root/arch/powerpc/kvm/book3s_hv_rm_mmu.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. real_vmalloc_addr
  2. global_invalidates
  3. kvmppc_add_revmap_chain
  4. kvmppc_update_dirty_map
  5. kvmppc_set_dirty_from_hpte
  6. revmap_for_hpte
  7. remove_revmap_chain
  8. kvmppc_do_h_enter
  9. kvmppc_h_enter
  10. is_mmio_hpte
  11. fixup_tlbie_lpid
  12. do_tlbies
  13. kvmppc_do_h_remove
  14. kvmppc_h_remove
  15. kvmppc_h_bulk_remove
  16. kvmppc_h_protect
  17. kvmppc_h_read
  18. kvmppc_h_clear_ref
  19. kvmppc_h_clear_mod
  20. kvmppc_get_hpa
  21. kvmppc_do_h_page_init_zero
  22. kvmppc_do_h_page_init_copy
  23. kvmppc_rm_h_page_init
  24. kvmppc_invalidate_hpte
  25. kvmppc_clear_ref_hpte
  26. mmio_cache_search
  27. next_mmio_cache_entry
  28. kvmppc_hv_find_lock_hpte
  29. kvmppc_hpte_hv_fault

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  *
   4  * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   5  */
   6 
   7 #include <linux/types.h>
   8 #include <linux/string.h>
   9 #include <linux/kvm.h>
  10 #include <linux/kvm_host.h>
  11 #include <linux/hugetlb.h>
  12 #include <linux/module.h>
  13 #include <linux/log2.h>
  14 #include <linux/sizes.h>
  15 
  16 #include <asm/trace.h>
  17 #include <asm/kvm_ppc.h>
  18 #include <asm/kvm_book3s.h>
  19 #include <asm/book3s/64/mmu-hash.h>
  20 #include <asm/hvcall.h>
  21 #include <asm/synch.h>
  22 #include <asm/ppc-opcode.h>
  23 #include <asm/pte-walk.h>
  24 
  25 /* Translate address of a vmalloc'd thing to a linear map address */
  26 static void *real_vmalloc_addr(void *x)
  27 {
  28         unsigned long addr = (unsigned long) x;
  29         pte_t *p;
  30         /*
  31          * assume we don't have huge pages in vmalloc space...
  32          * So don't worry about THP collapse/split. Called
  33          * Only in realmode with MSR_EE = 0, hence won't need irq_save/restore.
  34          */
  35         p = find_init_mm_pte(addr, NULL);
  36         if (!p || !pte_present(*p))
  37                 return NULL;
  38         addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK);
  39         return __va(addr);
  40 }
  41 
  42 /* Return 1 if we need to do a global tlbie, 0 if we can use tlbiel */
  43 static int global_invalidates(struct kvm *kvm)
  44 {
  45         int global;
  46         int cpu;
  47 
  48         /*
  49          * If there is only one vcore, and it's currently running,
  50          * as indicated by local_paca->kvm_hstate.kvm_vcpu being set,
  51          * we can use tlbiel as long as we mark all other physical
  52          * cores as potentially having stale TLB entries for this lpid.
  53          * Otherwise, don't use tlbiel.
  54          */
  55         if (kvm->arch.online_vcores == 1 && local_paca->kvm_hstate.kvm_vcpu)
  56                 global = 0;
  57         else
  58                 global = 1;
  59 
  60         if (!global) {
  61                 /* any other core might now have stale TLB entries... */
  62                 smp_wmb();
  63                 cpumask_setall(&kvm->arch.need_tlb_flush);
  64                 cpu = local_paca->kvm_hstate.kvm_vcore->pcpu;
  65                 /*
  66                  * On POWER9, threads are independent but the TLB is shared,
  67                  * so use the bit for the first thread to represent the core.
  68                  */
  69                 if (cpu_has_feature(CPU_FTR_ARCH_300))
  70                         cpu = cpu_first_thread_sibling(cpu);
  71                 cpumask_clear_cpu(cpu, &kvm->arch.need_tlb_flush);
  72         }
  73 
  74         return global;
  75 }
  76 
  77 /*
  78  * Add this HPTE into the chain for the real page.
  79  * Must be called with the chain locked; it unlocks the chain.
  80  */
  81 void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
  82                              unsigned long *rmap, long pte_index, int realmode)
  83 {
  84         struct revmap_entry *head, *tail;
  85         unsigned long i;
  86 
  87         if (*rmap & KVMPPC_RMAP_PRESENT) {
  88                 i = *rmap & KVMPPC_RMAP_INDEX;
  89                 head = &kvm->arch.hpt.rev[i];
  90                 if (realmode)
  91                         head = real_vmalloc_addr(head);
  92                 tail = &kvm->arch.hpt.rev[head->back];
  93                 if (realmode)
  94                         tail = real_vmalloc_addr(tail);
  95                 rev->forw = i;
  96                 rev->back = head->back;
  97                 tail->forw = pte_index;
  98                 head->back = pte_index;
  99         } else {
 100                 rev->forw = rev->back = pte_index;
 101                 *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) |
 102                         pte_index | KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_HPT;
 103         }
 104         unlock_rmap(rmap);
 105 }
 106 EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain);
 107 
 108 /* Update the dirty bitmap of a memslot */
 109 void kvmppc_update_dirty_map(const struct kvm_memory_slot *memslot,
 110                              unsigned long gfn, unsigned long psize)
 111 {
 112         unsigned long npages;
 113 
 114         if (!psize || !memslot->dirty_bitmap)
 115                 return;
 116         npages = (psize + PAGE_SIZE - 1) / PAGE_SIZE;
 117         gfn -= memslot->base_gfn;
 118         set_dirty_bits_atomic(memslot->dirty_bitmap, gfn, npages);
 119 }
 120 EXPORT_SYMBOL_GPL(kvmppc_update_dirty_map);
 121 
 122 static void kvmppc_set_dirty_from_hpte(struct kvm *kvm,
 123                                 unsigned long hpte_v, unsigned long hpte_gr)
 124 {
 125         struct kvm_memory_slot *memslot;
 126         unsigned long gfn;
 127         unsigned long psize;
 128 
 129         psize = kvmppc_actual_pgsz(hpte_v, hpte_gr);
 130         gfn = hpte_rpn(hpte_gr, psize);
 131         memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
 132         if (memslot && memslot->dirty_bitmap)
 133                 kvmppc_update_dirty_map(memslot, gfn, psize);
 134 }
 135 
 136 /* Returns a pointer to the revmap entry for the page mapped by a HPTE */
 137 static unsigned long *revmap_for_hpte(struct kvm *kvm, unsigned long hpte_v,
 138                                       unsigned long hpte_gr,
 139                                       struct kvm_memory_slot **memslotp,
 140                                       unsigned long *gfnp)
 141 {
 142         struct kvm_memory_slot *memslot;
 143         unsigned long *rmap;
 144         unsigned long gfn;
 145 
 146         gfn = hpte_rpn(hpte_gr, kvmppc_actual_pgsz(hpte_v, hpte_gr));
 147         memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
 148         if (memslotp)
