root/drivers/net/ethernet/sfc/falcon/tx.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ef4_tx_get_copy_buffer
  2. ef4_tx_get_copy_buffer_limited
  3. ef4_dequeue_buffer
  4. ef4_tx_max_skb_descs
  5. ef4_tx_maybe_stop_queue
  6. ef4_enqueue_skb_copy
  7. ef4_tx_map_chunk
  8. ef4_tx_map_data
  9. ef4_enqueue_unwind
  10. ef4_enqueue_skb
  11. ef4_dequeue_buffers
  12. ef4_hard_start_xmit
  13. ef4_init_tx_queue_core_txq
  14. ef4_setup_tc
  15. ef4_xmit_done
  16. ef4_tx_cb_page_count
  17. ef4_probe_tx_queue
  18. ef4_init_tx_queue
  19. ef4_fini_tx_queue
  20. ef4_remove_tx_queue

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /****************************************************************************
   3  * Driver for Solarflare network controllers and boards
   4  * Copyright 2005-2006 Fen Systems Ltd.
   5  * Copyright 2005-2013 Solarflare Communications Inc.
   6  */
   7 
   8 #include <linux/pci.h>
   9 #include <linux/tcp.h>
  10 #include <linux/ip.h>
  11 #include <linux/in.h>
  12 #include <linux/ipv6.h>
  13 #include <linux/slab.h>
  14 #include <net/ipv6.h>
  15 #include <linux/if_ether.h>
  16 #include <linux/highmem.h>
  17 #include <linux/cache.h>
  18 #include "net_driver.h"
  19 #include "efx.h"
  20 #include "io.h"
  21 #include "nic.h"
  22 #include "tx.h"
  23 #include "workarounds.h"
  24 
  25 static inline u8 *ef4_tx_get_copy_buffer(struct ef4_tx_queue *tx_queue,
  26                                          struct ef4_tx_buffer *buffer)
  27 {
  28         unsigned int index = ef4_tx_queue_get_insert_index(tx_queue);
  29         struct ef4_buffer *page_buf =
  30                 &tx_queue->cb_page[index >> (PAGE_SHIFT - EF4_TX_CB_ORDER)];
  31         unsigned int offset =
  32                 ((index << EF4_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
  33 
  34         if (unlikely(!page_buf->addr) &&
  35             ef4_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
  36                                  GFP_ATOMIC))
  37                 return NULL;
  38         buffer->dma_addr = page_buf->dma_addr + offset;
  39         buffer->unmap_len = 0;
  40         return (u8 *)page_buf->addr + offset;
  41 }
  42 
  43 u8 *ef4_tx_get_copy_buffer_limited(struct ef4_tx_queue *tx_queue,
  44                                    struct ef4_tx_buffer *buffer, size_t len)
  45 {
  46         if (len > EF4_TX_CB_SIZE)
  47                 return NULL;
  48         return ef4_tx_get_copy_buffer(tx_queue, buffer);
  49 }
  50 
  51 static void ef4_dequeue_buffer(struct ef4_tx_queue *tx_queue,
  52                                struct ef4_tx_buffer *buffer,
  53                                unsigned int *pkts_compl,
  54                                unsigned int *bytes_compl)
  55 {
  56         if (buffer->unmap_len) {
  57                 struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
  58                 dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
  59                 if (buffer->flags & EF4_TX_BUF_MAP_SINGLE)
  60                         dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
  61                                          DMA_TO_DEVICE);
  62                 else
  63                         dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
  64                                        DMA_TO_DEVICE);
  65                 buffer->unmap_len = 0;
  66         }
  67 
  68         if (buffer->flags & EF4_TX_BUF_SKB) {
  69                 (*pkts_compl)++;
  70                 (*bytes_compl) += buffer->skb->len;
  71                 dev_consume_skb_any((struct sk_buff *)buffer->skb);
  72                 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
  73                            "TX queue %d transmission id %x complete\n",
  74                            tx_queue->queue, tx_queue->read_count);
  75         }
  76 
  77         buffer->len = 0;
  78         buffer->flags = 0;
  79 }
  80 
  81 unsigned int ef4_tx_max_skb_descs(struct ef4_nic *efx)
  82 {
  83         /* This is probably too much since we don't have any TSO support;
  84          * it's a left-over from when we had Software TSO.  But it's safer
  85          * to leave it as-is than try to determine a new bound.
