root/drivers/net/ethernet/sfc/falcon/nic.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. ef4_nic_rev
  2. ef4_nic_is_dual_func
  3. ef4_event
  4. ef4_event_present
  5. ef4_tx_desc
  6. ef4_tx_queue_partner
  7. __ef4_nic_tx_is_empty
  8. ef4_nic_may_push_tx_desc
  9. ef4_rx_desc
  10. falcon_spi_present
  11. ef4_nic_probe_tx
  12. ef4_nic_init_tx
  13. ef4_nic_remove_tx
  14. ef4_nic_push_buffers
  15. ef4_nic_probe_rx
  16. ef4_nic_init_rx
  17. ef4_nic_remove_rx
  18. ef4_nic_notify_rx_desc
  19. ef4_nic_generate_fill_event
  20. ef4_nic_probe_eventq
  21. ef4_nic_init_eventq
  22. ef4_nic_fini_eventq
  23. ef4_nic_remove_eventq
  24. ef4_nic_process_eventq
  25. ef4_nic_eventq_read_ack
  26. ef4_update_diff_stat
  27. ef4_nic_event_test_irq_cpu
  28. ef4_nic_irq_test_irq_cpu

   1 /* SPDX-License-Identifier: GPL-2.0-only */
   2 /****************************************************************************
   3  * Driver for Solarflare network controllers and boards
   4  * Copyright 2005-2006 Fen Systems Ltd.
   5  * Copyright 2006-2013 Solarflare Communications Inc.
   6  */
   7 
   8 #ifndef EF4_NIC_H
   9 #define EF4_NIC_H
  10 
  11 #include <linux/net_tstamp.h>
  12 #include <linux/i2c-algo-bit.h>
  13 #include "net_driver.h"
  14 #include "efx.h"
  15 
  16 enum {
  17         EF4_REV_FALCON_A0 = 0,
  18         EF4_REV_FALCON_A1 = 1,
  19         EF4_REV_FALCON_B0 = 2,
  20 };
  21 
  22 static inline int ef4_nic_rev(struct ef4_nic *efx)
  23 {
  24         return efx->type->revision;
  25 }
  26 
  27 u32 ef4_farch_fpga_ver(struct ef4_nic *efx);
  28 
  29 /* NIC has two interlinked PCI functions for the same port. */
  30 static inline bool ef4_nic_is_dual_func(struct ef4_nic *efx)
  31 {
  32         return ef4_nic_rev(efx) < EF4_REV_FALCON_B0;
  33 }
  34 
  35 /* Read the current event from the event queue */
  36 static inline ef4_qword_t *ef4_event(struct ef4_channel *channel,
  37                                      unsigned int index)
  38 {
  39         return ((ef4_qword_t *) (channel->eventq.buf.addr)) +
  40                 (index & channel->eventq_mask);
  41 }
  42 
  43 /* See if an event is present
  44  *
  45  * We check both the high and low dword of the event for all ones.  We
  46  * wrote all ones when we cleared the event, and no valid event can
  47  * have all ones in either its high or low dwords.  This approach is
  48  * robust against reordering.
  49  *
  50  * Note that using a single 64-bit comparison is incorrect; even
  51  * though the CPU read will be atomic, the DMA write may not be.
  52  */
  53 static inline int ef4_event_present(ef4_qword_t *event)
  54 {
  55         return !(EF4_DWORD_IS_ALL_ONES(event->dword[0]) |
  56                   EF4_DWORD_IS_ALL_ONES(event->dword[1]));
  57 }
  58 
  59 /* Returns a pointer to the specified transmit descriptor in the TX
  60  * descriptor queue belonging to the specified channel.
  61  */
  62 static inline ef4_qword_t *
  63 ef4_tx_desc(struct ef4_tx_queue *tx_queue, unsigned int index)
  64 {
  65         return ((ef4_qword_t *) (tx_queue->txd.buf.addr)) + index;
  66 }
  67 
  68 /* Get partner of a TX queue, seen as part of the same net core queue */
  69 static inline struct ef4_tx_queue *ef4_tx_queue_partner(struct ef4_tx_queue *tx_queue)
  70 {
  71         if (tx_queue->queue & EF4_TXQ_TYPE_OFFLOAD)
  72                 return tx_queue - EF4_TXQ_TYPE_OFFLOAD;
  73         else
  74                 return tx_queue + EF4_TXQ_TYPE_OFFLOAD;
  75 }
  76 
  77 /* Report whether this TX queue would be empty for the given write_count.