 149                 *memslotp = memslot;
 150         if (gfnp)
 151                 *gfnp = gfn;
 152         if (!memslot)
 153                 return NULL;
 154 
 155         rmap = real_vmalloc_addr(&memslot->arch.rmap[gfn - memslot->base_gfn]);
 156         return rmap;
 157 }
 158 
 159 /* Remove this HPTE from the chain for a real page */
 160 static void remove_revmap_chain(struct kvm *kvm, long pte_index,
 161                                 struct revmap_entry *rev,
 162                                 unsigned long hpte_v, unsigned long hpte_r)
 163 {
 164         struct revmap_entry *next, *prev;
 165         unsigned long ptel, head;
 166         unsigned long *rmap;
 167         unsigned long rcbits;
 168         struct kvm_memory_slot *memslot;
 169         unsigned long gfn;
 170 
 171         rcbits = hpte_r & (HPTE_R_R | HPTE_R_C);
 172         ptel = rev->guest_rpte |= rcbits;
 173         rmap = revmap_for_hpte(kvm, hpte_v, ptel, &memslot, &gfn);
 174         if (!rmap)
 175                 return;
 176         lock_rmap(rmap);
 177 
 178         head = *rmap & KVMPPC_RMAP_INDEX;
 179         next = real_vmalloc_addr(&kvm->arch.hpt.rev[rev->forw]);
 180         prev = real_vmalloc_addr(&kvm->arch.hpt.rev[rev->back]);
 181         next->back = rev->back;
 182         prev->forw = rev->forw;
 183         if (head == pte_index) {
 184                 head = rev->forw;
 185                 if (head == pte_index)
 186                         *rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
 187                 else
 188                         *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head;
 189         }
 190         *rmap |= rcbits << KVMPPC_RMAP_RC_SHIFT;
 191         if (rcbits & HPTE_R_C)
 192                 kvmppc_update_dirty_map(memslot, gfn,
 193                                         kvmppc_actual_pgsz(hpte_v, hpte_r));
 194         unlock_rmap(rmap);
 195 }
 196 
 197 long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags,
 198                        long pte_index, unsigned long pteh, unsigned long ptel,
 199                        pgd_t *pgdir, bool realmode, unsigned long *pte_idx_ret)
 200 {
 201         unsigned long i, pa, gpa, gfn, psize;
 202         unsigned long slot_fn, hva;
 203         __be64 *hpte;
 204         struct revmap_entry *rev;
 205         unsigned long g_ptel;
 206         struct kvm_memory_slot *memslot;
 207         unsigned hpage_shift;
 208         bool is_ci;
 209         unsigned long *rmap;
 210         pte_t *ptep;
 211         unsigned int writing;
 212         unsigned long mmu_seq;
 213         unsigned long rcbits, irq_flags = 0;
 214 
 215         if (kvm_is_radix(kvm))
 216                 return H_FUNCTION;
 217         psize = kvmppc_actual_pgsz(pteh, ptel);
 218         if (!psize)
 219                 return H_PARAMETER;
 220         writing = hpte_is_writable(ptel);
 221         pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
 222         ptel &= ~HPTE_GR_RESERVED;
 223         g_ptel = ptel;
 224 
 225         /* used later to detect if we might have been invalidated */
 226         mmu_seq = kvm->mmu_notifier_seq;
 227         smp_rmb();
 228 
 229         /* Find the memslot (if any) for this address */
 230         gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
 231         gfn = gpa >> PAGE_SHIFT;
 232         memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
 233         pa = 0;
 234         is_ci = false;
 235         rmap = NULL;
 236         if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) {
 237                 /* Emulated MMIO - mark this with key=31 */
 238                 pteh |= HPTE_V_ABSENT;
 239                 ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO;
 240                 goto do_insert;
 241         }
 242 
 243         /* Check if the requested page fits entirely in the memslot. */
 244         if (!slot_is_aligned(memslot, psize))
 245                 return H_PARAMETER;
 246         slot_fn = gfn - memslot->base_gfn;
 247         rmap = &memslot->arch.rmap[slot_fn];
 248 
 249         /* Translate to host virtual address */
 250         hva = __gfn_to_hva_memslot(memslot, gfn);
 251         /*
 252          * If we had a page table table change after lookup, we would
 253          * retry via mmu_notifier_retry.
 254          */
 255         if (!realmode)
 256                 local_irq_save(irq_flags);
 257         /*
 258          * If called in real mode we have MSR_EE = 0. Otherwise
 259          * we disable irq above.
 260          */
 261         ptep = __find_linux_pte(pgdir, hva, NULL, &hpage_shift);
 262         if (ptep) {
 263                 pte_t pte;
 264                 unsigned int host_pte_size;
 265 
 266                 if (hpage_shift)
 267                         host_pte_size = 1ul << hpage_shift;
 268                 else
 269                         host_pte_size = PAGE_SIZE;
 270                 /*
 271                  * We should always find the guest page size
 272                  * to <= host page size, if host is using hugepage
 273                  */
 274                 if (host_pte_size < psize) {
 275                         if (!realmode)
 276                                 local_irq_restore(flags);
 277                         return H_PARAMETER;
 278                 }
 279                 pte = kvmppc_read_update_linux_pte(ptep, writing);
 280                 if (pte_present(pte) && !pte_protnone(pte)) {
 281                         if (writing && !__pte_write(pte))
 282                                 /* make the actual HPTE be read-only */
 283                                 ptel = hpte_make_readonly(ptel);
 284                         is_ci = pte_ci(pte);
 285                         pa = pte_pfn(pte) << PAGE_SHIFT;
 286                         pa |= hva & (host_pte_size - 1);
 287                         pa |= gpa & ~PAGE_MASK;
 288                 }
 289         }
 290         if (!realmode)
 291                 local_irq_restore(irq_flags);
 292 
 293         ptel &= HPTE_R_KEY | HPTE_R_PP0 | (psize-1);
 294         ptel |= pa;
 295 
 296         if (pa)
 297                 pteh |= HPTE_V_VALID;
 298         else {
 299                 pteh |= HPTE_V_ABSENT;
 300                 ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
 301         }
 302 
 303         /*If we had host pte mapping then  Check WIMG */
 304         if (ptep && !hpte_cache_flags_ok(ptel, is_ci)) {
 305                 if (is_ci)
 306                         return H_PARAMETER;
 307                 /*
 308                  * Allow guest to map emulated device memory as
 309                  * uncacheable, but actually make it cacheable.
