root/drivers/net/ethernet/sfc/ef10.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. efx_ef10_filter_get_unsafe_id
  2. efx_ef10_filter_get_unsafe_pri
  3. efx_ef10_make_filter_id
  4. efx_ef10_get_warm_boot_count
  5. efx_ef10_pf_mem_bar
  6. efx_ef10_vf_mem_bar
  7. efx_ef10_mem_map_size
  8. efx_ef10_is_vf
  9. efx_ef10_get_pf_index
  10. efx_ef10_get_vf_index
  11. efx_ef10_init_datapath_caps
  12. efx_ef10_read_licensed_features
  13. efx_ef10_get_sysclk_freq
  14. efx_ef10_get_timer_workarounds
  15. efx_ef10_process_timer_config
  16. efx_ef10_get_timer_config
  17. efx_ef10_get_mac_address_pf
  18. efx_ef10_get_mac_address_vf
  19. efx_ef10_show_link_control_flag
  20. efx_ef10_show_primary_flag
  21. efx_ef10_find_vlan
  22. efx_ef10_add_vlan
  23. efx_ef10_del_vlan_internal
  24. efx_ef10_del_vlan
  25. efx_ef10_cleanup_vlans
  26. efx_ef10_probe
  27. efx_ef10_free_vis
  28. efx_ef10_free_piobufs
  29. efx_ef10_alloc_piobufs
  30. efx_ef10_link_piobufs
  31. efx_ef10_forget_old_piobufs
  32. efx_ef10_alloc_piobufs
  33. efx_ef10_link_piobufs
  34. efx_ef10_free_piobufs
  35. efx_ef10_forget_old_piobufs
  36. efx_ef10_remove
  37. efx_ef10_probe_pf
  38. efx_ef10_vadaptor_query
  39. efx_ef10_vadaptor_alloc
  40. efx_ef10_vadaptor_free
  41. efx_ef10_vport_add_mac
  42. efx_ef10_vport_del_mac
  43. efx_ef10_probe_vf
  44. efx_ef10_probe_vf
  45. efx_ef10_alloc_vis
  46. efx_ef10_dimension_resources
  47. efx_ef10_init_nic
  48. efx_ef10_reset_mc_allocations
  49. efx_ef10_map_reset_reason
  50. efx_ef10_map_reset_flags
  51. efx_ef10_reset
  52. efx_ef10_raw_stat_mask
  53. efx_ef10_get_stat_mask
  54. efx_ef10_describe_stats
  55. efx_ef10_update_stats_common
  56. efx_ef10_try_update_nic_stats_pf
  57. efx_ef10_update_stats_pf
  58. efx_ef10_try_update_nic_stats_vf
  59. efx_ef10_update_stats_vf
  60. efx_ef10_push_irq_moderation
  61. efx_ef10_get_wol_vf
  62. efx_ef10_set_wol_vf
  63. efx_ef10_get_wol
  64. efx_ef10_set_wol
  65. efx_ef10_mcdi_request
  66. efx_ef10_mcdi_poll_response
  67. efx_ef10_mcdi_read_response
  68. efx_ef10_mcdi_reboot_detected
  69. efx_ef10_mcdi_poll_reboot
  70. efx_ef10_msi_interrupt
  71. efx_ef10_legacy_interrupt
  72. efx_ef10_irq_test_generate
  73. efx_ef10_tx_probe
  74. efx_ef10_push_tx_desc
  75. efx_ef10_tx_tso_desc
  76. efx_ef10_tso_versions
  77. efx_ef10_tx_init
  78. efx_ef10_tx_fini
  79. efx_ef10_tx_remove
  80. efx_ef10_notify_tx_desc
  81. efx_ef10_tx_limit_len
  82. efx_ef10_tx_write
  83. efx_ef10_get_rss_flags
  84. efx_ef10_set_rss_flags
  85. efx_ef10_alloc_rss_context
  86. efx_ef10_free_rss_context
  87. efx_ef10_populate_rss_table
  88. efx_ef10_rx_free_indir_table
  89. efx_ef10_rx_push_shared_rss_config
  90. efx_ef10_rx_push_exclusive_rss_config
  91. efx_ef10_rx_push_rss_context_config
  92. efx_ef10_rx_pull_rss_context_config
  93. efx_ef10_rx_pull_rss_config
  94. efx_ef10_rx_restore_rss_contexts
  95. efx_ef10_pf_rx_push_rss_config
  96. efx_ef10_vf_rx_push_rss_config
  97. efx_ef10_rx_probe
  98. efx_ef10_rx_init
  99. efx_ef10_rx_fini
  100. efx_ef10_rx_remove
  101. efx_ef10_build_rx_desc
  102. efx_ef10_rx_write
  103. efx_ef10_rx_defer_refill
  104. efx_ef10_rx_defer_refill_complete
  105. efx_ef10_ev_probe
  106. efx_ef10_ev_fini
  107. efx_ef10_ev_init
  108. efx_ef10_ev_remove
  109. efx_ef10_handle_rx_wrong_queue
  110. efx_ef10_handle_rx_bad_lbits
  111. efx_ef10_handle_rx_abort
  112. efx_ef10_handle_rx_event_errors
  113. efx_ef10_handle_rx_event
  114. efx_ef10_extract_event_ts
  115. efx_ef10_handle_tx_event
  116. efx_ef10_handle_driver_event
  117. efx_ef10_handle_driver_generated_event
  118. efx_ef10_ev_process
  119. efx_ef10_ev_read_ack
  120. efx_ef10_ev_test_generate
  121. efx_ef10_handle_drain_event
  122. efx_ef10_fini_dmaq
  123. efx_ef10_prepare_flr
  124. efx_ef10_filter_is_exclusive
  125. efx_ef10_filter_entry_spec
  126. efx_ef10_filter_entry_flags
  127. efx_ef10_filter_set_entry
  128. efx_ef10_filter_push_prep_set_match_fields
  129. efx_ef10_filter_push_prep
  130. efx_ef10_filter_push
  131. efx_ef10_filter_mcdi_flags_from_spec
  132. efx_ef10_filter_pri
  133. efx_ef10_filter_insert_locked
  134. efx_ef10_filter_insert
  135. efx_ef10_filter_update_rx_scatter
  136. efx_ef10_filter_remove_internal
  137. efx_ef10_filter_remove_safe
  138. efx_ef10_filter_remove_unsafe
  139. efx_ef10_filter_get_safe
  140. efx_ef10_filter_clear_rx
  141. efx_ef10_filter_count_rx_used
  142. efx_ef10_filter_get_rx_id_limit
  143. efx_ef10_filter_get_rx_ids
  144. efx_ef10_filter_rfs_expire_one
  145. efx_ef10_filter_match_flags_from_mcdi
  146. efx_ef10_filter_cleanup_vlans
  147. efx_ef10_filter_match_supported
  148. efx_ef10_filter_table_probe_matches
  149. efx_ef10_filter_table_probe
  150. efx_ef10_filter_table_restore
  151. efx_ef10_filter_table_remove
  152. efx_ef10_filter_mark_one_old
  153. _efx_ef10_filter_vlan_mark_old
  154. efx_ef10_filter_mark_old
  155. efx_ef10_filter_uc_addr_list
  156. efx_ef10_filter_mc_addr_list
  157. efx_ef10_filter_insert_addr_list
  158. efx_ef10_filter_insert_def
  159. efx_ef10_filter_remove_old
  160. efx_ef10_vport_set_mac_address
  161. efx_ef10_filter_vlan_sync_rx_mode
  162. efx_ef10_filter_sync_rx_mode
  163. efx_ef10_filter_find_vlan
  164. efx_ef10_filter_add_vlan
  165. efx_ef10_filter_del_vlan_internal
  166. efx_ef10_filter_del_vlan
  167. efx_ef10_set_mac_address
  168. efx_ef10_mac_reconfigure
  169. efx_ef10_mac_reconfigure_vf
  170. efx_ef10_start_bist
  171. efx_ef10_poll_bist
  172. efx_ef10_run_bist
  173. efx_ef10_test_chip
  174. efx_ef10_mtd_probe_partition
  175. efx_ef10_mtd_probe
  176. efx_ef10_ptp_write_host_time
  177. efx_ef10_ptp_write_host_time_vf
  178. efx_ef10_rx_enable_timestamping
  179. efx_ef10_rx_disable_timestamping
  180. efx_ef10_ptp_set_ts_sync_events
  181. efx_ef10_ptp_set_ts_config_vf
  182. efx_ef10_ptp_set_ts_config
  183. efx_ef10_get_phys_port_id
  184. efx_ef10_vlan_rx_add_vid
  185. efx_ef10_vlan_rx_kill_vid
  186. efx_ef10_set_udp_tnl_ports
  187. efx_ef10_udp_tnl_push_ports
  188. __efx_ef10_udp_tnl_lookup_port
  189. efx_ef10_udp_tnl_add_port
  190. efx_ef10_udp_tnl_has_port
  191. efx_ef10_udp_tnl_del_port

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /****************************************************************************
   3  * Driver for Solarflare network controllers and boards
   4  * Copyright 2012-2013 Solarflare Communications Inc.
   5  */
   6 
   7 #include "net_driver.h"
   8 #include "ef10_regs.h"
   9 #include "io.h"
  10 #include "mcdi.h"
  11 #include "mcdi_pcol.h"
  12 #include "nic.h"
  13 #include "workarounds.h"
  14 #include "selftest.h"
  15 #include "ef10_sriov.h"
  16 #include <linux/in.h>
  17 #include <linux/jhash.h>
  18 #include <linux/wait.h>
  19 #include <linux/workqueue.h>
  20 
  21 /* Hardware control for EF10 architecture including 'Huntington'. */
  22 
  23 #define EFX_EF10_DRVGEN_EV              7
  24 enum {
  25         EFX_EF10_TEST = 1,
  26         EFX_EF10_REFILL,
  27 };
  28 /* The maximum size of a shared RSS context */
  29 /* TODO: this should really be from the mcdi protocol export */
  30 #define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL
  31 
  32 /* The filter table(s) are managed by firmware and we have write-only
  33  * access.  When removing filters we must identify them to the
  34  * firmware by a 64-bit handle, but this is too wide for Linux kernel
  35  * interfaces (32-bit for RX NFC, 16-bit for RFS).  Also, we need to
  36  * be able to tell in advance whether a requested insertion will
  37  * replace an existing filter.  Therefore we maintain a software hash
  38  * table, which should be at least as large as the hardware hash
  39  * table.
  40  *
  41  * Huntington has a single 8K filter table shared between all filter
  42  * types and both ports.
  43  */
  44 #define HUNT_FILTER_TBL_ROWS 8192
  45 
  46 #define EFX_EF10_FILTER_ID_INVALID 0xffff
  47 
  48 #define EFX_EF10_FILTER_DEV_UC_MAX      32
  49 #define EFX_EF10_FILTER_DEV_MC_MAX      256
  50 
  51 /* VLAN list entry */
  52 struct efx_ef10_vlan {
  53         struct list_head list;
  54         u16 vid;
  55 };
  56 
  57 enum efx_ef10_default_filters {
  58         EFX_EF10_BCAST,
  59         EFX_EF10_UCDEF,
  60         EFX_EF10_MCDEF,
  61         EFX_EF10_VXLAN4_UCDEF,
  62         EFX_EF10_VXLAN4_MCDEF,
  63         EFX_EF10_VXLAN6_UCDEF,
  64         EFX_EF10_VXLAN6_MCDEF,
  65         EFX_EF10_NVGRE4_UCDEF,
  66         EFX_EF10_NVGRE4_MCDEF,
  67         EFX_EF10_NVGRE6_UCDEF,
  68         EFX_EF10_NVGRE6_MCDEF,
  69         EFX_EF10_GENEVE4_UCDEF,
  70         EFX_EF10_GENEVE4_MCDEF,
  71         EFX_EF10_GENEVE6_UCDEF,
  72         EFX_EF10_GENEVE6_MCDEF,
  73 
  74         EFX_EF10_NUM_DEFAULT_FILTERS
  75 };
  76 
  77 /* Per-VLAN filters information */
  78 struct efx_ef10_filter_vlan {
  79         struct list_head list;
  80         u16 vid;
  81         u16 uc[EFX_EF10_FILTER_DEV_UC_MAX];
  82         u16 mc[EFX_EF10_FILTER_DEV_MC_MAX];
  83         u16 default_filters[EFX_EF10_NUM_DEFAULT_FILTERS];
  84 };
  85 
  86 struct efx_ef10_dev_addr {
  87         u8 addr[ETH_ALEN];
  88 };
  89 
  90 struct efx_ef10_filter_table {
  91 /* The MCDI match masks supported by this fw & hw, in order of priority */
  92         u32 rx_match_mcdi_flags[
  93                 MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM * 2];
  94         unsigned int rx_match_count;
  95 
  96         struct rw_semaphore lock; /* Protects entries */
  97         struct {
  98                 unsigned long spec;     /* pointer to spec plus flag bits */
  99 /* AUTO_OLD is used to mark and sweep MAC filters for the device address lists. */
 100 /* unused flag  1UL */
 101 #define EFX_EF10_FILTER_FLAG_AUTO_OLD   2UL
 102 #define EFX_EF10_FILTER_FLAGS           3UL
 103                 u64 handle;             /* firmware handle */
 104         } *entry;
 105 /* Shadow of net_device address lists, guarded by mac_lock */
 106         struct efx_ef10_dev_addr dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX];
 107         struct efx_ef10_dev_addr dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
 108         int dev_uc_count;
 109         int dev_mc_count;
 110         bool uc_promisc;
 111         bool mc_promisc;
 112 /* Whether in multicast promiscuous mode when last changed */
 113         bool mc_promisc_last;
 114         bool mc_overflow; /* Too many MC addrs; should always imply mc_promisc */
 115         bool vlan_filter;
 116         struct list_head vlan_list;
 117 };
 118 
 119 /* An arbitrary search limit for the software hash table */
 120 #define EFX_EF10_FILTER_SEARCH_LIMIT 200
 121 
 122 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
 123 static void efx_ef10_filter_table_remove(struct efx_nic *efx);
 124 static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid);
 125 static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
 126                                               struct efx_ef10_filter_vlan *vlan);
 127 static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid);
 128 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
 129 
 130 static u32 efx_ef10_filter_get_unsafe_id(u32 filter_id)
 131 {
 132         WARN_ON_ONCE(filter_id == EFX_EF10_FILTER_ID_INVALID);
 133         return filter_id & (HUNT_FILTER_TBL_ROWS - 1);
 134 }
 135 
 136 static unsigned int efx_ef10_filter_get_unsafe_pri(u32 filter_id)
 137 {
 138         return filter_id / (HUNT_FILTER_TBL_ROWS * 2);
 139 }
 140 
 141 static u32 efx_ef10_make_filter_id(unsigned int pri, u16 idx)
 142 {
 143         return pri * HUNT_FILTER_TBL_ROWS * 2 + idx;
 144 }
 145 
 146 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
 147 {
 148         efx_dword_t reg;
 149 
 150         efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
 151         return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
 152                 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
 153 }
 154 
 155 /* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
 156  * I/O space and BAR 2(&3) for memory.  On SFC9250 (Medford2), there is no I/O
 157  * bar; PFs use BAR 0/1 for memory.
 158  */
 159 static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx)
 160 {
 161         switch (efx->pci_dev->device) {
 162         case 0x0b03: /* SFC9250 PF */
 163                 return 0;
 164         default:
 165                 return 2;
 166         }
 167 }
 168 
 169 /* All VFs use BAR 0/1 for memory */
 170 static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx)
 171 {
 172         return 0;
 173 }
 174 
 175 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
 176 {
 177         int bar;
 178 
 179         bar = efx->type->mem_bar(efx);
 180         return resource_size(&efx->pci_dev->resource[bar]);
 181 }
 182 
 183 static bool efx_ef10_is_vf(struct efx_nic *efx)
 184 {
 185         return efx->type->is_vf;
 186 }
 187 
 188 static int efx_ef10_get_pf_index(struct efx_nic *efx)
 189 {
 190         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
 191         struct efx_ef10_nic_data *nic_data = efx->nic_data;
 192         size_t outlen;
 193         int rc;
 194 
 195         rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
 196                           sizeof(outbuf), &outlen);
 197         if (rc)
 198                 return rc;
 199         if (outlen < sizeof(outbuf))
 200                 return -EIO;
 201 
 202         nic_data->pf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_PF);
 203         return 0;
 204 }
 205 
 206 #ifdef CONFIG_SFC_SRIOV
 207 static int efx_ef10_get_vf_index(struct efx_nic *efx)
 208 {
 209         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
 210         struct efx_ef10_nic_data *nic_data = efx->nic_data;
 211         size_t outlen;
 212         int rc;
 213 
 214         rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
 215                           sizeof(outbuf), &outlen);
 216         if (rc)
 217                 return rc;
 218         if (outlen < sizeof(outbuf))
 219                 return -EIO;
 220 
 221         nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
 222         return 0;
 223 }
 224 #endif
 225 
 226 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
 227 {
 228         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN);
 229         struct efx_ef10_nic_data *nic_data = efx->nic_data;
 230         size_t outlen;
 231         int rc;
 232 
 233         BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
 234 
 235         rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
 236                           outbuf, sizeof(outbuf), &outlen);
 237         if (rc)
 238                 return rc;
 239         if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
 240                 netif_err(efx, drv, efx->net_dev,
 241                           "unable to read datapath firmware capabilities\n");
 242                 return -EIO;
 243         }
 244 
 245         nic_data->datapath_caps =
 246                 MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
 247 
 248         if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
 249                 nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
 250                                 GET_CAPABILITIES_V2_OUT_FLAGS2);
 251                 nic_data->piobuf_size = MCDI_WORD(outbuf,
 252                                 GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
 253         } else {
 254                 nic_data->datapath_caps2 = 0;
 255                 nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
 256         }
 257 
 258         /* record the DPCPU firmware IDs to determine VEB vswitching support.