  78  * May return false negative.
  79  */
  80 static inline bool __ef4_nic_tx_is_empty(struct ef4_tx_queue *tx_queue,
  81                                          unsigned int write_count)
  82 {
  83         unsigned int empty_read_count = READ_ONCE(tx_queue->empty_read_count);
  84 
  85         if (empty_read_count == 0)
  86                 return false;
  87 
  88         return ((empty_read_count ^ write_count) & ~EF4_EMPTY_COUNT_VALID) == 0;
  89 }
  90 
  91 /* Decide whether to push a TX descriptor to the NIC vs merely writing
  92  * the doorbell.  This can reduce latency when we are adding a single
  93  * descriptor to an empty queue, but is otherwise pointless.  Further,
  94  * Falcon and Siena have hardware bugs (SF bug 33851) that may be
  95  * triggered if we don't check this.
  96  * We use the write_count used for the last doorbell push, to get the
  97  * NIC's view of the tx queue.
  98  */
  99 static inline bool ef4_nic_may_push_tx_desc(struct ef4_tx_queue *tx_queue,
 100                                             unsigned int write_count)
 101 {
 102         bool was_empty = __ef4_nic_tx_is_empty(tx_queue, write_count);
 103 
 104         tx_queue->empty_read_count = 0;
 105         return was_empty && tx_queue->write_count - write_count == 1;
 106 }
 107 
 108 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
 109 static inline ef4_qword_t *
 110 ef4_rx_desc(struct ef4_rx_queue *rx_queue, unsigned int index)
 111 {
 112         return ((ef4_qword_t *) (rx_queue->rxd.buf.addr)) + index;
 113 }
 114 
 115 enum {
 116         PHY_TYPE_NONE = 0,
 117         PHY_TYPE_TXC43128 = 1,
 118         PHY_TYPE_88E1111 = 2,
 119         PHY_TYPE_SFX7101 = 3,
 120         PHY_TYPE_QT2022C2 = 4,
 121         PHY_TYPE_PM8358 = 6,
 122         PHY_TYPE_SFT9001A = 8,
 123         PHY_TYPE_QT2025C = 9,
 124         PHY_TYPE_SFT9001B = 10,
 125 };
 126 
 127 #define FALCON_XMAC_LOOPBACKS                   \
 128         ((1 << LOOPBACK_XGMII) |                \
 129          (1 << LOOPBACK_XGXS) |                 \
 130          (1 << LOOPBACK_XAUI))
 131 
 132 /* Alignment of PCIe DMA boundaries (4KB) */
 133 #define EF4_PAGE_SIZE   4096
 134 /* Size and alignment of buffer table entries (same) */
 135 #define EF4_BUF_SIZE    EF4_PAGE_SIZE
 136 
 137 /* NIC-generic software stats */
 138 enum {
 139         GENERIC_STAT_rx_noskb_drops,
 140         GENERIC_STAT_rx_nodesc_trunc,
 141         GENERIC_STAT_COUNT
 142 };
 143 
 144 /**
 145  * struct falcon_board_type - board operations and type information
 146  * @id: Board type id, as found in NVRAM
 147  * @init: Allocate resources and initialise peripheral hardware
 148  * @init_phy: Do board-specific PHY initialisation
 149  * @fini: Shut down hardware and free resources
 150  * @set_id_led: Set state of identifying LED or revert to automatic function
 151  * @monitor: Board-specific health check function
 152  */
 153 struct falcon_board_type {
 154         u8 id;
 155         int (*init) (struct ef4_nic *nic);
 156         void (*init_phy) (struct ef4_nic *efx);
 157         void (*fini) (struct ef4_nic *nic);
 158         void (*set_id_led) (struct ef4_nic *efx, enum ef4_led_mode mode);
 159         int (*monitor) (struct ef4_nic *nic);
 160 };
 161 
 162 /**
 163  * struct falcon_board - board information
 164  * @type: Type of board
 165  * @major: Major rev. ('A', 'B' ...)
 166  * @minor: Minor rev. (0, 1, ...)
