root/drivers/net/ethernet/sfc/falcon/farch.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ef4_write_buf_tbl
  2. ef4_masked_compare_oword
  3. ef4_farch_test_registers
  4. ef4_init_special_buffer
  5. ef4_fini_special_buffer
  6. ef4_alloc_special_buffer
  7. ef4_free_special_buffer
  8. ef4_farch_notify_tx_desc
  9. ef4_farch_push_tx_desc
  10. ef4_farch_tx_write
  11. ef4_farch_tx_limit_len
  12. ef4_farch_tx_probe
  13. ef4_farch_tx_init
  14. ef4_farch_flush_tx_queue
  15. ef4_farch_tx_fini
  16. ef4_farch_tx_remove
  17. ef4_farch_build_rx_desc
  18. ef4_farch_rx_write
  19. ef4_farch_rx_probe
  20. ef4_farch_rx_init
  21. ef4_farch_flush_rx_queue
  22. ef4_farch_rx_fini
  23. ef4_farch_rx_remove
  24. ef4_farch_flush_wake
  25. ef4_check_tx_flush_complete
  26. ef4_farch_do_flush
  27. ef4_farch_fini_dmaq
  28. ef4_farch_finish_flr
  29. ef4_farch_ev_read_ack
  30. ef4_farch_generate_event
  31. ef4_farch_magic_event
  32. ef4_farch_handle_tx_event
  33. ef4_farch_handle_rx_not_ok
  34. ef4_farch_handle_rx_bad_index
  35. ef4_farch_handle_rx_event
  36. ef4_farch_handle_tx_flush_done
  37. ef4_farch_handle_rx_flush_done
  38. ef4_farch_handle_drain_event
  39. ef4_farch_handle_generated_event
  40. ef4_farch_handle_driver_event
  41. ef4_farch_ev_process
  42. ef4_farch_ev_probe
  43. ef4_farch_ev_init
  44. ef4_farch_ev_fini
  45. ef4_farch_ev_remove
  46. ef4_farch_ev_test_generate
  47. ef4_farch_rx_defer_refill
  48. ef4_farch_interrupts
  49. ef4_farch_irq_enable_master
  50. ef4_farch_irq_disable_master
  51. ef4_farch_irq_test_generate
  52. ef4_farch_fatal_interrupt
  53. ef4_farch_legacy_interrupt
  54. ef4_farch_msi_interrupt
  55. ef4_farch_rx_push_indir_table
  56. ef4_farch_dimension_resources
  57. ef4_farch_fpga_ver
  58. ef4_farch_init_common
  59. ef4_farch_filter_hash
  60. ef4_farch_filter_increment
  61. ef4_farch_filter_spec_table_id
  62. ef4_farch_filter_push_rx_config
  63. ef4_farch_filter_push_tx_limits
  64. ef4_farch_filter_from_gen_spec
  65. ef4_farch_filter_to_gen_spec
  66. ef4_farch_filter_init_rx_auto
  67. ef4_farch_filter_build
  68. ef4_farch_filter_equal
  69. ef4_farch_filter_make_id
  70. ef4_farch_filter_id_table_id
  71. ef4_farch_filter_id_index
  72. ef4_farch_filter_get_rx_id_limit
  73. ef4_farch_filter_insert
  74. ef4_farch_filter_table_clear_entry
  75. ef4_farch_filter_remove
  76. ef4_farch_filter_remove_safe
  77. ef4_farch_filter_get_safe
  78. ef4_farch_filter_table_clear
  79. ef4_farch_filter_clear_rx
  80. ef4_farch_filter_count_rx_used
  81. ef4_farch_filter_get_rx_ids
  82. ef4_farch_filter_table_restore
  83. ef4_farch_filter_table_remove
  84. ef4_farch_filter_table_probe
  85. ef4_farch_filter_update_rx_scatter
  86. ef4_farch_filter_rfs_insert
  87. ef4_farch_filter_rfs_expire_one
  88. ef4_farch_filter_sync_rx_mode

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /****************************************************************************
   3  * Driver for Solarflare network controllers and boards
   4  * Copyright 2005-2006 Fen Systems Ltd.
   5  * Copyright 2006-2013 Solarflare Communications Inc.
   6  */
   7 
   8 #include <linux/bitops.h>
   9 #include <linux/delay.h>
  10 #include <linux/interrupt.h>
  11 #include <linux/pci.h>
  12 #include <linux/module.h>
  13 #include <linux/seq_file.h>
  14 #include <linux/crc32.h>
  15 #include "net_driver.h"
  16 #include "bitfield.h"
  17 #include "efx.h"
  18 #include "nic.h"
  19 #include "farch_regs.h"
  20 #include "io.h"
  21 #include "workarounds.h"
  22 
  23 /* Falcon-architecture (SFC4000) support */
  24 
  25 /**************************************************************************
  26  *
  27  * Configurable values
  28  *
  29  **************************************************************************
  30  */
  31 
  32 /* This is set to 16 for a good reason.  In summary, if larger than
  33  * 16, the descriptor cache holds more than a default socket
  34  * buffer's worth of packets (for UDP we can only have at most one
  35  * socket buffer's worth outstanding).  This combined with the fact
  36  * that we only get 1 TX event per descriptor cache means the NIC
  37  * goes idle.
  38  */
  39 #define TX_DC_ENTRIES 16
  40 #define TX_DC_ENTRIES_ORDER 1
  41 
  42 #define RX_DC_ENTRIES 64
  43 #define RX_DC_ENTRIES_ORDER 3
  44 
  45 /* If EF4_MAX_INT_ERRORS internal errors occur within
  46  * EF4_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
  47  * disable it.
  48  */
  49 #define EF4_INT_ERROR_EXPIRE 3600
  50 #define EF4_MAX_INT_ERRORS 5
  51 
  52 /* Depth of RX flush request fifo */
  53 #define EF4_RX_FLUSH_COUNT 4
  54 
  55 /* Driver generated events */
  56 #define _EF4_CHANNEL_MAGIC_TEST         0x000101
  57 #define _EF4_CHANNEL_MAGIC_FILL         0x000102
  58 #define _EF4_CHANNEL_MAGIC_RX_DRAIN     0x000103
  59 #define _EF4_CHANNEL_MAGIC_TX_DRAIN     0x000104
  60 
  61 #define _EF4_CHANNEL_MAGIC(_code, _data)        ((_code) << 8 | (_data))
  62 #define _EF4_CHANNEL_MAGIC_CODE(_magic)         ((_magic) >> 8)
  63 
  64 #define EF4_CHANNEL_MAGIC_TEST(_channel)                                \
  65         _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_TEST, (_channel)->channel)
  66 #define EF4_CHANNEL_MAGIC_FILL(_rx_queue)                               \
  67         _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_FILL,                     \
  68                            ef4_rx_queue_index(_rx_queue))
  69 #define EF4_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)                           \
  70         _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_RX_DRAIN,                 \
  71                            ef4_rx_queue_index(_rx_queue))
  72 #define EF4_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)                           \
  73         _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_TX_DRAIN,                 \
  74                            (_tx_queue)->queue)
  75 
  76 static void ef4_farch_magic_event(struct ef4_channel *channel, u32 magic);
  77 
  78 /**************************************************************************
  79  *
  80  * Hardware access
  81  *
  82  **************************************************************************/
  83 
  84 static inline void ef4_write_buf_tbl(struct ef4_nic *efx, ef4_qword_t *value,
  85                                      unsigned int index)
  86 {
  87         ef4_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
  88                         value, index);
  89 }
  90 
  91 static bool ef4_masked_compare_oword(const ef4_oword_t *a, const ef4_oword_t *b,
  92                                      const ef4_oword_t *mask)
  93 {
  94         return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
  95                 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
  96 }
  97 
  98 int ef4_farch_test_registers(struct ef4_nic *efx,
  99                              const struct ef4_farch_register_test *regs,
 100                              size_t n_regs)
 101 {
 102         unsigned address = 0;
 103         int i, j;
 104         ef4_oword_t mask, imask, original, reg, buf;
 105 
 106         for (i = 0; i < n_regs; ++i) {
 107                 address = regs[i].address;
 108                 mask = imask = regs[i].mask;
 109                 EF4_INVERT_OWORD(imask);
 110 
 111                 ef4_reado(efx, &original, address);
 112 
 113                 /* bit sweep on and off */
 114                 for (j = 0; j < 128; j++) {
 115                         if (!EF4_EXTRACT_OWORD32(mask, j, j))
 116                                 continue;
 117 
 118                         /* Test this testable bit can be set in isolation */
 119                         EF4_AND_OWORD(reg, original, mask);
 120                         EF4_SET_OWORD32(reg, j, j, 1);
 121 
 122                         ef4_writeo(efx, &reg, address);
 123                         ef4_reado(efx, &buf, address);
 124 
 125                         if (ef4_masked_compare_oword(&reg, &buf, &mask))
 126                                 goto fail;
 127 
 128                         /* Test this testable bit can be cleared in isolation */
 129                         EF4_OR_OWORD(reg, original, mask);
 130                         EF4_SET_OWORD32(reg, j, j, 0);
 131 
 132                         ef4_writeo(efx, &reg, address);
 133                         ef4_reado(efx, &buf, address);
 134 
 135                         if (ef4_masked_compare_oword(&reg, &buf, &mask))
 136                                 goto fail;
 137                 }
 138 
 139                 ef4_writeo(efx, &original, address);
 140         }
 141 
 142         return 0;
 143 
 144 fail:
 145         netif_err(efx, hw, efx->net_dev,
 146                   "wrote "EF4_OWORD_FMT" read "EF4_OWORD_FMT
 147                   " at address 0x%x mask "EF4_OWORD_FMT"\n", EF4_OWORD_VAL(reg),
 148                   EF4_OWORD_VAL(buf), address, EF4_OWORD_VAL(mask));
 149         return -EIO;
 150 }
 151 
 152 /**************************************************************************
 153  *
 154  * Special buffer handling
 155  * Special buffers are used for event queues and the TX and RX
 156  * descriptor rings.
 157  *
 158  *************************************************************************/
 159 
 160 /*
 161  * Initialise a special buffer
 162  *
 163  * This will define a buffer (previously allocated via
 164  * ef4_alloc_special_buffer()) in the buffer table, allowing
 165  * it to be used for event queues, descriptor rings etc.
 166  */
 167 static void
 168 ef4_init_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer)
 169 {
 170         ef4_qword_t buf_desc;
 171         unsigned int index;
 172         dma_addr_t dma_addr;
 173         int i;
 174 
 175         EF4_BUG_ON_PARANOID(!buffer->buf.addr);
 176 
 177         /* Write buffer descriptors to NIC */
 178         for (i = 0; i < buffer->entries; i++) {
 179                 index = buffer->index + i;
 180                 dma_addr = buffer->buf.dma_addr + (i * EF4_BUF_SIZE);
 181                 netif_dbg(efx, probe, efx->net_dev,
 182                           "mapping special buffer %d at %llx\n",
 183                           index, (unsigned long long)dma_addr);
 184                 EF4_POPULATE_QWORD_3(buf_desc,
 185                                      FRF_AZ_BUF_ADR_REGION, 0,
 186                                      FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
 187                                      FRF_AZ_BUF_OWNER_ID_FBUF, 0);
 188                 ef4_write_buf_tbl(efx, &buf_desc, index);
 189         }
 190 }
 191 
 192 /* Unmaps a buffer and clears the buffer table entries */
 193 static void
 194 ef4_fini_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer)
 195 {
 196         ef4_oword_t buf_tbl_upd;
 197         unsigned int start = buffer->index;
 198         unsigned int end = (buffer->index + buffer->entries - 1);
 199 
 200         if (!buffer->entries)
 201                 return;
 202 
 203         netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
 204                   buffer->index, buffer->index + buffer->entries - 1);
 205 
 206         EF4_POPULATE_OWORD_4(buf_tbl_upd,
 207                              FRF_AZ_BUF_UPD_CMD, 0,
 208                              FRF_AZ_BUF_CLR_CMD, 1,
 209                              FRF_AZ_BUF_CLR_END_ID, end,
 210                              FRF_AZ_BUF_CLR_START_ID, start);
 211         ef4_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
 212 }
 213 
 214 /*
 215  * Allocate a new special buffer
 216  *
 217  * This allocates memory for a new buffer, clears it and allocates a
 218  * new buffer ID range.  It does not write into the buffer table.
 219  *
 220  * This call will allocate 4KB buffers, since 8KB buffers can't be
 221  * used for event queues and descriptor rings.
 222  */
 223 static int ef4_alloc_special_buffer(struct ef4_nic *efx,
 224                                     struct ef4_special_buffer *buffer,
 225                                     unsigned int len)
 226 {
 227         len = ALIGN(len, EF4_BUF_SIZE);
 228 
 229         if (ef4_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
 230                 return -ENOMEM;
 231         buffer->entries = len / EF4_BUF_SIZE;
 232         BUG_ON(buffer->buf.dma_addr & (EF4_BUF_SIZE - 1));
 233 
 234         /* Select new buffer ID */
 235         buffer->index = efx->next_buffer_table;
 236         efx->next_buffer_table += buffer->entries;
 237 
 238         netif_dbg(efx, probe, efx->net_dev,
 239                   "allocating special buffers %d-%d at %llx+%x "
 240                   "(virt %p phys %llx)\n", buffer->index,
 241                   buffer->index + buffer->entries - 1,
 242                   (u64)buffer->buf.dma_addr, len,
 243                   buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
 244 
 245         return 0;
 246 }
 247 
 248 static void
 249 ef4_free_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer)
 250 {
 251         if (!buffer->buf.addr)
 252                 return;
 253 
 254         netif_dbg(efx, hw, efx->net_dev,
 255                   "deallocating special buffers %d-%d at %llx+%x "
 256                   "(virt %p phys %llx)\n", buffer->index,
 257                   buffer->index + buffer->entries - 1,
 258                   (u64)buffer->buf.dma_addr, buffer->buf.len,
 259                   buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
 260 
 261         ef4_nic_free_buffer(efx, &buffer->buf);
 262         buffer->entries = 0;
 263 }
 264 
 265 /**************************************************************************
 266  *
 267  * TX path
 268  *
 269  **************************************************************************/
 270 
 271 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
 272 static inline void ef4_farch_notify_tx_desc(struct ef4_tx_queue *tx_queue)
 273 {
 274         unsigned write_ptr;
 275         ef4_dword_t reg;
 276 
 277         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 278         EF4_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
 279         ef4_writed_page(tx_queue->efx, &reg,
 280                         FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
 281 }
 282 
 283 /* Write pointer and first descriptor for TX descriptor ring */
 284 static inline void ef4_farch_push_tx_desc(struct ef4_tx_queue *tx_queue,
 285                                           const ef4_qword_t *txd)
 286 {
 287         unsigned write_ptr;
 288         ef4_oword_t reg;
 289 
 290         BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
 291         BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
 292 
 293         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 294         EF4_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
 295                              FRF_AZ_TX_DESC_WPTR, write_ptr);
 296         reg.qword[0] = *txd;
 297         ef4_writeo_page(tx_queue->efx, &reg,
 298                         FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
 299 }
 300 
 301 
 302 /* For each entry inserted into the software descriptor ring, create a
 303  * descriptor in the hardware TX descriptor ring (in host memory), and
 304  * write a doorbell.