 259          */
 260         nic_data->rx_dpcpu_fw_id =
 261                 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
 262         nic_data->tx_dpcpu_fw_id =
 263                 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
 264 
 265         if (!(nic_data->datapath_caps &
 266               (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
 267                 netif_err(efx, probe, efx->net_dev,
 268                           "current firmware does not support an RX prefix\n");
 269                 return -ENODEV;
 270         }
 271 
 272         if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
 273                 u8 vi_window_mode = MCDI_BYTE(outbuf,
 274                                 GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
 275 
 276                 switch (vi_window_mode) {
 277                 case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_8K:
 278                         efx->vi_stride = 8192;
 279                         break;
 280                 case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_16K:
 281                         efx->vi_stride = 16384;
 282                         break;
 283                 case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_64K:
 284                         efx->vi_stride = 65536;
 285                         break;
 286                 default:
 287                         netif_err(efx, probe, efx->net_dev,
 288                                   "Unrecognised VI window mode %d\n",
 289                                   vi_window_mode);
 290                         return -EIO;
 291                 }
 292                 netif_dbg(efx, probe, efx->net_dev, "vi_stride = %u\n",
 293                           efx->vi_stride);
 294         } else {
 295                 /* keep default VI stride */
 296                 netif_dbg(efx, probe, efx->net_dev,
 297                           "firmware did not report VI window mode, assuming vi_stride = %u\n",
 298                           efx->vi_stride);
 299         }
 300 
 301         if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
 302                 efx->num_mac_stats = MCDI_WORD(outbuf,
 303                                 GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
 304                 netif_dbg(efx, probe, efx->net_dev,
 305                           "firmware reports num_mac_stats = %u\n",
 306                           efx->num_mac_stats);
 307         } else {
 308                 /* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */
 309                 netif_dbg(efx, probe, efx->net_dev,
 310                           "firmware did not report num_mac_stats, assuming %u\n",
 311                           efx->num_mac_stats);
 312         }
 313 
 314         return 0;
 315 }
 316 
 317 static void efx_ef10_read_licensed_features(struct efx_nic *efx)
 318 {
 319         MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN);
 320         MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN);
 321         struct efx_ef10_nic_data *nic_data = efx->nic_data;
 322         size_t outlen;
 323         int rc;
 324 
 325         MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP,
 326                        MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE);
 327         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf),
 328                                 outbuf, sizeof(outbuf), &outlen);
 329         if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN))
 330                 return;
 331 
 332         nic_data->licensed_features = MCDI_QWORD(outbuf,
 333                                          LICENSING_V3_OUT_LICENSED_FEATURES);
 334 }
 335 
 336 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
 337 {
 338         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
 339         int rc;
 340 
 341         rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
 342                           outbuf, sizeof(outbuf), NULL);
 343         if (rc)
 344                 return rc;
 345         rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
 346         return rc > 0 ? rc : -ERANGE;
 347 }
 348 
 349 static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
 350 {
 351         struct efx_ef10_nic_data *nic_data = efx->nic_data;
 352         unsigned int implemented;
 353         unsigned int enabled;
 354         int rc;
 355 
 356         nic_data->workaround_35388 = false;
 357         nic_data->workaround_61265 = false;
 358 
 359         rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
 360 
 361         if (rc == -ENOSYS) {
 362                 /* Firmware without GET_WORKAROUNDS - not a problem. */
 363                 rc = 0;
 364         } else if (rc == 0) {
 365                 /* Bug61265 workaround is always enabled if implemented. */
 366                 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
 367                         nic_data->workaround_61265 = true;
 368 
 369                 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
 370                         nic_data->workaround_35388 = true;
 371                 } else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
 372                         /* Workaround is implemented but not enabled.
 373                          * Try to enable it.
 374                          */
 375                         rc = efx_mcdi_set_workaround(efx,
 376                                                      MC_CMD_WORKAROUND_BUG35388,
 377                                                      true, NULL);
 378                         if (rc == 0)
 379                                 nic_data->workaround_35388 = true;
 380                         /* If we failed to set the workaround just carry on. */
 381                         rc = 0;
 382                 }
 383         }
 384 
 385         netif_dbg(efx, probe, efx->net_dev,
 386                   "workaround for bug 35388 is %sabled\n",
 387                   nic_data->workaround_35388 ? "en" : "dis");
 388         netif_dbg(efx, probe, efx->net_dev,
 389                   "workaround for bug 61265 is %sabled\n",
 390                   nic_data->workaround_61265 ? "en" : "dis");
 391 
 392         return rc;
 393 }
 394 
 395 static void efx_ef10_process_timer_config(struct efx_nic *efx,
 396                                           const efx_dword_t *data)
 397 {
 398         unsigned int max_count;
 399 
 400         if (EFX_EF10_WORKAROUND_61265(efx)) {
 401                 efx->timer_quantum_ns = MCDI_DWORD(data,
 402                         GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
 403                 efx->timer_max_ns = MCDI_DWORD(data,
 404                         GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
 405         } else if (EFX_EF10_WORKAROUND_35388(efx)) {
 406                 efx->timer_quantum_ns = MCDI_DWORD(data,
 407                         GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
 408                 max_count = MCDI_DWORD(data,
 409                         GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
 410                 efx->timer_max_ns = max_count * efx->timer_quantum_ns;
 411         } else {
 412                 efx->timer_quantum_ns = MCDI_DWORD(data,
 413                         GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
 414                 max_count = MCDI_DWORD(data,
 415                         GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
 416                 efx->timer_max_ns = max_count * efx->timer_quantum_ns;
 417         }
 418 
 419         netif_dbg(efx, probe, efx->net_dev,
 420                   "got timer properties from MC: quantum %u ns; max %u ns\n",
 421                   efx->timer_quantum_ns, efx->timer_max_ns);
 422 }
 423 
 424 static int efx_ef10_get_timer_config(struct efx_nic *efx)
 425 {
 426         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
 427         int rc;
 428 
 429         rc = efx_ef10_get_timer_workarounds(efx);
 430         if (rc)
 431                 return rc;
 432 
 433         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
 434                                 outbuf, sizeof(outbuf), NULL);
 435 
 436         if (rc == 0) {
 437                 efx_ef10_process_timer_config(efx, outbuf);
 438         } else if (rc == -ENOSYS || rc == -EPERM) {
 439                 /* Not available - fall back to Huntington defaults. */
 440                 unsigned int quantum;
 441 
 442                 rc = efx_ef10_get_sysclk_freq(efx);
 443                 if (rc < 0)
 444                         return rc;
 445 
 446                 quantum = 1536000 / rc; /* 1536 cycles */
 447                 efx->timer_quantum_ns = quantum;
 448                 efx->timer_max_ns = efx->type->timer_period_max * quantum;
 449                 rc = 0;
 450         } else {
 451                 efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
 452                                        MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
 453                                        NULL, 0, rc);
 454         }
 455 
 456         return rc;
 457 }
 458 
 459 static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
 460 {
 461         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
 462         size_t outlen;
 463         int rc;
 464 
 465         BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
 466 
 467         rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
 468                           outbuf, sizeof(outbuf), &outlen);
 469         if (rc)
 470                 return rc;
 471         if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
 472                 return -EIO;
 473 
 474         ether_addr_copy(mac_address,
 475                         MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
 476         return 0;
 477 }
 478 
 479 static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
 480 {
 481         MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
 482         MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
 483         size_t outlen;
 484         int num_addrs, rc;
 485 
 486         MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
 487                        EVB_PORT_ID_ASSIGNED);
 488         rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
 489                           sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
 490 
 491         if (rc)
 492                 return rc;
 493         if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
 494                 return -EIO;
 495 
 496         num_addrs = MCDI_DWORD(outbuf,
 497                                VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
 498 
 499         WARN_ON(num_addrs != 1);
 500 
 501         ether_addr_copy(mac_address,
 502                         MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
 503 
 504         return 0;
 505 }
 506 
 507 static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
 508                                                struct device_attribute *attr,
 509                                                char *buf)
 510 {
 511         struct efx_nic *efx = dev_get_drvdata(dev);
 512 
 513         return sprintf(buf, "%d\n",
 514                        ((efx->mcdi->fn_flags) &
 515                         (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
 516                        ? 1 : 0);
 517 }
 518 
 519 static ssize_t efx_ef10_show_primary_flag(struct device *dev,
 520                                           struct device_attribute *attr,
 521                                           char *buf)
 522 {
 523         struct efx_nic *efx = dev_get_drvdata(dev);
 524 
 525         return sprintf(buf, "%d\n",
 526                        ((efx->mcdi->fn_flags) &
 527                         (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
 528                        ? 1 : 0);
 529 }
 530 
 531 static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
 532 {
 533         struct efx_ef10_nic_data *nic_data = efx->nic_data;
 534         struct efx_ef10_vlan *vlan;
 535 
 536         WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
 537 
 538         list_for_each_entry(vlan, &nic_data->vlan_list, list) {
 539                 if (vlan->vid == vid)
 540                         return vlan;
 541         }
 542 
 543         return NULL;
 544 }
 545 
 546 static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
 547 {
 548         struct efx_ef10_nic_data *nic_data = efx->nic_data;
 549         struct efx_ef10_vlan *vlan;
 550         int rc;
 551 
 552         mutex_lock(&nic_data->vlan_lock);
 553 
 554         vlan = efx_ef10_find_vlan(efx, vid);
 555         if (vlan) {
 556                 /* We add VID 0 on init. 8021q adds it on module init
 557                  * for all interfaces with VLAN filtring feature.
 558                  */
 559                 if (vid == 0)
 560                         goto done_unlock;
 561                 netif_warn(efx, drv, efx->net_dev,
 562                            "VLAN %u already added\n", vid);
 563                 rc = -EALREADY;
 564                 goto fail_exist;
 565         }
 566 
 567         rc = -ENOMEM;
 568         vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
 569         if (!vlan)
 570                 goto fail_alloc;
 571 
 572         vlan->vid = vid;
 573 
 574         list_add_tail(&vlan->list, &nic_data->vlan_list);
 575 
 576         if (efx->filter_state) {
 577                 mutex_lock(&efx->mac_lock);
 578                 down_write(&efx->filter_sem);
 579                 rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
 580                 up_write(&efx->filter_sem);
 581                 mutex_unlock(&efx->mac_lock);
 582                 if (rc)
 583                         goto fail_filter_add_vlan;
 584         }
 585 
 586 done_unlock:
 587         mutex_unlock(&nic_data->vlan_lock);
 588         return 0;
 589 
 590 fail_filter_add_vlan:
 591         list_del(&vlan->list);
 592         kfree(vlan);
 593 fail_alloc:
 594 fail_exist:
 595         mutex_unlock(&nic_data->vlan_lock);
 596         return rc;
 597 }
 598 
 599 static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
 600                                        struct efx_ef10_vlan *vlan)
 601 {
 602         struct efx_ef10_nic_data *nic_data = efx->nic_data;
 603 
 604         WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
 605 
 606         if (efx->filter_state) {
 607                 down_write(&efx->filter_sem);
 608                 efx_ef10_filter_del_vlan(efx, vlan->vid);
 609                 up_write(&efx->filter_sem);
 610         }
 611 
 612         list_del(&vlan->list);
 613         kfree(vlan);
 614 }
 615 
 616 static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
 617 {
 618         struct efx_ef10_nic_data *nic_data = efx->nic_data;
 619         struct efx_ef10_vlan *vlan;
 620         int rc = 0;
 621 
 622         /* 8021q removes VID 0 on module unload for all interfaces
 623          * with VLAN filtering feature. We need to keep it to receive
 624          * untagged traffic.
 625          */
 626         if (vid == 0)
 627                 return 0;
 628 
 629         mutex_lock(&nic_data->vlan_lock);
 630 
 631         vlan = efx_ef10_find_vlan(efx, vid);
 632         if (!vlan) {
 633                 netif_err(efx, drv, efx->net_dev,
 634                           "VLAN %u to be deleted not found\n", vid);
 635                 rc = -ENOENT;
 636         } else {
 637                 efx_ef10_del_vlan_internal(efx, vlan);
 638         }
 639 
 640         mutex_unlock(&nic_data->vlan_lock);
 641 
 642         return rc;
 643 }
 644 
 645 static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
 646 {
 647         struct efx_ef10_nic_data *nic_data = efx->nic_data;
 648         struct efx_ef10_vlan *vlan, *next_vlan;
 649 
 650         mutex_lock(&nic_data->vlan_lock);
 651         list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
 652                 efx_ef10_del_vlan_internal(efx, vlan);
 653         mutex_unlock(&nic_data->vlan_lock);
 654 }
 655 
 656 static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
 657                    NULL);
 658 static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
 659 
 660 static int efx_ef10_probe(struct efx_nic *efx)
 661 {
 662         struct efx_ef10_nic_data *nic_data;
 663         int i, rc;
 664 
 665         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
 666         if (!nic_data)
 667                 return -ENOMEM;
 668         efx->nic_data = nic_data;
 669 
 670         /* we assume later that we can copy from this buffer in dwords */
 671         BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
 672 
 673         rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
 674                                   8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
 675         if (rc)
 676                 goto fail1;
 677 
 678         /* Get the MC's warm boot count.  In case it's rebooting right
 679          * now, be prepared to retry.
 680          */
 681         i = 0;
 682         for (;;) {
 683                 rc = efx_ef10_get_warm_boot_count(efx);
 684                 if (rc >= 0)
 685                         break;
 686                 if (++i == 5)
 687                         goto fail2;
 688                 ssleep(1);
 689         }
 690         nic_data->warm_boot_count = rc;
 691 
 692         efx->rss_context.context_id = EFX_EF10_RSS_CONTEXT_INVALID;
 693 
 694         nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
 695 
 696         /* In case we're recovering from a crash (kexec), we want to
 697          * cancel any outstanding request by the previous user of this
 698          * function.  We send a special message using the least
 699          * significant bits of the 'high' (doorbell) register.
 700          */
 701         _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
 702 
 703         rc = efx_mcdi_init(efx);
 704         if (rc)
 705                 goto fail2;
 706 
 707         mutex_init(&nic_data->udp_tunnels_lock);
 708 
 709         /* Reset (most) configuration for this function */
 710         rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
 711         if (rc)
 712                 goto fail3;
 713 
 714         /* Enable event logging */
 715         rc = efx_mcdi_log_ctrl(efx, true, false, 0);
 716         if (rc)
 717                 goto fail3;
 718 
 719         rc = device_create_file(&efx->pci_dev->dev,
 720                                 &dev_attr_link_control_flag);
 721         if (rc)
 722                 goto fail3;
 723 
 724         rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 725         if (rc)
 726                 goto fail4;
 727 
 728         rc = efx_ef10_get_pf_index(efx);
 729         if (rc)
 730                 goto fail5;
 731 
 732         rc = efx_ef10_init_datapath_caps(efx);
 733         if (rc < 0)
 734                 goto fail5;
 735 
 736         efx_ef10_read_licensed_features(efx);
 737 
 738         /* We can have one VI for each vi_stride-byte region.
 739          * However, until we use TX option descriptors we need two TX queues
 740          * per channel.