 167  * @i2c_adap: I2C adapter for on-board peripherals
 168  * @i2c_data: Data for bit-banging algorithm
 169  * @hwmon_client: I2C client for hardware monitor
 170  * @ioexp_client: I2C client for power/port control
 171  */
 172 struct falcon_board {
 173         const struct falcon_board_type *type;
 174         int major;
 175         int minor;
 176         struct i2c_adapter i2c_adap;
 177         struct i2c_algo_bit_data i2c_data;
 178         struct i2c_client *hwmon_client, *ioexp_client;
 179 };
 180 
 181 /**
 182  * struct falcon_spi_device - a Falcon SPI (Serial Peripheral Interface) device
 183  * @device_id:          Controller's id for the device
 184  * @size:               Size (in bytes)
 185  * @addr_len:           Number of address bytes in read/write commands
 186  * @munge_address:      Flag whether addresses should be munged.
 187  *      Some devices with 9-bit addresses (e.g. AT25040A EEPROM)
 188  *      use bit 3 of the command byte as address bit A8, rather
 189  *      than having a two-byte address.  If this flag is set, then
 190  *      commands should be munged in this way.
 191  * @erase_command:      Erase command (or 0 if sector erase not needed).
 192  * @erase_size:         Erase sector size (in bytes)
 193  *      Erase commands affect sectors with this size and alignment.
 194  *      This must be a power of two.
 195  * @block_size:         Write block size (in bytes).
 196  *      Write commands are limited to blocks with this size and alignment.
 197  */
 198 struct falcon_spi_device {
 199         int device_id;
 200         unsigned int size;
 201         unsigned int addr_len;
 202         unsigned int munge_address:1;
 203         u8 erase_command;
 204         unsigned int erase_size;
 205         unsigned int block_size;
 206 };
 207 
 208 static inline bool falcon_spi_present(const struct falcon_spi_device *spi)
 209 {
 210         return spi->size != 0;
 211 }
 212 
 213 enum {
 214         FALCON_STAT_tx_bytes = GENERIC_STAT_COUNT,
 215         FALCON_STAT_tx_packets,
 216         FALCON_STAT_tx_pause,
 217         FALCON_STAT_tx_control,
 218         FALCON_STAT_tx_unicast,
 219         FALCON_STAT_tx_multicast,
 220         FALCON_STAT_tx_broadcast,
 221         FALCON_STAT_tx_lt64,
 222         FALCON_STAT_tx_64,
 223         FALCON_STAT_tx_65_to_127,
 224         FALCON_STAT_tx_128_to_255,
 225         FALCON_STAT_tx_256_to_511,
 226         FALCON_STAT_tx_512_to_1023,
 227         FALCON_STAT_tx_1024_to_15xx,
 228         FALCON_STAT_tx_15xx_to_jumbo,
 229         FALCON_STAT_tx_gtjumbo,
 230         FALCON_STAT_tx_non_tcpudp,
 231         FALCON_STAT_tx_mac_src_error,
 232         FALCON_STAT_tx_ip_src_error,
 233         FALCON_STAT_rx_bytes,
 234         FALCON_STAT_rx_good_bytes,
 235         FALCON_STAT_rx_bad_bytes,
 236         FALCON_STAT_rx_packets,
 237         FALCON_STAT_rx_good,
 238         FALCON_STAT_rx_bad,
 239         FALCON_STAT_rx_pause,
 240         FALCON_STAT_rx_control,
 241         FALCON_STAT_rx_unicast,
 242         FALCON_STAT_rx_multicast,
 243         FALCON_STAT_rx_broadcast,
 244         FALCON_STAT_rx_lt64,
 245         FALCON_STAT_rx_64,
 246         FALCON_STAT_rx_65_to_127,
 247         FALCON_STAT_rx_128_to_255,
 248         FALCON_STAT_rx_256_to_511,
 249         FALCON_STAT_rx_512_to_1023,
 250         FALCON_STAT_rx_1024_to_15xx,
 251         FALCON_STAT_rx_15xx_to_jumbo,
 252         FALCON_STAT_rx_gtjumbo,
 253         FALCON_STAT_rx_bad_lt64,
 254         FALCON_STAT_rx_bad_gtjumbo,
 255         FALCON_STAT_rx_overflow,
 256         FALCON_STAT_rx_symbol_error,
 257         FALCON_STAT_rx_align_error,
 258         FALCON_STAT_rx_length_error,
 259         FALCON_STAT_rx_internal_error,
 260         FALCON_STAT_rx_nodesc_drop_cnt,
 261         FALCON_STAT_COUNT
 262 };
 263 
 264 /**
 265  * struct falcon_nic_data - Falcon NIC state
 266  * @pci_dev2: Secondary function of Falcon A
 267  * @efx: ef4_nic pointer
 268  * @board: Board state and functions
 269  * @stats: Hardware statistics
 270  * @stats_disable_count: Nest count for disabling statistics fetches
 271  * @stats_pending: Is there a pending DMA of MAC statistics.
