root/drivers/net/ethernet/sfc/falcon/io.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. _ef4_writeq
  2. _ef4_readq
  3. _ef4_writed
  4. _ef4_readd
  5. ef4_writeo
  6. ef4_sram_writeq
  7. ef4_writed
  8. ef4_reado
  9. ef4_sram_readq
  10. ef4_readd
  11. ef4_writeo_table
  12. ef4_reado_table
  13. _ef4_writeo_page
  14. _ef4_writed_page
  15. _ef4_writed_page_locked

   1 /* SPDX-License-Identifier: GPL-2.0-only */
   2 /****************************************************************************
   3  * Driver for Solarflare network controllers and boards
   4  * Copyright 2005-2006 Fen Systems Ltd.
   5  * Copyright 2006-2013 Solarflare Communications Inc.
   6  */
   7 
   8 #ifndef EF4_IO_H
   9 #define EF4_IO_H
  10 
  11 #include <linux/io.h>
  12 #include <linux/spinlock.h>
  13 
  14 /**************************************************************************
  15  *
  16  * NIC register I/O
  17  *
  18  **************************************************************************
  19  *
  20  * Notes on locking strategy for the Falcon architecture:
  21  *
  22  * Many CSRs are very wide and cannot be read or written atomically.
  23  * Writes from the host are buffered by the Bus Interface Unit (BIU)
  24  * up to 128 bits.  Whenever the host writes part of such a register,
  25  * the BIU collects the written value and does not write to the
  26  * underlying register until all 4 dwords have been written.  A
  27  * similar buffering scheme applies to host access to the NIC's 64-bit
  28  * SRAM.
  29  *
  30  * Writes to different CSRs and 64-bit SRAM words must be serialised,
  31  * since interleaved access can result in lost writes.  We use
  32  * ef4_nic::biu_lock for this.
  33  *
  34  * We also serialise reads from 128-bit CSRs and SRAM with the same
  35  * spinlock.  This may not be necessary, but it doesn't really matter
  36  * as there are no such reads on the fast path.
  37  *
  38  * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are
  39  * 128-bit but are special-cased in the BIU to avoid the need for
  40  * locking in the host:
  41  *
  42  * - They are write-only.
  43  * - The semantics of writing to these registers are such that
  44  *   replacing the low 96 bits with zero does not affect functionality.
  45  * - If the host writes to the last dword address of such a register
  46  *   (i.e. the high 32 bits) the underlying register will always be
  47  *   written.  If the collector and the current write together do not
  48  *   provide values for all 128 bits of the register, the low 96 bits
  49  *   will be written as zero.
  50  * - If the host writes to the address of any other part of such a
  51  *   register while the collector already holds values for some other
  52  *   register, the write is discarded and the collector maintains its
  53  *   current state.
  54  *
  55  * The EF10 architecture exposes very few registers to the host and
  56  * most of them are only 32 bits wide.  The only exceptions are the MC
  57  * doorbell register pair, which has its own latching, and
  58  * TX_DESC_UPD, which works in a similar way to the Falcon
  59  * architecture.
  60  */
  61 
  62 #if BITS_PER_LONG == 64
  63 #define EF4_USE_QWORD_IO 1
  64 #endif
  65 
  66 #ifdef EF4_USE_QWORD_IO
  67 static inline void _ef4_writeq(struct ef4_nic *efx, __le64 value,
  68                                   unsigned int reg)
  69 {
  70         __raw_writeq((__force u64)value, efx->membase + reg);
  71 }
  72 static inline __le64 _ef4_readq(struct ef4_nic *efx, unsigned int reg)
  73 {
  74         return (__force __le64)__raw_readq(efx->membase + reg);
  75 }
  76 #endif
  77 
  78 static inline void _ef4_writed(struct ef4_nic *efx, __le32 value,
  79                                   unsigned int reg)
  80 {
  81         __raw_writel((__force u32)value, efx->membase + reg);
  82 }
  83 static inline __le32 _ef4_readd(struct ef4_nic *efx, unsigned int reg)
  84 {
  85         return (__force __le32)__raw_readl(efx->membase + reg);
  86 }
  87 
  88 /* Write a normal 128-bit CSR, locking as appropriate. */
  89 static inline void ef4_writeo(struct ef4_nic *efx, const ef4_oword_t *value,
  90                               unsigned int reg)
  91 {
  92         unsigned long flags __attribute__ ((unused));
  93 