 310                  */
 311                 ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G);
 312                 ptel |= HPTE_R_M;
 313         }
 314 
 315         /* Find and lock the HPTEG slot to use */
 316  do_insert:
 317         if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
 318                 return H_PARAMETER;
 319         if (likely((flags & H_EXACT) == 0)) {
 320                 pte_index &= ~7UL;
 321                 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
 322                 for (i = 0; i < 8; ++i) {
 323                         if ((be64_to_cpu(*hpte) & HPTE_V_VALID) == 0 &&
 324                             try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
 325                                           HPTE_V_ABSENT))
 326                                 break;
 327                         hpte += 2;
 328                 }
 329                 if (i == 8) {
 330                         /*
 331                          * Since try_lock_hpte doesn't retry (not even stdcx.
 332                          * failures), it could be that there is a free slot
 333                          * but we transiently failed to lock it.  Try again,
 334                          * actually locking each slot and checking it.
 335                          */
 336                         hpte -= 16;
 337                         for (i = 0; i < 8; ++i) {
 338                                 u64 pte;
 339                                 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
 340                                         cpu_relax();
 341                                 pte = be64_to_cpu(hpte[0]);
 342                                 if (!(pte & (HPTE_V_VALID | HPTE_V_ABSENT)))
 343                                         break;
 344                                 __unlock_hpte(hpte, pte);
 345                                 hpte += 2;
 346                         }
 347                         if (i == 8)
 348                                 return H_PTEG_FULL;
 349                 }
 350                 pte_index += i;
 351         } else {
 352                 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
 353                 if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
 354                                    HPTE_V_ABSENT)) {
 355                         /* Lock the slot and check again */
 356                         u64 pte;
 357 
 358                         while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
 359                                 cpu_relax();
 360                         pte = be64_to_cpu(hpte[0]);
 361                         if (pte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
 362                                 __unlock_hpte(hpte, pte);
 363                                 return H_PTEG_FULL;
 364                         }
 365                 }
 366         }
 367 
 368         /* Save away the guest's idea of the second HPTE dword */
 369         rev = &kvm->arch.hpt.rev[pte_index];
 370         if (realmode)
 371                 rev = real_vmalloc_addr(rev);
 372         if (rev) {
 373                 rev->guest_rpte = g_ptel;
 374                 note_hpte_modification(kvm, rev);
 375         }
 376 
 377         /* Link HPTE into reverse-map chain */
 378         if (pteh & HPTE_V_VALID) {
 379                 if (realmode)
 380                         rmap = real_vmalloc_addr(rmap);
 381                 lock_rmap(rmap);
 382                 /* Check for pending invalidations under the rmap chain lock */
 383                 if (mmu_notifier_retry(kvm, mmu_seq)) {
 384                         /* inval in progress, write a non-present HPTE */
 385                         pteh |= HPTE_V_ABSENT;
 386                         pteh &= ~HPTE_V_VALID;
 387                         ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
 388                         unlock_rmap(rmap);
 389                 } else {
 390                         kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index,
 391                                                 realmode);
 392                         /* Only set R/C in real HPTE if already set in *rmap */
 393                         rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
 394                         ptel &= rcbits | ~(HPTE_R_R | HPTE_R_C);
 395                 }
 396         }
 397 
 398         /* Convert to new format on P9 */
 399         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 400                 ptel = hpte_old_to_new_r(pteh, ptel);
 401                 pteh = hpte_old_to_new_v(pteh);
 402         }
 403         hpte[1] = cpu_to_be64(ptel);
 404 
 405         /* Write the first HPTE dword, unlocking the HPTE and making it valid */
 406         eieio();
 407         __unlock_hpte(hpte, pteh);
 408         asm volatile("ptesync" : : : "memory");
 409 
 410         *pte_idx_ret = pte_index;
 411         return H_SUCCESS;
 412 }
 413 EXPORT_SYMBOL_GPL(kvmppc_do_h_enter);
 414 
 415 long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
 416                     long pte_index, unsigned long pteh, unsigned long ptel)
 417 {
 418         return kvmppc_do_h_enter(vcpu->kvm, flags, pte_index, pteh, ptel,
 419                                  vcpu->arch.pgdir, true,
 420                                  &vcpu->arch.regs.gpr[4]);
 421 }
 422 
 423 #ifdef __BIG_ENDIAN__
 424 #define LOCK_TOKEN      (*(u32 *)(&get_paca()->lock_token))
 425 #else
 426 #define LOCK_TOKEN      (*(u32 *)(&get_paca()->paca_index))
 427 #endif
 428 
 429 static inline int is_mmio_hpte(unsigned long v, unsigned long r)
 430 {
 431         return ((v & HPTE_V_ABSENT) &&
 432                 (r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
 433                 (HPTE_R_KEY_HI | HPTE_R_KEY_LO));
 434 }
 435 
 436 static inline void fixup_tlbie_lpid(unsigned long rb_value, unsigned long lpid)
 437 {
 438 
 439         if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) {
 440                 /* Radix flush for a hash guest */
 441 
 442                 unsigned long rb,rs,prs,r,ric;
 443 
 444                 rb = PPC_BIT(52); /* IS = 2 */
 445                 rs = 0;  /* lpid = 0 */
 446                 prs = 0; /* partition scoped */
 447                 r = 1;   /* radix format */
 448                 ric = 0; /* RIC_FLSUH_TLB */
 449 
 450                 /*
 451                  * Need the extra ptesync to make sure we don't
 452                  * re-order the tlbie
 453                  */
 454                 asm volatile("ptesync": : :"memory");
 455                 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
 456                              : : "r"(rb), "i"(r), "i"(prs),
 457                                "i"(ric), "r"(rs) : "memory");
 458         }
 459 
 460         if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) {
 461                 asm volatile("ptesync": : :"memory");
 462                 asm volatile(PPC_TLBIE_5(%0,%1,0,0,0) : :
 463                              "r" (rb_value), "r" (lpid));
 464         }
 465 }
 466 
 467 static void do_tlbies(struct kvm *kvm, unsigned long *rbvalues,
 468                       long npages, int global, bool need_sync)
 469 {
 470         long i;
 471 
 472         /*
 473          * We use the POWER9 5-operand versions of tlbie and tlbiel here.
 474          * Since we are using RIC=0 PRS=0 R=0, and P7/P8 tlbiel ignores
 475          * the RS field, this is backwards-compatible with P7 and P8.