 741          */
 742         efx->max_channels = min_t(unsigned int,
 743                                   EFX_MAX_CHANNELS,
 744                                   efx_ef10_mem_map_size(efx) /
 745                                   (efx->vi_stride * EFX_TXQ_TYPES));
 746         efx->max_tx_channels = efx->max_channels;
 747         if (WARN_ON(efx->max_channels == 0)) {
 748                 rc = -EIO;
 749                 goto fail5;
 750         }
 751 
 752         efx->rx_packet_len_offset =
 753                 ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
 754 
 755         if (nic_data->datapath_caps &
 756             (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN))
 757                 efx->net_dev->hw_features |= NETIF_F_RXFCS;
 758 
 759         rc = efx_mcdi_port_get_number(efx);
 760         if (rc < 0)
 761                 goto fail5;
 762         efx->port_num = rc;
 763 
 764         rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
 765         if (rc)
 766                 goto fail5;
 767 
 768         rc = efx_ef10_get_timer_config(efx);
 769         if (rc < 0)
 770                 goto fail5;
 771 
 772         rc = efx_mcdi_mon_probe(efx);
 773         if (rc && rc != -EPERM)
 774                 goto fail5;
 775 
 776         efx_ptp_defer_probe_with_channel(efx);
 777 
 778 #ifdef CONFIG_SFC_SRIOV
 779         if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
 780                 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
 781                 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
 782 
 783                 efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
 784         } else
 785 #endif
 786                 ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
 787 
 788         INIT_LIST_HEAD(&nic_data->vlan_list);
 789         mutex_init(&nic_data->vlan_lock);
 790 
 791         /* Add unspecified VID to support VLAN filtering being disabled */
 792         rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
 793         if (rc)
 794                 goto fail_add_vid_unspec;
 795 
 796         /* If VLAN filtering is enabled, we need VID 0 to get untagged
 797          * traffic.  It is added automatically if 8021q module is loaded,
 798          * but we can't rely on it since module may be not loaded.
 799          */
 800         rc = efx_ef10_add_vlan(efx, 0);
 801         if (rc)
 802                 goto fail_add_vid_0;
 803 
 804         return 0;
 805 
 806 fail_add_vid_0:
 807         efx_ef10_cleanup_vlans(efx);
 808 fail_add_vid_unspec:
 809         mutex_destroy(&nic_data->vlan_lock);
 810         efx_ptp_remove(efx);
 811         efx_mcdi_mon_remove(efx);
 812 fail5:
 813         device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 814 fail4:
 815         device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
 816 fail3:
 817         efx_mcdi_detach(efx);
 818 
 819         mutex_lock(&nic_data->udp_tunnels_lock);
 820         memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
 821         (void)efx_ef10_set_udp_tnl_ports(efx, true);
 822         mutex_unlock(&nic_data->udp_tunnels_lock);
 823         mutex_destroy(&nic_data->udp_tunnels_lock);
 824 
 825         efx_mcdi_fini(efx);
 826 fail2:
 827         efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
 828 fail1:
 829         kfree(nic_data);
 830         efx->nic_data = NULL;
 831         return rc;
 832 }
 833 
 834 static int efx_ef10_free_vis(struct efx_nic *efx)
 835 {
 836         MCDI_DECLARE_BUF_ERR(outbuf);
 837         size_t outlen;
 838         int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
 839                                     outbuf, sizeof(outbuf), &outlen);
 840 
 841         /* -EALREADY means nothing to free, so ignore */
 842         if (rc == -EALREADY)
 843                 rc = 0;
 844         if (rc)
 845                 efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
 846                                        rc);
 847         return rc;
 848 }
 849 
 850 #ifdef EFX_USE_PIO
 851 
 852 static void efx_ef10_free_piobufs(struct efx_nic *efx)
 853 {
 854         struct efx_ef10_nic_data *nic_data = efx->nic_data;
 855         MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
 856         unsigned int i;
 857         int rc;
 858 
 859         BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
 860 
 861         for (i = 0; i < nic_data->n_piobufs; i++) {
 862                 MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
 863                                nic_data->piobuf_handle[i]);
 864                 rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
 865                                   NULL, 0, NULL);
 866                 WARN_ON(rc);
 867         }
 868 
 869         nic_data->n_piobufs = 0;
 870 }
 871 
 872 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
 873 {
 874         struct efx_ef10_nic_data *nic_data = efx->nic_data;
 875         MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
 876         unsigned int i;
 877         size_t outlen;
 878         int rc = 0;
 879 
 880         BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
 881 
 882         for (i = 0; i < n; i++) {
 883                 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
 884                                         outbuf, sizeof(outbuf), &outlen);
 885                 if (rc) {
 886                         /* Don't display the MC error if we didn't have space
 887                          * for a VF.
 888                          */
 889                         if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
 890                                 efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
 891                                                        0, outbuf, outlen, rc);
 892                         break;
 893                 }
 894                 if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
 895                         rc = -EIO;
 896                         break;
 897                 }
 898                 nic_data->piobuf_handle[i] =
 899                         MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
 900                 netif_dbg(efx, probe, efx->net_dev,
 901                           "allocated PIO buffer %u handle %x\n", i,
 902                           nic_data->piobuf_handle[i]);
 903         }
 904 
 905         nic_data->n_piobufs = i;
 906         if (rc)
 907                 efx_ef10_free_piobufs(efx);
 908         return rc;
 909 }
 910 
 911 static int efx_ef10_link_piobufs(struct efx_nic *efx)
 912 {
 913         struct efx_ef10_nic_data *nic_data = efx->nic_data;
 914         MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
 915         struct efx_channel *channel;
 916         struct efx_tx_queue *tx_queue;
 917         unsigned int offset, index;
 918         int rc;
 919 
 920         BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
 921         BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
 922 
 923         /* Link a buffer to each VI in the write-combining mapping */
 924         for (index = 0; index < nic_data->n_piobufs; ++index) {
 925                 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
 926                                nic_data->piobuf_handle[index]);
 927                 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
 928                                nic_data->pio_write_vi_base + index);
 929                 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
 930                                   inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
 931                                   NULL, 0, NULL);
 932                 if (rc) {
 933                         netif_err(efx, drv, efx->net_dev,
 934                                   "failed to link VI %u to PIO buffer %u (%d)\n",
 935                                   nic_data->pio_write_vi_base + index, index,
 936                                   rc);
 937                         goto fail;
 938                 }
 939                 netif_dbg(efx, probe, efx->net_dev,
 940                           "linked VI %u to PIO buffer %u\n",
 941                           nic_data->pio_write_vi_base + index, index);
 942         }
 943 
 944         /* Link a buffer to each TX queue */
 945         efx_for_each_channel(channel, efx) {
 946                 /* Extra channels, even those with TXQs (PTP), do not require
 947                  * PIO resources.
 948                  */
 949                 if (!channel->type->want_pio)
 950                         continue;
 951                 efx_for_each_channel_tx_queue(tx_queue, channel) {
 952                         /* We assign the PIO buffers to queues in
 953                          * reverse order to allow for the following
 954                          * special case.
 955                          */
 956                         offset = ((efx->tx_channel_offset + efx->n_tx_channels -
 957                                    tx_queue->channel->channel - 1) *
 958                                   efx_piobuf_size);
 959                         index = offset / nic_data->piobuf_size;
 960                         offset = offset % nic_data->piobuf_size;
 961 
 962                         /* When the host page size is 4K, the first
 963                          * host page in the WC mapping may be within
 964                          * the same VI page as the last TX queue.  We
 965                          * can only link one buffer to each VI.
 966                          */
 967                         if (tx_queue->queue == nic_data->pio_write_vi_base) {
 968                                 BUG_ON(index != 0);
 969                                 rc = 0;
 970                         } else {
 971                                 MCDI_SET_DWORD(inbuf,
 972                                                LINK_PIOBUF_IN_PIOBUF_HANDLE,
 973                                                nic_data->piobuf_handle[index]);
 974                                 MCDI_SET_DWORD(inbuf,
 975                                                LINK_PIOBUF_IN_TXQ_INSTANCE,
 976                                                tx_queue->queue);
 977                                 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
 978                                                   inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
 979                                                   NULL, 0, NULL);
 980                         }
 981 
 982                         if (rc) {
 983                                 /* This is non-fatal; the TX path just
 984                                  * won't use PIO for this queue
 985                                  */
 986                                 netif_err(efx, drv, efx->net_dev,
 987                                           "failed to link VI %u to PIO buffer %u (%d)\n",
 988                                           tx_queue->queue, index, rc);
 989                                 tx_queue->piobuf = NULL;
 990                         } else {
 991                                 tx_queue->piobuf =
 992                                         nic_data->pio_write_base +
 993                                         index * efx->vi_stride + offset;
 994                                 tx_queue->piobuf_offset = offset;
 995                                 netif_dbg(efx, probe, efx->net_dev,
 996                                           "linked VI %u to PIO buffer %u offset %x addr %p\n",
 997                                           tx_queue->queue, index,
 998                                           tx_queue->piobuf_offset,
 999                                           tx_queue->piobuf);
1000                         }
1001                 }
1002         }
1003 
1004         return 0;
1005 
1006 fail:
1007         /* inbuf was defined for MC_CMD_LINK_PIOBUF.  We can use the same
1008          * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
1009          */
1010         BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
1011         while (index--) {
1012                 MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
1013                                nic_data->pio_write_vi_base + index);
1014                 efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
1015                              inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
1016                              NULL, 0, NULL);
1017         }
1018         return rc;
1019 }
1020 
1021 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
1022 {
1023         struct efx_channel *channel;
1024         struct efx_tx_queue *tx_queue;
1025 
1026         /* All our existing PIO buffers went away */
1027         efx_for_each_channel(channel, efx)
1028                 efx_for_each_channel_tx_queue(tx_queue, channel)
1029                         tx_queue->piobuf = NULL;
1030 }
1031 
1032 #else /* !EFX_USE_PIO */
1033 
1034 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
1035 {
1036         return n == 0 ? 0 : -ENOBUFS;
1037 }
1038 
1039 static int efx_ef10_link_piobufs(struct efx_nic *efx)
1040 {
1041         return 0;
1042 }
1043 
1044 static void efx_ef10_free_piobufs(struct efx_nic *efx)
1045 {
1046 }
1047 
1048 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
1049 {
1050 }
1051 
1052 #endif /* EFX_USE_PIO */
1053 
1054 static void efx_ef10_remove(struct efx_nic *efx)
1055 {
1056         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1057         int rc;
1058 
1059 #ifdef CONFIG_SFC_SRIOV
1060         struct efx_ef10_nic_data *nic_data_pf;
1061         struct pci_dev *pci_dev_pf;
1062         struct efx_nic *efx_pf;
1063         struct ef10_vf *vf;
1064 
1065         if (efx->pci_dev->is_virtfn) {
1066                 pci_dev_pf = efx->pci_dev->physfn;
1067                 if (pci_dev_pf) {
1068                         efx_pf = pci_get_drvdata(pci_dev_pf);
1069                         nic_data_pf = efx_pf->nic_data;
1070                         vf = nic_data_pf->vf + nic_data->vf_index;
1071                         vf->efx = NULL;
1072                 } else
1073                         netif_info(efx, drv, efx->net_dev,
1074                                    "Could not get the PF id from VF\n");
1075         }
1076 #endif
1077 
1078         efx_ef10_cleanup_vlans(efx);
1079         mutex_destroy(&nic_data->vlan_lock);
1080 
1081         efx_ptp_remove(efx);
1082 
1083         efx_mcdi_mon_remove(efx);
1084 
1085         efx_ef10_rx_free_indir_table(efx);
1086 
1087         if (nic_data->wc_membase)
1088                 iounmap(nic_data->wc_membase);
1089 
1090         rc = efx_ef10_free_vis(efx);
1091         WARN_ON(rc != 0);
1092 
1093         if (!nic_data->must_restore_piobufs)
1094                 efx_ef10_free_piobufs(efx);
1095 
1096         device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
1097         device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
1098 
1099         efx_mcdi_detach(efx);
1100 
1101         memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
1102         mutex_lock(&nic_data->udp_tunnels_lock);
1103         (void)efx_ef10_set_udp_tnl_ports(efx, true);
1104         mutex_unlock(&nic_data->udp_tunnels_lock);
1105 
1106         mutex_destroy(&nic_data->udp_tunnels_lock);
1107 
1108         efx_mcdi_fini(efx);
1109         efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
1110         kfree(nic_data);
1111 }
1112 
1113 static int efx_ef10_probe_pf(struct efx_nic *efx)
1114 {
1115         return efx_ef10_probe(efx);
1116 }
1117 
1118 int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
1119                             u32 *port_flags, u32 *vadaptor_flags,
1120                             unsigned int *vlan_tags)
1121 {
1122         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1123         MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
1124         MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
1125         size_t outlen;
1126         int rc;
1127 
1128         if (nic_data->datapath_caps &
1129             (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
1130                 MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
1131                                port_id);
1132 
1133                 rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
1134                                   outbuf, sizeof(outbuf), &outlen);
1135                 if (rc)
1136                         return rc;
1137 
1138                 if (outlen < sizeof(outbuf)) {
1139                         rc = -EIO;
1140                         return rc;
1141                 }
1142         }
1143 
1144         if (port_flags)
1145                 *port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
1146         if (vadaptor_flags)
1147                 *vadaptor_flags =
1148                         MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
1149         if (vlan_tags)
1150                 *vlan_tags =
1151                         MCDI_DWORD(outbuf,
1152                                    VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1153 
1154         return 0;
1155 }
1156 
1157 int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1158 {
1159         MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1160 
1161         MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1162         return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1163                             NULL, 0, NULL);
1164 }
1165 
1166 int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1167 {
1168         MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1169 
1170         MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1171         return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1172                             NULL, 0, NULL);
1173 }
1174 
1175 int efx_ef10_vport_add_mac(struct efx_nic *efx,
1176                            unsigned int port_id, u8 *mac)
1177 {
1178         MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1179 
1180         MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1181         ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1182 
1183         return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1184                             sizeof(inbuf), NULL, 0, NULL);
1185 }
1186 
1187 int efx_ef10_vport_del_mac(struct efx_nic *efx,
1188                            unsigned int port_id, u8 *mac)
1189 {
1190         MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1191 
1192         MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1193         ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1194 
1195         return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1196                             sizeof(inbuf), NULL, 0, NULL);
1197 }
1198 
1199 #ifdef CONFIG_SFC_SRIOV
1200 static int efx_ef10_probe_vf(struct efx_nic *efx)
1201 {
1202         int rc;
1203         struct pci_dev *pci_dev_pf;
1204 
1205         /* If the parent PF has no VF data structure, it doesn't know about this
1206          * VF so fail probe.  The VF needs to be re-created.  This can happen
1207          * if the PF driver is unloaded while the VF is assigned to a guest.
1208          */
1209         pci_dev_pf = efx->pci_dev->physfn;
1210         if (pci_dev_pf) {
1211                 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1212                 struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1213 
1214                 if (!nic_data_pf->vf) {
1215                         netif_info(efx, drv, efx->net_dev,
1216                                    "The VF cannot link to its parent PF; "
1217                                    "please destroy and re-create the VF\n");
1218                         return -EBUSY;
1219                 }
1220         }
1221 
1222         rc = efx_ef10_probe(efx);
1223         if (rc)
1224                 return rc;
1225 
1226         rc = efx_ef10_get_vf_index(efx);
1227         if (rc)
1228                 goto fail;
1229 
1230         if (efx->pci_dev->is_virtfn) {
1231                 if (efx->pci_dev->physfn) {
1232                         struct efx_nic *efx_pf =
1233                                 pci_get_drvdata(efx->pci_dev->physfn);
1234                         struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1235                         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1236 
1237                         nic_data_p->vf[nic_data->vf_index].efx = efx;
1238                         nic_data_p->vf[nic_data->vf_index].pci_dev =
1239                                 efx->pci_dev;
1240                 } else
1241                         netif_info(efx, drv, efx->net_dev,
1242                                    "Could not get the PF id from VF\n");
1243         }
1244 
1245         return 0;
1246 
1247 fail:
1248         efx_ef10_remove(efx);
1249         return rc;
1250 }
1251 #else
1252 static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1253 {
1254         return 0;
1255 }
1256 #endif
1257 
1258 static int efx_ef10_alloc_vis(struct efx_nic *efx,
1259                               unsigned int min_vis, unsigned int max_vis)
1260 {
1261         MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
1262         MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
1263         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1264         size_t outlen;
1265         int rc;
1266 
1267         MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
1268         MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
1269         rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
1270                           outbuf, sizeof(outbuf), &outlen);
1271         if (rc != 0)
1272                 return rc;
1273 
1274         if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
1275                 return -EIO;
1276 
1277         netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
1278                   MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
1279 
1280         nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
1281         nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
1282         return 0;
1283 }
1284 
1285 /* Note that the failure path of this function does not free
1286  * resources, as this will be done by efx_ef10_remove().
1287  */
1288 static int efx_ef10_dimension_resources(struct efx_nic *efx)
1289 {
1290         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1291         unsigned int uc_mem_map_size, wc_mem_map_size;
1292         unsigned int min_vis = max(EFX_TXQ_TYPES,
1293                                    efx_separate_tx_channels ? 2 : 1);
1294         unsigned int channel_vis, pio_write_vi_base, max_vis;
1295         void __iomem *membase;
1296         int rc;
1297 
1298         channel_vis = max(efx->n_channels,
1299                           (efx->n_tx_channels + efx->n_extra_tx_channels) *
1300                           EFX_TXQ_TYPES);
1301 
1302 #ifdef EFX_USE_PIO
1303         /* Try to allocate PIO buffers if wanted and if the full
1304          * number of PIO buffers would be sufficient to allocate one
1305          * copy-buffer per TX channel.  Failure is non-fatal, as there
1306          * are only a small number of PIO buffers shared between all
1307          * functions of the controller.
