root/drivers/net/ethernet/sfc/vfdi.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


   1 /* SPDX-License-Identifier: GPL-2.0-only */
   2 /****************************************************************************
   3  * Driver for Solarflare network controllers and boards
   4  * Copyright 2010-2012 Solarflare Communications Inc.
   5  */
   6 #ifndef _VFDI_H
   7 #define _VFDI_H
   8 
   9 /**
  10  * DOC: Virtual Function Driver Interface
  11  *
  12  * This file contains software structures used to form a two way
  13  * communication channel between the VF driver and the PF driver,
  14  * named Virtual Function Driver Interface (VFDI).
  15  *
  16  * For the purposes of VFDI, a page is a memory region with size and
  17  * alignment of 4K.  All addresses are DMA addresses to be used within
  18  * the domain of the relevant VF.
  19  *
  20  * The only hardware-defined channels for a VF driver to communicate
  21  * with the PF driver are the event mailboxes (%FR_CZ_USR_EV
  22  * registers).  Writing to these registers generates an event with
  23  * EV_CODE = EV_CODE_USR_EV, USER_QID set to the index of the mailbox
  24  * and USER_EV_REG_VALUE set to the value written.  The PF driver may
  25  * direct or disable delivery of these events by setting
  26  * %FR_CZ_USR_EV_CFG.
  27  *
  28  * The PF driver can send arbitrary events to arbitrary event queues.
  29  * However, for consistency, VFDI events from the PF are defined to
  30  * follow the same form and be sent to the first event queue assigned
  31  * to the VF while that queue is enabled by the VF driver.
  32  *
  33  * The general form of the variable bits of VFDI events is:
  34  *
  35  *       0             16                       24   31
  36  *      | DATA        | TYPE                   | SEQ   |
  37  *
  38  * SEQ is a sequence number which should be incremented by 1 (modulo
  39  * 256) for each event.  The sequence numbers used in each direction
  40  * are independent.
  41  *
  42  * The VF submits requests of type &struct vfdi_req by sending the
  43  * address of the request (ADDR) in a series of 4 events:
  44  *
  45  *       0             16                       24   31
  46  *      | ADDR[0:15]  | VFDI_EV_TYPE_REQ_WORD0 | SEQ   |
  47  *      | ADDR[16:31] | VFDI_EV_TYPE_REQ_WORD1 | SEQ+1 |
  48  *      | ADDR[32:47] | VFDI_EV_TYPE_REQ_WORD2 | SEQ+2 |
  49  *      | ADDR[48:63] | VFDI_EV_TYPE_REQ_WORD3 | SEQ+3 |
  50  *
  51  * The address must be page-aligned.  After receiving such a valid
  52  * series of events, the PF driver will attempt to read the request
  53  * and write a response to the same address.  In case of an invalid
  54  * sequence of events or a DMA error, there will be no response.
  55  *
  56  * The VF driver may request that the PF driver writes status
  57  * information into its domain asynchronously.  After writing the
  58  * status, the PF driver will send an event of the form:
  59  *
  60  *       0             16                       24   31
  61  *      | reserved    | VFDI_EV_TYPE_STATUS    | SEQ   |
  62  *
  63  * In case the VF must be reset for any reason, the PF driver will
  64  * send an event of the form:
  65  *
  66  *       0             16                       24   31
  67  *      | reserved    | VFDI_EV_TYPE_RESET     | SEQ   |
  68  *
  69  * It is then the responsibility of the VF driver to request
  70  * reinitialisation of its queues.
  71  */
  72 #define VFDI_EV_SEQ_LBN 24
  73 #define VFDI_EV_SEQ_WIDTH 8
  74 #define VFDI_EV_TYPE_LBN 16
  75 #define VFDI_EV_TYPE_WIDTH 8
  76 #define VFDI_EV_TYPE_REQ_WORD0 0
  77 #define VFDI_EV_TYPE_REQ_WORD1 1
  78 #define VFDI_EV_TYPE_REQ_WORD2 2
  79 #define VFDI_EV_TYPE_REQ_WORD3 3
  80 #define VFDI_EV_TYPE_STATUS 4
  81 #define VFDI_EV_TYPE_RESET 5
  82 #define VFDI_EV_DATA_LBN 0
  83 #define VFDI_EV_DATA_WIDTH 16
  84 
  85 struct vfdi_endpoint {
  86         u8 mac_addr[ETH_ALEN];
  87         __be16 tci;
  88 };
  89 
  90 /**
  91  * enum vfdi_op - VFDI operation enumeration
  92  * @VFDI_OP_RESPONSE: Indicates a response to the request.