  86          */
  87         /* Header and payload descriptor for each output segment, plus
  88          * one for every input fragment boundary within a segment
  89          */
  90         unsigned int max_descs = EF4_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
  91 
  92         /* Possibly one more per segment for the alignment workaround,
  93          * or for option descriptors
  94          */
  95         if (EF4_WORKAROUND_5391(efx))
  96                 max_descs += EF4_TSO_MAX_SEGS;
  97 
  98         /* Possibly more for PCIe page boundaries within input fragments */
  99         if (PAGE_SIZE > EF4_PAGE_SIZE)
 100                 max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
 101                                    DIV_ROUND_UP(GSO_MAX_SIZE, EF4_PAGE_SIZE));
 102 
 103         return max_descs;
 104 }
 105 
 106 static void ef4_tx_maybe_stop_queue(struct ef4_tx_queue *txq1)
 107 {
 108         /* We need to consider both queues that the net core sees as one */
 109         struct ef4_tx_queue *txq2 = ef4_tx_queue_partner(txq1);
 110         struct ef4_nic *efx = txq1->efx;
 111         unsigned int fill_level;
 112 
 113         fill_level = max(txq1->insert_count - txq1->old_read_count,
 114                          txq2->insert_count - txq2->old_read_count);
 115         if (likely(fill_level < efx->txq_stop_thresh))
 116                 return;
 117 
 118         /* We used the stale old_read_count above, which gives us a
 119          * pessimistic estimate of the fill level (which may even
 120          * validly be >= efx->txq_entries).  Now try again using
 121          * read_count (more likely to be a cache miss).
 122          *
 123          * If we read read_count and then conditionally stop the
 124          * queue, it is possible for the completion path to race with
 125          * us and complete all outstanding descriptors in the middle,
 126          * after which there will be no more completions to wake it.
 127          * Therefore we stop the queue first, then read read_count
 128          * (with a memory barrier to ensure the ordering), then
 129          * restart the queue if the fill level turns out to be low
 130          * enough.
 131          */
 132         netif_tx_stop_queue(txq1->core_txq);
 133         smp_mb();
 134         txq1->old_read_count = READ_ONCE(txq1->read_count);
 135         txq2->old_read_count = READ_ONCE(txq2->read_count);
 136 
 137         fill_level = max(txq1->insert_count - txq1->old_read_count,
 138                          txq2->insert_count - txq2->old_read_count);
 139         EF4_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
 140         if (likely(fill_level < efx->txq_stop_thresh)) {
 141                 smp_mb();
 142                 if (likely(!efx->loopback_selftest))
 143                         netif_tx_start_queue(txq1->core_txq);
 144         }
 145 }
 146 
 147 static int ef4_enqueue_skb_copy(struct ef4_tx_queue *tx_queue,
 148                                 struct sk_buff *skb)
 149 {
 150         unsigned int min_len = tx_queue->tx_min_size;
 151         unsigned int copy_len = skb->len;
 152         struct ef4_tx_buffer *buffer;
 153         u8 *copy_buffer;
 154         int rc;
 155 
 156         EF4_BUG_ON_PARANOID(copy_len > EF4_TX_CB_SIZE);
 157 
 158         buffer = ef4_tx_queue_get_insert_buffer(tx_queue);
 159 
 160         copy_buffer = ef4_tx_get_copy_buffer(tx_queue, buffer);
 161         if (unlikely(!copy_buffer))
 162                 return -ENOMEM;
 163 
 164         rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
 165         EF4_WARN_ON_PARANOID(rc);
 166         if (unlikely(copy_len < min_len)) {
 167                 memset(copy_buffer + copy_len, 0, min_len - copy_len);
 168                 buffer->len = min_len;