 476          */
 477         if (global) {
 478                 if (need_sync)
 479                         asm volatile("ptesync" : : : "memory");
 480                 for (i = 0; i < npages; ++i) {
 481                         asm volatile(PPC_TLBIE_5(%0,%1,0,0,0) : :
 482                                      "r" (rbvalues[i]), "r" (kvm->arch.lpid));
 483                 }
 484 
 485                 fixup_tlbie_lpid(rbvalues[i - 1], kvm->arch.lpid);
 486                 asm volatile("eieio; tlbsync; ptesync" : : : "memory");
 487         } else {
 488                 if (need_sync)
 489                         asm volatile("ptesync" : : : "memory");
 490                 for (i = 0; i < npages; ++i) {
 491                         asm volatile(PPC_TLBIEL(%0,%1,0,0,0) : :
 492                                      "r" (rbvalues[i]), "r" (0));
 493                 }
 494                 asm volatile("ptesync" : : : "memory");
 495         }
 496 }
 497 
 498 long kvmppc_do_h_remove(struct kvm *kvm, unsigned long flags,
 499                         unsigned long pte_index, unsigned long avpn,
 500                         unsigned long *hpret)
 501 {
 502         __be64 *hpte;
 503         unsigned long v, r, rb;
 504         struct revmap_entry *rev;
 505         u64 pte, orig_pte, pte_r;
 506 
 507         if (kvm_is_radix(kvm))
 508                 return H_FUNCTION;
 509         if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
 510                 return H_PARAMETER;
 511         hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
 512         while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
 513                 cpu_relax();
 514         pte = orig_pte = be64_to_cpu(hpte[0]);
 515         pte_r = be64_to_cpu(hpte[1]);
 516         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 517                 pte = hpte_new_to_old_v(pte, pte_r);
 518                 pte_r = hpte_new_to_old_r(pte_r);
 519         }
 520         if ((pte & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
 521             ((flags & H_AVPN) && (pte & ~0x7fUL) != avpn) ||
 522             ((flags & H_ANDCOND) && (pte & avpn) != 0)) {
 523                 __unlock_hpte(hpte, orig_pte);
 524                 return H_NOT_FOUND;
 525         }
 526 
 527         rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
 528         v = pte & ~HPTE_V_HVLOCK;
 529         if (v & HPTE_V_VALID) {
 530                 hpte[0] &= ~cpu_to_be64(HPTE_V_VALID);
 531                 rb = compute_tlbie_rb(v, pte_r, pte_index);
 532                 do_tlbies(kvm, &rb, 1, global_invalidates(kvm), true);
 533                 /*
 534                  * The reference (R) and change (C) bits in a HPT
 535                  * entry can be set by hardware at any time up until
 536                  * the HPTE is invalidated and the TLB invalidation
 537                  * sequence has completed.  This means that when
 538                  * removing a HPTE, we need to re-read the HPTE after
 539                  * the invalidation sequence has completed in order to
 540                  * obtain reliable values of R and C.
 541                  */
 542                 remove_revmap_chain(kvm, pte_index, rev, v,
 543                                     be64_to_cpu(hpte[1]));
 544         }
 545         r = rev->guest_rpte & ~HPTE_GR_RESERVED;
 546         note_hpte_modification(kvm, rev);
 547         unlock_hpte(hpte, 0);
 548 
 549         if (is_mmio_hpte(v, pte_r))
 550                 atomic64_inc(&kvm->arch.mmio_update);
 551 
 552         if (v & HPTE_V_ABSENT)
 553                 v = (v & ~HPTE_V_ABSENT) | HPTE_V_VALID;
 554         hpret[0] = v;
 555         hpret[1] = r;
 556         return H_SUCCESS;
 557 }
 558 EXPORT_SYMBOL_GPL(kvmppc_do_h_remove);
 559 
 560 long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
 561                      unsigned long pte_index, unsigned long avpn)
 562 {
 563         return kvmppc_do_h_remove(vcpu->kvm, flags, pte_index, avpn,
 564                                   &vcpu->arch.regs.gpr[4]);
 565 }
 566 
 567 long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
 568 {
 569         struct kvm *kvm = vcpu->kvm;
 570         unsigned long *args = &vcpu->arch.regs.gpr[4];
 571         __be64 *hp, *hptes[4];
 572         unsigned long tlbrb[4];
 573         long int i, j, k, n, found, indexes[4];
 574         unsigned long flags, req, pte_index, rcbits;
 575         int global;
 576         long int ret = H_SUCCESS;
 577         struct revmap_entry *rev, *revs[4];
 578         u64 hp0, hp1;
 579 
 580         if (kvm_is_radix(kvm))
 581                 return H_FUNCTION;
 582         global = global_invalidates(kvm);
 583         for (i = 0; i < 4 && ret == H_SUCCESS; ) {
 584                 n = 0;
 585                 for (; i < 4; ++i) {
 586                         j = i * 2;
 587                         pte_index = args[j];
 588                         flags = pte_index >> 56;
 589                         pte_index &= ((1ul << 56) - 1);
 590                         req = flags >> 6;
 591                         flags &= 3;
 592                         if (req == 3) {         /* no more requests */
 593                                 i = 4;
 594                                 break;
 595                         }
 596                         if (req != 1 || flags == 3 ||
 597                             pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
 598                                 /* parameter error */
 599                                 args[j] = ((0xa0 | flags) << 56) + pte_index;
 600                                 ret = H_PARAMETER;
 601                                 break;
 602                         }
 603                         hp = (__be64 *) (kvm->arch.hpt.virt + (pte_index << 4));
 604                         /* to avoid deadlock, don't spin except for first */
 605                         if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) {
 606                                 if (n)
 607                                         break;
 608                                 while (!try_lock_hpte(hp, HPTE_V_HVLOCK))
 609                                         cpu_relax();
 610                         }
 611                         found = 0;
 612                         hp0 = be64_to_cpu(hp[0]);
 613                         hp1 = be64_to_cpu(hp[1]);
 614                         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 615                                 hp0 = hpte_new_to_old_v(hp0, hp1);
 616                                 hp1 = hpte_new_to_old_r(hp1);
 617                         }
 618                         if (hp0 & (HPTE_V_ABSENT | HPTE_V_VALID)) {
 619                                 switch (flags & 3) {
 620                                 case 0:         /* absolute */