1308          */
1309         if (efx_piobuf_size != 0 &&
1310             nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1311             efx->n_tx_channels) {
1312                 unsigned int n_piobufs =
1313                         DIV_ROUND_UP(efx->n_tx_channels,
1314                                      nic_data->piobuf_size / efx_piobuf_size);
1315 
1316                 rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1317                 if (rc == -ENOSPC)
1318                         netif_dbg(efx, probe, efx->net_dev,
1319                                   "out of PIO buffers; cannot allocate more\n");
1320                 else if (rc == -EPERM)
1321                         netif_dbg(efx, probe, efx->net_dev,
1322                                   "not permitted to allocate PIO buffers\n");
1323                 else if (rc)
1324                         netif_err(efx, probe, efx->net_dev,
1325                                   "failed to allocate PIO buffers (%d)\n", rc);
1326                 else
1327                         netif_dbg(efx, probe, efx->net_dev,
1328                                   "allocated %u PIO buffers\n", n_piobufs);
1329         }
1330 #else
1331         nic_data->n_piobufs = 0;
1332 #endif
1333 
1334         /* PIO buffers should be mapped with write-combining enabled,
1335          * and we want to make single UC and WC mappings rather than
1336          * several of each (in fact that's the only option if host
1337          * page size is >4K).  So we may allocate some extra VIs just
1338          * for writing PIO buffers through.
1339          *
1340          * The UC mapping contains (channel_vis - 1) complete VIs and the
1341          * first 4K of the next VI.  Then the WC mapping begins with
1342          * the remainder of this last VI.
1343          */
1344         uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride +
1345                                      ER_DZ_TX_PIOBUF);
1346         if (nic_data->n_piobufs) {
1347                 /* pio_write_vi_base rounds down to give the number of complete
1348                  * VIs inside the UC mapping.
1349                  */
1350                 pio_write_vi_base = uc_mem_map_size / efx->vi_stride;
1351                 wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1352                                                nic_data->n_piobufs) *
1353                                               efx->vi_stride) -
1354                                    uc_mem_map_size);
1355                 max_vis = pio_write_vi_base + nic_data->n_piobufs;
1356         } else {
1357                 pio_write_vi_base = 0;
1358                 wc_mem_map_size = 0;
1359                 max_vis = channel_vis;
1360         }
1361 
1362         /* In case the last attached driver failed to free VIs, do it now */
1363         rc = efx_ef10_free_vis(efx);
1364         if (rc != 0)
1365                 return rc;
1366 
1367         rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1368         if (rc != 0)
1369                 return rc;
1370 
1371         if (nic_data->n_allocated_vis < channel_vis) {
1372                 netif_info(efx, drv, efx->net_dev,
1373                            "Could not allocate enough VIs to satisfy RSS"
1374                            " requirements. Performance may not be optimal.\n");
1375                 /* We didn't get the VIs to populate our channels.
1376                  * We could keep what we got but then we'd have more
1377                  * interrupts than we need.
1378                  * Instead calculate new max_channels and restart
1379                  */
1380                 efx->max_channels = nic_data->n_allocated_vis;
1381                 efx->max_tx_channels =
1382                         nic_data->n_allocated_vis / EFX_TXQ_TYPES;
1383 
1384                 efx_ef10_free_vis(efx);
1385                 return -EAGAIN;
1386         }
1387 
1388         /* If we didn't get enough VIs to map all the PIO buffers, free the
1389          * PIO buffers
1390          */
1391         if (nic_data->n_piobufs &&
1392             nic_data->n_allocated_vis <
1393             pio_write_vi_base + nic_data->n_piobufs) {
1394                 netif_dbg(efx, probe, efx->net_dev,
1395                           "%u VIs are not sufficient to map %u PIO buffers\n",
1396                           nic_data->n_allocated_vis, nic_data->n_piobufs);
1397                 efx_ef10_free_piobufs(efx);
1398         }
1399 
1400         /* Shrink the original UC mapping of the memory BAR */
1401         membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
1402         if (!membase) {
1403                 netif_err(efx, probe, efx->net_dev,
1404                           "could not shrink memory BAR to %x\n",
1405                           uc_mem_map_size);
1406                 return -ENOMEM;
1407         }
1408         iounmap(efx->membase);
1409         efx->membase = membase;
1410 
1411         /* Set up the WC mapping if needed */
1412         if (wc_mem_map_size) {
1413                 nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1414                                                   uc_mem_map_size,
1415                                                   wc_mem_map_size);
1416                 if (!nic_data->wc_membase) {
1417                         netif_err(efx, probe, efx->net_dev,
1418                                   "could not allocate WC mapping of size %x\n",
1419                                   wc_mem_map_size);
1420                         return -ENOMEM;
1421                 }
1422                 nic_data->pio_write_vi_base = pio_write_vi_base;
1423                 nic_data->pio_write_base =
1424                         nic_data->wc_membase +
1425                         (pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF -
1426                          uc_mem_map_size);
1427 
1428                 rc = efx_ef10_link_piobufs(efx);
1429                 if (rc)
1430                         efx_ef10_free_piobufs(efx);
1431         }
1432 
1433         netif_dbg(efx, probe, efx->net_dev,
1434                   "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1435                   &efx->membase_phys, efx->membase, uc_mem_map_size,
1436                   nic_data->wc_membase, wc_mem_map_size);
1437 
1438         return 0;
1439 }
1440 
1441 static int efx_ef10_init_nic(struct efx_nic *efx)
1442 {
1443         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1444         int rc;
1445 
1446         if (nic_data->must_check_datapath_caps) {
1447                 rc = efx_ef10_init_datapath_caps(efx);
1448                 if (rc)
1449                         return rc;
1450                 nic_data->must_check_datapath_caps = false;
1451         }
1452 
1453         if (nic_data->must_realloc_vis) {
1454                 /* We cannot let the number of VIs change now */
1455                 rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1456                                         nic_data->n_allocated_vis);
1457                 if (rc)
1458                         return rc;
1459                 nic_data->must_realloc_vis = false;
1460         }
1461 
1462         if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1463                 rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1464                 if (rc == 0) {
1465                         rc = efx_ef10_link_piobufs(efx);
1466                         if (rc)
1467                                 efx_ef10_free_piobufs(efx);
1468                 }
1469 
1470                 /* Log an error on failure, but this is non-fatal.
1471                  * Permission errors are less important - we've presumably
1472                  * had the PIO buffer licence removed.
1473                  */
1474                 if (rc == -EPERM)
1475                         netif_dbg(efx, drv, efx->net_dev,
1476                                   "not permitted to restore PIO buffers\n");
1477                 else if (rc)
1478                         netif_err(efx, drv, efx->net_dev,
1479                                   "failed to restore PIO buffers (%d)\n", rc);
1480                 nic_data->must_restore_piobufs = false;
1481         }
1482 
1483         /* don't fail init if RSS setup doesn't work */
1484         rc = efx->type->rx_push_rss_config(efx, false,
1485                                            efx->rss_context.rx_indir_table, NULL);
1486 
1487         return 0;
1488 }
1489 
1490 static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
1491 {
1492         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1493 #ifdef CONFIG_SFC_SRIOV
1494         unsigned int i;
1495 #endif
1496 
1497         /* All our allocations have been reset */
1498         nic_data->must_realloc_vis = true;
1499         nic_data->must_restore_rss_contexts = true;
1500         nic_data->must_restore_filters = true;
1501         nic_data->must_restore_piobufs = true;
1502         efx_ef10_forget_old_piobufs(efx);
1503         efx->rss_context.context_id = EFX_EF10_RSS_CONTEXT_INVALID;
1504 
1505         /* Driver-created vswitches and vports must be re-created */
1506         nic_data->must_probe_vswitching = true;
1507         nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
1508 #ifdef CONFIG_SFC_SRIOV
1509         if (nic_data->vf)
1510                 for (i = 0; i < efx->vf_count; i++)
1511                         nic_data->vf[i].vport_id = 0;
1512 #endif
1513 }
1514 
1515 static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1516 {
1517         if (reason == RESET_TYPE_MC_FAILURE)
1518                 return RESET_TYPE_DATAPATH;
1519 
1520         return efx_mcdi_map_reset_reason(reason);
1521 }
1522 
1523 static int efx_ef10_map_reset_flags(u32 *flags)
1524 {
1525         enum {
1526                 EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1527                                    ETH_RESET_SHARED_SHIFT),
1528                 EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1529                                   ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1530                                   ETH_RESET_PHY | ETH_RESET_MGMT) <<
1531                                  ETH_RESET_SHARED_SHIFT)
1532         };
1533 
1534         /* We assume for now that our PCI function is permitted to
1535          * reset everything.
1536          */
1537 
1538         if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1539                 *flags &= ~EF10_RESET_MC;
1540                 return RESET_TYPE_WORLD;
1541         }
1542 
1543         if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1544                 *flags &= ~EF10_RESET_PORT;
1545                 return RESET_TYPE_ALL;
1546         }
1547 
1548         /* no invisible reset implemented */
1549 
1550         return -EINVAL;
1551 }
1552 
1553 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1554 {
1555         int rc = efx_mcdi_reset(efx, reset_type);
1556 
1557         /* Unprivileged functions return -EPERM, but need to return success
1558          * here so that the datapath is brought back up.
1559          */
1560         if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1561                 rc = 0;
1562 
1563         /* If it was a port reset, trigger reallocation of MC resources.
1564          * Note that on an MC reset nothing needs to be done now because we'll
1565          * detect the MC reset later and handle it then.
1566          * For an FLR, we never get an MC reset event, but the MC has reset all
1567          * resources assigned to us, so we have to trigger reallocation now.
1568          */
1569         if ((reset_type == RESET_TYPE_ALL ||
1570              reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1571                 efx_ef10_reset_mc_allocations(efx);
1572         return rc;
1573 }
1574 
1575 #define EF10_DMA_STAT(ext_name, mcdi_name)                      \
1576         [EF10_STAT_ ## ext_name] =                              \
1577         { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1578 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name)                \
1579         [EF10_STAT_ ## int_name] =                              \
1580         { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1581 #define EF10_OTHER_STAT(ext_name)                               \
1582         [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1583 #define GENERIC_SW_STAT(ext_name)                               \
1584         [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1585 
1586 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1587         EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1588         EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1589         EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1590         EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1591         EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1592         EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1593         EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1594         EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1595         EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1596         EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1597         EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1598         EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1599         EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1600         EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1601         EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1602         EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1603         EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1604         EF10_OTHER_STAT(port_rx_good_bytes),
1605         EF10_OTHER_STAT(port_rx_bad_bytes),
1606         EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1607         EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1608         EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1609         EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1610         EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1611         EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1612         EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1613         EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1614         EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1615         EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1616         EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1617         EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1618         EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1619         EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1620         EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1621         EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1622         EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1623         EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1624         EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1625         EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1626         EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1627         EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1628         GENERIC_SW_STAT(rx_nodesc_trunc),
1629         GENERIC_SW_STAT(rx_noskb_drops),
1630         EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1631         EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1632         EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1633         EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1634         EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1635         EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1636         EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1637         EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1638         EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1639         EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1640         EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1641         EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1642         EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1643         EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1644         EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1645         EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1646         EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1647         EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1648         EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1649         EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1650         EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1651         EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1652         EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1653         EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1654         EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1655         EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1656         EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1657         EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1658         EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1659         EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1660         EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS),
1661         EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS),
1662         EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0),
1663         EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1),
1664         EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2),
1665         EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3),
1666         EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK),
1667         EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS),
1668         EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL),
1669         EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL),
1670         EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL),
1671         EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL),
1672         EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL),
1673         EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL),
1674         EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL),
1675         EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK),
1676         EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK),
1677         EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK),
1678         EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS),
1679         EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK),
1680         EF10_DMA_STAT(ctpio_poison, CTPIO_POISON),
1681         EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE),
1682 };
1683 
1684 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |      \
1685                                (1ULL << EF10_STAT_port_tx_packets) |    \
1686                                (1ULL << EF10_STAT_port_tx_pause) |      \
1687                                (1ULL << EF10_STAT_port_tx_unicast) |    \
1688                                (1ULL << EF10_STAT_port_tx_multicast) |  \
1689                                (1ULL << EF10_STAT_port_tx_broadcast) |  \
1690                                (1ULL << EF10_STAT_port_rx_bytes) |      \
1691                                (1ULL <<                                 \
1692                                 EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1693                                (1ULL << EF10_STAT_port_rx_good_bytes) | \
1694                                (1ULL << EF10_STAT_port_rx_bad_bytes) |  \
1695                                (1ULL << EF10_STAT_port_rx_packets) |    \
1696                                (1ULL << EF10_STAT_port_rx_good) |       \
1697                                (1ULL << EF10_STAT_port_rx_bad) |        \
1698                                (1ULL << EF10_STAT_port_rx_pause) |      \
1699                                (1ULL << EF10_STAT_port_rx_control) |    \
1700                                (1ULL << EF10_STAT_port_rx_unicast) |    \
1701                                (1ULL << EF10_STAT_port_rx_multicast) |  \
1702                                (1ULL << EF10_STAT_port_rx_broadcast) |  \
1703                                (1ULL << EF10_STAT_port_rx_lt64) |       \
1704                                (1ULL << EF10_STAT_port_rx_64) |         \
1705                                (1ULL << EF10_STAT_port_rx_65_to_127) |  \
1706                                (1ULL << EF10_STAT_port_rx_128_to_255) | \
1707                                (1ULL << EF10_STAT_port_rx_256_to_511) | \
1708                                (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1709                                (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1710                                (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1711                                (1ULL << EF10_STAT_port_rx_gtjumbo) |    \
1712                                (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1713                                (1ULL << EF10_STAT_port_rx_overflow) |   \
1714                                (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1715                                (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
1716                                (1ULL << GENERIC_STAT_rx_noskb_drops))
1717 
1718 /* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1719  * For a 10G/40G switchable port we do not expose these because they might
1720  * not include all the packets they should.
1721  * On 8000 series NICs these statistics are always provided.
1722  */
1723 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |  \
1724                                  (1ULL << EF10_STAT_port_tx_lt64) |     \
1725                                  (1ULL << EF10_STAT_port_tx_64) |       \
1726                                  (1ULL << EF10_STAT_port_tx_65_to_127) |\
1727                                  (1ULL << EF10_STAT_port_tx_128_to_255) |\
1728                                  (1ULL << EF10_STAT_port_tx_256_to_511) |\
1729                                  (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1730                                  (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1731                                  (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1732 
1733 /* These statistics are only provided by the 40G MAC.  For a 10G/40G
1734  * switchable port we do expose these because the errors will otherwise
1735  * be silent.
1736  */
1737 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1738                                   (1ULL << EF10_STAT_port_rx_length_error))
1739 
1740 /* These statistics are only provided if the firmware supports the
1741  * capability PM_AND_RXDP_COUNTERS.
1742  */
1743 #define HUNT_PM_AND_RXDP_STAT_MASK (                                    \
1744         (1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |              \
1745         (1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |            \
1746         (1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |               \
1747         (1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |             \
1748         (1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |                      \
1749         (1ULL << EF10_STAT_port_rx_pm_discard_qbb) |                    \
1750         (1ULL << EF10_STAT_port_rx_pm_discard_mapping) |                \
1751         (1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |             \
1752         (1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |             \
1753         (1ULL << EF10_STAT_port_rx_dp_streaming_packets) |              \
1754         (1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |                      \
1755         (1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1756 
1757 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2,
1758  * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in
1759  * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1760  * These bits are in the second u64 of the raw mask.
1761  */
1762 #define EF10_FEC_STAT_MASK (                                            \
1763         (1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) |             \
1764         (1ULL << (EF10_STAT_fec_corrected_errors - 64)) |               \
1765         (1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) |        \
1766         (1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) |        \
1767         (1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) |        \
1768         (1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64)))
1769 
1770 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3,
1771  * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in
1772  * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1773  * These bits are in the second u64 of the raw mask.