  93  * @VFDI_OP_INIT_EVQ: Initialize SRAM entries and initialize an EVQ.
  94  * @VFDI_OP_INIT_RXQ: Initialize SRAM entries and initialize an RXQ.
  95  * @VFDI_OP_INIT_TXQ: Initialize SRAM entries and initialize a TXQ.
  96  * @VFDI_OP_FINI_ALL_QUEUES: Flush all queues, finalize all queues, then
  97  *      finalize the SRAM entries.
  98  * @VFDI_OP_INSERT_FILTER: Insert a MAC filter targeting the given RXQ.
  99  * @VFDI_OP_REMOVE_ALL_FILTERS: Remove all filters.
 100  * @VFDI_OP_SET_STATUS_PAGE: Set the DMA page(s) used for status updates
 101  *      from PF and write the initial status.
 102  * @VFDI_OP_CLEAR_STATUS_PAGE: Clear the DMA page(s) used for status
 103  *      updates from PF.
 104  */
 105 enum vfdi_op {
 106         VFDI_OP_RESPONSE = 0,
 107         VFDI_OP_INIT_EVQ = 1,
 108         VFDI_OP_INIT_RXQ = 2,
 109         VFDI_OP_INIT_TXQ = 3,
 110         VFDI_OP_FINI_ALL_QUEUES = 4,
 111         VFDI_OP_INSERT_FILTER = 5,
 112         VFDI_OP_REMOVE_ALL_FILTERS = 6,
 113         VFDI_OP_SET_STATUS_PAGE = 7,
 114         VFDI_OP_CLEAR_STATUS_PAGE = 8,
 115         VFDI_OP_LIMIT,
 116 };
 117 
 118 /* Response codes for VFDI operations. Other values may be used in future. */
 119 #define VFDI_RC_SUCCESS         0
 120 #define VFDI_RC_ENOMEM          (-12)
 121 #define VFDI_RC_EINVAL          (-22)
 122 #define VFDI_RC_EOPNOTSUPP      (-95)
 123 #define VFDI_RC_ETIMEDOUT       (-110)
 124 
 125 /**
 126  * struct vfdi_req - Request from VF driver to PF driver
 127  * @op: Operation code or response indicator, taken from &enum vfdi_op.
 128  * @rc: Response code.  Set to 0 on success or a negative error code on failure.
 129  * @u.init_evq.index: Index of event queue to create.
 130  * @u.init_evq.buf_count: Number of 4k buffers backing event queue.
 131  * @u.init_evq.addr: Array of length %u.init_evq.buf_count containing DMA
 132  *      address of each page backing the event queue.
 133  * @u.init_rxq.index: Index of receive queue to create.
 134  * @u.init_rxq.buf_count: Number of 4k buffers backing receive queue.
 135  * @u.init_rxq.evq: Instance of event queue to target receive events at.
 136  * @u.init_rxq.label: Label used in receive events.
 137  * @u.init_rxq.flags: Unused.
 138  * @u.init_rxq.addr: Array of length %u.init_rxq.buf_count containing DMA
 139  *      address of each page backing the receive queue.
 140  * @u.init_txq.index: Index of transmit queue to create.
 141  * @u.init_txq.buf_count: Number of 4k buffers backing transmit queue.
 142  * @u.init_txq.evq: Instance of event queue to target transmit completion
 143  *      events at.
 144  * @u.init_txq.label: Label used in transmit completion events.
 145  * @u.init_txq.flags: Checksum offload flags.
 146  * @u.init_txq.addr: Array of length %u.init_txq.buf_count containing DMA
 147  *      address of each page backing the transmit queue.
 148  * @u.mac_filter.rxq: Insert MAC filter at VF local address/VLAN targeting
 149  *      all traffic at this receive queue.
 150  * @u.mac_filter.flags: MAC filter flags.
 151  * @u.set_status_page.dma_addr: Base address for the &struct vfdi_status.