 169         } else {
 170                 buffer->len = copy_len;
 171         }
 172 
 173         buffer->skb = skb;
 174         buffer->flags = EF4_TX_BUF_SKB;
 175 
 176         ++tx_queue->insert_count;
 177         return rc;
 178 }
 179 
 180 static struct ef4_tx_buffer *ef4_tx_map_chunk(struct ef4_tx_queue *tx_queue,
 181                                               dma_addr_t dma_addr,
 182                                               size_t len)
 183 {
 184         const struct ef4_nic_type *nic_type = tx_queue->efx->type;
 185         struct ef4_tx_buffer *buffer;
 186         unsigned int dma_len;
 187 
 188         /* Map the fragment taking account of NIC-dependent DMA limits. */
 189         do {
 190                 buffer = ef4_tx_queue_get_insert_buffer(tx_queue);
 191                 dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
 192 
 193                 buffer->len = dma_len;
 194                 buffer->dma_addr = dma_addr;
 195                 buffer->flags = EF4_TX_BUF_CONT;
 196                 len -= dma_len;
 197                 dma_addr += dma_len;
 198                 ++tx_queue->insert_count;
 199         } while (len);
 200 
 201         return buffer;
 202 }
 203 
 204 /* Map all data from an SKB for DMA and create descriptors on the queue.
 205  */
 206 static int ef4_tx_map_data(struct ef4_tx_queue *tx_queue, struct sk_buff *skb)
 207 {
 208         struct ef4_nic *efx = tx_queue->efx;
 209         struct device *dma_dev = &efx->pci_dev->dev;
 210         unsigned int frag_index, nr_frags;
 211         dma_addr_t dma_addr, unmap_addr;
 212         unsigned short dma_flags;
 213         size_t len, unmap_len;
 214 
 215         nr_frags = skb_shinfo(skb)->nr_frags;
 216         frag_index = 0;
 217 
 218         /* Map header data. */
 219         len = skb_headlen(skb);
 220         dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
 221         dma_flags = EF4_TX_BUF_MAP_SINGLE;
 222         unmap_len = len;
 223         unmap_addr = dma_addr;
 224 
 225         if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
 226                 return -EIO;
 227 
 228         /* Add descriptors for each fragment. */
 229         do {
 230                 struct ef4_tx_buffer *buffer;
 231                 skb_frag_t *fragment;
 232 
 233                 buffer = ef4_tx_map_chunk(tx_queue, dma_addr, len);
 234 
 235                 /* The final descriptor for a fragment is responsible for
 236                  * unmapping the whole fragment.
 237                  */
 238                 buffer->flags = EF4_TX_BUF_CONT | dma_flags;
 239                 buffer->unmap_len = unmap_len;
 240                 buffer->dma_offset = buffer->dma_addr - unmap_addr;
 241 
 242                 if (frag_index >= nr_frags) {
 243                         /* Store SKB details with the final buffer for
 244                          * the completion.
 245                          */
 246                         buffer->skb = skb;
 247                         buffer->flags = EF4_TX_BUF_SKB | dma_flags;
 248                         return 0;
 249                 }
 250 
 251                 /* Move on to the next fragment. */
 252                 fragment = &skb_shinfo(skb)->frags[frag_index++];
 253                 len = skb_frag_size(fragment);
 254                 dma_addr = skb_frag_dma_map(dma_dev, fragment,
 255                                 0, len, DMA_TO_DEVICE);
 256                 dma_flags = 0;
 257                 unmap_len = len;
 258                 unmap_addr = dma_addr;
 259 
 260                 if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
 261                         return -EIO;
 262         } while (1);
 263 }
 264 
 265 /* Remove buffers put into a tx_queue.  None of the buffers must have
 266  * an skb attached.