1774  */
1775 #define EF10_CTPIO_STAT_MASK (                                          \
1776         (1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) |             \
1777         (1ULL << (EF10_STAT_ctpio_long_write_success - 64)) |           \
1778         (1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) |           \
1779         (1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) |                \
1780         (1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) |               \
1781         (1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) |                 \
1782         (1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) |            \
1783         (1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) |             \
1784         (1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) |              \
1785         (1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) |          \
1786         (1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) |         \
1787         (1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) |                \
1788         (1ULL << (EF10_STAT_ctpio_success - 64)) |                      \
1789         (1ULL << (EF10_STAT_ctpio_fallback - 64)) |                     \
1790         (1ULL << (EF10_STAT_ctpio_poison - 64)) |                       \
1791         (1ULL << (EF10_STAT_ctpio_erase - 64)))
1792 
1793 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1794 {
1795         u64 raw_mask = HUNT_COMMON_STAT_MASK;
1796         u32 port_caps = efx_mcdi_phy_get_caps(efx);
1797         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1798 
1799         if (!(efx->mcdi->fn_flags &
1800               1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1801                 return 0;
1802 
1803         if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1804                 raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1805                 /* 8000 series have everything even at 40G */
1806                 if (nic_data->datapath_caps2 &
1807                     (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1808                         raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1809         } else {
1810                 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1811         }
1812 
1813         if (nic_data->datapath_caps &
1814             (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1815                 raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1816 
1817         return raw_mask;
1818 }
1819 
1820 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1821 {
1822         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1823         u64 raw_mask[2];
1824 
1825         raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1826 
1827         /* Only show vadaptor stats when EVB capability is present */
1828         if (nic_data->datapath_caps &
1829             (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1830                 raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1831                 raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1;
1832         } else {
1833                 raw_mask[1] = 0;
1834         }
1835         /* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */
1836         if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2)
1837                 raw_mask[1] |= EF10_FEC_STAT_MASK;
1838 
1839         /* CTPIO stats appear in V3. Only show them on devices that actually
1840          * support CTPIO. Although this driver doesn't use CTPIO others might,
1841          * and we may be reporting the stats for the underlying port.
1842          */
1843         if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 &&
1844             (nic_data->datapath_caps2 &
1845              (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN)))
1846                 raw_mask[1] |= EF10_CTPIO_STAT_MASK;
1847 
1848 #if BITS_PER_LONG == 64
1849         BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1850         mask[0] = raw_mask[0];
1851         mask[1] = raw_mask[1];
1852 #else
1853         BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1854         mask[0] = raw_mask[0] & 0xffffffff;
1855         mask[1] = raw_mask[0] >> 32;
1856         mask[2] = raw_mask[1] & 0xffffffff;
1857 #endif
1858 }
1859 
1860 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1861 {
1862         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1863 
1864         efx_ef10_get_stat_mask(efx, mask);
1865         return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1866                                       mask, names);
1867 }
1868 
1869 static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1870                                            struct rtnl_link_stats64 *core_stats)
1871 {
1872         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1873         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1874         u64 *stats = nic_data->stats;
1875         size_t stats_count = 0, index;
1876 
1877         efx_ef10_get_stat_mask(efx, mask);
1878 
1879         if (full_stats) {
1880                 for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1881                         if (efx_ef10_stat_desc[index].name) {
1882                                 *full_stats++ = stats[index];
1883                                 ++stats_count;
1884                         }
1885                 }
1886         }
1887 
1888         if (!core_stats)
1889                 return stats_count;
1890 
1891         if (nic_data->datapath_caps &
1892                         1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1893                 /* Use vadaptor stats. */
1894                 core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1895                                          stats[EF10_STAT_rx_multicast] +
1896                                          stats[EF10_STAT_rx_broadcast];
1897                 core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1898                                          stats[EF10_STAT_tx_multicast] +
1899                                          stats[EF10_STAT_tx_broadcast];
1900                 core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1901                                        stats[EF10_STAT_rx_multicast_bytes] +
1902                                        stats[EF10_STAT_rx_broadcast_bytes];
1903                 core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1904                                        stats[EF10_STAT_tx_multicast_bytes] +
1905                                        stats[EF10_STAT_tx_broadcast_bytes];
1906                 core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1907                                          stats[GENERIC_STAT_rx_noskb_drops];
1908                 core_stats->multicast = stats[EF10_STAT_rx_multicast];
1909                 core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1910                 core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1911                 core_stats->rx_errors = core_stats->rx_crc_errors;
1912                 core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1913         } else {
1914                 /* Use port stats. */
1915                 core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1916                 core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1917                 core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1918                 core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1919                 core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1920                                          stats[GENERIC_STAT_rx_nodesc_trunc] +
1921                                          stats[GENERIC_STAT_rx_noskb_drops];
1922                 core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1923                 core_stats->rx_length_errors =
1924                                 stats[EF10_STAT_port_rx_gtjumbo] +
1925                                 stats[EF10_STAT_port_rx_length_error];
1926                 core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1927                 core_stats->rx_frame_errors =
1928                                 stats[EF10_STAT_port_rx_align_error];
1929                 core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1930                 core_stats->rx_errors = (core_stats->rx_length_errors +
1931                                          core_stats->rx_crc_errors +
1932                                          core_stats->rx_frame_errors);
1933         }
1934 
1935         return stats_count;
1936 }
1937 
1938 static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx)
1939 {
1940         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1941         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1942         __le64 generation_start, generation_end;
1943         u64 *stats = nic_data->stats;
1944         __le64 *dma_stats;
1945 
1946         efx_ef10_get_stat_mask(efx, mask);
1947 
1948         dma_stats = efx->stats_buffer.addr;
1949 
1950         generation_end = dma_stats[efx->num_mac_stats - 1];
1951         if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
1952                 return 0;
1953         rmb();
1954         efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1955                              stats, efx->stats_buffer.addr, false);
1956         rmb();
1957         generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1958         if (generation_end != generation_start)
1959                 return -EAGAIN;
1960 
1961         /* Update derived statistics */
1962         efx_nic_fix_nodesc_drop_stat(efx,
1963                                      &stats[EF10_STAT_port_rx_nodesc_drops]);
1964         stats[EF10_STAT_port_rx_good_bytes] =
1965                 stats[EF10_STAT_port_rx_bytes] -
1966                 stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1967         efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1968                              stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1969         efx_update_sw_stats(efx, stats);
1970         return 0;
1971 }
1972 
1973 
1974 static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1975                                        struct rtnl_link_stats64 *core_stats)
1976 {
1977         int retry;
1978 
1979         /* If we're unlucky enough to read statistics during the DMA, wait
1980          * up to 10ms for it to finish (typically takes <500us)
1981          */
1982         for (retry = 0; retry < 100; ++retry) {
1983                 if (efx_ef10_try_update_nic_stats_pf(efx) == 0)
1984                         break;
1985                 udelay(100);
1986         }
1987 
1988         return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1989 }
1990 
1991 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1992 {
1993         MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1994         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1995         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1996         __le64 generation_start, generation_end;
1997         u64 *stats = nic_data->stats;
1998         u32 dma_len = efx->num_mac_stats * sizeof(u64);
1999         struct efx_buffer stats_buf;
2000         __le64 *dma_stats;
2001         int rc;
2002 
2003         spin_unlock_bh(&efx->stats_lock);
2004 
2005         if (in_interrupt()) {
2006                 /* If in atomic context, cannot update stats.  Just update the
2007                  * software stats and return so the caller can continue.
2008                  */
2009                 spin_lock_bh(&efx->stats_lock);
2010                 efx_update_sw_stats(efx, stats);
2011                 return 0;
2012         }
2013 
2014         efx_ef10_get_stat_mask(efx, mask);
2015 
2016         rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
2017         if (rc) {
2018                 spin_lock_bh(&efx->stats_lock);
2019                 return rc;
2020         }
2021 
2022         dma_stats = stats_buf.addr;
2023         dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID;
2024 
2025         MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
2026         MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
2027                               MAC_STATS_IN_DMA, 1);
2028         MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
2029         MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
2030 
2031         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
2032                                 NULL, 0, NULL);
2033         spin_lock_bh(&efx->stats_lock);
2034         if (rc) {
2035                 /* Expect ENOENT if DMA queues have not been set up */
2036                 if (rc != -ENOENT || atomic_read(&efx->active_queues))
2037                         efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
2038                                                sizeof(inbuf), NULL, 0, rc);
2039                 goto out;
2040         }
2041 
2042         generation_end = dma_stats[efx->num_mac_stats - 1];
2043         if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
2044                 WARN_ON_ONCE(1);
2045                 goto out;
2046         }
2047         rmb();
2048         efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
2049                              stats, stats_buf.addr, false);
2050         rmb();
2051         generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
2052         if (generation_end != generation_start) {
2053                 rc = -EAGAIN;
2054                 goto out;
2055         }
2056 
2057         efx_update_sw_stats(efx, stats);
2058 out:
2059         efx_nic_free_buffer(efx, &stats_buf);
2060         return rc;
2061 }
2062 
2063 static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
2064                                        struct rtnl_link_stats64 *core_stats)
2065 {
2066         if (efx_ef10_try_update_nic_stats_vf(efx))
2067                 return 0;
2068 
2069         return efx_ef10_update_stats_common(efx, full_stats, core_stats);
2070 }
2071 
2072 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
2073 {
2074         struct efx_nic *efx = channel->efx;
2075         unsigned int mode, usecs;
2076         efx_dword_t timer_cmd;
2077 
2078         if (channel->irq_moderation_us) {
2079                 mode = 3;
2080                 usecs = channel->irq_moderation_us;
2081         } else {
2082                 mode = 0;
2083                 usecs = 0;
2084         }
2085 
2086         if (EFX_EF10_WORKAROUND_61265(efx)) {
2087                 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
2088                 unsigned int ns = usecs * 1000;
2089 
2090                 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
2091                                channel->channel);
2092                 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
2093                 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
2094                 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
2095 
2096                 efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
2097                                    inbuf, sizeof(inbuf), 0, NULL, 0);
2098         } else if (EFX_EF10_WORKAROUND_35388(efx)) {
2099                 unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2100 
2101                 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
2102                                      EFE_DD_EVQ_IND_TIMER_FLAGS,
2103                                      ERF_DD_EVQ_IND_TIMER_MODE, mode,
2104                                      ERF_DD_EVQ_IND_TIMER_VAL, ticks);
2105                 efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
2106                                 channel->channel);
2107         } else {
2108                 unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2109 
2110                 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
2111                                      ERF_DZ_TC_TIMER_VAL, ticks,
2112                                      ERF_FZ_TC_TMR_REL_VAL, ticks);
2113                 efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
2114                                 channel->channel);
2115         }
2116 }
2117 
2118 static void efx_ef10_get_wol_vf(struct efx_nic *efx,
2119                                 struct ethtool_wolinfo *wol) {}
2120 
2121 static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
2122 {
2123         return -EOPNOTSUPP;
2124 }
2125 
2126 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2127 {
2128         wol->supported = 0;
2129         wol->wolopts = 0;
2130         memset(&wol->sopass, 0, sizeof(wol->sopass));
2131 }
2132 
2133 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
2134 {
2135         if (type != 0)
2136                 return -EINVAL;
2137         return 0;
2138 }
2139 
2140 static void efx_ef10_mcdi_request(struct efx_nic *efx,
2141                                   const efx_dword_t *hdr, size_t hdr_len,
2142                                   const efx_dword_t *sdu, size_t sdu_len)
2143 {
2144         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2145         u8 *pdu = nic_data->mcdi_buf.addr;
2146 
2147         memcpy(pdu, hdr, hdr_len);
2148         memcpy(pdu + hdr_len, sdu, sdu_len);
2149         wmb();
2150 
2151         /* The hardware provides 'low' and 'high' (doorbell) registers
2152          * for passing the 64-bit address of an MCDI request to
2153          * firmware.  However the dwords are swapped by firmware.  The
2154          * least significant bits of the doorbell are then 0 for all
2155          * MCDI requests due to alignment.
2156          */
2157         _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
2158                     ER_DZ_MC_DB_LWRD);
2159         _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
2160                     ER_DZ_MC_DB_HWRD);
2161 }
2162 
2163 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
2164 {
2165         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2166         const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
2167 
2168         rmb();
2169         return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
2170 }
2171 
2172 static void
2173 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
2174                             size_t offset, size_t outlen)
2175 {
2176         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2177         const u8 *pdu = nic_data->mcdi_buf.addr;
2178 
2179         memcpy(outbuf, pdu + offset, outlen);
2180 }
2181 
2182 static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
2183 {
2184         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2185 
2186         /* All our allocations have been reset */
2187         efx_ef10_reset_mc_allocations(efx);
2188 
2189         /* The datapath firmware might have been changed */
2190         nic_data->must_check_datapath_caps = true;
2191 
2192         /* MAC statistics have been cleared on the NIC; clear the local
2193          * statistic that we update with efx_update_diff_stat().
2194          */
2195         nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
2196 }
2197 
2198 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
2199 {
2200         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2201         int rc;
2202 
2203         rc = efx_ef10_get_warm_boot_count(efx);
2204         if (rc < 0) {
2205                 /* The firmware is presumably in the process of
2206                  * rebooting.  However, we are supposed to report each
2207                  * reboot just once, so we must only do that once we
2208                  * can read and store the updated warm boot count.
2209                  */
2210                 return 0;
2211         }
2212 
2213         if (rc == nic_data->warm_boot_count)
2214                 return 0;
2215 
2216         nic_data->warm_boot_count = rc;
2217         efx_ef10_mcdi_reboot_detected(efx);
2218 
2219         return -EIO;
2220 }
2221 
2222 /* Handle an MSI interrupt
2223  *
2224  * Handle an MSI hardware interrupt.  This routine schedules event
2225  * queue processing.  No interrupt acknowledgement cycle is necessary.
2226  * Also, we never need to check that the interrupt is for us, since
2227  * MSI interrupts cannot be shared.
2228  */
2229 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2230 {
2231         struct efx_msi_context *context = dev_id;
2232         struct efx_nic *efx = context->efx;
2233 
2234         netif_vdbg(efx, intr, efx->net_dev,
2235                    "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2236 
2237         if (likely(READ_ONCE(efx->irq_soft_enabled))) {
2238                 /* Note test interrupts */
2239                 if (context->index == efx->irq_level)
2240                         efx->last_irq_cpu = raw_smp_processor_id();
2241 
2242                 /* Schedule processing of the channel */
2243                 efx_schedule_channel_irq(efx->channel[context->index]);
2244         }
2245 
2246         return IRQ_HANDLED;
2247 }
2248 
2249 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2250 {
2251         struct efx_nic *efx = dev_id;
2252         bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
2253         struct efx_channel *channel;
2254         efx_dword_t reg;
2255         u32 queues;
2256 
2257         /* Read the ISR which also ACKs the interrupts */
2258         efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
2259         queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2260 
2261         if (queues == 0)
2262                 return IRQ_NONE;
2263 
2264         if (likely(soft_enabled)) {
2265                 /* Note test interrupts */
2266                 if (queues & (1U << efx->irq_level))
2267                         efx->last_irq_cpu = raw_smp_processor_id();
2268 
2269                 efx_for_each_channel(channel, efx) {
2270                         if (queues & 1)
2271                                 efx_schedule_channel_irq(channel);
2272                         queues >>= 1;
2273                 }
2274         }
2275 
2276         netif_vdbg(efx, intr, efx->net_dev,
2277                    "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2278                    irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2279 
2280         return IRQ_HANDLED;
2281 }
2282 
2283 static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2284 {
2285         MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2286 
2287         if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2288                                     NULL) == 0)
2289                 return -ENOTSUPP;
2290 
2291         BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2292 
2293         MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2294         return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2295                             inbuf, sizeof(inbuf), NULL, 0, NULL);
2296 }
2297 
2298 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2299 {
2300         return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
2301                                     (tx_queue->ptr_mask + 1) *
2302                                     sizeof(efx_qword_t),
2303                                     GFP_KERNEL);
2304 }
2305 
2306 /* This writes to the TX_DESC_WPTR and also pushes data */
2307 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2308                                          const efx_qword_t *txd)
2309 {
2310         unsigned int write_ptr;
2311         efx_oword_t reg;
2312 
2313         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2314         EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2315         reg.qword[0] = *txd;
2316         efx_writeo_page(tx_queue->efx, &reg,
2317                         ER_DZ_TX_DESC_UPD, tx_queue->queue);
2318 }
2319 
2320 /* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2321  */
2322 static int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue,
2323                                 struct sk_buff *skb,
2324                                 bool *data_mapped)
2325 {
2326         struct efx_tx_buffer *buffer;
2327         struct tcphdr *tcp;
2328         struct iphdr *ip;
2329 
2330         u16 ipv4_id;
2331         u32 seqnum;
2332         u32 mss;
2333 
2334         EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2335 
2336         mss = skb_shinfo(skb)->gso_size;
2337 
2338         if (unlikely(mss < 4)) {
2339                 WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2340                 return -EINVAL;
2341         }
2342 
2343         ip = ip_hdr(skb);
2344         if (ip->version == 4) {
2345                 /* Modify IPv4 header if needed. */
2346                 ip->tot_len = 0;
2347                 ip->check = 0;
2348                 ipv4_id = ntohs(ip->id);
2349         } else {
2350                 /* Modify IPv6 header if needed. */
2351                 struct ipv6hdr *ipv6 = ipv6_hdr(skb);
2352 
2353                 ipv6->payload_len = 0;
2354                 ipv4_id = 0;
2355         }
2356 
2357         tcp = tcp_hdr(skb);
2358         seqnum = ntohl(tcp->seq);
2359 
2360         buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2361 
2362         buffer->flags = EFX_TX_BUF_OPTION;
2363         buffer->len = 0;
2364         buffer->unmap_len = 0;
2365         EFX_POPULATE_QWORD_5(buffer->option,
2366                         ESF_DZ_TX_DESC_IS_OPT, 1,
2367                         ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2368                         ESF_DZ_TX_TSO_OPTION_TYPE,
2369                         ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2370                         ESF_DZ_TX_TSO_IP_ID, ipv4_id,
2371                         ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2372                         );
2373         ++tx_queue->insert_count;
2374 
2375         buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2376 
2377         buffer->flags = EFX_TX_BUF_OPTION;
2378         buffer->len = 0;
2379         buffer->unmap_len = 0;
2380         EFX_POPULATE_QWORD_4(buffer->option,
2381                         ESF_DZ_TX_DESC_IS_OPT, 1,
2382                         ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2383                         ESF_DZ_TX_TSO_OPTION_TYPE,
2384                         ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
2385                         ESF_DZ_TX_TSO_TCP_MSS, mss
2386                         );
2387         ++tx_queue->insert_count;
2388 
2389         return 0;
2390 }
2391 
2392 static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2393 {
2394         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2395         u32 tso_versions = 0;
2396 
2397         if (nic_data->datapath_caps &
2398             (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2399                 tso_versions |= BIT(1);
2400         if (nic_data->datapath_caps2 &
2401             (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2402                 tso_versions |= BIT(2);
2403         return tso_versions;
2404 }
2405 
2406 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2407 {
2408         MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
2409                                                        EFX_BUF_SIZE));
2410         bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
2411         size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
2412         struct efx_channel *channel = tx_queue->channel;
2413         struct efx_nic *efx = tx_queue->efx;
2414         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2415         bool tso_v2 = false;
2416         size_t inlen;
2417         dma_addr_t dma_addr;
2418         efx_qword_t *txd;
2419         int rc;
2420         int i;
2421         BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN != 0);
2422 
2423         /* Only attempt to enable TX timestamping if we have the license for it,
2424          * otherwise TXQ init will fail
2425          */
2426         if (!(nic_data->licensed_features &
2427               (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) {
2428                 tx_queue->timestamping = false;
2429                 /* Disable sync events on this channel. */
2430                 if (efx->type->ptp_set_ts_sync_events)
2431                         efx->type->ptp_set_ts_sync_events(efx, false, false);
2432         }
2433 
2434         /* TSOv2 is a limited resource that can only be configured on a limited
2435          * number of queues. TSO without checksum offload is not really a thing,
2436          * so we only enable it for those queues.