 305  */
 306 void ef4_farch_tx_write(struct ef4_tx_queue *tx_queue)
 307 {
 308         struct ef4_tx_buffer *buffer;
 309         ef4_qword_t *txd;
 310         unsigned write_ptr;
 311         unsigned old_write_count = tx_queue->write_count;
 312 
 313         tx_queue->xmit_more_available = false;
 314         if (unlikely(tx_queue->write_count == tx_queue->insert_count))
 315                 return;
 316 
 317         do {
 318                 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 319                 buffer = &tx_queue->buffer[write_ptr];
 320                 txd = ef4_tx_desc(tx_queue, write_ptr);
 321                 ++tx_queue->write_count;
 322 
 323                 EF4_BUG_ON_PARANOID(buffer->flags & EF4_TX_BUF_OPTION);
 324 
 325                 /* Create TX descriptor ring entry */
 326                 BUILD_BUG_ON(EF4_TX_BUF_CONT != 1);
 327                 EF4_POPULATE_QWORD_4(*txd,
 328                                      FSF_AZ_TX_KER_CONT,
 329                                      buffer->flags & EF4_TX_BUF_CONT,
 330                                      FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
 331                                      FSF_AZ_TX_KER_BUF_REGION, 0,
 332                                      FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
 333         } while (tx_queue->write_count != tx_queue->insert_count);
 334 
 335         wmb(); /* Ensure descriptors are written before they are fetched */
 336 
 337         if (ef4_nic_may_push_tx_desc(tx_queue, old_write_count)) {
 338                 txd = ef4_tx_desc(tx_queue,
 339                                   old_write_count & tx_queue->ptr_mask);
 340                 ef4_farch_push_tx_desc(tx_queue, txd);
 341                 ++tx_queue->pushes;
 342         } else {
 343                 ef4_farch_notify_tx_desc(tx_queue);
 344         }
 345 }
 346 
 347 unsigned int ef4_farch_tx_limit_len(struct ef4_tx_queue *tx_queue,
 348                                     dma_addr_t dma_addr, unsigned int len)
 349 {
 350         /* Don't cross 4K boundaries with descriptors. */
 351         unsigned int limit = (~dma_addr & (EF4_PAGE_SIZE - 1)) + 1;
 352 
 353         len = min(limit, len);
 354 
 355         if (EF4_WORKAROUND_5391(tx_queue->efx) && (dma_addr & 0xf))
 356                 len = min_t(unsigned int, len, 512 - (dma_addr & 0xf));
 357 
 358         return len;
 359 }
 360 
 361 
 362 /* Allocate hardware resources for a TX queue */
 363 int ef4_farch_tx_probe(struct ef4_tx_queue *tx_queue)
 364 {
 365         struct ef4_nic *efx = tx_queue->efx;
 366         unsigned entries;
 367 
 368         entries = tx_queue->ptr_mask + 1;
 369         return ef4_alloc_special_buffer(efx, &tx_queue->txd,
 370                                         entries * sizeof(ef4_qword_t));
 371 }
 372 
 373 void ef4_farch_tx_init(struct ef4_tx_queue *tx_queue)
 374 {
 375         struct ef4_nic *efx = tx_queue->efx;
 376         ef4_oword_t reg;
 377 
 378         /* Pin TX descriptor ring */
 379         ef4_init_special_buffer(efx, &tx_queue->txd);
 380 
 381         /* Push TX descriptor ring to card */
 382         EF4_POPULATE_OWORD_10(reg,
 383                               FRF_AZ_TX_DESCQ_EN, 1,
 384                               FRF_AZ_TX_ISCSI_DDIG_EN, 0,
 385                               FRF_AZ_TX_ISCSI_HDIG_EN, 0,
 386                               FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
 387                               FRF_AZ_TX_DESCQ_EVQ_ID,
 388                               tx_queue->channel->channel,
 389                               FRF_AZ_TX_DESCQ_OWNER_ID, 0,
 390                               FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
 391                               FRF_AZ_TX_DESCQ_SIZE,
 392                               __ffs(tx_queue->txd.entries),
 393                               FRF_AZ_TX_DESCQ_TYPE, 0,
 394                               FRF_BZ_TX_NON_IP_DROP_DIS, 1);
 395 
 396         if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
 397                 int csum = tx_queue->queue & EF4_TXQ_TYPE_OFFLOAD;
 398                 EF4_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
 399                 EF4_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
 400                                     !csum);
 401         }
 402 
 403         ef4_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
 404                          tx_queue->queue);
 405 
 406         if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0) {
 407                 /* Only 128 bits in this register */
 408                 BUILD_BUG_ON(EF4_MAX_TX_QUEUES > 128);
 409 
 410                 ef4_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
 411                 if (tx_queue->queue & EF4_TXQ_TYPE_OFFLOAD)
 412                         __clear_bit_le(tx_queue->queue, &reg);
 413                 else
 414                         __set_bit_le(tx_queue->queue, &reg);
 415                 ef4_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
 416         }
 417 
 418         if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
 419                 EF4_POPULATE_OWORD_1(reg,
 420                                      FRF_BZ_TX_PACE,
 421                                      (tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI) ?
 422                                      FFE_BZ_TX_PACE_OFF :
 423                                      FFE_BZ_TX_PACE_RESERVED);
 424                 ef4_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
 425                                  tx_queue->queue);
 426         }
 427 }
 428 
 429 static void ef4_farch_flush_tx_queue(struct ef4_tx_queue *tx_queue)
 430 {
 431         struct ef4_nic *efx = tx_queue->efx;
 432         ef4_oword_t tx_flush_descq;
 433 
 434         WARN_ON(atomic_read(&tx_queue->flush_outstanding));
 435         atomic_set(&tx_queue->flush_outstanding, 1);
 436 
 437         EF4_POPULATE_OWORD_2(tx_flush_descq,
 438                              FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
 439                              FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
 440         ef4_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
 441 }
 442 
 443 void ef4_farch_tx_fini(struct ef4_tx_queue *tx_queue)
 444 {
 445         struct ef4_nic *efx = tx_queue->efx;
 446         ef4_oword_t tx_desc_ptr;
 447 
 448         /* Remove TX descriptor ring from card */
 449         EF4_ZERO_OWORD(tx_desc_ptr);
 450         ef4_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
 451                          tx_queue->queue);
 452 
 453         /* Unpin TX descriptor ring */
 454         ef4_fini_special_buffer(efx, &tx_queue->txd);
 455 }
 456 
 457 /* Free buffers backing TX queue */
 458 void ef4_farch_tx_remove(struct ef4_tx_queue *tx_queue)
 459 {
 460         ef4_free_special_buffer(tx_queue->efx, &tx_queue->txd);
 461 }
 462 
 463 /**************************************************************************
 464  *
 465  * RX path
 466  *
 467  **************************************************************************/
 468 
 469 /* This creates an entry in the RX descriptor queue */
 470 static inline void
 471 ef4_farch_build_rx_desc(struct ef4_rx_queue *rx_queue, unsigned index)
 472 {
 473         struct ef4_rx_buffer *rx_buf;
 474         ef4_qword_t *rxd;
 475 
 476         rxd = ef4_rx_desc(rx_queue, index);
 477         rx_buf = ef4_rx_buffer(rx_queue, index);
 478         EF4_POPULATE_QWORD_3(*rxd,
 479                              FSF_AZ_RX_KER_BUF_SIZE,
 480                              rx_buf->len -
 481                              rx_queue->efx->type->rx_buffer_padding,
 482                              FSF_AZ_RX_KER_BUF_REGION, 0,
 483                              FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
 484 }
 485 
 486 /* This writes to the RX_DESC_WPTR register for the specified receive
 487  * descriptor ring.
 488  */
 489 void ef4_farch_rx_write(struct ef4_rx_queue *rx_queue)
 490 {
 491         struct ef4_nic *efx = rx_queue->efx;
 492         ef4_dword_t reg;
 493         unsigned write_ptr;
 494 
 495         while (rx_queue->notified_count != rx_queue->added_count) {
 496                 ef4_farch_build_rx_desc(
 497                         rx_queue,
 498                         rx_queue->notified_count & rx_queue->ptr_mask);
 499                 ++rx_queue->notified_count;
 500         }
 501 
 502         wmb();
 503         write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
 504         EF4_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
 505         ef4_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
 506                         ef4_rx_queue_index(rx_queue));
 507 }
 508 
 509 int ef4_farch_rx_probe(struct ef4_rx_queue *rx_queue)
 510 {
 511         struct ef4_nic *efx = rx_queue->efx;
 512         unsigned entries;
 513 
 514         entries = rx_queue->ptr_mask + 1;
 515         return ef4_alloc_special_buffer(efx, &rx_queue->rxd,
 516                                         entries * sizeof(ef4_qword_t));
 517 }
 518 
 519 void ef4_farch_rx_init(struct ef4_rx_queue *rx_queue)
 520 {
 521         ef4_oword_t rx_desc_ptr;
 522         struct ef4_nic *efx = rx_queue->efx;
 523         bool is_b0 = ef4_nic_rev(efx) >= EF4_REV_FALCON_B0;
 524         bool iscsi_digest_en = is_b0;
 525         bool jumbo_en;
 526 
 527         /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
 528          * DMA to continue after a PCIe page boundary (and scattering
 529          * is not possible).  In Falcon B0 and Siena, it enables
 530          * scatter.
 531          */
 532         jumbo_en = !is_b0 || efx->rx_scatter;
 533 
 534         netif_dbg(efx, hw, efx->net_dev,
 535                   "RX queue %d ring in special buffers %d-%d\n",
 536                   ef4_rx_queue_index(rx_queue), rx_queue->rxd.index,
 537                   rx_queue->rxd.index + rx_queue->rxd.entries - 1);
 538 
 539         rx_queue->scatter_n = 0;
 540 
 541         /* Pin RX descriptor ring */
 542         ef4_init_special_buffer(efx, &rx_queue->rxd);
 543 
 544         /* Push RX descriptor ring to card */
 545         EF4_POPULATE_OWORD_10(rx_desc_ptr,
 546                               FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
 547                               FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
 548                               FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
 549                               FRF_AZ_RX_DESCQ_EVQ_ID,
 550                               ef4_rx_queue_channel(rx_queue)->channel,
 551                               FRF_AZ_RX_DESCQ_OWNER_ID, 0,
 552                               FRF_AZ_RX_DESCQ_LABEL,
 553                               ef4_rx_queue_index(rx_queue),
 554                               FRF_AZ_RX_DESCQ_SIZE,
 555                               __ffs(rx_queue->rxd.entries),
 556                               FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
 557                               FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
 558                               FRF_AZ_RX_DESCQ_EN, 1);
 559         ef4_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 560                          ef4_rx_queue_index(rx_queue));
 561 }
 562 
 563 static void ef4_farch_flush_rx_queue(struct ef4_rx_queue *rx_queue)
 564 {
 565         struct ef4_nic *efx = rx_queue->efx;
 566         ef4_oword_t rx_flush_descq;
 567 
 568         EF4_POPULATE_OWORD_2(rx_flush_descq,
 569                              FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
 570                              FRF_AZ_RX_FLUSH_DESCQ,
 571                              ef4_rx_queue_index(rx_queue));
 572         ef4_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
 573 }
 574 
 575 void ef4_farch_rx_fini(struct ef4_rx_queue *rx_queue)
 576 {
 577         ef4_oword_t rx_desc_ptr;
 578         struct ef4_nic *efx = rx_queue->efx;
 579 
 580         /* Remove RX descriptor ring from card */
 581         EF4_ZERO_OWORD(rx_desc_ptr);
 582         ef4_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 583                          ef4_rx_queue_index(rx_queue));
 584 
 585         /* Unpin RX descriptor ring */
 586         ef4_fini_special_buffer(efx, &rx_queue->rxd);
 587 }
 588 
 589 /* Free buffers backing RX queue */
 590 void ef4_farch_rx_remove(struct ef4_rx_queue *rx_queue)
 591 {
 592         ef4_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
 593 }
 594 
 595 /**************************************************************************
 596  *
 597  * Flush handling
 598  *
 599  **************************************************************************/
 600 
 601 /* ef4_farch_flush_queues() must be woken up when all flushes are completed,
 602  * or more RX flushes can be kicked off.