 621                                         found = 1;
 622                                         break;
 623                                 case 1:         /* andcond */
 624                                         if (!(hp0 & args[j + 1]))
 625                                                 found = 1;
 626                                         break;
 627                                 case 2:         /* AVPN */
 628                                         if ((hp0 & ~0x7fUL) == args[j + 1])
 629                                                 found = 1;
 630                                         break;
 631                                 }
 632                         }
 633                         if (!found) {
 634                                 hp[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
 635                                 args[j] = ((0x90 | flags) << 56) + pte_index;
 636                                 continue;
 637                         }
 638 
 639                         args[j] = ((0x80 | flags) << 56) + pte_index;
 640                         rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
 641                         note_hpte_modification(kvm, rev);
 642 
 643                         if (!(hp0 & HPTE_V_VALID)) {
 644                                 /* insert R and C bits from PTE */
 645                                 rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
 646                                 args[j] |= rcbits << (56 - 5);
 647                                 hp[0] = 0;
 648                                 if (is_mmio_hpte(hp0, hp1))
 649                                         atomic64_inc(&kvm->arch.mmio_update);
 650                                 continue;
 651                         }
 652 
 653                         /* leave it locked */
 654                         hp[0] &= ~cpu_to_be64(HPTE_V_VALID);
 655                         tlbrb[n] = compute_tlbie_rb(hp0, hp1, pte_index);
 656                         indexes[n] = j;
 657                         hptes[n] = hp;
 658                         revs[n] = rev;
 659                         ++n;
 660                 }
 661 
 662                 if (!n)
 663                         break;
 664 
 665                 /* Now that we've collected a batch, do the tlbies */
 666                 do_tlbies(kvm, tlbrb, n, global, true);
 667 
 668                 /* Read PTE low words after tlbie to get final R/C values */
 669                 for (k = 0; k < n; ++k) {
 670                         j = indexes[k];
 671                         pte_index = args[j] & ((1ul << 56) - 1);
 672                         hp = hptes[k];
 673                         rev = revs[k];
 674                         remove_revmap_chain(kvm, pte_index, rev,
 675                                 be64_to_cpu(hp[0]), be64_to_cpu(hp[1]));
 676                         rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
 677                         args[j] |= rcbits << (56 - 5);
 678                         __unlock_hpte(hp, 0);
 679                 }
 680         }
 681 
 682         return ret;
 683 }
 684 
 685 long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
 686                       unsigned long pte_index, unsigned long avpn,
 687                       unsigned long va)
 688 {
 689         struct kvm *kvm = vcpu->kvm;
 690         __be64 *hpte;
 691         struct revmap_entry *rev;
 692         unsigned long v, r, rb, mask, bits;
 693         u64 pte_v, pte_r;
 694 
 695         if (kvm_is_radix(kvm))
 696                 return H_FUNCTION;
 697         if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
 698                 return H_PARAMETER;
 699 
 700         hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
 701         while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
 702                 cpu_relax();
 703         v = pte_v = be64_to_cpu(hpte[0]);
 704         if (cpu_has_feature(CPU_FTR_ARCH_300))
 705                 v = hpte_new_to_old_v(v, be64_to_cpu(hpte[1]));
 706         if ((v & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
 707             ((flags & H_AVPN) && (v & ~0x7fUL) != avpn)) {
 708                 __unlock_hpte(hpte, pte_v);
 709                 return H_NOT_FOUND;
 710         }
 711 
 712         pte_r = be64_to_cpu(hpte[1]);
 713         bits = (flags << 55) & HPTE_R_PP0;
 714         bits |= (flags << 48) & HPTE_R_KEY_HI;
 715         bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
 716 
 717         /* Update guest view of 2nd HPTE dword */
 718         mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
 719                 HPTE_R_KEY_HI | HPTE_R_KEY_LO;
 720         rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
 721         if (rev) {
 722                 r = (rev->guest_rpte & ~mask) | bits;
 723                 rev->guest_rpte = r;
 724                 note_hpte_modification(kvm, rev);
 725         }
 726 
 727         /* Update HPTE */
 728         if (v & HPTE_V_VALID) {
 729                 /*
 730                  * If the page is valid, don't let it transition from
 731                  * readonly to writable.  If it should be writable, we'll
 732                  * take a trap and let the page fault code sort it out.
 733                  */
 734                 r = (pte_r & ~mask) | bits;
 735                 if (hpte_is_writable(r) && !hpte_is_writable(pte_r))
 736                         r = hpte_make_readonly(r);
 737                 /* If the PTE is changing, invalidate it first */
 738                 if (r != pte_r) {
 739                         rb = compute_tlbie_rb(v, r, pte_index);
 740                         hpte[0] = cpu_to_be64((pte_v & ~HPTE_V_VALID) |
 741                                               HPTE_V_ABSENT);
 742                         do_tlbies(kvm, &rb, 1, global_invalidates(kvm), true);
 743                         /* Don't lose R/C bit updates done by hardware */
 744                         r |= be64_to_cpu(hpte[1]) & (HPTE_R_R | HPTE_R_C);
 745                         hpte[1] = cpu_to_be64(r);
 746                 }
 747         }
 748         unlock_hpte(hpte, pte_v & ~HPTE_V_HVLOCK);
 749         asm volatile("ptesync" : : : "memory");
 750         if (is_mmio_hpte(v, pte_r))
 751                 atomic64_inc(&kvm->arch.mmio_update);
 752 
 753         return H_SUCCESS;
 754 }
 755 
 756 long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
 757                    unsigned long pte_index)
 758 {
 759         struct kvm *kvm = vcpu->kvm;
 760         __be64 *hpte;
 761         unsigned long v, r;
 762         int i, n = 1;
 763         struct revmap_entry *rev = NULL;
 764 
 765         if (kvm_is_radix(kvm))
 766                 return H_FUNCTION;