2437          * TSOv2 cannot be used with Hardware timestamping.
2438          */
2439         if (csum_offload && (nic_data->datapath_caps2 &
2440                         (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN)) &&
2441             !tx_queue->timestamping) {
2442                 tso_v2 = true;
2443                 netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2444                                 channel->channel);
2445         }
2446 
2447         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
2448         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
2449         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
2450         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
2451         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
2452         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, nic_data->vport_id);
2453 
2454         dma_addr = tx_queue->txd.buf.dma_addr;
2455 
2456         netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
2457                   tx_queue->queue, entries, (u64)dma_addr);
2458 
2459         for (i = 0; i < entries; ++i) {
2460                 MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
2461                 dma_addr += EFX_BUF_SIZE;
2462         }
2463 
2464         inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
2465 
2466         do {
2467                 MCDI_POPULATE_DWORD_4(inbuf, INIT_TXQ_IN_FLAGS,
2468                                 /* This flag was removed from mcdi_pcol.h for
2469                                  * the non-_EXT version of INIT_TXQ.  However,
2470                                  * firmware still honours it.
2471                                  */
2472                                 INIT_TXQ_EXT_IN_FLAG_TSOV2_EN, tso_v2,
2473                                 INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
2474                                 INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload,
2475                                 INIT_TXQ_EXT_IN_FLAG_TIMESTAMP,
2476                                                 tx_queue->timestamping);
2477 
2478                 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
2479                                         NULL, 0, NULL);
2480                 if (rc == -ENOSPC && tso_v2) {
2481                         /* Retry without TSOv2 if we're short on contexts. */
2482                         tso_v2 = false;
2483                         netif_warn(efx, probe, efx->net_dev,
2484                                    "TSOv2 context not available to segment in hardware. TCP performance may be reduced.\n");
2485                 } else if (rc) {
2486                         efx_mcdi_display_error(efx, MC_CMD_INIT_TXQ,
2487                                                MC_CMD_INIT_TXQ_EXT_IN_LEN,
2488                                                NULL, 0, rc);
2489                         goto fail;
2490                 }
2491         } while (rc);
2492 
2493         /* A previous user of this TX queue might have set us up the
2494          * bomb by writing a descriptor to the TX push collector but
2495          * not the doorbell.  (Each collector belongs to a port, not a
2496          * queue or function, so cannot easily be reset.)  We must
2497          * attempt to push a no-op descriptor in its place.
2498          */
2499         tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2500         tx_queue->insert_count = 1;
2501         txd = efx_tx_desc(tx_queue, 0);
2502         EFX_POPULATE_QWORD_5(*txd,
2503                              ESF_DZ_TX_DESC_IS_OPT, true,
2504                              ESF_DZ_TX_OPTION_TYPE,
2505                              ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2506                              ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2507                              ESF_DZ_TX_OPTION_IP_CSUM, csum_offload,
2508                              ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping);
2509         tx_queue->write_count = 1;
2510 
2511         if (tso_v2) {
2512                 tx_queue->handle_tso = efx_ef10_tx_tso_desc;
2513                 tx_queue->tso_version = 2;
2514         } else if (nic_data->datapath_caps &
2515                         (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
2516                 tx_queue->tso_version = 1;
2517         }
2518 
2519         wmb();
2520         efx_ef10_push_tx_desc(tx_queue, txd);
2521 
2522         return;
2523 
2524 fail:
2525         netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2526                     tx_queue->queue);
2527 }
2528 
2529 static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
2530 {
2531         MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
2532         MCDI_DECLARE_BUF_ERR(outbuf);
2533         struct efx_nic *efx = tx_queue->efx;
2534         size_t outlen;
2535         int rc;
2536 
2537         MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
2538                        tx_queue->queue);
2539 
2540         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
2541                           outbuf, sizeof(outbuf), &outlen);
2542 
2543         if (rc && rc != -EALREADY)
2544                 goto fail;
2545 
2546         return;
2547 
2548 fail:
2549         efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
2550                                outbuf, outlen, rc);
2551 }
2552 
2553 static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
2554 {
2555         efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
2556 }
2557 
2558 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2559 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2560 {
2561         unsigned int write_ptr;
2562         efx_dword_t reg;
2563 
2564         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2565         EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2566         efx_writed_page(tx_queue->efx, &reg,
2567                         ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2568 }
2569 
2570 #define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2571 
2572 static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2573                                           dma_addr_t dma_addr, unsigned int len)
2574 {
2575         if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2576                 /* If we need to break across multiple descriptors we should
2577                  * stop at a page boundary. This assumes the length limit is
2578                  * greater than the page size.
2579                  */
2580                 dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2581 
2582                 BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2583                 len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2584         }
2585 
2586         return len;
2587 }
2588 
2589 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2590 {
2591         unsigned int old_write_count = tx_queue->write_count;
2592         struct efx_tx_buffer *buffer;
2593         unsigned int write_ptr;
2594         efx_qword_t *txd;
2595 
2596         tx_queue->xmit_more_available = false;
2597         if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2598                 return;
2599 
2600         do {
2601                 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2602                 buffer = &tx_queue->buffer[write_ptr];
2603                 txd = efx_tx_desc(tx_queue, write_ptr);
2604                 ++tx_queue->write_count;
2605 
2606                 /* Create TX descriptor ring entry */
2607                 if (buffer->flags & EFX_TX_BUF_OPTION) {
2608                         *txd = buffer->option;
2609                         if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
2610                                 /* PIO descriptor */
2611                                 tx_queue->packet_write_count = tx_queue->write_count;
2612                 } else {
2613                         tx_queue->packet_write_count = tx_queue->write_count;
2614                         BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2615                         EFX_POPULATE_QWORD_3(
2616                                 *txd,
2617                                 ESF_DZ_TX_KER_CONT,
2618                                 buffer->flags & EFX_TX_BUF_CONT,
2619                                 ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2620                                 ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2621                 }
2622         } while (tx_queue->write_count != tx_queue->insert_count);
2623 
2624         wmb(); /* Ensure descriptors are written before they are fetched */
2625 
2626         if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2627                 txd = efx_tx_desc(tx_queue,
2628                                   old_write_count & tx_queue->ptr_mask);
2629                 efx_ef10_push_tx_desc(tx_queue, txd);
2630                 ++tx_queue->pushes;
2631         } else {
2632                 efx_ef10_notify_tx_desc(tx_queue);
2633         }
2634 }
2635 
2636 #define RSS_MODE_HASH_ADDRS     (1 << RSS_MODE_HASH_SRC_ADDR_LBN |\
2637                                  1 << RSS_MODE_HASH_DST_ADDR_LBN)
2638 #define RSS_MODE_HASH_PORTS     (1 << RSS_MODE_HASH_SRC_PORT_LBN |\
2639                                  1 << RSS_MODE_HASH_DST_PORT_LBN)
2640 #define RSS_CONTEXT_FLAGS_DEFAULT       (1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV4_EN_LBN |\
2641                                          1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV4_EN_LBN |\
2642                                          1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV6_EN_LBN |\
2643                                          1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV6_EN_LBN |\
2644                                          (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV4_RSS_MODE_LBN |\
2645                                          RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN |\
2646                                          RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV4_RSS_MODE_LBN |\
2647                                          (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV6_RSS_MODE_LBN |\
2648                                          RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN |\
2649                                          RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV6_RSS_MODE_LBN)
2650 
2651 static int efx_ef10_get_rss_flags(struct efx_nic *efx, u32 context, u32 *flags)
2652 {
2653         /* Firmware had a bug (sfc bug 61952) where it would not actually
2654          * fill in the flags field in the response to MC_CMD_RSS_CONTEXT_GET_FLAGS.
2655          * This meant that it would always contain whatever was previously
2656          * in the MCDI buffer.  Fortunately, all firmware versions with
2657          * this bug have the same default flags value for a newly-allocated
2658          * RSS context, and the only time we want to get the flags is just
2659          * after allocating.  Moreover, the response has a 32-bit hole
2660          * where the context ID would be in the request, so we can use an
2661          * overlength buffer in the request and pre-fill the flags field
2662          * with what we believe the default to be.  Thus if the firmware
2663          * has the bug, it will leave our pre-filled value in the flags
2664          * field of the response, and we will get the right answer.
2665          *
2666          * However, this does mean that this function should NOT be used if
2667          * the RSS context flags might not be their defaults - it is ONLY
2668          * reliably correct for a newly-allocated RSS context.
2669          */
2670         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN);
2671         MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN);
2672         size_t outlen;
2673         int rc;
2674 
2675         /* Check we have a hole for the context ID */
2676         BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_FLAGS_IN_LEN != MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_FLAGS_OFST);
2677         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_IN_RSS_CONTEXT_ID, context);
2678         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS,
2679                        RSS_CONTEXT_FLAGS_DEFAULT);
2680         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_FLAGS, inbuf,
2681                           sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
2682         if (rc == 0) {
2683                 if (outlen < MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN)
2684                         rc = -EIO;
2685                 else
2686                         *flags = MCDI_DWORD(outbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS);
2687         }
2688         return rc;
2689 }
2690 
2691 /* Attempt to enable 4-tuple UDP hashing on the specified RSS context.
2692  * If we fail, we just leave the RSS context at its default hash settings,
2693  * which is safe but may slightly reduce performance.
2694  * Defaults are 4-tuple for TCP and 2-tuple for UDP and other-IP, so we
2695  * just need to set the UDP ports flags (for both IP versions).
2696  */
2697 static void efx_ef10_set_rss_flags(struct efx_nic *efx,
2698                                    struct efx_rss_context *ctx)
2699 {
2700         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_LEN);
2701         u32 flags;
2702 
2703         BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_SET_FLAGS_OUT_LEN != 0);
2704 
2705         if (efx_ef10_get_rss_flags(efx, ctx->context_id, &flags) != 0)
2706                 return;
2707         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_RSS_CONTEXT_ID,
2708                        ctx->context_id);
2709         flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN;
2710         flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN;
2711         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_FLAGS, flags);
2712         if (!efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_FLAGS, inbuf, sizeof(inbuf),
2713                           NULL, 0, NULL))
2714                 /* Succeeded, so UDP 4-tuple is now enabled */
2715                 ctx->rx_hash_udp_4tuple = true;
2716 }
2717 
2718 static int efx_ef10_alloc_rss_context(struct efx_nic *efx, bool exclusive,
2719                                       struct efx_rss_context *ctx,
2720                                       unsigned *context_size)
2721 {
2722         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
2723         MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
2724         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2725         size_t outlen;
2726         int rc;
2727         u32 alloc_type = exclusive ?
2728                                 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE :
2729                                 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED;
2730         unsigned rss_spread = exclusive ?
2731                                 efx->rss_spread :
2732                                 min(rounddown_pow_of_two(efx->rss_spread),
2733                                     EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE);
2734 
2735         if (!exclusive && rss_spread == 1) {
2736                 ctx->context_id = EFX_EF10_RSS_CONTEXT_INVALID;
2737                 if (context_size)
2738                         *context_size = 1;
2739                 return 0;
2740         }
2741 
2742         if (nic_data->datapath_caps &
2743             1 << MC_CMD_GET_CAPABILITIES_OUT_RX_RSS_LIMITED_LBN)
2744                 return -EOPNOTSUPP;
2745 
2746         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
2747                        nic_data->vport_id);
2748         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE, alloc_type);
2749         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, rss_spread);
2750 
2751         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
2752                 outbuf, sizeof(outbuf), &outlen);
2753         if (rc != 0)
2754                 return rc;
2755 
2756         if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
2757                 return -EIO;
2758 
2759         ctx->context_id = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
2760 
2761         if (context_size)
2762                 *context_size = rss_spread;
2763 
2764         if (nic_data->datapath_caps &
2765             1 << MC_CMD_GET_CAPABILITIES_OUT_ADDITIONAL_RSS_MODES_LBN)
2766                 efx_ef10_set_rss_flags(efx, ctx);
2767 
2768         return 0;
2769 }
2770 
2771 static int efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
2772 {
2773         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
2774 
2775         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
2776                        context);
2777         return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
2778                             NULL, 0, NULL);
2779 }
2780 
2781 static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context,
2782                                        const u32 *rx_indir_table, const u8 *key)
2783 {
2784         MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
2785         MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
2786         int i, rc;
2787 
2788         MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
2789                        context);
2790         BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
2791                      MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
2792 
2793         /* This iterates over the length of efx->rss_context.rx_indir_table, but
2794          * copies bytes from rx_indir_table.  That's because the latter is a
2795          * pointer rather than an array, but should have the same length.
2796          * The efx->rss_context.rx_hash_key loop below is similar.