  94         netif_vdbg(efx, hw, efx->net_dev,
  95                    "writing register %x with " EF4_OWORD_FMT "\n", reg,
  96                    EF4_OWORD_VAL(*value));
  97 
  98         spin_lock_irqsave(&efx->biu_lock, flags);
  99 #ifdef EF4_USE_QWORD_IO
 100         _ef4_writeq(efx, value->u64[0], reg + 0);
 101         _ef4_writeq(efx, value->u64[1], reg + 8);
 102 #else
 103         _ef4_writed(efx, value->u32[0], reg + 0);
 104         _ef4_writed(efx, value->u32[1], reg + 4);
 105         _ef4_writed(efx, value->u32[2], reg + 8);
 106         _ef4_writed(efx, value->u32[3], reg + 12);
 107 #endif
 108         spin_unlock_irqrestore(&efx->biu_lock, flags);
 109 }
 110 
 111 /* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */
 112 static inline void ef4_sram_writeq(struct ef4_nic *efx, void __iomem *membase,
 113                                    const ef4_qword_t *value, unsigned int index)
 114 {
 115         unsigned int addr = index * sizeof(*value);
 116         unsigned long flags __attribute__ ((unused));
 117 
 118         netif_vdbg(efx, hw, efx->net_dev,
 119                    "writing SRAM address %x with " EF4_QWORD_FMT "\n",
 120                    addr, EF4_QWORD_VAL(*value));
 121 
 122         spin_lock_irqsave(&efx->biu_lock, flags);
 123 #ifdef EF4_USE_QWORD_IO
 124         __raw_writeq((__force u64)value->u64[0], membase + addr);
 125 #else
 126         __raw_writel((__force u32)value->u32[0], membase + addr);
 127         __raw_writel((__force u32)value->u32[1], membase + addr + 4);
 128 #endif
 129         spin_unlock_irqrestore(&efx->biu_lock, flags);
 130 }
 131 
 132 /* Write a 32-bit CSR or the last dword of a special 128-bit CSR */
 133 static inline void ef4_writed(struct ef4_nic *efx, const ef4_dword_t *value,
 134                               unsigned int reg)
 135 {
 136         netif_vdbg(efx, hw, efx->net_dev,
 137                    "writing register %x with "EF4_DWORD_FMT"\n",
 138                    reg, EF4_DWORD_VAL(*value));
 139 
 140         /* No lock required */
 141         _ef4_writed(efx, value->u32[0], reg);
 142 }
 143 
 144 /* Read a 128-bit CSR, locking as appropriate. */
 145 static inline void ef4_reado(struct ef4_nic *efx, ef4_oword_t *value,
 146                              unsigned int reg)
 147 {
 148         unsigned long flags __attribute__ ((unused));
 149 
 150         spin_lock_irqsave(&efx->biu_lock, flags);
 151         value->u32[0] = _ef4_readd(efx, reg + 0);
 152         value->u32[1] = _ef4_readd(efx, reg + 4);
 153         value->u32[2] = _ef4_readd(efx, reg + 8);
 154         value->u32[3] = _ef4_readd(efx, reg + 12);
 155         spin_unlock_irqrestore(&efx->biu_lock, flags);
 156 
 157         netif_vdbg(efx, hw, efx->net_dev,
 158                    "read from register %x, got " EF4_OWORD_FMT "\n", reg,
 159                    EF4_OWORD_VAL(*value));
 160 }
 161 
 162 /* Read 64-bit SRAM through the supplied mapping, locking as appropriate. */
 163 static inline void ef4_sram_readq(struct ef4_nic *efx, void __iomem *membase,
 164                                   ef4_qword_t *value, unsigned int index)
 165 {
 166         unsigned int addr = index * sizeof(*value);
 167         unsigned long flags __attribute__ ((unused));
 168 
 169         spin_lock_irqsave(&efx->biu_lock, flags);
 170 #ifdef EF4_USE_QWORD_IO
 171         value->u64[0] = (__force __le64)__raw_readq(membase + addr);
 172 #else
 173         value->u32[0] = (__force __le32)__raw_readl(membase + addr);
 174         value->u32[1] = (__force __le32)__raw_readl(membase + addr + 4);
 175 #endif
 176         spin_unlock_irqrestore(&efx->biu_lock, flags);
 177 
 178         netif_vdbg(efx, hw, efx->net_dev,
 179                    "read from SRAM address %x, got "EF4_QWORD_FMT"\n",
 180                    addr, EF4_QWORD_VAL(*value));
 181 }
 182 
 183 /* Read a 32-bit CSR or SRAM */
 184 static inline void ef4_readd(struct ef4_nic *efx, ef4_dword_t *value,
 185                                 unsigned int reg)
 186 {
 187         value->u32[0] = _ef4_readd(efx, reg);
 188         netif_vdbg(efx, hw, efx->net_dev,
 189                    "read from register %x, got "EF4_DWORD_FMT"\n",
 190                    reg, EF4_DWORD_VAL(*value));
 191 }
 192 
 193 /* Write a 128-bit CSR forming part of a table */
 194 static inline void