 272  * @stats_timer: A timer for regularly fetching MAC statistics.
 273  * @spi_flash: SPI flash device
 274  * @spi_eeprom: SPI EEPROM device
 275  * @spi_lock: SPI bus lock
 276  * @mdio_lock: MDIO bus lock
 277  * @xmac_poll_required: XMAC link state needs polling
 278  */
 279 struct falcon_nic_data {
 280         struct pci_dev *pci_dev2;
 281         struct ef4_nic *efx;
 282         struct falcon_board board;
 283         u64 stats[FALCON_STAT_COUNT];
 284         unsigned int stats_disable_count;
 285         bool stats_pending;
 286         struct timer_list stats_timer;
 287         struct falcon_spi_device spi_flash;
 288         struct falcon_spi_device spi_eeprom;
 289         struct mutex spi_lock;
 290         struct mutex mdio_lock;
 291         bool xmac_poll_required;
 292 };
 293 
 294 static inline struct falcon_board *falcon_board(struct ef4_nic *efx)
 295 {
 296         struct falcon_nic_data *data = efx->nic_data;
 297         return &data->board;
 298 }
 299 
 300 struct ethtool_ts_info;
 301 
 302 extern const struct ef4_nic_type falcon_a1_nic_type;
 303 extern const struct ef4_nic_type falcon_b0_nic_type;
 304 
 305 /**************************************************************************
 306  *
 307  * Externs
 308  *
 309  **************************************************************************
 310  */
 311 
 312 int falcon_probe_board(struct ef4_nic *efx, u16 revision_info);
 313 
 314 /* TX data path */
 315 static inline int ef4_nic_probe_tx(struct ef4_tx_queue *tx_queue)
 316 {
 317         return tx_queue->efx->type->tx_probe(tx_queue);
 318 }
 319 static inline void ef4_nic_init_tx(struct ef4_tx_queue *tx_queue)
 320 {
 321         tx_queue->efx->type->tx_init(tx_queue);
 322 }
 323 static inline void ef4_nic_remove_tx(struct ef4_tx_queue *tx_queue)
 324 {
 325         tx_queue->efx->type->tx_remove(tx_queue);
 326 }
 327 static inline void ef4_nic_push_buffers(struct ef4_tx_queue *tx_queue)
 328 {
 329         tx_queue->efx->type->tx_write(tx_queue);
 330 }
 331 
 332 /* RX data path */
 333 static inline int ef4_nic_probe_rx(struct ef4_rx_queue *rx_queue)
 334 {
 335         return rx_queue->efx->type->rx_probe(rx_queue);
 336 }
 337 static inline void ef4_nic_init_rx(struct ef4_rx_queue *rx_queue)
 338 {
 339         rx_queue->efx->type->rx_init(rx_queue);
 340 }
 341 static inline void ef4_nic_remove_rx(struct ef4_rx_queue *rx_queue)
 342 {
 343         rx_queue->efx->type->rx_remove(rx_queue);
 344 }
 345 static inline void ef4_nic_notify_rx_desc(struct ef4_rx_queue *rx_queue)
 346 {
 347         rx_queue->efx->type->rx_write(rx_queue);
 348 }
 349 static inline void ef4_nic_generate_fill_event(struct ef4_rx_queue *rx_queue)
 350 {
 351         rx_queue->efx->type->rx_defer_refill(rx_queue);
 352 }
 353 
 354 /* Event data path */
 355 static inline int ef4_nic_probe_eventq(struct ef4_channel *channel)
 356 {
 357         return channel->efx->type->ev_probe(channel);
 358 }
 359 static inline int ef4_nic_init_eventq(struct ef4_channel *channel)
 360 {
 361         return channel->efx->type->ev_init(channel);
 362 }
 363 static inline void ef4_nic_fini_eventq(struct ef4_channel *channel)
 364 {
 365         channel->efx->type->ev_fini(channel);
 366 }
 367 static inline void ef4_nic_remove_eventq(struct ef4_channel *channel)
 368 {
 369         channel->efx->type->ev_remove(channel);
 370 }
 371 static inline int
 372 ef4_nic_process_eventq(struct ef4_channel *channel, int quota)
 373 {
 374         return channel->efx->type->ev_process(channel, quota);
 375 }
 376 static inline void ef4_nic_eventq_read_ack(struct ef4_channel *channel)