 267  */
 268 static void ef4_enqueue_unwind(struct ef4_tx_queue *tx_queue)
 269 {
 270         struct ef4_tx_buffer *buffer;
 271 
 272         /* Work backwards until we hit the original insert pointer value */
 273         while (tx_queue->insert_count != tx_queue->write_count) {
 274                 --tx_queue->insert_count;
 275                 buffer = __ef4_tx_queue_get_insert_buffer(tx_queue);
 276                 ef4_dequeue_buffer(tx_queue, buffer, NULL, NULL);
 277         }
 278 }
 279 
 280 /*
 281  * Add a socket buffer to a TX queue
 282  *
 283  * This maps all fragments of a socket buffer for DMA and adds them to
 284  * the TX queue.  The queue's insert pointer will be incremented by
 285  * the number of fragments in the socket buffer.
 286  *
 287  * If any DMA mapping fails, any mapped fragments will be unmapped,
 288  * the queue's insert pointer will be restored to its original value.
 289  *
 290  * This function is split out from ef4_hard_start_xmit to allow the
 291  * loopback test to direct packets via specific TX queues.
 292  *
 293  * Returns NETDEV_TX_OK.
 294  * You must hold netif_tx_lock() to call this function.
 295  */
 296 netdev_tx_t ef4_enqueue_skb(struct ef4_tx_queue *tx_queue, struct sk_buff *skb)
 297 {
 298         bool data_mapped = false;
 299         unsigned int skb_len;
 300 
 301         skb_len = skb->len;
 302         EF4_WARN_ON_PARANOID(skb_is_gso(skb));
 303 
 304         if (skb_len < tx_queue->tx_min_size ||
 305                         (skb->data_len && skb_len <= EF4_TX_CB_SIZE)) {
 306                 /* Pad short packets or coalesce short fragmented packets. */
 307                 if (ef4_enqueue_skb_copy(tx_queue, skb))
 308                         goto err;
 309                 tx_queue->cb_packets++;
 310                 data_mapped = true;
 311         }
 312 
 313         /* Map for DMA and create descriptors if we haven't done so already. */
 314         if (!data_mapped && (ef4_tx_map_data(tx_queue, skb)))
 315                 goto err;
 316 
 317         /* Update BQL */
 318         netdev_tx_sent_queue(tx_queue->core_txq, skb_len);
 319 
 320         /* Pass off to hardware */
 321         if (!netdev_xmit_more() || netif_xmit_stopped(tx_queue->core_txq)) {
 322                 struct ef4_tx_queue *txq2 = ef4_tx_queue_partner(tx_queue);
 323 
 324                 /* There could be packets left on the partner queue if those
 325                  * SKBs had skb->xmit_more set. If we do not push those they
 326                  * could be left for a long time and cause a netdev watchdog.
 327                  */
 328                 if (txq2->xmit_more_available)
 329                         ef4_nic_push_buffers(txq2);
 330 
 331                 ef4_nic_push_buffers(tx_queue);
 332         } else {
 333                 tx_queue->xmit_more_available = netdev_xmit_more();
 334         }
 335 
 336         tx_queue->tx_packets++;
 337 
 338         ef4_tx_maybe_stop_queue(tx_queue);
 339 
 340         return NETDEV_TX_OK;
 341 
 342 
 343 err:
 344         ef4_enqueue_unwind(tx_queue);
 345         dev_kfree_skb_any(skb);
 346         return NETDEV_TX_OK;
 347 }
 348 
 349 /* Remove packets from the TX queue
 350  *
 351  * This removes packets from the TX queue, up to and including the
 352  * specified index.