 767         if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
 768                 return H_PARAMETER;
 769         if (flags & H_READ_4) {
 770                 pte_index &= ~3;
 771                 n = 4;
 772         }
 773         rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
 774         for (i = 0; i < n; ++i, ++pte_index) {
 775                 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
 776                 v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
 777                 r = be64_to_cpu(hpte[1]);
 778                 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 779                         v = hpte_new_to_old_v(v, r);
 780                         r = hpte_new_to_old_r(r);
 781                 }
 782                 if (v & HPTE_V_ABSENT) {
 783                         v &= ~HPTE_V_ABSENT;
 784                         v |= HPTE_V_VALID;
 785                 }
 786                 if (v & HPTE_V_VALID) {
 787                         r = rev[i].guest_rpte | (r & (HPTE_R_R | HPTE_R_C));
 788                         r &= ~HPTE_GR_RESERVED;
 789                 }
 790                 vcpu->arch.regs.gpr[4 + i * 2] = v;
 791                 vcpu->arch.regs.gpr[5 + i * 2] = r;
 792         }
 793         return H_SUCCESS;
 794 }
 795 
 796 long kvmppc_h_clear_ref(struct kvm_vcpu *vcpu, unsigned long flags,
 797                         unsigned long pte_index)
 798 {
 799         struct kvm *kvm = vcpu->kvm;
 800         __be64 *hpte;
 801         unsigned long v, r, gr;
 802         struct revmap_entry *rev;
 803         unsigned long *rmap;
 804         long ret = H_NOT_FOUND;
 805 
 806         if (kvm_is_radix(kvm))
 807                 return H_FUNCTION;
 808         if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
 809                 return H_PARAMETER;
 810 
 811         rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
 812         hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
 813         while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
 814                 cpu_relax();
 815         v = be64_to_cpu(hpte[0]);
 816         r = be64_to_cpu(hpte[1]);
 817         if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
 818                 goto out;
 819 
 820         gr = rev->guest_rpte;
 821         if (rev->guest_rpte & HPTE_R_R) {
 822                 rev->guest_rpte &= ~HPTE_R_R;
 823                 note_hpte_modification(kvm, rev);
 824         }
 825         if (v & HPTE_V_VALID) {
 826                 gr |= r & (HPTE_R_R | HPTE_R_C);
 827                 if (r & HPTE_R_R) {
 828                         kvmppc_clear_ref_hpte(kvm, hpte, pte_index);
 829                         rmap = revmap_for_hpte(kvm, v, gr, NULL, NULL);
 830                         if (rmap) {
 831                                 lock_rmap(rmap);
 832                                 *rmap |= KVMPPC_RMAP_REFERENCED;
 833                                 unlock_rmap(rmap);
 834                         }
 835                 }
 836         }
 837         vcpu->arch.regs.gpr[4] = gr;
 838         ret = H_SUCCESS;
 839  out:
 840         unlock_hpte(hpte, v & ~HPTE_V_HVLOCK);
 841         return ret;
 842 }
 843 
 844 long kvmppc_h_clear_mod(struct kvm_vcpu *vcpu, unsigned long flags,
 845                         unsigned long pte_index)
 846 {
 847         struct kvm *kvm = vcpu->kvm;
 848         __be64 *hpte;
 849         unsigned long v, r, gr;
 850         struct revmap_entry *rev;
 851         long ret = H_NOT_FOUND;
 852 
 853         if (kvm_is_radix(kvm))
 854                 return H_FUNCTION;
 855         if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
 856                 return H_PARAMETER;
 857 
 858         rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
 859         hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
 860         while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
 861                 cpu_relax();
 862         v = be64_to_cpu(hpte[0]);
 863         r = be64_to_cpu(hpte[1]);
 864         if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
 865                 goto out;
 866 
 867         gr = rev->guest_rpte;
 868         if (gr & HPTE_R_C) {
 869                 rev->guest_rpte &= ~HPTE_R_C;
 870                 note_hpte_modification(kvm, rev);
 871         }
 872         if (v & HPTE_V_VALID) {
 873                 /* need to make it temporarily absent so C is stable */
 874                 hpte[0] |= cpu_to_be64(HPTE_V_ABSENT);
 875                 kvmppc_invalidate_hpte(kvm, hpte, pte_index);
 876                 r = be64_to_cpu(hpte[1]);
 877                 gr |= r & (HPTE_R_R | HPTE_R_C);
 878                 if (r & HPTE_R_C) {
 879                         hpte[1] = cpu_to_be64(r & ~HPTE_R_C);
 880                         eieio();
 881                         kvmppc_set_dirty_from_hpte(kvm, v, gr);
 882                 }
 883         }
 884         vcpu->arch.regs.gpr[4] = gr;
 885         ret = H_SUCCESS;
 886  out:
 887         unlock_hpte(hpte, v & ~HPTE_V_HVLOCK);
 888         return ret;
 889 }
 890 
 891 static int kvmppc_get_hpa(struct kvm_vcpu *vcpu, unsigned long gpa,
 892                           int writing, unsigned long *hpa,
 893                           struct kvm_memory_slot **memslot_p)
 894 {
 895         struct kvm *kvm = vcpu->kvm;
 896         struct kvm_memory_slot *memslot;
 897         unsigned long gfn, hva, pa, psize = PAGE_SHIFT;
 898         unsigned int shift;
 899         pte_t *ptep, pte;
 900 
 901         /* Find the memslot for this address */
 902         gfn = gpa >> PAGE_SHIFT;
 903         memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
 904         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
 905                 return H_PARAMETER;
 906 
 907         /* Translate to host virtual address */
 908         hva = __gfn_to_hva_memslot(memslot, gfn);
 909 
 910         /* Try to find the host pte for that virtual address */
 911         ptep = __find_linux_pte(vcpu->arch.pgdir, hva, NULL, &shift);
 912         if (!ptep)
 913                 return H_TOO_HARD;
 914         pte = kvmppc_read_update_linux_pte(ptep, writing);
 915         if (!pte_present(pte))
 916                 return H_TOO_HARD;
 917 
 918         /* Convert to a physical address */
 919         if (shift)
 920                 psize = 1UL << shift;
 921         pa = pte_pfn(pte) << PAGE_SHIFT;
 922         pa |= hva & (psize - 1);
 923         pa |= gpa & ~PAGE_MASK;
 924 
 925         if (hpa)
 926                 *hpa = pa;
 927         if (memslot_p)
 928                 *memslot_p = memslot;
 929 
 930         return H_SUCCESS;
 931 }
 932 
 933 static long kvmppc_do_h_page_init_zero(struct kvm_vcpu *vcpu,
 934                                        unsigned long dest)
 935 {
 936         struct kvm_memory_slot *memslot;