 377 {
 378         channel->efx->type->ev_read_ack(channel);
 379 }
 380 void ef4_nic_event_test_start(struct ef4_channel *channel);
 381 
 382 /* queue operations */
 383 int ef4_farch_tx_probe(struct ef4_tx_queue *tx_queue);
 384 void ef4_farch_tx_init(struct ef4_tx_queue *tx_queue);
 385 void ef4_farch_tx_fini(struct ef4_tx_queue *tx_queue);
 386 void ef4_farch_tx_remove(struct ef4_tx_queue *tx_queue);
 387 void ef4_farch_tx_write(struct ef4_tx_queue *tx_queue);
 388 unsigned int ef4_farch_tx_limit_len(struct ef4_tx_queue *tx_queue,
 389                                     dma_addr_t dma_addr, unsigned int len);
 390 int ef4_farch_rx_probe(struct ef4_rx_queue *rx_queue);
 391 void ef4_farch_rx_init(struct ef4_rx_queue *rx_queue);
 392 void ef4_farch_rx_fini(struct ef4_rx_queue *rx_queue);
 393 void ef4_farch_rx_remove(struct ef4_rx_queue *rx_queue);
 394 void ef4_farch_rx_write(struct ef4_rx_queue *rx_queue);
 395 void ef4_farch_rx_defer_refill(struct ef4_rx_queue *rx_queue);
 396 int ef4_farch_ev_probe(struct ef4_channel *channel);
 397 int ef4_farch_ev_init(struct ef4_channel *channel);
 398 void ef4_farch_ev_fini(struct ef4_channel *channel);
 399 void ef4_farch_ev_remove(struct ef4_channel *channel);
 400 int ef4_farch_ev_process(struct ef4_channel *channel, int quota);
 401 void ef4_farch_ev_read_ack(struct ef4_channel *channel);
 402 void ef4_farch_ev_test_generate(struct ef4_channel *channel);
 403 
 404 /* filter operations */
 405 int ef4_farch_filter_table_probe(struct ef4_nic *efx);
 406 void ef4_farch_filter_table_restore(struct ef4_nic *efx);
 407 void ef4_farch_filter_table_remove(struct ef4_nic *efx);
 408 void ef4_farch_filter_update_rx_scatter(struct ef4_nic *efx);
 409 s32 ef4_farch_filter_insert(struct ef4_nic *efx, struct ef4_filter_spec *spec,
 410                             bool replace);
 411 int ef4_farch_filter_remove_safe(struct ef4_nic *efx,
 412                                  enum ef4_filter_priority priority,
 413                                  u32 filter_id);
 414 int ef4_farch_filter_get_safe(struct ef4_nic *efx,
 415                               enum ef4_filter_priority priority, u32 filter_id,
 416                               struct ef4_filter_spec *);
 417 int ef4_farch_filter_clear_rx(struct ef4_nic *efx,
 418                               enum ef4_filter_priority priority);
 419 u32 ef4_farch_filter_count_rx_used(struct ef4_nic *efx,
 420                                    enum ef4_filter_priority priority);
 421 u32 ef4_farch_filter_get_rx_id_limit(struct ef4_nic *efx);
 422 s32 ef4_farch_filter_get_rx_ids(struct ef4_nic *efx,
 423                                 enum ef4_filter_priority priority, u32 *buf,
 424                                 u32 size);
 425 #ifdef CONFIG_RFS_ACCEL
 426 s32 ef4_farch_filter_rfs_insert(struct ef4_nic *efx,
 427                                 struct ef4_filter_spec *spec);
 428 bool ef4_farch_filter_rfs_expire_one(struct ef4_nic *efx, u32 flow_id,
 429                                      unsigned int index);
 430 #endif
 431 void ef4_farch_filter_sync_rx_mode(struct ef4_nic *efx);
 432 
 433 bool ef4_nic_event_present(struct ef4_channel *channel);
 434 
 435 /* Some statistics are computed as A - B where A and B each increase
 436  * linearly with some hardware counter(s) and the counters are read
 437  * asynchronously.  If the counters contributing to B are always read
 438  * after those contributing to A, the computed value may be lower than
 439  * the true value by some variable amount, and may decrease between
 440  * subsequent computations.