 353  */
 354 static void ef4_dequeue_buffers(struct ef4_tx_queue *tx_queue,
 355                                 unsigned int index,
 356                                 unsigned int *pkts_compl,
 357                                 unsigned int *bytes_compl)
 358 {
 359         struct ef4_nic *efx = tx_queue->efx;
 360         unsigned int stop_index, read_ptr;
 361 
 362         stop_index = (index + 1) & tx_queue->ptr_mask;
 363         read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
 364 
 365         while (read_ptr != stop_index) {
 366                 struct ef4_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
 367 
 368                 if (!(buffer->flags & EF4_TX_BUF_OPTION) &&
 369                     unlikely(buffer->len == 0)) {
 370                         netif_err(efx, tx_err, efx->net_dev,
 371                                   "TX queue %d spurious TX completion id %x\n",
 372                                   tx_queue->queue, read_ptr);
 373                         ef4_schedule_reset(efx, RESET_TYPE_TX_SKIP);
 374                         return;
 375                 }
 376 
 377                 ef4_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
 378 
 379                 ++tx_queue->read_count;
 380                 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
 381         }
 382 }
 383 
 384 /* Initiate a packet transmission.  We use one channel per CPU
 385  * (sharing when we have more CPUs than channels).  On Falcon, the TX
 386  * completion events will be directed back to the CPU that transmitted
 387  * the packet, which should be cache-efficient.
 388  *
 389  * Context: non-blocking.
 390  * Note that returning anything other than NETDEV_TX_OK will cause the
 391  * OS to free the skb.
 392  */
 393 netdev_tx_t ef4_hard_start_xmit(struct sk_buff *skb,
 394                                 struct net_device *net_dev)
 395 {
 396         struct ef4_nic *efx = netdev_priv(net_dev);
 397         struct ef4_tx_queue *tx_queue;
 398         unsigned index, type;
 399 
 400         EF4_WARN_ON_PARANOID(!netif_device_present(net_dev));
 401 
 402         index = skb_get_queue_mapping(skb);
 403         type = skb->ip_summed == CHECKSUM_PARTIAL ? EF4_TXQ_TYPE_OFFLOAD : 0;
 404         if (index >= efx->n_tx_channels) {
 405                 index -= efx->n_tx_channels;
 406                 type |= EF4_TXQ_TYPE_HIGHPRI;
 407         }
 408         tx_queue = ef4_get_tx_queue(efx, index, type);
 409 
 410         return ef4_enqueue_skb(tx_queue, skb);
 411 }
 412 
 413 void ef4_init_tx_queue_core_txq(struct ef4_tx_queue *tx_queue)
 414 {
 415         struct ef4_nic *efx = tx_queue->efx;
 416 
 417         /* Must be inverse of queue lookup in ef4_hard_start_xmit() */
 418         tx_queue->core_txq =
 419                 netdev_get_tx_queue(efx->net_dev,
 420                                     tx_queue->queue / EF4_TXQ_TYPES +
 421                                     ((tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI) ?