 603  */
 604 static bool ef4_farch_flush_wake(struct ef4_nic *efx)
 605 {
 606         /* Ensure that all updates are visible to ef4_farch_flush_queues() */
 607         smp_mb();
 608 
 609         return (atomic_read(&efx->active_queues) == 0 ||
 610                 (atomic_read(&efx->rxq_flush_outstanding) < EF4_RX_FLUSH_COUNT
 611                  && atomic_read(&efx->rxq_flush_pending) > 0));
 612 }
 613 
 614 static bool ef4_check_tx_flush_complete(struct ef4_nic *efx)
 615 {
 616         bool i = true;
 617         ef4_oword_t txd_ptr_tbl;
 618         struct ef4_channel *channel;
 619         struct ef4_tx_queue *tx_queue;
 620 
 621         ef4_for_each_channel(channel, efx) {
 622                 ef4_for_each_channel_tx_queue(tx_queue, channel) {
 623                         ef4_reado_table(efx, &txd_ptr_tbl,
 624                                         FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
 625                         if (EF4_OWORD_FIELD(txd_ptr_tbl,
 626                                             FRF_AZ_TX_DESCQ_FLUSH) ||
 627                             EF4_OWORD_FIELD(txd_ptr_tbl,
 628                                             FRF_AZ_TX_DESCQ_EN)) {
 629                                 netif_dbg(efx, hw, efx->net_dev,
 630                                           "flush did not complete on TXQ %d\n",
 631                                           tx_queue->queue);
 632                                 i = false;
 633                         } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
 634                                                   1, 0)) {
 635                                 /* The flush is complete, but we didn't
 636                                  * receive a flush completion event
 637                                  */
 638                                 netif_dbg(efx, hw, efx->net_dev,
 639                                           "flush complete on TXQ %d, so drain "
 640                                           "the queue\n", tx_queue->queue);
 641                                 /* Don't need to increment active_queues as it
 642                                  * has already been incremented for the queues
 643                                  * which did not drain
 644                                  */
 645                                 ef4_farch_magic_event(channel,
 646                                                       EF4_CHANNEL_MAGIC_TX_DRAIN(
 647                                                               tx_queue));
 648                         }
 649                 }
 650         }
 651 
 652         return i;
 653 }
 654 
 655 /* Flush all the transmit queues, and continue flushing receive queues until
 656  * they're all flushed. Wait for the DRAIN events to be received so that there
 657  * are no more RX and TX events left on any channel. */
 658 static int ef4_farch_do_flush(struct ef4_nic *efx)
 659 {
 660         unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
 661         struct ef4_channel *channel;
 662         struct ef4_rx_queue *rx_queue;
 663         struct ef4_tx_queue *tx_queue;
 664         int rc = 0;
 665 
 666         ef4_for_each_channel(channel, efx) {
 667                 ef4_for_each_channel_tx_queue(tx_queue, channel) {
 668                         ef4_farch_flush_tx_queue(tx_queue);
 669                 }
 670                 ef4_for_each_channel_rx_queue(rx_queue, channel) {
 671                         rx_queue->flush_pending = true;
 672                         atomic_inc(&efx->rxq_flush_pending);
 673                 }
 674         }
 675 
 676         while (timeout && atomic_read(&efx->active_queues) > 0) {
 677                 /* The hardware supports four concurrent rx flushes, each of
 678                  * which may need to be retried if there is an outstanding
 679                  * descriptor fetch
 680                  */
 681                 ef4_for_each_channel(channel, efx) {
 682                         ef4_for_each_channel_rx_queue(rx_queue, channel) {
 683                                 if (atomic_read(&efx->rxq_flush_outstanding) >=
 684                                     EF4_RX_FLUSH_COUNT)
 685                                         break;
 686 
 687                                 if (rx_queue->flush_pending) {
 688                                         rx_queue->flush_pending = false;
 689                                         atomic_dec(&efx->rxq_flush_pending);
 690                                         atomic_inc(&efx->rxq_flush_outstanding);
 691                                         ef4_farch_flush_rx_queue(rx_queue);
 692                                 }
 693                         }
 694                 }
 695 
 696                 timeout = wait_event_timeout(efx->flush_wq,
 697                                              ef4_farch_flush_wake(efx),
 698                                              timeout);
 699         }
 700 
 701         if (atomic_read(&efx->active_queues) &&
 702             !ef4_check_tx_flush_complete(efx)) {
 703                 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
 704                           "(rx %d+%d)\n", atomic_read(&efx->active_queues),
 705                           atomic_read(&efx->rxq_flush_outstanding),
 706                           atomic_read(&efx->rxq_flush_pending));
 707                 rc = -ETIMEDOUT;
 708 
 709                 atomic_set(&efx->active_queues, 0);
 710                 atomic_set(&efx->rxq_flush_pending, 0);
 711                 atomic_set(&efx->rxq_flush_outstanding, 0);
 712         }
 713 
 714         return rc;
 715 }
 716 
 717 int ef4_farch_fini_dmaq(struct ef4_nic *efx)
 718 {
 719         struct ef4_channel *channel;
 720         struct ef4_tx_queue *tx_queue;
 721         struct ef4_rx_queue *rx_queue;
 722         int rc = 0;
 723 
 724         /* Do not attempt to write to the NIC during EEH recovery */
 725         if (efx->state != STATE_RECOVERY) {
 726                 /* Only perform flush if DMA is enabled */
 727                 if (efx->pci_dev->is_busmaster) {
 728                         efx->type->prepare_flush(efx);
 729                         rc = ef4_farch_do_flush(efx);
 730                         efx->type->finish_flush(efx);
 731                 }
 732 
 733                 ef4_for_each_channel(channel, efx) {
 734                         ef4_for_each_channel_rx_queue(rx_queue, channel)
 735                                 ef4_farch_rx_fini(rx_queue);
 736                         ef4_for_each_channel_tx_queue(tx_queue, channel)
 737                                 ef4_farch_tx_fini(tx_queue);
 738                 }
 739         }
 740 
 741         return rc;
 742 }
 743 
 744 /* Reset queue and flush accounting after FLR
 745  *
 746  * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
 747  * mastering was disabled), in which case we don't receive (RXQ) flush
 748  * completion events.  This means that efx->rxq_flush_outstanding remained at 4
 749  * after the FLR; also, efx->active_queues was non-zero (as no flush completion
 750  * events were received, and we didn't go through ef4_check_tx_flush_complete())
 751  * If we don't fix this up, on the next call to ef4_realloc_channels() we won't
 752  * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
 753  * for batched flush requests; and the efx->active_queues gets messed up because
 754  * we keep incrementing for the newly initialised queues, but it never went to
 755  * zero previously.  Then we get a timeout every time we try to restart the
 756  * queues, as it doesn't go back to zero when we should be flushing the queues.
 757  */
 758 void ef4_farch_finish_flr(struct ef4_nic *efx)
 759 {
 760         atomic_set(&efx->rxq_flush_pending, 0);
 761         atomic_set(&efx->rxq_flush_outstanding, 0);
 762         atomic_set(&efx->active_queues, 0);
 763 }
 764 
 765 
 766 /**************************************************************************
 767  *
 768  * Event queue processing
 769  * Event queues are processed by per-channel tasklets.
 770  *
 771  **************************************************************************/
 772 
 773 /* Update a channel's event queue's read pointer (RPTR) register
 774  *
 775  * This writes the EVQ_RPTR_REG register for the specified channel's
 776  * event queue.
 777  */
 778 void ef4_farch_ev_read_ack(struct ef4_channel *channel)
 779 {
 780         ef4_dword_t reg;
 781         struct ef4_nic *efx = channel->efx;
 782 
 783         EF4_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
 784                              channel->eventq_read_ptr & channel->eventq_mask);
 785 
 786         /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
 787          * of 4 bytes, but it is really 16 bytes just like later revisions.
 788          */
 789         ef4_writed(efx, &reg,
 790                    efx->type->evq_rptr_tbl_base +
 791                    FR_BZ_EVQ_RPTR_STEP * channel->channel);
 792 }
 793 
 794 /* Use HW to insert a SW defined event */
 795 void ef4_farch_generate_event(struct ef4_nic *efx, unsigned int evq,
 796                               ef4_qword_t *event)
 797 {
 798         ef4_oword_t drv_ev_reg;
 799 
 800         BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
 801                      FRF_AZ_DRV_EV_DATA_WIDTH != 64);
 802         drv_ev_reg.u32[0] = event->u32[0];
 803         drv_ev_reg.u32[1] = event->u32[1];
 804         drv_ev_reg.u32[2] = 0;
 805         drv_ev_reg.u32[3] = 0;
 806         EF4_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
 807         ef4_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
 808 }
 809 
 810 static void ef4_farch_magic_event(struct ef4_channel *channel, u32 magic)
 811 {
 812         ef4_qword_t event;
 813 
 814         EF4_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
 815                              FSE_AZ_EV_CODE_DRV_GEN_EV,
 816                              FSF_AZ_DRV_GEN_EV_MAGIC, magic);
 817         ef4_farch_generate_event(channel->efx, channel->channel, &event);
 818 }
 819 
 820 /* Handle a transmit completion event
 821  *
 822  * The NIC batches TX completion events; the message we receive is of
 823  * the form "complete all TX events up to this index".
 824  */
 825 static int
 826 ef4_farch_handle_tx_event(struct ef4_channel *channel, ef4_qword_t *event)
 827 {
 828         unsigned int tx_ev_desc_ptr;
 829         unsigned int tx_ev_q_label;
 830         struct ef4_tx_queue *tx_queue;
 831         struct ef4_nic *efx = channel->efx;
 832         int tx_packets = 0;
 833 
 834         if (unlikely(READ_ONCE(efx->reset_pending)))
 835                 return 0;
 836 
 837         if (likely(EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
 838                 /* Transmit completion */
 839                 tx_ev_desc_ptr = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
 840                 tx_ev_q_label = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 841                 tx_queue = ef4_channel_get_tx_queue(
 842                         channel, tx_ev_q_label % EF4_TXQ_TYPES);
 843                 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
 844                               tx_queue->ptr_mask);
 845                 ef4_xmit_done(tx_queue, tx_ev_desc_ptr);
 846         } else if (EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
 847                 /* Rewrite the FIFO write pointer */
 848                 tx_ev_q_label = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 849                 tx_queue = ef4_channel_get_tx_queue(
 850                         channel, tx_ev_q_label % EF4_TXQ_TYPES);
 851 
 852                 netif_tx_lock(efx->net_dev);
 853                 ef4_farch_notify_tx_desc(tx_queue);
 854                 netif_tx_unlock(efx->net_dev);
 855         } else if (EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
 856                 ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
 857         } else {
 858                 netif_err(efx, tx_err, efx->net_dev,
 859                           "channel %d unexpected TX event "
 860                           EF4_QWORD_FMT"\n", channel->channel,
 861                           EF4_QWORD_VAL(*event));
 862         }
 863 
 864         return tx_packets;
 865 }
 866 
 867 /* Detect errors included in the rx_evt_pkt_ok bit. */
 868 static u16 ef4_farch_handle_rx_not_ok(struct ef4_rx_queue *rx_queue,
 869                                       const ef4_qword_t *event)
 870 {
 871         struct ef4_channel *channel = ef4_rx_queue_channel(rx_queue);
 872         struct ef4_nic *efx = rx_queue->efx;
 873         bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
 874         bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
 875         bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
 876         bool rx_ev_other_err, rx_ev_pause_frm;
 877         bool rx_ev_hdr_type, rx_ev_mcast_pkt;
 878         unsigned rx_ev_pkt_type;
 879 
 880         rx_ev_hdr_type = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
 881         rx_ev_mcast_pkt = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
 882         rx_ev_tobe_disc = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
 883         rx_ev_pkt_type = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
 884         rx_ev_buf_owner_id_err = EF4_QWORD_FIELD(*event,
 885                                                  FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
 886         rx_ev_ip_hdr_chksum_err = EF4_QWORD_FIELD(*event,
 887                                                   FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
 888         rx_ev_tcp_udp_chksum_err = EF4_QWORD_FIELD(*event,
 889                                                    FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
 890         rx_ev_eth_crc_err = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
 891         rx_ev_frm_trunc = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
 892         rx_ev_drib_nib = ((ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) ?
 893                           0 : EF4_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
 894         rx_ev_pause_frm = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
 895 
 896         /* Every error apart from tobe_disc and pause_frm */
 897         rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
 898                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
 899                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
 900 
 901         /* Count errors that are not in MAC stats.  Ignore expected
 902          * checksum errors during self-test. */
 903         if (rx_ev_frm_trunc)
 904                 ++channel->n_rx_frm_trunc;
 905         else if (rx_ev_tobe_disc)
 906                 ++channel->n_rx_tobe_disc;
 907         else if (!efx->loopback_selftest) {
 908                 if (rx_ev_ip_hdr_chksum_err)
 909                         ++channel->n_rx_ip_hdr_chksum_err;
 910                 else if (rx_ev_tcp_udp_chksum_err)
 911                         ++channel->n_rx_tcp_udp_chksum_err;
 912         }
 913 
 914         /* TOBE_DISC is expected on unicast mismatches; don't print out an
 915          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
 916          * to a FIFO overflow.
 917          */
 918 #ifdef DEBUG
 919         if (rx_ev_other_err && net_ratelimit()) {
 920                 netif_dbg(efx, rx_err, efx->net_dev,
 921                           " RX queue %d unexpected RX event "
 922                           EF4_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
 923                           ef4_rx_queue_index(rx_queue), EF4_QWORD_VAL(*event),
 924                           rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
 925                           rx_ev_ip_hdr_chksum_err ?
 926                           " [IP_HDR_CHKSUM_ERR]" : "",
 927                           rx_ev_tcp_udp_chksum_err ?
 928                           " [TCP_UDP_CHKSUM_ERR]" : "",
 929                           rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
 930                           rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
 931                           rx_ev_drib_nib ? " [DRIB_NIB]" : "",
 932                           rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
 933                           rx_ev_pause_frm ? " [PAUSE]" : "");
 934         }
 935 #endif
 936 
 937         /* The frame must be discarded if any of these are true. */
 938         return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
 939                 rx_ev_tobe_disc | rx_ev_pause_frm) ?
 940                 EF4_RX_PKT_DISCARD : 0;
 941 }
 942 
 943 /* Handle receive events that are not in-order. Return true if this
 944  * can be handled as a partial packet discard, false if it's more
 945  * serious.
 946  */
 947 static bool
 948 ef4_farch_handle_rx_bad_index(struct ef4_rx_queue *rx_queue, unsigned index)
 949 {
 950         struct ef4_channel *channel = ef4_rx_queue_channel(rx_queue);
 951         struct ef4_nic *efx = rx_queue->efx;
 952         unsigned expected, dropped;
 953 
 954         if (rx_queue->scatter_n &&
 955             index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
 956                       rx_queue->ptr_mask)) {
 957                 ++channel->n_rx_nodesc_trunc;
 958                 return true;
 959         }
 960 
 961         expected = rx_queue->removed_count & rx_queue->ptr_mask;
 962         dropped = (index - expected) & rx_queue->ptr_mask;
 963         netif_info(efx, rx_err, efx->net_dev,
 964                    "dropped %d events (index=%d expected=%d)\n",
 965                    dropped, index, expected);
 966 
 967         ef4_schedule_reset(efx, EF4_WORKAROUND_5676(efx) ?
 968                            RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
 969         return false;
 970 }
 971 
 972 /* Handle a packet received event
 973  *
 974  * The NIC gives a "discard" flag if it's a unicast packet with the
 975  * wrong destination address
 976  * Also "is multicast" and "matches multicast filter" flags can be used to
 977  * discard non-matching multicast packets.
 978  */
 979 static void
 980 ef4_farch_handle_rx_event(struct ef4_channel *channel, const ef4_qword_t *event)
 981 {
 982         unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
 983         unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
 984         unsigned expected_ptr;
 985         bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
 986         u16 flags;
 987         struct ef4_rx_queue *rx_queue;
 988         struct ef4_nic *efx = channel->efx;
 989 
 990         if (unlikely(READ_ONCE(efx->reset_pending)))
 991                 return;
 992 
 993         rx_ev_cont = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
 994         rx_ev_sop = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
 995         WARN_ON(EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
 996                 channel->channel);
 997 
 998         rx_queue = ef4_channel_get_rx_queue(channel);
 999 
1000         rx_ev_desc_ptr = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1001         expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1002                         rx_queue->ptr_mask);
1003 
1004         /* Check for partial drops and other errors */
1005         if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1006             unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1007                 if (rx_ev_desc_ptr != expected_ptr &&
1008                     !ef4_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1009                         return;
1010 
1011                 /* Discard all pending fragments */
1012                 if (rx_queue->scatter_n) {
1013                         ef4_rx_packet(
1014                                 rx_queue,
1015                                 rx_queue->removed_count & rx_queue->ptr_mask,
1016                                 rx_queue->scatter_n, 0, EF4_RX_PKT_DISCARD);
1017                         rx_queue->removed_count += rx_queue->scatter_n;
1018                         rx_queue->scatter_n = 0;
1019                 }
1020 
1021                 /* Return if there is no new fragment */
1022                 if (rx_ev_desc_ptr != expected_ptr)
1023                         return;
1024 
1025                 /* Discard new fragment if not SOP */
1026                 if (!rx_ev_sop) {
1027                         ef4_rx_packet(
1028                                 rx_queue,
1029                                 rx_queue->removed_count & rx_queue->ptr_mask,
1030                                 1, 0, EF4_RX_PKT_DISCARD);
1031                         ++rx_queue->removed_count;
1032                         return;
1033                 }
1034         }
1035 
1036         ++rx_queue->scatter_n;
1037         if (rx_ev_cont)
1038                 return;
1039 
1040         rx_ev_byte_cnt = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1041         rx_ev_pkt_ok = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1042         rx_ev_hdr_type = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1043 
1044         if (likely(rx_ev_pkt_ok)) {
1045                 /* If packet is marked as OK then we can rely on the
1046                  * hardware checksum and classification.