2797          */
2798         for (i = 0; i < ARRAY_SIZE(efx->rss_context.rx_indir_table); ++i)
2799                 MCDI_PTR(tablebuf,
2800                          RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
2801                                 (u8) rx_indir_table[i];
2802 
2803         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
2804                           sizeof(tablebuf), NULL, 0, NULL);
2805         if (rc != 0)
2806                 return rc;
2807 
2808         MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
2809                        context);
2810         BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_hash_key) !=
2811                      MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
2812         for (i = 0; i < ARRAY_SIZE(efx->rss_context.rx_hash_key); ++i)
2813                 MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] = key[i];
2814 
2815         return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
2816                             sizeof(keybuf), NULL, 0, NULL);
2817 }
2818 
2819 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
2820 {
2821         int rc;
2822 
2823         if (efx->rss_context.context_id != EFX_EF10_RSS_CONTEXT_INVALID) {
2824                 rc = efx_ef10_free_rss_context(efx, efx->rss_context.context_id);
2825                 WARN_ON(rc != 0);
2826         }
2827         efx->rss_context.context_id = EFX_EF10_RSS_CONTEXT_INVALID;
2828 }
2829 
2830 static int efx_ef10_rx_push_shared_rss_config(struct efx_nic *efx,
2831                                               unsigned *context_size)
2832 {
2833         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2834         int rc = efx_ef10_alloc_rss_context(efx, false, &efx->rss_context,
2835                                             context_size);
2836 
2837         if (rc != 0)
2838                 return rc;
2839 
2840         nic_data->rx_rss_context_exclusive = false;
2841         efx_set_default_rx_indir_table(efx, &efx->rss_context);
2842         return 0;
2843 }
2844 
2845 static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic *efx,
2846                                                  const u32 *rx_indir_table,
2847                                                  const u8 *key)
2848 {
2849         u32 old_rx_rss_context = efx->rss_context.context_id;
2850         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2851         int rc;
2852 
2853         if (efx->rss_context.context_id == EFX_EF10_RSS_CONTEXT_INVALID ||
2854             !nic_data->rx_rss_context_exclusive) {
2855                 rc = efx_ef10_alloc_rss_context(efx, true, &efx->rss_context,
2856                                                 NULL);
2857                 if (rc == -EOPNOTSUPP)
2858                         return rc;
2859                 else if (rc != 0)
2860                         goto fail1;
2861         }
2862 
2863         rc = efx_ef10_populate_rss_table(efx, efx->rss_context.context_id,
2864                                          rx_indir_table, key);
2865         if (rc != 0)
2866                 goto fail2;
2867 
2868         if (efx->rss_context.context_id != old_rx_rss_context &&
2869             old_rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2870                 WARN_ON(efx_ef10_free_rss_context(efx, old_rx_rss_context) != 0);
2871         nic_data->rx_rss_context_exclusive = true;
2872         if (rx_indir_table != efx->rss_context.rx_indir_table)
2873                 memcpy(efx->rss_context.rx_indir_table, rx_indir_table,
2874                        sizeof(efx->rss_context.rx_indir_table));
2875         if (key != efx->rss_context.rx_hash_key)
2876                 memcpy(efx->rss_context.rx_hash_key, key,
2877                        efx->type->rx_hash_key_size);
2878 
2879         return 0;
2880 
2881 fail2:
2882         if (old_rx_rss_context != efx->rss_context.context_id) {
2883                 WARN_ON(efx_ef10_free_rss_context(efx, efx->rss_context.context_id) != 0);
2884                 efx->rss_context.context_id = old_rx_rss_context;
2885         }
2886 fail1:
2887         netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2888         return rc;
2889 }
2890 
2891 static int efx_ef10_rx_push_rss_context_config(struct efx_nic *efx,
2892                                                struct efx_rss_context *ctx,
2893                                                const u32 *rx_indir_table,
2894                                                const u8 *key)
2895 {
2896         int rc;
2897 
2898         WARN_ON(!mutex_is_locked(&efx->rss_lock));
2899 
2900         if (ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID) {
2901                 rc = efx_ef10_alloc_rss_context(efx, true, ctx, NULL);
2902                 if (rc)
2903                         return rc;
2904         }
2905 
2906         if (!rx_indir_table) /* Delete this context */
2907                 return efx_ef10_free_rss_context(efx, ctx->context_id);
2908 
2909         rc = efx_ef10_populate_rss_table(efx, ctx->context_id,
2910                                          rx_indir_table, key);
2911         if (rc)
2912                 return rc;
2913 
2914         memcpy(ctx->rx_indir_table, rx_indir_table,
2915                sizeof(efx->rss_context.rx_indir_table));
2916         memcpy(ctx->rx_hash_key, key, efx->type->rx_hash_key_size);
2917 
2918         return 0;
2919 }
2920 
2921 static int efx_ef10_rx_pull_rss_context_config(struct efx_nic *efx,
2922                                                struct efx_rss_context *ctx)
2923 {
2924         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN);
2925         MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN);
2926         MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN);
2927         size_t outlen;
2928         int rc, i;
2929 
2930         WARN_ON(!mutex_is_locked(&efx->rss_lock));
2931 
2932         BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN !=
2933                      MC_CMD_RSS_CONTEXT_GET_KEY_IN_LEN);
2934 
2935         if (ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID)
2936                 return -ENOENT;
2937 
2938         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_TABLE_IN_RSS_CONTEXT_ID,
2939                        ctx->context_id);
2940         BUILD_BUG_ON(ARRAY_SIZE(ctx->rx_indir_table) !=
2941                      MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE_LEN);
2942         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_TABLE, inbuf, sizeof(inbuf),
2943                           tablebuf, sizeof(tablebuf), &outlen);
2944         if (rc != 0)
2945                 return rc;
2946 
2947         if (WARN_ON(outlen != MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN))
2948                 return -EIO;
2949 
2950         for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++)
2951                 ctx->rx_indir_table[i] = MCDI_PTR(tablebuf,
2952                                 RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE)[i];
2953 
2954         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_KEY_IN_RSS_CONTEXT_ID,
2955                        ctx->context_id);
2956         BUILD_BUG_ON(ARRAY_SIZE(ctx->rx_hash_key) !=
2957                      MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
2958         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_KEY, inbuf, sizeof(inbuf),
2959                           keybuf, sizeof(keybuf), &outlen);
2960         if (rc != 0)
2961                 return rc;
2962 
2963         if (WARN_ON(outlen != MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN))
2964                 return -EIO;
2965 
2966         for (i = 0; i < ARRAY_SIZE(ctx->rx_hash_key); ++i)
2967                 ctx->rx_hash_key[i] = MCDI_PTR(
2968                                 keybuf, RSS_CONTEXT_GET_KEY_OUT_TOEPLITZ_KEY)[i];
2969 
2970         return 0;
2971 }
2972 
2973 static int efx_ef10_rx_pull_rss_config(struct efx_nic *efx)
2974 {
2975         int rc;
2976 
2977         mutex_lock(&efx->rss_lock);
2978         rc = efx_ef10_rx_pull_rss_context_config(efx, &efx->rss_context);
2979         mutex_unlock(&efx->rss_lock);
2980         return rc;
2981 }
2982 
2983 static void efx_ef10_rx_restore_rss_contexts(struct efx_nic *efx)
2984 {
2985         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2986         struct efx_rss_context *ctx;
2987         int rc;
2988 
2989         WARN_ON(!mutex_is_locked(&efx->rss_lock));
2990 
2991         if (!nic_data->must_restore_rss_contexts)
2992                 return;
2993 
2994         list_for_each_entry(ctx, &efx->rss_context.list, list) {
2995                 /* previous NIC RSS context is gone */
2996                 ctx->context_id = EFX_EF10_RSS_CONTEXT_INVALID;
2997                 /* so try to allocate a new one */
2998                 rc = efx_ef10_rx_push_rss_context_config(efx, ctx,
2999                                                          ctx->rx_indir_table,
3000                                                          ctx->rx_hash_key);
3001                 if (rc)
3002                         netif_warn(efx, probe, efx->net_dev,
3003                                    "failed to restore RSS context %u, rc=%d"
3004                                    "; RSS filters may fail to be applied\n",
3005                                    ctx->user_id, rc);
3006         }
3007         nic_data->must_restore_rss_contexts = false;
3008 }
3009 
3010 static int efx_ef10_pf_rx_push_rss_config(struct efx_nic *efx, bool user,
3011                                           const u32 *rx_indir_table,
3012                                           const u8 *key)
3013 {
3014         int rc;
3015 
3016         if (efx->rss_spread == 1)
3017                 return 0;
3018 
3019         if (!key)
3020                 key = efx->rss_context.rx_hash_key;
3021 
3022         rc = efx_ef10_rx_push_exclusive_rss_config(efx, rx_indir_table, key);
3023 
3024         if (rc == -ENOBUFS && !user) {
3025                 unsigned context_size;
3026                 bool mismatch = false;
3027                 size_t i;
3028 
3029                 for (i = 0;
3030                      i < ARRAY_SIZE(efx->rss_context.rx_indir_table) && !mismatch;
3031                      i++)
3032                         mismatch = rx_indir_table[i] !=
3033                                 ethtool_rxfh_indir_default(i, efx->rss_spread);
3034 
3035                 rc = efx_ef10_rx_push_shared_rss_config(efx, &context_size);
3036                 if (rc == 0) {
3037                         if (context_size != efx->rss_spread)
3038                                 netif_warn(efx, probe, efx->net_dev,
3039                                            "Could not allocate an exclusive RSS"
3040                                            " context; allocated a shared one of"
3041                                            " different size."
3042                                            " Wanted %u, got %u.\n",
3043                                            efx->rss_spread, context_size);
3044                         else if (mismatch)
3045                                 netif_warn(efx, probe, efx->net_dev,
3046                                            "Could not allocate an exclusive RSS"
3047                                            " context; allocated a shared one but"
3048                                            " could not apply custom"
3049                                            " indirection.\n");
3050                         else
3051                                 netif_info(efx, probe, efx->net_dev,
3052                                            "Could not allocate an exclusive RSS"
3053                                            " context; allocated a shared one.\n");
3054                 }
3055         }
3056         return rc;
3057 }
3058 
3059 static int efx_ef10_vf_rx_push_rss_config(struct efx_nic *efx, bool user,
3060                                           const u32 *rx_indir_table
3061                                           __attribute__ ((unused)),
3062                                           const u8 *key
3063                                           __attribute__ ((unused)))
3064 {
3065         if (user)
3066                 return -EOPNOTSUPP;
3067         if (efx->rss_context.context_id != EFX_EF10_RSS_CONTEXT_INVALID)
3068                 return 0;
3069         return efx_ef10_rx_push_shared_rss_config(efx, NULL);
3070 }
3071 
3072 static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
3073 {
3074         return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
3075                                     (rx_queue->ptr_mask + 1) *
3076                                     sizeof(efx_qword_t),
3077                                     GFP_KERNEL);
3078 }
3079 
3080 static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
3081 {
3082         MCDI_DECLARE_BUF(inbuf,
3083                          MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
3084                                                 EFX_BUF_SIZE));
3085         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
3086         size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
3087         struct efx_nic *efx = rx_queue->efx;
3088         struct efx_ef10_nic_data *nic_data = efx->nic_data;
3089         size_t inlen;
3090         dma_addr_t dma_addr;
3091         int rc;
3092         int i;
3093         BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN != 0);
3094 
3095         rx_queue->scatter_n = 0;
3096         rx_queue->scatter_len = 0;
3097 
3098         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
3099         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
3100         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
3101         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
3102                        efx_rx_queue_index(rx_queue));
3103         MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
3104                               INIT_RXQ_IN_FLAG_PREFIX, 1,
3105                               INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
3106         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
3107         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, nic_data->vport_id);
3108 
3109         dma_addr = rx_queue->rxd.buf.dma_addr;
3110 
3111         netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
3112                   efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
3113 
3114         for (i = 0; i < entries; ++i) {
3115                 MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
3116                 dma_addr += EFX_BUF_SIZE;
3117         }
3118 
3119         inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
3120 
3121         rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
3122                           NULL, 0, NULL);
3123         if (rc)
3124                 netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
3125                             efx_rx_queue_index(rx_queue));
3126 }
3127 
3128 static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
3129 {
3130         MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
3131         MCDI_DECLARE_BUF_ERR(outbuf);
3132         struct efx_nic *efx = rx_queue->efx;
3133         size_t outlen;
3134         int rc;
3135 
3136         MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
3137                        efx_rx_queue_index(rx_queue));
3138 
3139         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
3140                           outbuf, sizeof(outbuf), &outlen);
3141 
3142         if (rc && rc != -EALREADY)
3143                 goto fail;
3144 
3145         return;
3146 
3147 fail:
3148         efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
3149                                outbuf, outlen, rc);
3150 }
3151 
3152 static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
3153 {
3154         efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
3155 }
3156 
3157 /* This creates an entry in the RX descriptor queue */
3158 static inline void
3159 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
3160 {
3161         struct efx_rx_buffer *rx_buf;
3162         efx_qword_t *rxd;
3163 
3164         rxd = efx_rx_desc(rx_queue, index);
3165         rx_buf = efx_rx_buffer(rx_queue, index);
3166         EFX_POPULATE_QWORD_2(*rxd,
3167                              ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
3168                              ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
3169 }
3170 
3171 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
3172 {
3173         struct efx_nic *efx = rx_queue->efx;
3174         unsigned int write_count;
3175         efx_dword_t reg;
3176 
3177         /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
3178         write_count = rx_queue->added_count & ~7;
3179         if (rx_queue->notified_count == write_count)
3180                 return;
3181 
3182         do
3183                 efx_ef10_build_rx_desc(
3184                         rx_queue,
3185                         rx_queue->notified_count & rx_queue->ptr_mask);
3186         while (++rx_queue->notified_count != write_count);
3187 
3188         wmb();
3189         EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
3190                              write_count & rx_queue->ptr_mask);
3191         efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
3192                         efx_rx_queue_index(rx_queue));
3193 }
3194 
3195 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
3196 
3197 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
3198 {
3199         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
3200         MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3201         efx_qword_t event;
3202 
3203         EFX_POPULATE_QWORD_2(event,
3204                              ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3205                              ESF_DZ_EV_DATA, EFX_EF10_REFILL);
3206 
3207         MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3208 
3209         /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3210          * already swapped the data to little-endian order.
3211          */
3212         memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3213                sizeof(efx_qword_t));
3214 
3215         efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
3216                            inbuf, sizeof(inbuf), 0,
3217                            efx_ef10_rx_defer_refill_complete, 0);
3218 }
3219 
3220 static void
3221 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
3222                                   int rc, efx_dword_t *outbuf,
3223                                   size_t outlen_actual)
3224 {
3225         /* nothing to do */
3226 }
3227 
3228 static int efx_ef10_ev_probe(struct efx_channel *channel)
3229 {
3230         return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
3231                                     (channel->eventq_mask + 1) *
3232                                     sizeof(efx_qword_t),
3233                                     GFP_KERNEL);
3234 }
3235 
3236 static void efx_ef10_ev_fini(struct efx_channel *channel)
3237 {
3238         MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
3239         MCDI_DECLARE_BUF_ERR(outbuf);
3240         struct efx_nic *efx = channel->efx;
3241         size_t outlen;
3242         int rc;
3243 
3244         MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
3245 
3246         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
3247                           outbuf, sizeof(outbuf), &outlen);
3248 
3249         if (rc && rc != -EALREADY)
3250                 goto fail;
3251 
3252         return;
3253 
3254 fail:
3255         efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
3256                                outbuf, outlen, rc);
3257 }
3258 
3259 static int efx_ef10_ev_init(struct efx_channel *channel)
3260 {
3261         MCDI_DECLARE_BUF(inbuf,
3262                          MC_CMD_INIT_EVQ_V2_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
3263                                                    EFX_BUF_SIZE));
3264         MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_V2_OUT_LEN);
3265         size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
3266         struct efx_nic *efx = channel->efx;
3267         struct efx_ef10_nic_data *nic_data;
3268         size_t inlen, outlen;
3269         unsigned int enabled, implemented;
3270         dma_addr_t dma_addr;
3271         int rc;
3272         int i;
3273 
3274         nic_data = efx->nic_data;
3275 
3276         /* Fill event queue with all ones (i.e. empty events) */
3277         memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
3278 
3279         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
3280         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
3281         /* INIT_EVQ expects index in vector table, not absolute */
3282         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
3283         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
3284                        MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
3285         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
3286         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
3287         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
3288                        MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
3289         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
3290 
3291         if (nic_data->datapath_caps2 &
3292             1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN) {
3293                 /* Use the new generic approach to specifying event queue
3294                  * configuration, requesting lower latency or higher throughput.
3295                  * The options that actually get used appear in the output.
3296                  */
3297                 MCDI_POPULATE_DWORD_2(inbuf, INIT_EVQ_V2_IN_FLAGS,
3298                                       INIT_EVQ_V2_IN_FLAG_INTERRUPTING, 1,
3299                                       INIT_EVQ_V2_IN_FLAG_TYPE,
3300                                       MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_AUTO);
3301         } else {
3302                 bool cut_thru = !(nic_data->datapath_caps &
3303                         1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
3304 
3305                 MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
3306                                       INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
3307                                       INIT_EVQ_IN_FLAG_RX_MERGE, 1,
3308                                       INIT_EVQ_IN_FLAG_TX_MERGE, 1,
3309                                       INIT_EVQ_IN_FLAG_CUT_THRU, cut_thru);
3310         }
3311 
3312         dma_addr = channel->eventq.buf.dma_addr;
3313         for (i = 0; i < entries; ++i) {
3314                 MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
3315                 dma_addr += EFX_BUF_SIZE;
3316         }
3317 
3318         inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
3319 
3320         rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
3321                           outbuf, sizeof(outbuf), &outlen);
3322 
3323         if (outlen >= MC_CMD_INIT_EVQ_V2_OUT_LEN)
3324                 netif_dbg(efx, drv, efx->net_dev,
3325                           "Channel %d using event queue flags %08x\n",
3326                           channel->channel,
3327                           MCDI_DWORD(outbuf, INIT_EVQ_V2_OUT_FLAGS));
3328 
3329         /* IRQ return is ignored */
3330         if (channel->channel || rc)
3331                 return rc;
3332 
3333         /* Successfully created event queue on channel 0 */
3334         rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
3335         if (rc == -ENOSYS) {
3336                 /* GET_WORKAROUNDS was implemented before this workaround,
3337                  * thus it must be unavailable in this firmware.
3338                  */
3339                 nic_data->workaround_26807 = false;
3340                 rc = 0;
3341         } else if (rc) {
3342                 goto fail;
3343         } else {
3344                 nic_data->workaround_26807 =
3345                         !!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
3346 
3347                 if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807 &&
3348                     !nic_data->workaround_26807) {
3349                         unsigned int flags;
3350 
3351                         rc = efx_mcdi_set_workaround(efx,
3352                                                      MC_CMD_WORKAROUND_BUG26807,
3353                                                      true, &flags);
3354 
3355                         if (!rc) {
3356                                 if (flags &
3357                                     1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
3358                                         netif_info(efx, drv, efx->net_dev,
3359                                                    "other functions on NIC have been reset\n");
3360 
3361                                         /* With MCFW v4.6.x and earlier, the
3362                                          * boot count will have incremented,
3363                                          * so re-read the warm_boot_count
3364                                          * value now to ensure this function
3365                                          * doesn't think it has changed next
3366                                          * time it checks.