 422                                      efx->n_tx_channels : 0));
 423 }
 424 
 425 int ef4_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
 426                  void *type_data)
 427 {
 428         struct ef4_nic *efx = netdev_priv(net_dev);
 429         struct tc_mqprio_qopt *mqprio = type_data;
 430         struct ef4_channel *channel;
 431         struct ef4_tx_queue *tx_queue;
 432         unsigned tc, num_tc;
 433         int rc;
 434 
 435         if (type != TC_SETUP_QDISC_MQPRIO)
 436                 return -EOPNOTSUPP;
 437 
 438         num_tc = mqprio->num_tc;
 439 
 440         if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0 || num_tc > EF4_MAX_TX_TC)
 441                 return -EINVAL;
 442 
 443         mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
 444 
 445         if (num_tc == net_dev->num_tc)
 446                 return 0;
 447 
 448         for (tc = 0; tc < num_tc; tc++) {
 449                 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
 450                 net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
 451         }
 452 
 453         if (num_tc > net_dev->num_tc) {
 454                 /* Initialise high-priority queues as necessary */
 455                 ef4_for_each_channel(channel, efx) {
 456                         ef4_for_each_possible_channel_tx_queue(tx_queue,
 457                                                                channel) {
 458                                 if (!(tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI))
 459                                         continue;
 460                                 if (!tx_queue->buffer) {
 461                                         rc = ef4_probe_tx_queue(tx_queue);
 462                                         if (rc)
 463                                                 return rc;
 464                                 }
 465                                 if (!tx_queue->initialised)
 466                                         ef4_init_tx_queue(tx_queue);
 467                                 ef4_init_tx_queue_core_txq(tx_queue);
 468                         }
 469                 }
 470         } else {
 471                 /* Reduce number of classes before number of queues */
 472                 net_dev->num_tc = num_tc;
 473         }
 474 
 475         rc = netif_set_real_num_tx_queues(net_dev,
 476                                           max_t(int, num_tc, 1) *
 477                                           efx->n_tx_channels);
 478         if (rc)
 479                 return rc;
 480 
 481         /* Do not destroy high-priority queues when they become
 482          * unused.  We would have to flush them first, and it is
 483          * fairly difficult to flush a subset of TX queues.  Leave
 484          * it to ef4_fini_channels().
 485          */
 486 
 487         net_dev->num_tc = num_tc;
 488         return 0;
 489 }
 490 
 491 void ef4_xmit_done(struct ef4_tx_queue *tx_queue, unsigned int index)
 492 {
 493         unsigned fill_level;
 494         struct ef4_nic *efx = tx_queue->efx;
 495         struct ef4_tx_queue *txq2;
 496         unsigned int pkts_compl = 0, bytes_compl = 0;
 497 
 498         EF4_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
 499 
 500         ef4_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
 501         tx_queue->pkts_compl += pkts_compl;
 502         tx_queue->bytes_compl += bytes_compl;
 503 
 504         if (pkts_compl > 1)
 505                 ++tx_queue->merge_events;
 506 
 507         /* See if we need to restart the netif queue.  This memory
 508          * barrier ensures that we write read_count (inside
 509          * ef4_dequeue_buffers()) before reading the queue status.
 510          */
 511         smp_mb();
 512         if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
 513             likely(efx->port_enabled) &&
 514             likely(netif_device_present(efx->net_dev))) {
 515                 txq2 = ef4_tx_queue_partner(tx_queue);
 516                 fill_level = max(tx_queue->insert_count - tx_queue->read_count,
 517                                  txq2->insert_count - txq2->read_count);
 518                 if (fill_level <= efx->txq_wake_thresh)
 519                         netif_tx_wake_queue(tx_queue->core_txq);
 520         }
 521 
 522         /* Check whether the hardware queue is now empty */
 523         if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
 524                 tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
 525                 if (tx_queue->read_count == tx_queue->old_write_count) {