1047                  */
1048                 flags = 0;
1049                 switch (rx_ev_hdr_type) {
1050                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1051                         flags |= EF4_RX_PKT_TCP;
1052                         /* fall through */
1053                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1054                         flags |= EF4_RX_PKT_CSUMMED;
1055                         /* fall through */
1056                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1057                 case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1058                         break;
1059                 }
1060         } else {
1061                 flags = ef4_farch_handle_rx_not_ok(rx_queue, event);
1062         }
1063 
1064         /* Detect multicast packets that didn't match the filter */
1065         rx_ev_mcast_pkt = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1066         if (rx_ev_mcast_pkt) {
1067                 unsigned int rx_ev_mcast_hash_match =
1068                         EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1069 
1070                 if (unlikely(!rx_ev_mcast_hash_match)) {
1071                         ++channel->n_rx_mcast_mismatch;
1072                         flags |= EF4_RX_PKT_DISCARD;
1073                 }
1074         }
1075 
1076         channel->irq_mod_score += 2;
1077 
1078         /* Handle received packet */
1079         ef4_rx_packet(rx_queue,
1080                       rx_queue->removed_count & rx_queue->ptr_mask,
1081                       rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1082         rx_queue->removed_count += rx_queue->scatter_n;
1083         rx_queue->scatter_n = 0;
1084 }
1085 
1086 /* If this flush done event corresponds to a &struct ef4_tx_queue, then
1087  * send an %EF4_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1088  * of all transmit completions.
1089  */
1090 static void
1091 ef4_farch_handle_tx_flush_done(struct ef4_nic *efx, ef4_qword_t *event)
1092 {
1093         struct ef4_tx_queue *tx_queue;
1094         int qid;
1095 
1096         qid = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1097         if (qid < EF4_TXQ_TYPES * efx->n_tx_channels) {
1098                 tx_queue = ef4_get_tx_queue(efx, qid / EF4_TXQ_TYPES,
1099                                             qid % EF4_TXQ_TYPES);
1100                 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1101                         ef4_farch_magic_event(tx_queue->channel,
1102                                               EF4_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1103                 }
1104         }
1105 }
1106 
1107 /* If this flush done event corresponds to a &struct ef4_rx_queue: If the flush
1108  * was successful then send an %EF4_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1109  * the RX queue back to the mask of RX queues in need of flushing.
1110  */
1111 static void
1112 ef4_farch_handle_rx_flush_done(struct ef4_nic *efx, ef4_qword_t *event)
1113 {
1114         struct ef4_channel *channel;
1115         struct ef4_rx_queue *rx_queue;
1116         int qid;
1117         bool failed;
1118 
1119         qid = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1120         failed = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1121         if (qid >= efx->n_channels)
1122                 return;
1123         channel = ef4_get_channel(efx, qid);
1124         if (!ef4_channel_has_rx_queue(channel))
1125                 return;
1126         rx_queue = ef4_channel_get_rx_queue(channel);
1127 
1128         if (failed) {
1129                 netif_info(efx, hw, efx->net_dev,
1130                            "RXQ %d flush retry\n", qid);
1131                 rx_queue->flush_pending = true;
1132                 atomic_inc(&efx->rxq_flush_pending);
1133         } else {
1134                 ef4_farch_magic_event(ef4_rx_queue_channel(rx_queue),
1135                                       EF4_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1136         }
1137         atomic_dec(&efx->rxq_flush_outstanding);
1138         if (ef4_farch_flush_wake(efx))
1139                 wake_up(&efx->flush_wq);
1140 }
1141 
1142 static void
1143 ef4_farch_handle_drain_event(struct ef4_channel *channel)
1144 {
1145         struct ef4_nic *efx = channel->efx;
1146 
1147         WARN_ON(atomic_read(&efx->active_queues) == 0);
1148         atomic_dec(&efx->active_queues);
1149         if (ef4_farch_flush_wake(efx))
1150                 wake_up(&efx->flush_wq);
1151 }
1152 
1153 static void ef4_farch_handle_generated_event(struct ef4_channel *channel,
1154                                              ef4_qword_t *event)
1155 {
1156         struct ef4_nic *efx = channel->efx;
1157         struct ef4_rx_queue *rx_queue =
1158                 ef4_channel_has_rx_queue(channel) ?
1159                 ef4_channel_get_rx_queue(channel) : NULL;
1160         unsigned magic, code;
1161 
1162         magic = EF4_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1163         code = _EF4_CHANNEL_MAGIC_CODE(magic);
1164 
1165         if (magic == EF4_CHANNEL_MAGIC_TEST(channel)) {
1166                 channel->event_test_cpu = raw_smp_processor_id();
1167         } else if (rx_queue && magic == EF4_CHANNEL_MAGIC_FILL(rx_queue)) {
1168                 /* The queue must be empty, so we won't receive any rx
1169                  * events, so ef4_process_channel() won't refill the
1170                  * queue. Refill it here */
1171                 ef4_fast_push_rx_descriptors(rx_queue, true);
1172         } else if (rx_queue && magic == EF4_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1173                 ef4_farch_handle_drain_event(channel);
1174         } else if (code == _EF4_CHANNEL_MAGIC_TX_DRAIN) {
1175                 ef4_farch_handle_drain_event(channel);
1176         } else {
1177                 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1178                           "generated event "EF4_QWORD_FMT"\n",
1179                           channel->channel, EF4_QWORD_VAL(*event));
1180         }
1181 }
1182 
1183 static void
1184 ef4_farch_handle_driver_event(struct ef4_channel *channel, ef4_qword_t *event)
1185 {
1186         struct ef4_nic *efx = channel->efx;
1187         unsigned int ev_sub_code;
1188         unsigned int ev_sub_data;
1189 
1190         ev_sub_code = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1191         ev_sub_data = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1192 
1193         switch (ev_sub_code) {
1194         case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1195                 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1196                            channel->channel, ev_sub_data);
1197                 ef4_farch_handle_tx_flush_done(efx, event);
1198                 break;
1199         case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1200                 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1201                            channel->channel, ev_sub_data);
1202                 ef4_farch_handle_rx_flush_done(efx, event);
1203                 break;
1204         case FSE_AZ_EVQ_INIT_DONE_EV:
1205                 netif_dbg(efx, hw, efx->net_dev,
1206                           "channel %d EVQ %d initialised\n",
1207                           channel->channel, ev_sub_data);
1208                 break;
1209         case FSE_AZ_SRM_UPD_DONE_EV:
1210                 netif_vdbg(efx, hw, efx->net_dev,
1211                            "channel %d SRAM update done\n", channel->channel);
1212                 break;
1213         case FSE_AZ_WAKE_UP_EV:
1214                 netif_vdbg(efx, hw, efx->net_dev,
1215                            "channel %d RXQ %d wakeup event\n",
1216                            channel->channel, ev_sub_data);
1217                 break;
1218         case FSE_AZ_TIMER_EV:
1219                 netif_vdbg(efx, hw, efx->net_dev,
1220                            "channel %d RX queue %d timer expired\n",
1221                            channel->channel, ev_sub_data);
1222                 break;
1223         case FSE_AA_RX_RECOVER_EV:
1224                 netif_err(efx, rx_err, efx->net_dev,
1225                           "channel %d seen DRIVER RX_RESET event. "
1226                         "Resetting.\n", channel->channel);
1227                 atomic_inc(&efx->rx_reset);
1228                 ef4_schedule_reset(efx,
1229                                    EF4_WORKAROUND_6555(efx) ?
1230                                    RESET_TYPE_RX_RECOVERY :
1231                                    RESET_TYPE_DISABLE);
1232                 break;
1233         case FSE_BZ_RX_DSC_ERROR_EV:
1234                 netif_err(efx, rx_err, efx->net_dev,
1235                           "RX DMA Q %d reports descriptor fetch error."
1236                           " RX Q %d is disabled.\n", ev_sub_data,
1237                           ev_sub_data);
1238                 ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1239                 break;
1240         case FSE_BZ_TX_DSC_ERROR_EV:
1241                 netif_err(efx, tx_err, efx->net_dev,
1242                           "TX DMA Q %d reports descriptor fetch error."
1243                           " TX Q %d is disabled.\n", ev_sub_data,
1244                           ev_sub_data);
1245                 ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1246                 break;
1247         default:
1248                 netif_vdbg(efx, hw, efx->net_dev,
1249                            "channel %d unknown driver event code %d "
1250                            "data %04x\n", channel->channel, ev_sub_code,
1251                            ev_sub_data);
1252                 break;
1253         }
1254 }
1255 
1256 int ef4_farch_ev_process(struct ef4_channel *channel, int budget)
1257 {
1258         struct ef4_nic *efx = channel->efx;
1259         unsigned int read_ptr;
1260         ef4_qword_t event, *p_event;
1261         int ev_code;
1262         int tx_packets = 0;
1263         int spent = 0;
1264 
1265         if (budget <= 0)
1266                 return spent;
1267 
1268         read_ptr = channel->eventq_read_ptr;
1269 
1270         for (;;) {
1271                 p_event = ef4_event(channel, read_ptr);
1272                 event = *p_event;
1273 
1274                 if (!ef4_event_present(&event))
1275                         /* End of events */
1276                         break;
1277 
1278                 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1279                            "channel %d event is "EF4_QWORD_FMT"\n",
1280                            channel->channel, EF4_QWORD_VAL(event));
1281 
1282                 /* Clear this event by marking it all ones */
1283                 EF4_SET_QWORD(*p_event);
1284 
1285                 ++read_ptr;
1286 
1287                 ev_code = EF4_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1288 
1289                 switch (ev_code) {
1290                 case FSE_AZ_EV_CODE_RX_EV:
1291                         ef4_farch_handle_rx_event(channel, &event);
1292                         if (++spent == budget)
1293                                 goto out;
1294                         break;
1295                 case FSE_AZ_EV_CODE_TX_EV:
1296                         tx_packets += ef4_farch_handle_tx_event(channel,
1297                                                                 &event);
1298                         if (tx_packets > efx->txq_entries) {
1299                                 spent = budget;
1300                                 goto out;
1301                         }
1302                         break;
1303                 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1304                         ef4_farch_handle_generated_event(channel, &event);
1305                         break;
1306                 case FSE_AZ_EV_CODE_DRIVER_EV:
1307                         ef4_farch_handle_driver_event(channel, &event);
1308                         break;
1309                 case FSE_AZ_EV_CODE_GLOBAL_EV:
1310                         if (efx->type->handle_global_event &&
1311                             efx->type->handle_global_event(channel, &event))
1312                                 break;
1313                         /* else fall through */
1314                 default:
1315                         netif_err(channel->efx, hw, channel->efx->net_dev,
1316                                   "channel %d unknown event type %d (data "
1317                                   EF4_QWORD_FMT ")\n", channel->channel,
1318                                   ev_code, EF4_QWORD_VAL(event));
1319                 }
1320         }
1321 
1322 out:
1323         channel->eventq_read_ptr = read_ptr;
1324         return spent;
1325 }
1326 
1327 /* Allocate buffer table entries for event queue */
1328 int ef4_farch_ev_probe(struct ef4_channel *channel)
1329 {
1330         struct ef4_nic *efx = channel->efx;
1331         unsigned entries;
1332 
1333         entries = channel->eventq_mask + 1;
1334         return ef4_alloc_special_buffer(efx, &channel->eventq,
1335                                         entries * sizeof(ef4_qword_t));
1336 }
1337 
1338 int ef4_farch_ev_init(struct ef4_channel *channel)
1339 {
1340         ef4_oword_t reg;
1341         struct ef4_nic *efx = channel->efx;
1342 
1343         netif_dbg(efx, hw, efx->net_dev,
1344                   "channel %d event queue in special buffers %d-%d\n",
1345                   channel->channel, channel->eventq.index,
1346                   channel->eventq.index + channel->eventq.entries - 1);
1347 
1348         /* Pin event queue buffer */
1349         ef4_init_special_buffer(efx, &channel->eventq);
1350 
1351         /* Fill event queue with all ones (i.e. empty events) */
1352         memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1353 
1354         /* Push event queue to card */
1355         EF4_POPULATE_OWORD_3(reg,
1356                              FRF_AZ_EVQ_EN, 1,
1357                              FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1358                              FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1359         ef4_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1360                          channel->channel);
1361 
1362         return 0;
1363 }
1364 
1365 void ef4_farch_ev_fini(struct ef4_channel *channel)
1366 {
1367         ef4_oword_t reg;
1368         struct ef4_nic *efx = channel->efx;
1369 
1370         /* Remove event queue from card */
1371         EF4_ZERO_OWORD(reg);
1372         ef4_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1373                          channel->channel);
1374 
1375         /* Unpin event queue */
1376         ef4_fini_special_buffer(efx, &channel->eventq);
1377 }
1378 
1379 /* Free buffers backing event queue */
1380 void ef4_farch_ev_remove(struct ef4_channel *channel)
1381 {
1382         ef4_free_special_buffer(channel->efx, &channel->eventq);
1383 }
1384 
1385 
1386 void ef4_farch_ev_test_generate(struct ef4_channel *channel)
1387 {
1388         ef4_farch_magic_event(channel, EF4_CHANNEL_MAGIC_TEST(channel));
1389 }
1390 
1391 void ef4_farch_rx_defer_refill(struct ef4_rx_queue *rx_queue)
1392 {
1393         ef4_farch_magic_event(ef4_rx_queue_channel(rx_queue),
1394                               EF4_CHANNEL_MAGIC_FILL(rx_queue));
1395 }
1396 
1397 /**************************************************************************
1398  *
1399  * Hardware interrupts
1400  * The hardware interrupt handler does very little work; all the event
1401  * queue processing is carried out by per-channel tasklets.