 195 ef4_writeo_table(struct ef4_nic *efx, const ef4_oword_t *value,
 196                  unsigned int reg, unsigned int index)
 197 {
 198         ef4_writeo(efx, value, reg + index * sizeof(ef4_oword_t));
 199 }
 200 
 201 /* Read a 128-bit CSR forming part of a table */
 202 static inline void ef4_reado_table(struct ef4_nic *efx, ef4_oword_t *value,
 203                                      unsigned int reg, unsigned int index)
 204 {
 205         ef4_reado(efx, value, reg + index * sizeof(ef4_oword_t));
 206 }
 207 
 208 /* Page size used as step between per-VI registers */
 209 #define EF4_VI_PAGE_SIZE 0x2000
 210 
 211 /* Calculate offset to page-mapped register */
 212 #define EF4_PAGED_REG(page, reg) \
 213         ((page) * EF4_VI_PAGE_SIZE + (reg))
 214 
 215 /* Write the whole of RX_DESC_UPD or TX_DESC_UPD */
 216 static inline void _ef4_writeo_page(struct ef4_nic *efx, ef4_oword_t *value,
 217                                     unsigned int reg, unsigned int page)
 218 {
 219         reg = EF4_PAGED_REG(page, reg);
 220 
 221         netif_vdbg(efx, hw, efx->net_dev,
 222                    "writing register %x with " EF4_OWORD_FMT "\n", reg,
 223                    EF4_OWORD_VAL(*value));
 224 
 225 #ifdef EF4_USE_QWORD_IO
 226         _ef4_writeq(efx, value->u64[0], reg + 0);
 227         _ef4_writeq(efx, value->u64[1], reg + 8);
 228 #else
 229         _ef4_writed(efx, value->u32[0], reg + 0);
 230         _ef4_writed(efx, value->u32[1], reg + 4);
 231         _ef4_writed(efx, value->u32[2], reg + 8);
 232         _ef4_writed(efx, value->u32[3], reg + 12);
 233 #endif
 234 }
 235 #define ef4_writeo_page(efx, value, reg, page)                          \
 236         _ef4_writeo_page(efx, value,                                    \
 237                          reg +                                          \
 238                          BUILD_BUG_ON_ZERO((reg) != 0x830 && (reg) != 0xa10), \
 239                          page)
 240 
 241 /* Write a page-mapped 32-bit CSR (EVQ_RPTR, EVQ_TMR (EF10), or the
 242  * high bits of RX_DESC_UPD or TX_DESC_UPD)
 243  */
 244 static inline void
 245 _ef4_writed_page(struct ef4_nic *efx, const ef4_dword_t *value,
 246                  unsigned int reg, unsigned int page)
 247 {
 248         ef4_writed(efx, value, EF4_PAGED_REG(page, reg));
 249 }
 250 #define ef4_writed_page(efx, value, reg, page)                          \
 251         _ef4_writed_page(efx, value,                                    \
 252                          reg +                                          \
 253                          BUILD_BUG_ON_ZERO((reg) != 0x400 &&            \
 254                                            (reg) != 0x420 &&            \
 255                                            (reg) != 0x830 &&            \
 256                                            (reg) != 0x83c &&            \
 257                                            (reg) != 0xa18 &&            \
 258                                            (reg) != 0xa1c),             \
 259                          page)
 260 
 261 /* Write TIMER_COMMAND.  This is a page-mapped 32-bit CSR, but a bug
 262  * in the BIU means that writes to TIMER_COMMAND[0] invalidate the
 263  * collector register.
 264  */
 265 static inline void _ef4_writed_page_locked(struct ef4_nic *efx,
 266                                            const ef4_dword_t *value,
 267                                            unsigned int reg,
 268                                            unsigned int page)
 269 {
 270         unsigned long flags __attribute__ ((unused));
 271 
 272         if (page == 0) {
 273                 spin_lock_irqsave(&efx->biu_lock, flags);
 274                 ef4_writed(efx, value, EF4_PAGED_REG(page, reg));
 275                 spin_unlock_irqrestore(&efx->biu_lock, flags);
 276         } else {
 277                 ef4_writed(efx, value, EF4_PAGED_REG(page, reg));
 278         }
 279 }
 280 #define ef4_writed_page_locked(efx, value, reg, page)                   \
 281         _ef4_writed_page_locked(efx, value,                             \
 282                                 reg + BUILD_BUG_ON_ZERO((reg) != 0x420), \
 283                                 page)
 284 
 285 #endif /* EF4_IO_H */

/* [<][>][^][v][top][bottom][index][help] */