 937         struct kvm *kvm = vcpu->kvm;
 938         unsigned long pa, mmu_seq;
 939         long ret = H_SUCCESS;
 940         int i;
 941 
 942         /* Used later to detect if we might have been invalidated */
 943         mmu_seq = kvm->mmu_notifier_seq;
 944         smp_rmb();
 945 
 946         ret = kvmppc_get_hpa(vcpu, dest, 1, &pa, &memslot);
 947         if (ret != H_SUCCESS)
 948                 return ret;
 949 
 950         /* Check if we've been invalidated */
 951         raw_spin_lock(&kvm->mmu_lock.rlock);
 952         if (mmu_notifier_retry(kvm, mmu_seq)) {
 953                 ret = H_TOO_HARD;
 954                 goto out_unlock;
 955         }
 956 
 957         /* Zero the page */
 958         for (i = 0; i < SZ_4K; i += L1_CACHE_BYTES, pa += L1_CACHE_BYTES)
 959                 dcbz((void *)pa);
 960         kvmppc_update_dirty_map(memslot, dest >> PAGE_SHIFT, PAGE_SIZE);
 961 
 962 out_unlock:
 963         raw_spin_unlock(&kvm->mmu_lock.rlock);
 964         return ret;
 965 }
 966 
 967 static long kvmppc_do_h_page_init_copy(struct kvm_vcpu *vcpu,
 968                                        unsigned long dest, unsigned long src)
 969 {
 970         unsigned long dest_pa, src_pa, mmu_seq;
 971         struct kvm_memory_slot *dest_memslot;
 972         struct kvm *kvm = vcpu->kvm;
 973         long ret = H_SUCCESS;
 974 
 975         /* Used later to detect if we might have been invalidated */
 976         mmu_seq = kvm->mmu_notifier_seq;
 977         smp_rmb();
 978 
 979         ret = kvmppc_get_hpa(vcpu, dest, 1, &dest_pa, &dest_memslot);
 980         if (ret != H_SUCCESS)
 981                 return ret;
 982         ret = kvmppc_get_hpa(vcpu, src, 0, &src_pa, NULL);
 983         if (ret != H_SUCCESS)
 984                 return ret;
 985 
 986         /* Check if we've been invalidated */
 987         raw_spin_lock(&kvm->mmu_lock.rlock);
 988         if (mmu_notifier_retry(kvm, mmu_seq)) {
 989                 ret = H_TOO_HARD;
 990                 goto out_unlock;
 991         }
 992 
 993         /* Copy the page */
 994         memcpy((void *)dest_pa, (void *)src_pa, SZ_4K);
 995 
 996         kvmppc_update_dirty_map(dest_memslot, dest >> PAGE_SHIFT, PAGE_SIZE);
 997 
 998 out_unlock:
 999         raw_spin_unlock(&kvm->mmu_lock.rlock);
1000         return ret;
1001 }
1002 
1003 long kvmppc_rm_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
1004                            unsigned long dest, unsigned long src)
1005 {
1006         struct kvm *kvm = vcpu->kvm;
1007         u64 pg_mask = SZ_4K - 1;        /* 4K page size */
1008         long ret = H_SUCCESS;
1009 
1010         /* Don't handle radix mode here, go up to the virtual mode handler */
1011         if (kvm_is_radix(kvm))
1012                 return H_TOO_HARD;
1013 
1014         /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
1015         if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
1016                       H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
1017                 return H_PARAMETER;
1018 
1019         /* dest (and src if copy_page flag set) must be page aligned */
1020         if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
1021                 return H_PARAMETER;
1022 
1023         /* zero and/or copy the page as determined by the flags */
1024         if (flags & H_COPY_PAGE)
1025                 ret = kvmppc_do_h_page_init_copy(vcpu, dest, src);
1026         else if (flags & H_ZERO_PAGE)
1027                 ret = kvmppc_do_h_page_init_zero(vcpu, dest);
1028 
1029         /* We can ignore the other flags */
1030 
1031         return ret;
1032 }
1033 
1034 void kvmppc_invalidate_hpte(struct kvm *kvm, __be64 *hptep,
1035                         unsigned long pte_index)
1036 {
1037         unsigned long rb;
1038         u64 hp0, hp1;
1039 
1040         hptep[0] &= ~cpu_to_be64(HPTE_V_VALID);
1041         hp0 = be64_to_cpu(hptep[0]);
1042         hp1 = be64_to_cpu(hptep[1]);
1043         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1044                 hp0 = hpte_new_to_old_v(hp0, hp1);
1045                 hp1 = hpte_new_to_old_r(hp1);
1046         }
1047         rb = compute_tlbie_rb(hp0, hp1, pte_index);
1048         do_tlbies(kvm, &rb, 1, 1, true);
1049 }
1050 EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte);
1051 
1052 void kvmppc_clear_ref_hpte(struct kvm *kvm, __be64 *hptep,
1053                            unsigned long pte_index)
1054 {
1055         unsigned long rb;
1056         unsigned char rbyte;
1057         u64 hp0, hp1;
1058 
1059         hp0 = be64_to_cpu(hptep[0]);
1060         hp1 = be64_to_cpu(hptep[1]);
1061         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1062                 hp0 = hpte_new_to_old_v(hp0, hp1);
1063                 hp1 = hpte_new_to_old_r(hp1);
1064         }
1065         rb = compute_tlbie_rb(hp0, hp1, pte_index);
1066         rbyte = (be64_to_cpu(hptep[1]) & ~HPTE_R_R) >> 8;
1067         /* modify only the second-last byte, which contains the ref bit */
1068         *((char *)hptep + 14) = rbyte;
1069         do_tlbies(kvm, &rb, 1, 1, false);
1070 }
1071 EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte);
1072 
1073 static int slb_base_page_shift[4] = {
1074         24,     /* 16M */
1075         16,     /* 64k */
1076         34,     /* 16G */
1077         20,     /* 1M, unsupported */
1078 };
1079 
1080 static struct mmio_hpte_cache_entry *mmio_cache_search(struct kvm_vcpu *vcpu,
1081                 unsigned long eaddr, unsigned long slb_v, long mmio_update)
1082 {
1083         struct mmio_hpte_cache_entry *entry = NULL;
1084         unsigned int pshift;
1085         unsigned int i;
1086 
1087         for (i = 0; i < MMIO_HPTE_CACHE_SIZE; i++) {
1088                 entry = &vcpu->arch.mmio_cache.entry[i];
1089                 if (entry->mmio_update == mmio_update) {
1090                         pshift = entry->slb_base_pshift;
1091                         if ((entry->eaddr >> pshift) == (eaddr >> pshift) &&
1092                             entry->slb_v == slb_v)
1093                                 return entry;
1094                 }
1095         }
1096         return NULL;
1097 }
1098 
1099 static struct mmio_hpte_cache_entry *
1100                         next_mmio_cache_entry(struct kvm_vcpu *vcpu)
1101 {
1102         unsigned int index = vcpu->arch.mmio_cache.index;
1103 
1104         vcpu->arch.mmio_cache.index++;
1105         if (vcpu->arch.mmio_cache.index == MMIO_HPTE_CACHE_SIZE)
1106                 vcpu->arch.mmio_cache.index = 0;
1107 
1108         return &vcpu->arch.mmio_cache.entry[index];
1109 }
1110 
1111 /* When called from virtmode, this func should be protected by
1112  * preempt_disable(), otherwise, the holding of HPTE_V_HVLOCK
1113  * can trigger deadlock issue.