1402  *
1403  **************************************************************************/
1404 
1405 /* Enable/disable/generate interrupts */
1406 static inline void ef4_farch_interrupts(struct ef4_nic *efx,
1407                                       bool enabled, bool force)
1408 {
1409         ef4_oword_t int_en_reg_ker;
1410 
1411         EF4_POPULATE_OWORD_3(int_en_reg_ker,
1412                              FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1413                              FRF_AZ_KER_INT_KER, force,
1414                              FRF_AZ_DRV_INT_EN_KER, enabled);
1415         ef4_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1416 }
1417 
1418 void ef4_farch_irq_enable_master(struct ef4_nic *efx)
1419 {
1420         EF4_ZERO_OWORD(*((ef4_oword_t *) efx->irq_status.addr));
1421         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1422 
1423         ef4_farch_interrupts(efx, true, false);
1424 }
1425 
1426 void ef4_farch_irq_disable_master(struct ef4_nic *efx)
1427 {
1428         /* Disable interrupts */
1429         ef4_farch_interrupts(efx, false, false);
1430 }
1431 
1432 /* Generate a test interrupt
1433  * Interrupt must already have been enabled, otherwise nasty things
1434  * may happen.
1435  */
1436 int ef4_farch_irq_test_generate(struct ef4_nic *efx)
1437 {
1438         ef4_farch_interrupts(efx, true, true);
1439         return 0;
1440 }
1441 
1442 /* Process a fatal interrupt
1443  * Disable bus mastering ASAP and schedule a reset
1444  */
1445 irqreturn_t ef4_farch_fatal_interrupt(struct ef4_nic *efx)
1446 {
1447         struct falcon_nic_data *nic_data = efx->nic_data;
1448         ef4_oword_t *int_ker = efx->irq_status.addr;
1449         ef4_oword_t fatal_intr;
1450         int error, mem_perr;
1451 
1452         ef4_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1453         error = EF4_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1454 
1455         netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EF4_OWORD_FMT" status "
1456                   EF4_OWORD_FMT ": %s\n", EF4_OWORD_VAL(*int_ker),
1457                   EF4_OWORD_VAL(fatal_intr),
1458                   error ? "disabling bus mastering" : "no recognised error");
1459 
1460         /* If this is a memory parity error dump which blocks are offending */
1461         mem_perr = (EF4_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1462                     EF4_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1463         if (mem_perr) {
1464                 ef4_oword_t reg;
1465                 ef4_reado(efx, &reg, FR_AZ_MEM_STAT);
1466                 netif_err(efx, hw, efx->net_dev,
1467                           "SYSTEM ERROR: memory parity error "EF4_OWORD_FMT"\n",
1468                           EF4_OWORD_VAL(reg));
1469         }
1470 
1471         /* Disable both devices */
1472         pci_clear_master(efx->pci_dev);
1473         if (ef4_nic_is_dual_func(efx))
1474                 pci_clear_master(nic_data->pci_dev2);
1475         ef4_farch_irq_disable_master(efx);
1476 
1477         /* Count errors and reset or disable the NIC accordingly */
1478         if (efx->int_error_count == 0 ||
1479             time_after(jiffies, efx->int_error_expire)) {
1480                 efx->int_error_count = 0;
1481                 efx->int_error_expire =
1482                         jiffies + EF4_INT_ERROR_EXPIRE * HZ;
1483         }
1484         if (++efx->int_error_count < EF4_MAX_INT_ERRORS) {
1485                 netif_err(efx, hw, efx->net_dev,
1486                           "SYSTEM ERROR - reset scheduled\n");
1487                 ef4_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1488         } else {
1489                 netif_err(efx, hw, efx->net_dev,
1490                           "SYSTEM ERROR - max number of errors seen."
1491                           "NIC will be disabled\n");
1492                 ef4_schedule_reset(efx, RESET_TYPE_DISABLE);
1493         }
1494 
1495         return IRQ_HANDLED;
1496 }
1497 
1498 /* Handle a legacy interrupt
1499  * Acknowledges the interrupt and schedule event queue processing.
1500  */
1501 irqreturn_t ef4_farch_legacy_interrupt(int irq, void *dev_id)
1502 {
1503         struct ef4_nic *efx = dev_id;
1504         bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
1505         ef4_oword_t *int_ker = efx->irq_status.addr;
1506         irqreturn_t result = IRQ_NONE;
1507         struct ef4_channel *channel;
1508         ef4_dword_t reg;
1509         u32 queues;
1510         int syserr;
1511 
1512         /* Read the ISR which also ACKs the interrupts */
1513         ef4_readd(efx, &reg, FR_BZ_INT_ISR0);
1514         queues = EF4_EXTRACT_DWORD(reg, 0, 31);
1515 
1516         /* Legacy interrupts are disabled too late by the EEH kernel
1517          * code. Disable them earlier.
1518          * If an EEH error occurred, the read will have returned all ones.
1519          */
1520         if (EF4_DWORD_IS_ALL_ONES(reg) && ef4_try_recovery(efx) &&
1521             !efx->eeh_disabled_legacy_irq) {
1522                 disable_irq_nosync(efx->legacy_irq);
1523                 efx->eeh_disabled_legacy_irq = true;
1524         }
1525 
1526         /* Handle non-event-queue sources */
1527         if (queues & (1U << efx->irq_level) && soft_enabled) {
1528                 syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1529                 if (unlikely(syserr))
1530                         return ef4_farch_fatal_interrupt(efx);
1531                 efx->last_irq_cpu = raw_smp_processor_id();
1532         }
1533 
1534         if (queues != 0) {
1535                 efx->irq_zero_count = 0;
1536 
1537                 /* Schedule processing of any interrupting queues */
1538                 if (likely(soft_enabled)) {
1539                         ef4_for_each_channel(channel, efx) {
1540                                 if (queues & 1)
1541                                         ef4_schedule_channel_irq(channel);
1542                                 queues >>= 1;
1543                         }
1544                 }
1545                 result = IRQ_HANDLED;
1546 
1547         } else {
1548                 ef4_qword_t *event;
1549 
1550                 /* Legacy ISR read can return zero once (SF bug 15783) */
1551 
1552                 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1553                  * because this might be a shared interrupt. */
1554                 if (efx->irq_zero_count++ == 0)
1555                         result = IRQ_HANDLED;
1556 
1557                 /* Ensure we schedule or rearm all event queues */
1558                 if (likely(soft_enabled)) {
1559                         ef4_for_each_channel(channel, efx) {
1560                                 event = ef4_event(channel,
1561                                                   channel->eventq_read_ptr);
1562                                 if (ef4_event_present(event))
1563                                         ef4_schedule_channel_irq(channel);
1564                                 else
1565                                         ef4_farch_ev_read_ack(channel);
1566                         }
1567                 }
1568         }
1569 
1570         if (result == IRQ_HANDLED)
1571                 netif_vdbg(efx, intr, efx->net_dev,
1572                            "IRQ %d on CPU %d status " EF4_DWORD_FMT "\n",
1573                            irq, raw_smp_processor_id(), EF4_DWORD_VAL(reg));
1574 
1575         return result;
1576 }
1577 
1578 /* Handle an MSI interrupt
1579  *
1580  * Handle an MSI hardware interrupt.  This routine schedules event
1581  * queue processing.  No interrupt acknowledgement cycle is necessary.
1582  * Also, we never need to check that the interrupt is for us, since
1583  * MSI interrupts cannot be shared.
1584  */
1585 irqreturn_t ef4_farch_msi_interrupt(int irq, void *dev_id)
1586 {
1587         struct ef4_msi_context *context = dev_id;
1588         struct ef4_nic *efx = context->efx;
1589         ef4_oword_t *int_ker = efx->irq_status.addr;
1590         int syserr;
1591 
1592         netif_vdbg(efx, intr, efx->net_dev,
1593                    "IRQ %d on CPU %d status " EF4_OWORD_FMT "\n",
1594                    irq, raw_smp_processor_id(), EF4_OWORD_VAL(*int_ker));
1595 
1596         if (!likely(READ_ONCE(efx->irq_soft_enabled)))
1597                 return IRQ_HANDLED;
1598 
1599         /* Handle non-event-queue sources */
1600         if (context->index == efx->irq_level) {
1601                 syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1602                 if (unlikely(syserr))
1603                         return ef4_farch_fatal_interrupt(efx);
1604                 efx->last_irq_cpu = raw_smp_processor_id();
1605         }
1606 
1607         /* Schedule processing of the channel */
1608         ef4_schedule_channel_irq(efx->channel[context->index]);
1609 
1610         return IRQ_HANDLED;
1611 }
1612 
1613 /* Setup RSS indirection table.
1614  * This maps from the hash value of the packet to RXQ
1615  */
1616 void ef4_farch_rx_push_indir_table(struct ef4_nic *efx)
1617 {
1618         size_t i = 0;
1619         ef4_dword_t dword;
1620 
1621         BUG_ON(ef4_nic_rev(efx) < EF4_REV_FALCON_B0);
1622 
1623         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1624                      FR_BZ_RX_INDIRECTION_TBL_ROWS);
1625 
1626         for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1627                 EF4_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1628                                      efx->rx_indir_table[i]);
1629                 ef4_writed(efx, &dword,
1630                            FR_BZ_RX_INDIRECTION_TBL +
1631                            FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1632         }
1633 }
1634 
1635 /* Looks at available SRAM resources and works out how many queues we
1636  * can support, and where things like descriptor caches should live.
1637  *
1638  * SRAM is split up as follows:
1639  * 0                          buftbl entries for channels
1640  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1641  * efx->rx_dc_base            RX descriptor caches
1642  * efx->tx_dc_base            TX descriptor caches
1643  */
1644 void ef4_farch_dimension_resources(struct ef4_nic *efx, unsigned sram_lim_qw)
1645 {
1646         unsigned vi_count, buftbl_min;
1647 
1648         /* Account for the buffer table entries backing the datapath channels
1649          * and the descriptor caches for those channels.
1650          */
1651         buftbl_min = ((efx->n_rx_channels * EF4_MAX_DMAQ_SIZE +
1652                        efx->n_tx_channels * EF4_TXQ_TYPES * EF4_MAX_DMAQ_SIZE +
1653                        efx->n_channels * EF4_MAX_EVQ_SIZE)
1654                       * sizeof(ef4_qword_t) / EF4_BUF_SIZE);
1655         vi_count = max(efx->n_channels, efx->n_tx_channels * EF4_TXQ_TYPES);
1656 
1657         efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1658         efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1659 }
1660 
1661 u32 ef4_farch_fpga_ver(struct ef4_nic *efx)
1662 {
1663         ef4_oword_t altera_build;
1664         ef4_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1665         return EF4_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1666 }
1667 
1668 void ef4_farch_init_common(struct ef4_nic *efx)
1669 {
1670         ef4_oword_t temp;
1671 
1672         /* Set positions of descriptor caches in SRAM. */
1673         EF4_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1674         ef4_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1675         EF4_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1676         ef4_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1677 
1678         /* Set TX descriptor cache size. */
1679         BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1680         EF4_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1681         ef4_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1682 
1683         /* Set RX descriptor cache size.  Set low watermark to size-8, as
1684          * this allows most efficient prefetching.
1685          */
1686         BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1687         EF4_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1688         ef4_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1689         EF4_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1690         ef4_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1691 
1692         /* Program INT_KER address */
1693         EF4_POPULATE_OWORD_2(temp,
1694                              FRF_AZ_NORM_INT_VEC_DIS_KER,
1695                              EF4_INT_MODE_USE_MSI(efx),
1696                              FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1697         ef4_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1698 
1699         /* Use a valid MSI-X vector */
1700         efx->irq_level = 0;
1701 
1702         /* Enable all the genuinely fatal interrupts.  (They are still
1703          * masked by the overall interrupt mask, controlled by
1704          * falcon_interrupts()).
1705          *
1706          * Note: All other fatal interrupts are enabled
1707          */
1708         EF4_POPULATE_OWORD_3(temp,
1709                              FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1710                              FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1711                              FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1712         EF4_INVERT_OWORD(temp);
1713         ef4_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1714 
1715         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1716          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1717          */
1718         ef4_reado(efx, &temp, FR_AZ_TX_RESERVED);
1719         EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1720         EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1721         EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1722         EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1723         EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1724         /* Enable SW_EV to inherit in char driver - assume harmless here */
1725         EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1726         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1727         EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1728         /* Disable hardware watchdog which can misfire */
1729         EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1730         /* Squash TX of packets of 16 bytes or less */
1731         if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
1732                 EF4_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1733         ef4_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1734 
1735         if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
1736                 EF4_POPULATE_OWORD_4(temp,
1737                                      /* Default values */
1738                                      FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1739                                      FRF_BZ_TX_PACE_SB_AF, 0xb,
1740                                      FRF_BZ_TX_PACE_FB_BASE, 0,
1741                                      /* Allow large pace values in the
1742                                       * fast bin. */
1743                                      FRF_BZ_TX_PACE_BIN_TH,
1744                                      FFE_BZ_TX_PACE_RESERVED);
1745                 ef4_writeo(efx, &temp, FR_BZ_TX_PACE);
1746         }
1747 }
1748 
1749 /**************************************************************************
1750  *
1751  * Filter tables
1752  *
1753  **************************************************************************
1754  */
1755 
1756 /* "Fudge factors" - difference between programmed value and actual depth.
1757  * Due to pipelined implementation we need to program H/W with a value that
1758  * is larger than the hop limit we want.
1759  */
1760 #define EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1761 #define EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1762 
1763 /* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1764  * We also need to avoid infinite loops in ef4_farch_filter_search() when the
1765  * table is full.