 152  *      This address must be page-aligned and the PF may write up to a
 153  *      whole page (allowing for extension of the structure).
 154  * @u.set_status_page.peer_page_count: Number of additional pages the VF
 155  *      has provided into which peer addresses may be DMAd.
 156  * @u.set_status_page.peer_page_addr: Array of DMA addresses of pages.
 157  *      If the number of peers exceeds 256, then the VF must provide
 158  *      additional pages in this array. The PF will then DMA up to
 159  *      512 vfdi_endpoint structures into each page.  These addresses
 160  *      must be page-aligned.
 161  */
 162 struct vfdi_req {
 163         u32 op;
 164         u32 reserved1;
 165         s32 rc;
 166         u32 reserved2;
 167         union {
 168                 struct {
 169                         u32 index;
 170                         u32 buf_count;
 171                         u64 addr[];
 172                 } init_evq;
 173                 struct {
 174                         u32 index;
 175                         u32 buf_count;
 176                         u32 evq;
 177                         u32 label;
 178                         u32 flags;
 179 #define VFDI_RXQ_FLAG_SCATTER_EN 1
 180                         u32 reserved;
 181                         u64 addr[];
 182                 } init_rxq;
 183                 struct {
 184                         u32 index;
 185                         u32 buf_count;
 186                         u32 evq;
 187                         u32 label;
 188                         u32 flags;
 189 #define VFDI_TXQ_FLAG_IP_CSUM_DIS 1
 190 #define VFDI_TXQ_FLAG_TCPUDP_CSUM_DIS 2
 191                         u32 reserved;
 192                         u64 addr[];
 193                 } init_txq;
 194                 struct {
 195                         u32 rxq;
 196                         u32 flags;
 197 #define VFDI_MAC_FILTER_FLAG_RSS 1
 198 #define VFDI_MAC_FILTER_FLAG_SCATTER 2
 199                 } mac_filter;
 200                 struct {
 201                         u64 dma_addr;
 202                         u64 peer_page_count;
 203                         u64 peer_page_addr[];
 204                 } set_status_page;
 205         } u;
 206 };
 207 
 208 /**
 209  * struct vfdi_status - Status provided by PF driver to VF driver
 210  * @generation_start: A generation count DMA'd to VF *before* the
 211  *      rest of the structure.
 212  * @generation_end: A generation count DMA'd to VF *after* the
 213  *      rest of the structure.
 214  * @version: Version of this structure; currently set to 1.  Later
 215  *      versions must either be layout-compatible or only be sent to VFs
 216  *      that specifically request them.
 217  * @length: Total length of this structure including embedded tables
 218  * @vi_scale: log2 the number of VIs available on this VF. This quantity
 219  *      is used by the hardware for register decoding.
 220  * @max_tx_channels: The maximum number of transmit queues the VF can use.
 221  * @rss_rxq_count: The number of receive queues present in the shared RSS
 222  *      indirection table.
 223  * @peer_count: Total number of peers in the complete peer list. If larger
 224  *      than ARRAY_SIZE(%peers), then the VF must provide sufficient
 225  *      additional pages each of which is filled with vfdi_endpoint structures.
 226  * @local: The MAC address and outer VLAN tag of *this* VF
 227  * @peers: Table of peer addresses.  The @tci fields in these structures
 228  *      are currently unused and must be ignored.  Additional peers are
 229  *      written into any additional pages provided by the VF.
 230  * @timer_quantum_ns: Timer quantum (nominal period between timer ticks)
 231  *      for interrupt moderation timers, in nanoseconds. This member is only
 232  *      present if @length is sufficiently large.
 233  */
 234 struct vfdi_status {
 235         u32 generation_start;
 236         u32 generation_end;
 237         u32 version;
 238         u32 length;
 239         u8 vi_scale;
 240         u8 max_tx_channels;
 241         u8 rss_rxq_count;
 242         u8 reserved1;
 243         u16 peer_count;
 244         u16 reserved2;
 245         struct vfdi_endpoint local;
 246         struct vfdi_endpoint peers[256];
 247 
 248         /* Members below here extend version 1 of this structure */
 249         u32 timer_quantum_ns;
 250 };
 251 
 252 #endif

/* [<][>][^][v][top][bottom][index][help] */