 441  *
 442  * We should never allow statistics to decrease or to exceed the true
 443  * value.  Since the computed value will never be greater than the
 444  * true value, we can achieve this by only storing the computed value
 445  * when it increases.
 446  */
 447 static inline void ef4_update_diff_stat(u64 *stat, u64 diff)
 448 {
 449         if ((s64)(diff - *stat) > 0)
 450                 *stat = diff;
 451 }
 452 
 453 /* Interrupts */
 454 int ef4_nic_init_interrupt(struct ef4_nic *efx);
 455 int ef4_nic_irq_test_start(struct ef4_nic *efx);
 456 void ef4_nic_fini_interrupt(struct ef4_nic *efx);
 457 void ef4_farch_irq_enable_master(struct ef4_nic *efx);
 458 int ef4_farch_irq_test_generate(struct ef4_nic *efx);
 459 void ef4_farch_irq_disable_master(struct ef4_nic *efx);
 460 irqreturn_t ef4_farch_msi_interrupt(int irq, void *dev_id);
 461 irqreturn_t ef4_farch_legacy_interrupt(int irq, void *dev_id);
 462 irqreturn_t ef4_farch_fatal_interrupt(struct ef4_nic *efx);
 463 
 464 static inline int ef4_nic_event_test_irq_cpu(struct ef4_channel *channel)
 465 {
 466         return READ_ONCE(channel->event_test_cpu);
 467 }
 468 static inline int ef4_nic_irq_test_irq_cpu(struct ef4_nic *efx)
 469 {
 470         return READ_ONCE(efx->last_irq_cpu);
 471 }
 472 
 473 /* Global Resources */
 474 int ef4_nic_flush_queues(struct ef4_nic *efx);
 475 int ef4_farch_fini_dmaq(struct ef4_nic *efx);
 476 void ef4_farch_finish_flr(struct ef4_nic *efx);
 477 void falcon_start_nic_stats(struct ef4_nic *efx);
 478 void falcon_stop_nic_stats(struct ef4_nic *efx);
 479 int falcon_reset_xaui(struct ef4_nic *efx);
 480 void ef4_farch_dimension_resources(struct ef4_nic *efx, unsigned sram_lim_qw);
 481 void ef4_farch_init_common(struct ef4_nic *efx);
 482 void ef4_farch_rx_push_indir_table(struct ef4_nic *efx);
 483 
 484 int ef4_nic_alloc_buffer(struct ef4_nic *efx, struct ef4_buffer *buffer,
 485                          unsigned int len, gfp_t gfp_flags);
 486 void ef4_nic_free_buffer(struct ef4_nic *efx, struct ef4_buffer *buffer);
 487 
 488 /* Tests */
 489 struct ef4_farch_register_test {
 490         unsigned address;
 491         ef4_oword_t mask;
 492 };
 493 int ef4_farch_test_registers(struct ef4_nic *efx,
 494                              const struct ef4_farch_register_test *regs,
 495                              size_t n_regs);
 496 
 497 size_t ef4_nic_get_regs_len(struct ef4_nic *efx);
 498 void ef4_nic_get_regs(struct ef4_nic *efx, void *buf);
 499 
 500 size_t ef4_nic_describe_stats(const struct ef4_hw_stat_desc *desc, size_t count,
 501                               const unsigned long *mask, u8 *names);
 502 void ef4_nic_update_stats(const struct ef4_hw_stat_desc *desc, size_t count,
 503                           const unsigned long *mask, u64 *stats,
 504                           const void *dma_buf, bool accumulate);
 505 void ef4_nic_fix_nodesc_drop_stat(struct ef4_nic *efx, u64 *stat);
 506 
 507 #define EF4_MAX_FLUSH_TIME 5000
 508 
 509 void ef4_farch_generate_event(struct ef4_nic *efx, unsigned int evq,
 510                               ef4_qword_t *event);
 511 
 512 #endif /* EF4_NIC_H */

/* [<][>][^][v][top][bottom][index][help] */