1766  */
1767 #define EF4_FARCH_FILTER_CTL_SRCH_MAX 200
1768 
1769 /* Don't try very hard to find space for performance hints, as this is
1770  * counter-productive. */
1771 #define EF4_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1772 
1773 enum ef4_farch_filter_type {
1774         EF4_FARCH_FILTER_TCP_FULL = 0,
1775         EF4_FARCH_FILTER_TCP_WILD,
1776         EF4_FARCH_FILTER_UDP_FULL,
1777         EF4_FARCH_FILTER_UDP_WILD,
1778         EF4_FARCH_FILTER_MAC_FULL = 4,
1779         EF4_FARCH_FILTER_MAC_WILD,
1780         EF4_FARCH_FILTER_UC_DEF = 8,
1781         EF4_FARCH_FILTER_MC_DEF,
1782         EF4_FARCH_FILTER_TYPE_COUNT,            /* number of specific types */
1783 };
1784 
1785 enum ef4_farch_filter_table_id {
1786         EF4_FARCH_FILTER_TABLE_RX_IP = 0,
1787         EF4_FARCH_FILTER_TABLE_RX_MAC,
1788         EF4_FARCH_FILTER_TABLE_RX_DEF,
1789         EF4_FARCH_FILTER_TABLE_TX_MAC,
1790         EF4_FARCH_FILTER_TABLE_COUNT,
1791 };
1792 
1793 enum ef4_farch_filter_index {
1794         EF4_FARCH_FILTER_INDEX_UC_DEF,
1795         EF4_FARCH_FILTER_INDEX_MC_DEF,
1796         EF4_FARCH_FILTER_SIZE_RX_DEF,
1797 };
1798 
1799 struct ef4_farch_filter_spec {
1800         u8      type:4;
1801         u8      priority:4;
1802         u8      flags;
1803         u16     dmaq_id;
1804         u32     data[3];
1805 };
1806 
1807 struct ef4_farch_filter_table {
1808         enum ef4_farch_filter_table_id id;
1809         u32             offset;         /* address of table relative to BAR */
1810         unsigned        size;           /* number of entries */
1811         unsigned        step;           /* step between entries */
1812         unsigned        used;           /* number currently used */
1813         unsigned long   *used_bitmap;
1814         struct ef4_farch_filter_spec *spec;
1815         unsigned        search_limit[EF4_FARCH_FILTER_TYPE_COUNT];
1816 };
1817 
1818 struct ef4_farch_filter_state {
1819         struct ef4_farch_filter_table table[EF4_FARCH_FILTER_TABLE_COUNT];
1820 };
1821 
1822 static void
1823 ef4_farch_filter_table_clear_entry(struct ef4_nic *efx,
1824                                    struct ef4_farch_filter_table *table,
1825                                    unsigned int filter_idx);
1826 
1827 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1828  * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
1829 static u16 ef4_farch_filter_hash(u32 key)
1830 {
1831         u16 tmp;
1832 
1833         /* First 16 rounds */
1834         tmp = 0x1fff ^ key >> 16;
1835         tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1836         tmp = tmp ^ tmp >> 9;
1837         /* Last 16 rounds */
1838         tmp = tmp ^ tmp << 13 ^ key;
1839         tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1840         return tmp ^ tmp >> 9;
1841 }
1842 
1843 /* To allow for hash collisions, filter search continues at these
1844  * increments from the first possible entry selected by the hash. */
1845 static u16 ef4_farch_filter_increment(u32 key)
1846 {
1847         return key * 2 - 1;
1848 }
1849 
1850 static enum ef4_farch_filter_table_id
1851 ef4_farch_filter_spec_table_id(const struct ef4_farch_filter_spec *spec)
1852 {
1853         BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1854                      (EF4_FARCH_FILTER_TCP_FULL >> 2));
1855         BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1856                      (EF4_FARCH_FILTER_TCP_WILD >> 2));
1857         BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1858                      (EF4_FARCH_FILTER_UDP_FULL >> 2));
1859         BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP !=
1860                      (EF4_FARCH_FILTER_UDP_WILD >> 2));
1861         BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_MAC !=
1862                      (EF4_FARCH_FILTER_MAC_FULL >> 2));
1863         BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_MAC !=
1864                      (EF4_FARCH_FILTER_MAC_WILD >> 2));
1865         BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_TX_MAC !=
1866                      EF4_FARCH_FILTER_TABLE_RX_MAC + 2);
1867         return (spec->type >> 2) + ((spec->flags & EF4_FILTER_FLAG_TX) ? 2 : 0);
1868 }
1869 
1870 static void ef4_farch_filter_push_rx_config(struct ef4_nic *efx)
1871 {
1872         struct ef4_farch_filter_state *state = efx->filter_state;
1873         struct ef4_farch_filter_table *table;
1874         ef4_oword_t filter_ctl;
1875 
1876         ef4_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1877 
1878         table = &state->table[EF4_FARCH_FILTER_TABLE_RX_IP];
1879         EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1880                             table->search_limit[EF4_FARCH_FILTER_TCP_FULL] +
1881                             EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1882         EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1883                             table->search_limit[EF4_FARCH_FILTER_TCP_WILD] +
1884                             EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1885         EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1886                             table->search_limit[EF4_FARCH_FILTER_UDP_FULL] +
1887                             EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1888         EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1889                             table->search_limit[EF4_FARCH_FILTER_UDP_WILD] +
1890                             EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1891 
1892         table = &state->table[EF4_FARCH_FILTER_TABLE_RX_MAC];
1893         if (table->size) {
1894                 EF4_SET_OWORD_FIELD(
1895                         filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1896                         table->search_limit[EF4_FARCH_FILTER_MAC_FULL] +
1897                         EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1898                 EF4_SET_OWORD_FIELD(
1899                         filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1900                         table->search_limit[EF4_FARCH_FILTER_MAC_WILD] +
1901                         EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1902         }
1903 
1904         table = &state->table[EF4_FARCH_FILTER_TABLE_RX_DEF];
1905         if (table->size) {
1906                 EF4_SET_OWORD_FIELD(
1907                         filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1908                         table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1909                 EF4_SET_OWORD_FIELD(
1910                         filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1911                         !!(table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].flags &
1912                            EF4_FILTER_FLAG_RX_RSS));
1913                 EF4_SET_OWORD_FIELD(
1914                         filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1915                         table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1916                 EF4_SET_OWORD_FIELD(
1917                         filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1918                         !!(table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].flags &
1919                            EF4_FILTER_FLAG_RX_RSS));
1920 
1921                 /* There is a single bit to enable RX scatter for all
1922                  * unmatched packets.  Only set it if scatter is
1923                  * enabled in both filter specs.
1924                  */
1925                 EF4_SET_OWORD_FIELD(
1926                         filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1927                         !!(table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].flags &
1928                            table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].flags &
1929                            EF4_FILTER_FLAG_RX_SCATTER));
1930         } else if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
1931                 /* We don't expose 'default' filters because unmatched
1932                  * packets always go to the queue number found in the
1933                  * RSS table.  But we still need to set the RX scatter
1934                  * bit here.
1935                  */
1936                 EF4_SET_OWORD_FIELD(
1937                         filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1938                         efx->rx_scatter);
1939         }
1940 
1941         ef4_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1942 }
1943 
1944 static void ef4_farch_filter_push_tx_limits(struct ef4_nic *efx)
1945 {
1946         struct ef4_farch_filter_state *state = efx->filter_state;
1947         struct ef4_farch_filter_table *table;
1948         ef4_oword_t tx_cfg;
1949 
1950         ef4_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
1951 
1952         table = &state->table[EF4_FARCH_FILTER_TABLE_TX_MAC];
1953         if (table->size) {
1954                 EF4_SET_OWORD_FIELD(
1955                         tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
1956                         table->search_limit[EF4_FARCH_FILTER_MAC_FULL] +
1957                         EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1958                 EF4_SET_OWORD_FIELD(
1959                         tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
1960                         table->search_limit[EF4_FARCH_FILTER_MAC_WILD] +
1961                         EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1962         }
1963 
1964         ef4_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
1965 }
1966 
1967 static int
1968 ef4_farch_filter_from_gen_spec(struct ef4_farch_filter_spec *spec,
1969                                const struct ef4_filter_spec *gen_spec)
1970 {
1971         bool is_full = false;
1972 
1973         if ((gen_spec->flags & EF4_FILTER_FLAG_RX_RSS) &&
1974             gen_spec->rss_context != EF4_FILTER_RSS_CONTEXT_DEFAULT)
1975                 return -EINVAL;
1976 
1977         spec->priority = gen_spec->priority;
1978         spec->flags = gen_spec->flags;
1979         spec->dmaq_id = gen_spec->dmaq_id;
1980 
1981         switch (gen_spec->match_flags) {
1982         case (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO |
1983               EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT |
1984               EF4_FILTER_MATCH_REM_HOST | EF4_FILTER_MATCH_REM_PORT):
1985                 is_full = true;
1986                 /* fall through */
1987         case (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO |
1988               EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT): {
1989                 __be32 rhost, host1, host2;
1990                 __be16 rport, port1, port2;
1991 
1992                 EF4_BUG_ON_PARANOID(!(gen_spec->flags & EF4_FILTER_FLAG_RX));
1993 
1994                 if (gen_spec->ether_type != htons(ETH_P_IP))
1995                         return -EPROTONOSUPPORT;
1996                 if (gen_spec->loc_port == 0 ||
1997                     (is_full && gen_spec->rem_port == 0))
1998                         return -EADDRNOTAVAIL;
1999                 switch (gen_spec->ip_proto) {
2000                 case IPPROTO_TCP:
2001                         spec->type = (is_full ? EF4_FARCH_FILTER_TCP_FULL :
2002                                       EF4_FARCH_FILTER_TCP_WILD);
2003                         break;
2004                 case IPPROTO_UDP:
2005                         spec->type = (is_full ? EF4_FARCH_FILTER_UDP_FULL :
2006                                       EF4_FARCH_FILTER_UDP_WILD);
2007                         break;
2008                 default:
2009                         return -EPROTONOSUPPORT;
2010                 }
2011 
2012                 /* Filter is constructed in terms of source and destination,
2013                  * with the odd wrinkle that the ports are swapped in a UDP
2014                  * wildcard filter.  We need to convert from local and remote
2015                  * (= zero for wildcard) addresses.
2016                  */
2017                 rhost = is_full ? gen_spec->rem_host[0] : 0;
2018                 rport = is_full ? gen_spec->rem_port : 0;
2019                 host1 = rhost;
2020                 host2 = gen_spec->loc_host[0];
2021                 if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2022                         port1 = gen_spec->loc_port;
2023                         port2 = rport;
2024                 } else {
2025                         port1 = rport;
2026                         port2 = gen_spec->loc_port;
2027                 }
2028                 spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2029                 spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2030                 spec->data[2] = ntohl(host2);
2031 
2032                 break;
2033         }
2034 
2035         case EF4_FILTER_MATCH_LOC_MAC | EF4_FILTER_MATCH_OUTER_VID:
2036                 is_full = true;
2037                 /* fall through */
2038         case EF4_FILTER_MATCH_LOC_MAC:
2039                 spec->type = (is_full ? EF4_FARCH_FILTER_MAC_FULL :
2040                               EF4_FARCH_FILTER_MAC_WILD);
2041                 spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2042                 spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2043                                  gen_spec->loc_mac[3] << 16 |
2044                                  gen_spec->loc_mac[4] << 8 |
2045                                  gen_spec->loc_mac[5]);
2046                 spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2047                                  gen_spec->loc_mac[1]);
2048                 break;
2049 
2050         case EF4_FILTER_MATCH_LOC_MAC_IG:
2051                 spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2052                               EF4_FARCH_FILTER_MC_DEF :
2053                               EF4_FARCH_FILTER_UC_DEF);
2054                 memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2055                 break;
2056 
2057         default:
2058                 return -EPROTONOSUPPORT;
2059         }
2060 
2061         return 0;
2062 }
2063 
2064 static void
2065 ef4_farch_filter_to_gen_spec(struct ef4_filter_spec *gen_spec,
2066                              const struct ef4_farch_filter_spec *spec)
2067 {
2068         bool is_full = false;
2069 
2070         /* *gen_spec should be completely initialised, to be consistent
2071          * with ef4_filter_init_{rx,tx}() and in case we want to copy
2072          * it back to userland.
2073          */
2074         memset(gen_spec, 0, sizeof(*gen_spec));
2075 
2076         gen_spec->priority = spec->priority;
2077         gen_spec->flags = spec->flags;
2078         gen_spec->dmaq_id = spec->dmaq_id;
2079 
2080         switch (spec->type) {
2081         case EF4_FARCH_FILTER_TCP_FULL:
2082         case EF4_FARCH_FILTER_UDP_FULL:
2083                 is_full = true;
2084                 /* fall through */
2085         case EF4_FARCH_FILTER_TCP_WILD:
2086         case EF4_FARCH_FILTER_UDP_WILD: {
2087                 __be32 host1, host2;
2088                 __be16 port1, port2;
2089 
2090                 gen_spec->match_flags =
2091                         EF4_FILTER_MATCH_ETHER_TYPE |
2092                         EF4_FILTER_MATCH_IP_PROTO |
2093                         EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT;
2094                 if (is_full)
2095                         gen_spec->match_flags |= (EF4_FILTER_MATCH_REM_HOST |
2096                                                   EF4_FILTER_MATCH_REM_PORT);
2097                 gen_spec->ether_type = htons(ETH_P_IP);
2098                 gen_spec->ip_proto =
2099                         (spec->type == EF4_FARCH_FILTER_TCP_FULL ||
2100                          spec->type == EF4_FARCH_FILTER_TCP_WILD) ?
2101                         IPPROTO_TCP : IPPROTO_UDP;
2102 
2103                 host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2104                 port1 = htons(spec->data[0]);
2105                 host2 = htonl(spec->data[2]);
2106                 port2 = htons(spec->data[1] >> 16);
2107                 if (spec->flags & EF4_FILTER_FLAG_TX) {
2108                         gen_spec->loc_host[0] = host1;
2109                         gen_spec->rem_host[0] = host2;
2110                 } else {
2111                         gen_spec->loc_host[0] = host2;
2112                         gen_spec->rem_host[0] = host1;
2113                 }
2114                 if (!!(gen_spec->flags & EF4_FILTER_FLAG_TX) ^
2115                     (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2116                         gen_spec->loc_port = port1;
2117                         gen_spec->rem_port = port2;
2118                 } else {
2119                         gen_spec->loc_port = port2;
2120                         gen_spec->rem_port = port1;
2121                 }
2122 
2123                 break;
2124         }
2125 
2126         case EF4_FARCH_FILTER_MAC_FULL:
2127                 is_full = true;
2128                 /* fall through */
2129         case EF4_FARCH_FILTER_MAC_WILD:
2130                 gen_spec->match_flags = EF4_FILTER_MATCH_LOC_MAC;
2131                 if (is_full)
2132                         gen_spec->match_flags |= EF4_FILTER_MATCH_OUTER_VID;
2133                 gen_spec->loc_mac[0] = spec->data[2] >> 8;
2134                 gen_spec->loc_mac[1] = spec->data[2];
2135                 gen_spec->loc_mac[2] = spec->data[1] >> 24;
2136                 gen_spec->loc_mac[3] = spec->data[1] >> 16;
2137                 gen_spec->loc_mac[4] = spec->data[1] >> 8;
2138                 gen_spec->loc_mac[5] = spec->data[1];
2139                 gen_spec->outer_vid = htons(spec->data[0]);
2140                 break;
2141 
2142         case EF4_FARCH_FILTER_UC_DEF:
2143         case EF4_FARCH_FILTER_MC_DEF:
2144                 gen_spec->match_flags = EF4_FILTER_MATCH_LOC_MAC_IG;
2145                 gen_spec->loc_mac[0] = spec->type == EF4_FARCH_FILTER_MC_DEF;
2146                 break;
2147 
2148         default:
2149                 WARN_ON(1);
2150                 break;
2151         }
2152 }
2153 
2154 static void
2155 ef4_farch_filter_init_rx_auto(struct ef4_nic *efx,
2156                               struct ef4_farch_filter_spec *spec)
2157 {
2158         /* If there's only one channel then disable RSS for non VF
2159          * traffic, thereby allowing VFs to use RSS when the PF can't.