 526                         smp_mb();
 527                         tx_queue->empty_read_count =
 528                                 tx_queue->read_count | EF4_EMPTY_COUNT_VALID;
 529                 }
 530         }
 531 }
 532 
 533 static unsigned int ef4_tx_cb_page_count(struct ef4_tx_queue *tx_queue)
 534 {
 535         return DIV_ROUND_UP(tx_queue->ptr_mask + 1, PAGE_SIZE >> EF4_TX_CB_ORDER);
 536 }
 537 
 538 int ef4_probe_tx_queue(struct ef4_tx_queue *tx_queue)
 539 {
 540         struct ef4_nic *efx = tx_queue->efx;
 541         unsigned int entries;
 542         int rc;
 543 
 544         /* Create the smallest power-of-two aligned ring */
 545         entries = max(roundup_pow_of_two(efx->txq_entries), EF4_MIN_DMAQ_SIZE);
 546         EF4_BUG_ON_PARANOID(entries > EF4_MAX_DMAQ_SIZE);
 547         tx_queue->ptr_mask = entries - 1;
 548 
 549         netif_dbg(efx, probe, efx->net_dev,
 550                   "creating TX queue %d size %#x mask %#x\n",
 551                   tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
 552 
 553         /* Allocate software ring */
 554         tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
 555                                    GFP_KERNEL);
 556         if (!tx_queue->buffer)
 557                 return -ENOMEM;
 558 
 559         tx_queue->cb_page = kcalloc(ef4_tx_cb_page_count(tx_queue),
 560                                     sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
 561         if (!tx_queue->cb_page) {
 562                 rc = -ENOMEM;
 563                 goto fail1;
 564         }
 565 
 566         /* Allocate hardware ring */
 567         rc = ef4_nic_probe_tx(tx_queue);
 568         if (rc)
 569                 goto fail2;
 570 
 571         return 0;
 572 
 573 fail2:
 574         kfree(tx_queue->cb_page);
 575         tx_queue->cb_page = NULL;
 576 fail1:
 577         kfree(tx_queue->buffer);
 578         tx_queue->buffer = NULL;
 579         return rc;
 580 }
 581 
 582 void ef4_init_tx_queue(struct ef4_tx_queue *tx_queue)
 583 {
 584         struct ef4_nic *efx = tx_queue->efx;
 585 
 586         netif_dbg(efx, drv, efx->net_dev,
 587                   "initialising TX queue %d\n", tx_queue->queue);
 588 
 589         tx_queue->insert_count = 0;
 590         tx_queue->write_count = 0;
 591         tx_queue->old_write_count = 0;
 592         tx_queue->read_count = 0;
 593         tx_queue->old_read_count = 0;
 594         tx_queue->empty_read_count = 0 | EF4_EMPTY_COUNT_VALID;
 595         tx_queue->xmit_more_available = false;
 596 
 597         /* Some older hardware requires Tx writes larger than 32. */
 598         tx_queue->tx_min_size = EF4_WORKAROUND_15592(efx) ? 33 : 0;
 599 
 600         /* Set up TX descriptor ring */
 601         ef4_nic_init_tx(tx_queue);
 602 
 603         tx_queue->initialised = true;
 604 }
 605 
 606 void ef4_fini_tx_queue(struct ef4_tx_queue *tx_queue)
 607 {
 608         struct ef4_tx_buffer *buffer;
 609 
 610         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
 611                   "shutting down TX queue %d\n", tx_queue->queue);
 612 
 613         if (!tx_queue->buffer)
 614                 return;
 615 
 616         /* Free any buffers left in the ring */
 617         while (tx_queue->read_count != tx_queue->write_count) {
 618                 unsigned int pkts_compl = 0, bytes_compl = 0;
 619                 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
 620                 ef4_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
 621 
 622                 ++tx_queue->read_count;
 623         }
 624         tx_queue->xmit_more_available = false;
 625         netdev_tx_reset_queue(tx_queue->core_txq);
 626 }
 627 
 628 void ef4_remove_tx_queue(struct ef4_tx_queue *tx_queue)
 629 {
 630         int i;
 631 
 632         if (!tx_queue->buffer)
 633                 return;
 634 
 635         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
 636                   "destroying TX queue %d\n", tx_queue->queue);
 637         ef4_nic_remove_tx(tx_queue);
 638 
 639         if (tx_queue->cb_page) {
 640                 for (i = 0; i < ef4_tx_cb_page_count(tx_queue); i++)
 641                         ef4_nic_free_buffer(tx_queue->efx,
 642                                             &tx_queue->cb_page[i]);
 643                 kfree(tx_queue->cb_page);
 644                 tx_queue->cb_page = NULL;
 645         }
 646 
 647         kfree(tx_queue->buffer);
 648         tx_queue->buffer = NULL;
 649 }

/* [<][>][^][v][top][bottom][index][help] */