1114  */
1115 long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
1116                               unsigned long valid)
1117 {
1118         unsigned int i;
1119         unsigned int pshift;
1120         unsigned long somask;
1121         unsigned long vsid, hash;
1122         unsigned long avpn;
1123         __be64 *hpte;
1124         unsigned long mask, val;
1125         unsigned long v, r, orig_v;
1126 
1127         /* Get page shift, work out hash and AVPN etc. */
1128         mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY;
1129         val = 0;
1130         pshift = 12;
1131         if (slb_v & SLB_VSID_L) {
1132                 mask |= HPTE_V_LARGE;
1133                 val |= HPTE_V_LARGE;
1134                 pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4];
1135         }
1136         if (slb_v & SLB_VSID_B_1T) {
1137                 somask = (1UL << 40) - 1;
1138                 vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T;
1139                 vsid ^= vsid << 25;
1140         } else {
1141                 somask = (1UL << 28) - 1;
1142                 vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT;
1143         }
1144         hash = (vsid ^ ((eaddr & somask) >> pshift)) & kvmppc_hpt_mask(&kvm->arch.hpt);
1145         avpn = slb_v & ~(somask >> 16); /* also includes B */
1146         avpn |= (eaddr & somask) >> 16;
1147 
1148         if (pshift >= 24)
1149                 avpn &= ~((1UL << (pshift - 16)) - 1);
1150         else
1151                 avpn &= ~0x7fUL;
1152         val |= avpn;
1153 
1154         for (;;) {
1155                 hpte = (__be64 *)(kvm->arch.hpt.virt + (hash << 7));
1156 
1157                 for (i = 0; i < 16; i += 2) {
1158                         /* Read the PTE racily */
1159                         v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
1160                         if (cpu_has_feature(CPU_FTR_ARCH_300))
1161                                 v = hpte_new_to_old_v(v, be64_to_cpu(hpte[i+1]));
1162 
1163                         /* Check valid/absent, hash, segment size and AVPN */
1164                         if (!(v & valid) || (v & mask) != val)
1165                                 continue;
1166 
1167                         /* Lock the PTE and read it under the lock */
1168                         while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK))
1169                                 cpu_relax();
1170                         v = orig_v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
1171                         r = be64_to_cpu(hpte[i+1]);
1172                         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1173                                 v = hpte_new_to_old_v(v, r);
1174                                 r = hpte_new_to_old_r(r);
1175                         }
1176 
1177                         /*
1178                          * Check the HPTE again, including base page size
1179                          */
1180                         if ((v & valid) && (v & mask) == val &&
1181                             kvmppc_hpte_base_page_shift(v, r) == pshift)
1182                                 /* Return with the HPTE still locked */
1183                                 return (hash << 3) + (i >> 1);
1184 
1185                         __unlock_hpte(&hpte[i], orig_v);
1186                 }
1187 
1188                 if (val & HPTE_V_SECONDARY)
1189                         break;
1190                 val |= HPTE_V_SECONDARY;
1191                 hash = hash ^ kvmppc_hpt_mask(&kvm->arch.hpt);
1192         }
1193         return -1;
1194 }
1195 EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte);
1196 
1197 /*
1198  * Called in real mode to check whether an HPTE not found fault
1199  * is due to accessing a paged-out page or an emulated MMIO page,
1200  * or if a protection fault is due to accessing a page that the
1201  * guest wanted read/write access to but which we made read-only.
1202  * Returns a possibly modified status (DSISR) value if not
1203  * (i.e. pass the interrupt to the guest),
1204  * -1 to pass the fault up to host kernel mode code, -2 to do that
1205  * and also load the instruction word (for MMIO emulation),
1206  * or 0 if we should make the guest retry the access.
1207  */
1208 long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
1209                           unsigned long slb_v, unsigned int status, bool data)
1210 {
1211         struct kvm *kvm = vcpu->kvm;
1212         long int index;
1213         unsigned long v, r, gr, orig_v;
1214         __be64 *hpte;
1215         unsigned long valid;
1216         struct revmap_entry *rev;
1217         unsigned long pp, key;
1218         struct mmio_hpte_cache_entry *cache_entry = NULL;
1219         long mmio_update = 0;
1220 
1221         /* For protection fault, expect to find a valid HPTE */
1222         valid = HPTE_V_VALID;
1223         if (status & DSISR_NOHPTE) {
1224                 valid |= HPTE_V_ABSENT;
1225                 mmio_update = atomic64_read(&kvm->arch.mmio_update);
1226                 cache_entry = mmio_cache_search(vcpu, addr, slb_v, mmio_update);
1227         }
1228         if (cache_entry) {
1229                 index = cache_entry->pte_index;
1230                 v = cache_entry->hpte_v;
1231                 r = cache_entry->hpte_r;
1232                 gr = cache_entry->rpte;
1233         } else {
1234                 index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
1235                 if (index < 0) {
1236                         if (status & DSISR_NOHPTE)
1237                                 return status;  /* there really was no HPTE */
1238                         return 0;       /* for prot fault, HPTE disappeared */
1239                 }
1240                 hpte = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
1241                 v = orig_v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
1242                 r = be64_to_cpu(hpte[1]);
1243                 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1244                         v = hpte_new_to_old_v(v, r);
1245                         r = hpte_new_to_old_r(r);
1246                 }
1247                 rev = real_vmalloc_addr(&kvm->arch.hpt.rev[index]);
1248                 gr = rev->guest_rpte;
1249 
1250                 unlock_hpte(hpte, orig_v);
1251         }
1252 
1253         /* For not found, if the HPTE is valid by now, retry the instruction */
1254         if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID))
1255                 return 0;
1256 
1257         /* Check access permissions to the page */
1258         pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
1259         key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
1260         status &= ~DSISR_NOHPTE;        /* DSISR_NOHPTE == SRR1_ISI_NOPT */
1261         if (!data) {
1262                 if (gr & (HPTE_R_N | HPTE_R_G))
1263                         return status | SRR1_ISI_N_OR_G;
1264                 if (!hpte_read_permission(pp, slb_v & key))
1265                         return status | SRR1_ISI_PROT;
1266         } else if (status & DSISR_ISSTORE) {
1267                 /* check write permission */
1268                 if (!hpte_write_permission(pp, slb_v & key))
1269                         return status | DSISR_PROTFAULT;
1270         } else {
1271                 if (!hpte_read_permission(pp, slb_v & key))
1272                         return status | DSISR_PROTFAULT;
1273         }
1274 
1275         /* Check storage key, if applicable */
1276         if (data && (vcpu->arch.shregs.msr & MSR_DR)) {
1277                 unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr);
1278                 if (status & DSISR_ISSTORE)
1279                         perm >>= 1;
1280                 if (perm & 1)
1281                         return status | DSISR_KEYFAULT;
1282         }
1283 
1284         /* Save HPTE info for virtual-mode handler */
1285         vcpu->arch.pgfault_addr = addr;
1286         vcpu->arch.pgfault_index = index;
1287         vcpu->arch.pgfault_hpte[0] = v;
1288         vcpu->arch.pgfault_hpte[1] = r;
1289         vcpu->arch.pgfault_cache = cache_entry;
1290 
1291         /* Check the storage key to see if it is possibly emulated MMIO */
1292         if ((r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
1293             (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) {
1294                 if (!cache_entry) {
1295                         unsigned int pshift = 12;
1296                         unsigned int pshift_index;
1297 
1298                         if (slb_v & SLB_VSID_L) {
1299                                 pshift_index = ((slb_v & SLB_VSID_LP) >> 4);
1300                                 pshift = slb_base_page_shift[pshift_index];
1301                         }
1302                         cache_entry = next_mmio_cache_entry(vcpu);
1303                         cache_entry->eaddr = addr;
1304                         cache_entry->slb_base_pshift = pshift;
1305                         cache_entry->pte_index = index;
1306                         cache_entry->hpte_v = v;
1307                         cache_entry->hpte_r = r;
1308                         cache_entry->rpte = gr;
1309                         cache_entry->slb_v = slb_v;
1310                         cache_entry->mmio_update = mmio_update;
1311                 }
1312                 if (data && (vcpu->arch.shregs.msr & MSR_IR))
1313                         return -2;      /* MMIO emulation - load instr word */
1314         }
1315 
1316         return -1;              /* send fault up to host kernel mode */
1317 }

/* [<][>][^][v][top][bottom][index][help] */