2160          */
2161         spec->priority = EF4_FILTER_PRI_AUTO;
2162         spec->flags = (EF4_FILTER_FLAG_RX |
2163                        (ef4_rss_enabled(efx) ? EF4_FILTER_FLAG_RX_RSS : 0) |
2164                        (efx->rx_scatter ? EF4_FILTER_FLAG_RX_SCATTER : 0));
2165         spec->dmaq_id = 0;
2166 }
2167 
2168 /* Build a filter entry and return its n-tuple key. */
2169 static u32 ef4_farch_filter_build(ef4_oword_t *filter,
2170                                   struct ef4_farch_filter_spec *spec)
2171 {
2172         u32 data3;
2173 
2174         switch (ef4_farch_filter_spec_table_id(spec)) {
2175         case EF4_FARCH_FILTER_TABLE_RX_IP: {
2176                 bool is_udp = (spec->type == EF4_FARCH_FILTER_UDP_FULL ||
2177                                spec->type == EF4_FARCH_FILTER_UDP_WILD);
2178                 EF4_POPULATE_OWORD_7(
2179                         *filter,
2180                         FRF_BZ_RSS_EN,
2181                         !!(spec->flags & EF4_FILTER_FLAG_RX_RSS),
2182                         FRF_BZ_SCATTER_EN,
2183                         !!(spec->flags & EF4_FILTER_FLAG_RX_SCATTER),
2184                         FRF_BZ_TCP_UDP, is_udp,
2185                         FRF_BZ_RXQ_ID, spec->dmaq_id,
2186                         EF4_DWORD_2, spec->data[2],
2187                         EF4_DWORD_1, spec->data[1],
2188                         EF4_DWORD_0, spec->data[0]);
2189                 data3 = is_udp;
2190                 break;
2191         }
2192 
2193         case EF4_FARCH_FILTER_TABLE_RX_MAC: {
2194                 bool is_wild = spec->type == EF4_FARCH_FILTER_MAC_WILD;
2195                 EF4_POPULATE_OWORD_7(
2196                         *filter,
2197                         FRF_CZ_RMFT_RSS_EN,
2198                         !!(spec->flags & EF4_FILTER_FLAG_RX_RSS),
2199                         FRF_CZ_RMFT_SCATTER_EN,
2200                         !!(spec->flags & EF4_FILTER_FLAG_RX_SCATTER),
2201                         FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2202                         FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2203                         FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2204                         FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2205                         FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2206                 data3 = is_wild;
2207                 break;
2208         }
2209 
2210         case EF4_FARCH_FILTER_TABLE_TX_MAC: {
2211                 bool is_wild = spec->type == EF4_FARCH_FILTER_MAC_WILD;
2212                 EF4_POPULATE_OWORD_5(*filter,
2213                                      FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2214                                      FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2215                                      FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2216                                      FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2217                                      FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2218                 data3 = is_wild | spec->dmaq_id << 1;
2219                 break;
2220         }
2221 
2222         default:
2223                 BUG();
2224         }
2225 
2226         return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2227 }
2228 
2229 static bool ef4_farch_filter_equal(const struct ef4_farch_filter_spec *left,
2230                                    const struct ef4_farch_filter_spec *right)
2231 {
2232         if (left->type != right->type ||
2233             memcmp(left->data, right->data, sizeof(left->data)))
2234                 return false;
2235 
2236         if (left->flags & EF4_FILTER_FLAG_TX &&
2237             left->dmaq_id != right->dmaq_id)
2238                 return false;
2239 
2240         return true;
2241 }
2242 
2243 /*
2244  * Construct/deconstruct external filter IDs.  At least the RX filter
2245  * IDs must be ordered by matching priority, for RX NFC semantics.
2246  *
2247  * Deconstruction needs to be robust against invalid IDs so that
2248  * ef4_filter_remove_id_safe() and ef4_filter_get_filter_safe() can
2249  * accept user-provided IDs.
2250  */
2251 
2252 #define EF4_FARCH_FILTER_MATCH_PRI_COUNT        5
2253 
2254 static const u8 ef4_farch_filter_type_match_pri[EF4_FARCH_FILTER_TYPE_COUNT] = {
2255         [EF4_FARCH_FILTER_TCP_FULL]     = 0,
2256         [EF4_FARCH_FILTER_UDP_FULL]     = 0,
2257         [EF4_FARCH_FILTER_TCP_WILD]     = 1,
2258         [EF4_FARCH_FILTER_UDP_WILD]     = 1,
2259         [EF4_FARCH_FILTER_MAC_FULL]     = 2,
2260         [EF4_FARCH_FILTER_MAC_WILD]     = 3,
2261         [EF4_FARCH_FILTER_UC_DEF]       = 4,
2262         [EF4_FARCH_FILTER_MC_DEF]       = 4,
2263 };
2264 
2265 static const enum ef4_farch_filter_table_id ef4_farch_filter_range_table[] = {
2266         EF4_FARCH_FILTER_TABLE_RX_IP,   /* RX match pri 0 */
2267         EF4_FARCH_FILTER_TABLE_RX_IP,
2268         EF4_FARCH_FILTER_TABLE_RX_MAC,
2269         EF4_FARCH_FILTER_TABLE_RX_MAC,
2270         EF4_FARCH_FILTER_TABLE_RX_DEF,  /* RX match pri 4 */
2271         EF4_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 0 */
2272         EF4_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 1 */
2273 };
2274 
2275 #define EF4_FARCH_FILTER_INDEX_WIDTH 13
2276 #define EF4_FARCH_FILTER_INDEX_MASK ((1 << EF4_FARCH_FILTER_INDEX_WIDTH) - 1)
2277 
2278 static inline u32
2279 ef4_farch_filter_make_id(const struct ef4_farch_filter_spec *spec,
2280                          unsigned int index)
2281 {
2282         unsigned int range;
2283 
2284         range = ef4_farch_filter_type_match_pri[spec->type];
2285         if (!(spec->flags & EF4_FILTER_FLAG_RX))
2286                 range += EF4_FARCH_FILTER_MATCH_PRI_COUNT;
2287 
2288         return range << EF4_FARCH_FILTER_INDEX_WIDTH | index;
2289 }
2290 
2291 static inline enum ef4_farch_filter_table_id
2292 ef4_farch_filter_id_table_id(u32 id)
2293 {
2294         unsigned int range = id >> EF4_FARCH_FILTER_INDEX_WIDTH;
2295 
2296         if (range < ARRAY_SIZE(ef4_farch_filter_range_table))
2297                 return ef4_farch_filter_range_table[range];
2298         else
2299                 return EF4_FARCH_FILTER_TABLE_COUNT; /* invalid */
2300 }
2301 
2302 static inline unsigned int ef4_farch_filter_id_index(u32 id)
2303 {
2304         return id & EF4_FARCH_FILTER_INDEX_MASK;
2305 }
2306 
2307 u32 ef4_farch_filter_get_rx_id_limit(struct ef4_nic *efx)
2308 {
2309         struct ef4_farch_filter_state *state = efx->filter_state;
2310         unsigned int range = EF4_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2311         enum ef4_farch_filter_table_id table_id;
2312 
2313         do {
2314                 table_id = ef4_farch_filter_range_table[range];
2315                 if (state->table[table_id].size != 0)
2316                         return range << EF4_FARCH_FILTER_INDEX_WIDTH |
2317                                 state->table[table_id].size;
2318         } while (range--);
2319 
2320         return 0;
2321 }
2322 
2323 s32 ef4_farch_filter_insert(struct ef4_nic *efx,
2324                             struct ef4_filter_spec *gen_spec,
2325                             bool replace_equal)
2326 {
2327         struct ef4_farch_filter_state *state = efx->filter_state;
2328         struct ef4_farch_filter_table *table;
2329         struct ef4_farch_filter_spec spec;
2330         ef4_oword_t filter;
2331         int rep_index, ins_index;
2332         unsigned int depth = 0;
2333         int rc;
2334 
2335         rc = ef4_farch_filter_from_gen_spec(&spec, gen_spec);
2336         if (rc)
2337                 return rc;
2338 
2339         table = &state->table[ef4_farch_filter_spec_table_id(&spec)];
2340         if (table->size == 0)
2341                 return -EINVAL;
2342 
2343         netif_vdbg(efx, hw, efx->net_dev,
2344                    "%s: type %d search_limit=%d", __func__, spec.type,
2345                    table->search_limit[spec.type]);
2346 
2347         if (table->id == EF4_FARCH_FILTER_TABLE_RX_DEF) {
2348                 /* One filter spec per type */
2349                 BUILD_BUG_ON(EF4_FARCH_FILTER_INDEX_UC_DEF != 0);
2350                 BUILD_BUG_ON(EF4_FARCH_FILTER_INDEX_MC_DEF !=
2351                              EF4_FARCH_FILTER_MC_DEF - EF4_FARCH_FILTER_UC_DEF);
2352                 rep_index = spec.type - EF4_FARCH_FILTER_UC_DEF;
2353                 ins_index = rep_index;
2354 
2355                 spin_lock_bh(&efx->filter_lock);
2356         } else {
2357                 /* Search concurrently for
2358                  * (1) a filter to be replaced (rep_index): any filter
2359                  *     with the same match values, up to the current
2360                  *     search depth for this type, and
2361                  * (2) the insertion point (ins_index): (1) or any
2362                  *     free slot before it or up to the maximum search
2363                  *     depth for this priority
2364                  * We fail if we cannot find (2).
2365                  *
2366                  * We can stop once either
2367                  * (a) we find (1), in which case we have definitely
2368                  *     found (2) as well; or
2369                  * (b) we have searched exhaustively for (1), and have
2370                  *     either found (2) or searched exhaustively for it
2371                  */
2372                 u32 key = ef4_farch_filter_build(&filter, &spec);
2373                 unsigned int hash = ef4_farch_filter_hash(key);
2374                 unsigned int incr = ef4_farch_filter_increment(key);
2375                 unsigned int max_rep_depth = table->search_limit[spec.type];
2376                 unsigned int max_ins_depth =
2377                         spec.priority <= EF4_FILTER_PRI_HINT ?
2378                         EF4_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2379                         EF4_FARCH_FILTER_CTL_SRCH_MAX;
2380                 unsigned int i = hash & (table->size - 1);
2381 
2382                 ins_index = -1;
2383                 depth = 1;
2384 
2385                 spin_lock_bh(&efx->filter_lock);
2386 
2387                 for (;;) {
2388                         if (!test_bit(i, table->used_bitmap)) {
2389                                 if (ins_index < 0)
2390                                         ins_index = i;
2391                         } else if (ef4_farch_filter_equal(&spec,
2392                                                           &table->spec[i])) {
2393                                 /* Case (a) */
2394                                 if (ins_index < 0)
2395                                         ins_index = i;
2396                                 rep_index = i;
2397                                 break;
2398                         }
2399 
2400                         if (depth >= max_rep_depth &&
2401                             (ins_index >= 0 || depth >= max_ins_depth)) {
2402                                 /* Case (b) */
2403                                 if (ins_index < 0) {
2404                                         rc = -EBUSY;
2405                                         goto out;
2406                                 }
2407                                 rep_index = -1;
2408                                 break;
2409                         }
2410 
2411                         i = (i + incr) & (table->size - 1);
2412                         ++depth;
2413                 }
2414         }
2415 
2416         /* If we found a filter to be replaced, check whether we
2417          * should do so
2418          */
2419         if (rep_index >= 0) {
2420                 struct ef4_farch_filter_spec *saved_spec =
2421                         &table->spec[rep_index];
2422 
2423                 if (spec.priority == saved_spec->priority && !replace_equal) {
2424                         rc = -EEXIST;
2425                         goto out;
2426                 }
2427                 if (spec.priority < saved_spec->priority) {
2428                         rc = -EPERM;
2429                         goto out;
2430                 }
2431                 if (saved_spec->priority == EF4_FILTER_PRI_AUTO ||
2432                     saved_spec->flags & EF4_FILTER_FLAG_RX_OVER_AUTO)
2433                         spec.flags |= EF4_FILTER_FLAG_RX_OVER_AUTO;
2434         }
2435 
2436         /* Insert the filter */
2437         if (ins_index != rep_index) {
2438                 __set_bit(ins_index, table->used_bitmap);
2439                 ++table->used;
2440         }
2441         table->spec[ins_index] = spec;
2442 
2443         if (table->id == EF4_FARCH_FILTER_TABLE_RX_DEF) {
2444                 ef4_farch_filter_push_rx_config(efx);
2445         } else {
2446                 if (table->search_limit[spec.type] < depth) {
2447                         table->search_limit[spec.type] = depth;
2448                         if (spec.flags & EF4_FILTER_FLAG_TX)
2449                                 ef4_farch_filter_push_tx_limits(efx);
2450                         else
2451                                 ef4_farch_filter_push_rx_config(efx);
2452                 }
2453 
2454                 ef4_writeo(efx, &filter,
2455                            table->offset + table->step * ins_index);
2456 
2457                 /* If we were able to replace a filter by inserting
2458                  * at a lower depth, clear the replaced filter
2459                  */
2460                 if (ins_index != rep_index && rep_index >= 0)
2461                         ef4_farch_filter_table_clear_entry(efx, table,
2462                                                            rep_index);
2463         }
2464 
2465         netif_vdbg(efx, hw, efx->net_dev,
2466                    "%s: filter type %d index %d rxq %u set",
2467                    __func__, spec.type, ins_index, spec.dmaq_id);
2468         rc = ef4_farch_filter_make_id(&spec, ins_index);
2469 
2470 out:
2471         spin_unlock_bh(&efx->filter_lock);
2472         return rc;
2473 }
2474 
2475 static void
2476 ef4_farch_filter_table_clear_entry(struct ef4_nic *efx,
2477                                    struct ef4_farch_filter_table *table,
2478                                    unsigned int filter_idx)
2479 {
2480         static ef4_oword_t filter;
2481 
2482         EF4_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2483         BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2484 
2485         __clear_bit(filter_idx, table->used_bitmap);
2486         --table->used;
2487         memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2488 
2489         ef4_writeo(efx, &filter, table->offset + table->step * filter_idx);
2490 
2491         /* If this filter required a greater search depth than
2492          * any other, the search limit for its type can now be
2493          * decreased.  However, it is hard to determine that
2494          * unless the table has become completely empty - in
2495          * which case, all its search limits can be set to 0.
