attach the timestamps to the skb */
2054         timestamps = skb_hwtstamps(skb);
2055         timestamps->hwtstamp =
2056                 ptp->nic_to_kernel_time(pkt_timestamp_major,
2057                                         pkt_timestamp_minor,
2058                                         ptp->ts_corrections.general_rx);
2059 }
2060 
2061 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
2062 {
2063         struct efx_ptp_data *ptp_data = container_of(ptp,
2064                                                      struct efx_ptp_data,
2065                                                      phc_clock_info);
2066         struct efx_nic *efx = ptp_data->efx;
2067         MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
2068         s64 adjustment_ns;
2069         int rc;
2070 
2071         if (delta > MAX_PPB)
2072                 delta = MAX_PPB;
2073         else if (delta < -MAX_PPB)
2074                 delta = -MAX_PPB;
2075 
2076         /* Convert ppb to fixed point ns taking care to round correctly. */
2077         adjustment_ns = ((s64)delta * PPB_SCALE_WORD +
2078                          (1 << (ptp_data->adjfreq_ppb_shift - 1))) >>
2079                         ptp_data->adjfreq_ppb_shift;
2080 
2081         MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2082         MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
2083         MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
2084         MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
2085         MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
2086         rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
2087                           NULL, 0, NULL);
2088         if (rc != 0)
2089                 return rc;
2090 
2091         ptp_data->current_adjfreq = adjustment_ns;
2092         return 0;
2093 }
2094 
2095 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
2096 {
2097         u32 nic_major, nic_minor;
2098         struct efx_ptp_data *ptp_data = container_of(ptp,
2099                                                      struct efx_ptp_data,
2100                                                      phc_clock_info);
2101         struct efx_nic *efx = ptp_data->efx;
2102         MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
2103 
2104         efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);
2105 
2106         MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
2107         MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2108         MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
2109         MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
2110         MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
2111         return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2112                             NULL, 0, NULL);
2113 }
2114 
2115 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
2116 {
2117         struct efx_ptp_data *ptp_data = container_of(ptp,
2118                                                      struct efx_ptp_data,
2119                                                      phc_clock_info);
2120         struct efx_nic *efx = ptp_data->efx;
2121         MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
2122         MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
2123         int rc;
2124         ktime_t kt;
2125 
2126         MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
2127         MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
2128 
2129         rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
2130                           outbuf, sizeof(outbuf), NULL);
2131         if (rc != 0)
2132                 return rc;
2133 
2134         kt = ptp_data->nic_to_kernel_time(
2135                 MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
2136                 MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
2137         *ts = ktime_to_timespec64(kt);
2138         return 0;
2139 }
2140 
2141 static int efx_phc_settime(struct ptp_clock_info *ptp,
2142                            const struct timespec64 *e_ts)
2143 {
2144         /* Get the current NIC time, efx_phc_gettime.
2145          * Subtract from the desired time to get the offset
2146          * call efx_phc_adjtime with the offset
2147          */
2148         int rc;
2149         struct timespec64 time_now;
2150         struct timespec64 delta;
2151 
2152         rc = efx_phc_gettime(ptp, &time_now);
2153         if (rc != 0)
2154                 return rc;
2155 
2156         delta = timespec64_sub(*e_ts, time_now);
2157 
2158         rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta));
2159         if (rc != 0)
2160                 return rc;
2161 
2162         return 0;
2163 }
2164 
2165 static int efx_phc_enable(struct ptp_clock_info *ptp,
2166                           struct ptp_clock_request *request,
2167                           int enable)
2168 {
2169         struct efx_ptp_data *ptp_data = container_of(ptp,
2170                                                      struct efx_ptp_data,
2171                                                      phc_clock_info);
2172         if (request->type != PTP_CLK_REQ_PPS)
2173                 return -EOPNOTSUPP;
2174 
2175         ptp_data->nic_ts_enabled = !!enable;
2176         return 0;
2177 }
2178 
2179 static const struct efx_channel_type efx_ptp_channel_type = {
2180         .handle_no_channel      = efx_ptp_handle_no_channel,
2181         .pre_probe              = efx_ptp_probe_channel,
2182         .post_remove            = efx_ptp_remove_channel,
2183         .get_name               = efx_ptp_get_channel_name,
2184         /* no copy operation; there is no need to reallocate this channel */
2185         .receive_skb            = efx_ptp_rx,
2186         .want_txqs              = efx_ptp_want_txqs,
2187         .keep_eventq            = false,
2188 };
2189 
2190 void efx_ptp_defer_probe_with_channel(struct efx_nic *efx)
2191 {
2192         /* Check whether PTP is implemented on this NIC.  The DISABLE
2193          * operation will succeed if and only if it is implemented.
2194          */
2195         if (efx_ptp_disable(efx) == 0)
2196                 efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
2197                         &efx_ptp_channel_type;
2198 }
2199 
2200 void efx_ptp_start_datapath(struct efx_nic *efx)
2201 {
2202         if (efx_ptp_restart(efx))
2203                 netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
2204         /* re-enable timestamping if it was previously enabled */
2205         if (efx->type->ptp_set_ts_sync_events)
2206                 efx->type->ptp_set_ts_sync_events(efx, true, true);
2207 }
2208 
2209 void efx_ptp_stop_datapath(struct efx_nic *efx)
2210 {
2211         /* temporarily disable timestamping */
2212         if (efx->type->ptp_set_ts_sync_events)
2213                 efx->type->ptp_set_ts_sync_events(efx, false, true);
2214         efx_ptp_stop(efx);
2215 }

/* [<][>][^][v][top][bottom][index][help] */