2496          */
2497         if (unlikely(table->used == 0)) {
2498                 memset(table->search_limit, 0, sizeof(table->search_limit));
2499                 if (table->id == EF4_FARCH_FILTER_TABLE_TX_MAC)
2500                         ef4_farch_filter_push_tx_limits(efx);
2501                 else
2502                         ef4_farch_filter_push_rx_config(efx);
2503         }
2504 }
2505 
2506 static int ef4_farch_filter_remove(struct ef4_nic *efx,
2507                                    struct ef4_farch_filter_table *table,
2508                                    unsigned int filter_idx,
2509                                    enum ef4_filter_priority priority)
2510 {
2511         struct ef4_farch_filter_spec *spec = &table->spec[filter_idx];
2512 
2513         if (!test_bit(filter_idx, table->used_bitmap) ||
2514             spec->priority != priority)
2515                 return -ENOENT;
2516 
2517         if (spec->flags & EF4_FILTER_FLAG_RX_OVER_AUTO) {
2518                 ef4_farch_filter_init_rx_auto(efx, spec);
2519                 ef4_farch_filter_push_rx_config(efx);
2520         } else {
2521                 ef4_farch_filter_table_clear_entry(efx, table, filter_idx);
2522         }
2523 
2524         return 0;
2525 }
2526 
2527 int ef4_farch_filter_remove_safe(struct ef4_nic *efx,
2528                                  enum ef4_filter_priority priority,
2529                                  u32 filter_id)
2530 {
2531         struct ef4_farch_filter_state *state = efx->filter_state;
2532         enum ef4_farch_filter_table_id table_id;
2533         struct ef4_farch_filter_table *table;
2534         unsigned int filter_idx;
2535         struct ef4_farch_filter_spec *spec;
2536         int rc;
2537 
2538         table_id = ef4_farch_filter_id_table_id(filter_id);
2539         if ((unsigned int)table_id >= EF4_FARCH_FILTER_TABLE_COUNT)
2540                 return -ENOENT;
2541         table = &state->table[table_id];
2542 
2543         filter_idx = ef4_farch_filter_id_index(filter_id);
2544         if (filter_idx >= table->size)
2545                 return -ENOENT;
2546         spec = &table->spec[filter_idx];
2547 
2548         spin_lock_bh(&efx->filter_lock);
2549         rc = ef4_farch_filter_remove(efx, table, filter_idx, priority);
2550         spin_unlock_bh(&efx->filter_lock);
2551 
2552         return rc;
2553 }
2554 
2555 int ef4_farch_filter_get_safe(struct ef4_nic *efx,
2556                               enum ef4_filter_priority priority,
2557                               u32 filter_id, struct ef4_filter_spec *spec_buf)
2558 {
2559         struct ef4_farch_filter_state *state = efx->filter_state;
2560         enum ef4_farch_filter_table_id table_id;
2561         struct ef4_farch_filter_table *table;
2562         struct ef4_farch_filter_spec *spec;
2563         unsigned int filter_idx;
2564         int rc;
2565 
2566         table_id = ef4_farch_filter_id_table_id(filter_id);
2567         if ((unsigned int)table_id >= EF4_FARCH_FILTER_TABLE_COUNT)
2568                 return -ENOENT;
2569         table = &state->table[table_id];
2570 
2571         filter_idx = ef4_farch_filter_id_index(filter_id);
2572         if (filter_idx >= table->size)
2573                 return -ENOENT;
2574         spec = &table->spec[filter_idx];
2575 
2576         spin_lock_bh(&efx->filter_lock);
2577 
2578         if (test_bit(filter_idx, table->used_bitmap) &&
2579             spec->priority == priority) {
2580                 ef4_farch_filter_to_gen_spec(spec_buf, spec);
2581                 rc = 0;
2582         } else {
2583                 rc = -ENOENT;
2584         }
2585 
2586         spin_unlock_bh(&efx->filter_lock);
2587 
2588         return rc;
2589 }
2590 
2591 static void
2592 ef4_farch_filter_table_clear(struct ef4_nic *efx,
2593                              enum ef4_farch_filter_table_id table_id,
2594                              enum ef4_filter_priority priority)
2595 {
2596         struct ef4_farch_filter_state *state = efx->filter_state;
2597         struct ef4_farch_filter_table *table = &state->table[table_id];
2598         unsigned int filter_idx;
2599 
2600         spin_lock_bh(&efx->filter_lock);
2601         for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2602                 if (table->spec[filter_idx].priority != EF4_FILTER_PRI_AUTO)
2603                         ef4_farch_filter_remove(efx, table,
2604                                                 filter_idx, priority);
2605         }
2606         spin_unlock_bh(&efx->filter_lock);
2607 }
2608 
2609 int ef4_farch_filter_clear_rx(struct ef4_nic *efx,
2610                                enum ef4_filter_priority priority)
2611 {
2612         ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_IP,
2613                                      priority);
2614         ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_MAC,
2615                                      priority);
2616         ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_DEF,
2617                                      priority);
2618         return 0;
2619 }
2620 
2621 u32 ef4_farch_filter_count_rx_used(struct ef4_nic *efx,
2622                                    enum ef4_filter_priority priority)
2623 {
2624         struct ef4_farch_filter_state *state = efx->filter_state;
2625         enum ef4_farch_filter_table_id table_id;
2626         struct ef4_farch_filter_table *table;
2627         unsigned int filter_idx;
2628         u32 count = 0;
2629 
2630         spin_lock_bh(&efx->filter_lock);
2631 
2632         for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP;
2633              table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF;
2634              table_id++) {
2635                 table = &state->table[table_id];
2636                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2637                         if (test_bit(filter_idx, table->used_bitmap) &&
2638                             table->spec[filter_idx].priority == priority)
2639                                 ++count;
2640                 }
2641         }
2642 
2643         spin_unlock_bh(&efx->filter_lock);
2644 
2645         return count;
2646 }
2647 
2648 s32 ef4_farch_filter_get_rx_ids(struct ef4_nic *efx,
2649                                 enum ef4_filter_priority priority,
2650                                 u32 *buf, u32 size)
2651 {
2652         struct ef4_farch_filter_state *state = efx->filter_state;
2653         enum ef4_farch_filter_table_id table_id;
2654         struct ef4_farch_filter_table *table;
2655         unsigned int filter_idx;
2656         s32 count = 0;
2657 
2658         spin_lock_bh(&efx->filter_lock);
2659 
2660         for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP;
2661              table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF;
2662              table_id++) {
2663                 table = &state->table[table_id];
2664                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2665                         if (test_bit(filter_idx, table->used_bitmap) &&
2666                             table->spec[filter_idx].priority == priority) {
2667                                 if (count == size) {
2668                                         count = -EMSGSIZE;
2669                                         goto out;
2670                                 }
2671                                 buf[count++] = ef4_farch_filter_make_id(
2672                                         &table->spec[filter_idx], filter_idx);
2673                         }
2674                 }
2675         }
2676 out:
2677         spin_unlock_bh(&efx->filter_lock);
2678 
2679         return count;
2680 }
2681 
2682 /* Restore filter stater after reset */
2683 void ef4_farch_filter_table_restore(struct ef4_nic *efx)
2684 {
2685         struct ef4_farch_filter_state *state = efx->filter_state;
2686         enum ef4_farch_filter_table_id table_id;
2687         struct ef4_farch_filter_table *table;
2688         ef4_oword_t filter;
2689         unsigned int filter_idx;
2690 
2691         spin_lock_bh(&efx->filter_lock);
2692 
2693         for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) {
2694                 table = &state->table[table_id];
2695 
2696                 /* Check whether this is a regular register table */
2697                 if (table->step == 0)
2698                         continue;
2699 
2700                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2701                         if (!test_bit(filter_idx, table->used_bitmap))
2702                                 continue;
2703                         ef4_farch_filter_build(&filter, &table->spec[filter_idx]);
2704                         ef4_writeo(efx, &filter,
2705                                    table->offset + table->step * filter_idx);
2706                 }
2707         }
2708 
2709         ef4_farch_filter_push_rx_config(efx);
2710         ef4_farch_filter_push_tx_limits(efx);
2711 
2712         spin_unlock_bh(&efx->filter_lock);
2713 }
2714 
2715 void ef4_farch_filter_table_remove(struct ef4_nic *efx)
2716 {
2717         struct ef4_farch_filter_state *state = efx->filter_state;
2718         enum ef4_farch_filter_table_id table_id;
2719 
2720         for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) {
2721                 kfree(state->table[table_id].used_bitmap);
2722                 vfree(state->table[table_id].spec);
2723         }
2724         kfree(state);
2725 }
2726 
2727 int ef4_farch_filter_table_probe(struct ef4_nic *efx)
2728 {
2729         struct ef4_farch_filter_state *state;
2730         struct ef4_farch_filter_table *table;
2731         unsigned table_id;
2732 
2733         state = kzalloc(sizeof(struct ef4_farch_filter_state), GFP_KERNEL);
2734         if (!state)
2735                 return -ENOMEM;
2736         efx->filter_state = state;
2737 
2738         if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
2739                 table = &state->table[EF4_FARCH_FILTER_TABLE_RX_IP];
2740                 table->id = EF4_FARCH_FILTER_TABLE_RX_IP;
2741                 table->offset = FR_BZ_RX_FILTER_TBL0;
2742                 table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2743                 table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2744         }
2745 
2746         for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) {
2747                 table = &state->table[table_id];
2748                 if (table->size == 0)
2749                         continue;
2750                 table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2751                                              sizeof(unsigned long),
2752                                              GFP_KERNEL);
2753                 if (!table->used_bitmap)
2754                         goto fail;
2755                 table->spec = vzalloc(array_size(sizeof(*table->spec),
2756                                                  table->size));
2757                 if (!table->spec)
2758                         goto fail;
2759         }
2760 
2761         table = &state->table[EF4_FARCH_FILTER_TABLE_RX_DEF];
2762         if (table->size) {
2763                 /* RX default filters must always exist */
2764                 struct ef4_farch_filter_spec *spec;
2765                 unsigned i;
2766 
2767                 for (i = 0; i < EF4_FARCH_FILTER_SIZE_RX_DEF; i++) {
2768                         spec = &table->spec[i];
2769                         spec->type = EF4_FARCH_FILTER_UC_DEF + i;
2770                         ef4_farch_filter_init_rx_auto(efx, spec);
2771                         __set_bit(i, table->used_bitmap);
2772                 }
2773         }
2774 
2775         ef4_farch_filter_push_rx_config(efx);
2776 
2777         return 0;
2778 
2779 fail:
2780         ef4_farch_filter_table_remove(efx);
2781         return -ENOMEM;
2782 }
2783 
2784 /* Update scatter enable flags for filters pointing to our own RX queues */
2785 void ef4_farch_filter_update_rx_scatter(struct ef4_nic *efx)
2786 {
2787         struct ef4_farch_filter_state *state = efx->filter_state;
2788         enum ef4_farch_filter_table_id table_id;
2789         struct ef4_farch_filter_table *table;
2790         ef4_oword_t filter;
2791         unsigned int filter_idx;
2792 
2793         spin_lock_bh(&efx->filter_lock);
2794 
2795         for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP;
2796              table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF;
2797              table_id++) {
2798                 table = &state->table[table_id];
2799 
2800                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2801                         if (!test_bit(filter_idx, table->used_bitmap) ||
2802                             table->spec[filter_idx].dmaq_id >=
2803                             efx->n_rx_channels)
2804                                 continue;
2805 
2806                         if (efx->rx_scatter)
2807                                 table->spec[filter_idx].flags |=
2808                                         EF4_FILTER_FLAG_RX_SCATTER;
2809                         else
2810                                 table->spec[filter_idx].flags &=
2811                                         ~EF4_FILTER_FLAG_RX_SCATTER;
2812 
2813                         if (table_id == EF4_FARCH_FILTER_TABLE_RX_DEF)
2814                                 /* Pushed by ef4_farch_filter_push_rx_config() */
2815                                 continue;
2816 
2817                         ef4_farch_filter_build(&filter, &table->spec[filter_idx]);
2818                         ef4_writeo(efx, &filter,
2819                                    table->offset + table->step * filter_idx);
2820                 }
2821         }
2822 
2823         ef4_farch_filter_push_rx_config(efx);
2824 
2825         spin_unlock_bh(&efx->filter_lock);
2826 }
2827 
2828 #ifdef CONFIG_RFS_ACCEL
2829 
2830 s32 ef4_farch_filter_rfs_insert(struct ef4_nic *efx,
2831                                 struct ef4_filter_spec *gen_spec)
2832 {
2833         return ef4_farch_filter_insert(efx, gen_spec, true);
2834 }
2835 
2836 bool ef4_farch_filter_rfs_expire_one(struct ef4_nic *efx, u32 flow_id,
2837                                      unsigned int index)
2838 {
2839         struct ef4_farch_filter_state *state = efx->filter_state;
2840         struct ef4_farch_filter_table *table =
2841                 &state->table[EF4_FARCH_FILTER_TABLE_RX_IP];
2842 
2843         if (test_bit(index, table->used_bitmap) &&
2844             table->spec[index].priority == EF4_FILTER_PRI_HINT &&
2845             rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2846                                 flow_id, index)) {
2847                 ef4_farch_filter_table_clear_entry(efx, table, index);
2848                 return true;
2849         }
2850 
2851         return false;
2852 }
2853 
2854 #endif /* CONFIG_RFS_ACCEL */
2855 
2856 void ef4_farch_filter_sync_rx_mode(struct ef4_nic *efx)
2857 {
2858         struct net_device *net_dev = efx->net_dev;
2859         struct netdev_hw_addr *ha;
2860         union ef4_multicast_hash *mc_hash = &efx->multicast_hash;
2861         u32 crc;
2862         int bit;
2863 
2864         if (!ef4_dev_registered(efx))
2865                 return;
2866 
2867         netif_addr_lock_bh(net_dev);
2868 
2869         efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2870 
2871         /* Build multicast hash table */
2872         if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2873                 memset(mc_hash, 0xff, sizeof(*mc_hash));
2874         } else {
2875                 memset(mc_hash, 0x00, sizeof(*mc_hash));
2876                 netdev_for_each_mc_addr(ha, net_dev) {
2877                         crc = ether_crc_le(ETH_ALEN, ha->addr);
2878                         bit = crc & (EF4_MCAST_HASH_ENTRIES - 1);
2879                         __set_bit_le(bit, mc_hash);
2880                 }
2881 
2882                 /* Broadcast packets go through the multicast hash filter.
2883                  * ether_crc_le() of the broadcast address is 0xbe2612ff
2884                  * so we always add bit 0xff to the mask.
2885                  */
2886                 __set_bit_le(0xff, mc_hash);
2887         }
2888 
2889         netif_addr_unlock_bh(net_dev);
2890 }

/* [<][>][^][v][top][bottom][index][help] */