3367                                          */
3368                                         rc = efx_ef10_get_warm_boot_count(efx);
3369                                         if (rc >= 0) {
3370                                                 nic_data->warm_boot_count = rc;
3371                                                 rc = 0;
3372                                         }
3373                                 }
3374                                 nic_data->workaround_26807 = true;
3375                         } else if (rc == -EPERM) {
3376                                 rc = 0;
3377                         }
3378                 }
3379         }
3380 
3381         if (!rc)
3382                 return 0;
3383 
3384 fail:
3385         efx_ef10_ev_fini(channel);
3386         return rc;
3387 }
3388 
3389 static void efx_ef10_ev_remove(struct efx_channel *channel)
3390 {
3391         efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
3392 }
3393 
3394 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
3395                                            unsigned int rx_queue_label)
3396 {
3397         struct efx_nic *efx = rx_queue->efx;
3398 
3399         netif_info(efx, hw, efx->net_dev,
3400                    "rx event arrived on queue %d labeled as queue %u\n",
3401                    efx_rx_queue_index(rx_queue), rx_queue_label);
3402 
3403         efx_schedule_reset(efx, RESET_TYPE_DISABLE);
3404 }
3405 
3406 static void
3407 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
3408                              unsigned int actual, unsigned int expected)
3409 {
3410         unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
3411         struct efx_nic *efx = rx_queue->efx;
3412 
3413         netif_info(efx, hw, efx->net_dev,
3414                    "dropped %d events (index=%d expected=%d)\n",
3415                    dropped, actual, expected);
3416 
3417         efx_schedule_reset(efx, RESET_TYPE_DISABLE);
3418 }
3419 
3420 /* partially received RX was aborted. clean up. */
3421 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
3422 {
3423         unsigned int rx_desc_ptr;
3424 
3425         netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
3426                   "scattered RX aborted (dropping %u buffers)\n",
3427                   rx_queue->scatter_n);
3428 
3429         rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
3430 
3431         efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
3432                       0, EFX_RX_PKT_DISCARD);
3433 
3434         rx_queue->removed_count += rx_queue->scatter_n;
3435         rx_queue->scatter_n = 0;
3436         rx_queue->scatter_len = 0;
3437         ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
3438 }
3439 
3440 static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
3441                                            unsigned int n_packets,
3442                                            unsigned int rx_encap_hdr,
3443                                            unsigned int rx_l3_class,
3444                                            unsigned int rx_l4_class,
3445                                            const efx_qword_t *event)
3446 {
3447         struct efx_nic *efx = channel->efx;
3448         bool handled = false;
3449 
3450         if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
3451                 if (!(efx->net_dev->features & NETIF_F_RXALL)) {
3452                         if (!efx->loopback_selftest)
3453                                 channel->n_rx_eth_crc_err += n_packets;
3454                         return EFX_RX_PKT_DISCARD;
3455                 }
3456                 handled = true;
3457         }
3458         if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
3459                 if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
3460                              rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3461                              rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
3462                              rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
3463                              rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
3464                         netdev_WARN(efx->net_dev,
3465                                     "invalid class for RX_IPCKSUM_ERR: event="
3466                                     EFX_QWORD_FMT "\n",
3467                                     EFX_QWORD_VAL(*event));
3468                 if (!efx->loopback_selftest)
3469                         *(rx_encap_hdr ?
3470                           &channel->n_rx_outer_ip_hdr_chksum_err :
3471                           &channel->n_rx_ip_hdr_chksum_err) += n_packets;
3472                 return 0;
3473         }
3474         if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
3475                 if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
3476                              ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3477                                rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
3478                               (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
3479                                rx_l4_class != ESE_FZ_L4_CLASS_UDP))))
3480                         netdev_WARN(efx->net_dev,
3481                                     "invalid class for RX_TCPUDP_CKSUM_ERR: event="
3482                                     EFX_QWORD_FMT "\n",
3483                                     EFX_QWORD_VAL(*event));
3484                 if (!efx->loopback_selftest)
3485                         *(rx_encap_hdr ?
3486                           &channel->n_rx_outer_tcp_udp_chksum_err :
3487                           &channel->n_rx_tcp_udp_chksum_err) += n_packets;
3488                 return 0;
3489         }
3490         if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
3491                 if (unlikely(!rx_encap_hdr))
3492                         netdev_WARN(efx->net_dev,
3493                                     "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
3494                                     EFX_QWORD_FMT "\n",
3495                                     EFX_QWORD_VAL(*event));
3496                 else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3497                                   rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
3498                                   rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
3499                                   rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
3500                         netdev_WARN(efx->net_dev,
3501                                     "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
3502                                     EFX_QWORD_FMT "\n",
3503                                     EFX_QWORD_VAL(*event));
3504                 if (!efx->loopback_selftest)
3505                         channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
3506                 return 0;
3507         }
3508         if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
3509                 if (unlikely(!rx_encap_hdr))
3510                         netdev_WARN(efx->net_dev,
3511                                     "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
3512                                     EFX_QWORD_FMT "\n",
3513                                     EFX_QWORD_VAL(*event));
3514                 else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3515                                    rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
3516                                   (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
3517                                    rx_l4_class != ESE_FZ_L4_CLASS_UDP)))
3518                         netdev_WARN(efx->net_dev,
3519                                     "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
3520                                     EFX_QWORD_FMT "\n",
3521                                     EFX_QWORD_VAL(*event));
3522                 if (!efx->loopback_selftest)
3523                         channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
3524                 return 0;
3525         }
3526 
3527         WARN_ON(!handled); /* No error bits were recognised */
3528         return 0;
3529 }
3530 
3531 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
3532                                     const efx_qword_t *event)
3533 {
3534         unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
3535         unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
3536         unsigned int n_descs, n_packets, i;
3537         struct efx_nic *efx = channel->efx;
3538         struct efx_ef10_nic_data *nic_data = efx->nic_data;
3539         struct efx_rx_queue *rx_queue;
3540         efx_qword_t errors;
3541         bool rx_cont;
3542         u16 flags = 0;
3543 
3544         if (unlikely(READ_ONCE(efx->reset_pending)))
3545                 return 0;
3546 
3547         /* Basic packet information */
3548         rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
3549         next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
3550         rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
3551         rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
3552         rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS);
3553         rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
3554         rx_encap_hdr =
3555                 nic_data->datapath_caps &
3556                         (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
3557                 EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
3558                 ESE_EZ_ENCAP_HDR_NONE;
3559 
3560         if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
3561                 netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
3562                             EFX_QWORD_FMT "\n",
3563                             EFX_QWORD_VAL(*event));
3564 
3565         rx_queue = efx_channel_get_rx_queue(channel);
3566 
3567         if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
3568                 efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
3569 
3570         n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
3571                    ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
3572 
3573         if (n_descs != rx_queue->scatter_n + 1) {
3574                 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3575 
3576                 /* detect rx abort */
3577                 if (unlikely(n_descs == rx_queue->scatter_n)) {
3578                         if (rx_queue->scatter_n == 0 || rx_bytes != 0)
3579                                 netdev_WARN(efx->net_dev,
3580                                             "invalid RX abort: scatter_n=%u event="
3581                                             EFX_QWORD_FMT "\n",
3582                                             rx_queue->scatter_n,
3583                                             EFX_QWORD_VAL(*event));
3584                         efx_ef10_handle_rx_abort(rx_queue);
3585                         return 0;
3586                 }
3587 
3588                 /* Check that RX completion merging is valid, i.e.
3589                  * the current firmware supports it and this is a
3590                  * non-scattered packet.
3591                  */
3592                 if (!(nic_data->datapath_caps &
3593                       (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
3594                     rx_queue->scatter_n != 0 || rx_cont) {
3595                         efx_ef10_handle_rx_bad_lbits(
3596                                 rx_queue, next_ptr_lbits,
3597                                 (rx_queue->removed_count +
3598                                  rx_queue->scatter_n + 1) &
3599                                 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
3600                         return 0;
3601                 }
3602 
3603                 /* Merged completion for multiple non-scattered packets */
3604                 rx_queue->scatter_n = 1;
3605                 rx_queue->scatter_len = 0;
3606                 n_packets = n_descs;
3607                 ++channel->n_rx_merge_events;
3608                 channel->n_rx_merge_packets += n_packets;
3609                 flags |= EFX_RX_PKT_PREFIX_LEN;
3610         } else {
3611                 ++rx_queue->scatter_n;
3612                 rx_queue->scatter_len += rx_bytes;
3613                 if (rx_cont)
3614                         return 0;
3615                 n_packets = 1;
3616         }
3617 
3618         EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
3619                                      ESF_DZ_RX_IPCKSUM_ERR, 1,
3620                                      ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
3621                                      ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
3622                                      ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
3623         EFX_AND_QWORD(errors, *event, errors);
3624         if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
3625                 flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
3626                                                          rx_encap_hdr,
3627                                                          rx_l3_class, rx_l4_class,
3628                                                          event);
3629         } else {
3630                 bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP ||
3631                               rx_l4_class == ESE_FZ_L4_CLASS_UDP;
3632 
3633                 switch (rx_encap_hdr) {
3634                 case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
3635                         flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
3636                         if (tcpudp)
3637                                 flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
3638                         break;
3639                 case ESE_EZ_ENCAP_HDR_GRE:
3640                 case ESE_EZ_ENCAP_HDR_NONE:
3641                         if (tcpudp)
3642                                 flags |= EFX_RX_PKT_CSUMMED;
3643                         break;
3644                 default:
3645                         netdev_WARN(efx->net_dev,
3646                                     "unknown encapsulation type: event="
3647                                     EFX_QWORD_FMT "\n",
3648                                     EFX_QWORD_VAL(*event));
3649                 }
3650         }
3651 
3652         if (rx_l4_class == ESE_FZ_L4_CLASS_TCP)
3653                 flags |= EFX_RX_PKT_TCP;
3654 
3655         channel->irq_mod_score += 2 * n_packets;
3656 
3657         /* Handle received packet(s) */
3658         for (i = 0; i < n_packets; i++) {
3659                 efx_rx_packet(rx_queue,
3660                               rx_queue->removed_count & rx_queue->ptr_mask,
3661                               rx_queue->scatter_n, rx_queue->scatter_len,
3662                               flags);
3663                 rx_queue->removed_count += rx_queue->scatter_n;
3664         }
3665 
3666         rx_queue->scatter_n = 0;
3667         rx_queue->scatter_len = 0;
3668 
3669         return n_packets;
3670 }
3671 
3672 static u32 efx_ef10_extract_event_ts(efx_qword_t *event)
3673 {
3674         u32 tstamp;
3675 
3676         tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI);
3677         tstamp <<= 16;
3678         tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO);
3679 
3680         return tstamp;
3681 }
3682 
3683 static void
3684 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
3685 {
3686         struct efx_nic *efx = channel->efx;
3687         struct efx_tx_queue *tx_queue;
3688         unsigned int tx_ev_desc_ptr;
3689         unsigned int tx_ev_q_label;
3690         unsigned int tx_ev_type;
3691         u64 ts_part;
3692 
3693         if (unlikely(READ_ONCE(efx->reset_pending)))
3694                 return;
3695 
3696         if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
3697                 return;
3698 
3699         /* Get the transmit queue */
3700         tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
3701         tx_queue = efx_channel_get_tx_queue(channel,
3702                                             tx_ev_q_label % EFX_TXQ_TYPES);
3703 
3704         if (!tx_queue->timestamping) {
3705                 /* Transmit completion */
3706                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
3707                 efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
3708                 return;
3709         }
3710 
3711         /* Transmit timestamps are only available for 8XXX series. They result
3712          * in three events per packet. These occur in order, and are:
3713          *  - the normal completion event
3714          *  - the low part of the timestamp
3715          *  - the high part of the timestamp
3716          *
3717          * Each part of the timestamp is itself split across two 16 bit
3718          * fields in the event.
3719          */
3720         tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1);
3721 
3722         switch (tx_ev_type) {
3723         case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION:
3724                 /* In case of Queue flush or FLR, we might have received
3725                  * the previous TX completion event but not the Timestamp
3726                  * events.
3727                  */
3728                 if (tx_queue->completed_desc_ptr != tx_queue->ptr_mask)
3729                         efx_xmit_done(tx_queue, tx_queue->completed_desc_ptr);
3730 
3731                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event,
3732                                                  ESF_DZ_TX_DESCR_INDX);
3733                 tx_queue->completed_desc_ptr =
3734                                         tx_ev_desc_ptr & tx_queue->ptr_mask;
3735                 break;
3736 
3737         case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO:
3738                 ts_part = efx_ef10_extract_event_ts(event);
3739                 tx_queue->completed_timestamp_minor = ts_part;
3740                 break;
3741 
3742         case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI:
3743                 ts_part = efx_ef10_extract_event_ts(event);
3744                 tx_queue->completed_timestamp_major = ts_part;
3745 
3746                 efx_xmit_done(tx_queue, tx_queue->completed_desc_ptr);
3747                 tx_queue->completed_desc_ptr = tx_queue->ptr_mask;
3748                 break;
3749 
3750         default:
3751                 netif_err(efx, hw, efx->net_dev,
3752                           "channel %d unknown tx event type %d (data "
3753                           EFX_QWORD_FMT ")\n",
3754                           channel->channel, tx_ev_type,
3755                           EFX_QWORD_VAL(*event));
3756                 break;
3757         }
3758 }
3759 
3760 static void
3761 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
3762 {
3763         struct efx_nic *efx = channel->efx;
3764         int subcode;
3765 
3766         subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
3767 
3768         switch (subcode) {
3769         case ESE_DZ_DRV_TIMER_EV:
3770         case ESE_DZ_DRV_WAKE_UP_EV:
3771                 break;
3772         case ESE_DZ_DRV_START_UP_EV:
3773                 /* event queue init complete. ok. */
3774                 break;
3775         default:
3776                 netif_err(efx, hw, efx->net_dev,
3777                           "channel %d unknown driver event type %d"
3778                           " (data " EFX_QWORD_FMT ")\n",
3779                           channel->channel, subcode,
3780                           EFX_QWORD_VAL(*event));
3781 
3782         }
3783 }
3784 
3785 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
3786                                                    efx_qword_t *event)
3787 {
3788         struct efx_nic *efx = channel->efx;
3789         u32 subcode;
3790 
3791         subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
3792 
3793         switch (subcode) {
3794         case EFX_EF10_TEST:
3795                 channel->event_test_cpu = raw_smp_processor_id();
3796                 break;
3797         case EFX_EF10_REFILL:
3798                 /* The queue must be empty, so we won't receive any rx
3799                  * events, so efx_process_channel() won't refill the
3800                  * queue. Refill it here
3801                  */
3802                 efx_fast_push_rx_descriptors(&channel->rx_queue, true);
3803                 break;
3804         default:
3805                 netif_err(efx, hw, efx->net_dev,
3806                           "channel %d unknown driver event type %u"
3807                           " (data " EFX_QWORD_FMT ")\n",
3808                           channel->channel, (unsigned) subcode,
3809                           EFX_QWORD_VAL(*event));
3810         }
3811 }
3812 
3813 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
3814 {
3815         struct efx_nic *efx = channel->efx;
3816         efx_qword_t event, *p_event;
3817         unsigned int read_ptr;
3818         int ev_code;
3819         int spent = 0;
3820 
3821         if (quota <= 0)
3822                 return spent;
3823 
3824         read_ptr = channel->eventq_read_ptr;
3825 
3826         for (;;) {
3827                 p_event = efx_event(channel, read_ptr);
3828                 event = *p_event;
3829 
3830                 if (!efx_event_present(&event))
3831                         break;
3832 
3833                 EFX_SET_QWORD(*p_event);
3834 
3835                 ++read_ptr;
3836 
3837                 ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
3838 
3839                 netif_vdbg(efx, drv, efx->net_dev,
3840                            "processing event on %d " EFX_QWORD_FMT "\n",
3841                            channel->channel, EFX_QWORD_VAL(event));
3842 
3843                 switch (ev_code) {
3844                 case ESE_DZ_EV_CODE_MCDI_EV:
3845                         efx_mcdi_process_event(channel, &event);
3846                         break;
3847                 case ESE_DZ_EV_CODE_RX_EV:
3848                         spent += efx_ef10_handle_rx_event(channel, &event);
3849                         if (spent >= quota) {
3850                                 /* XXX can we split a merged event to
3851                                  * avoid going over-quota?
3852                                  */
3853                                 spent = quota;
3854                                 goto out;
3855                         }
3856                         break;
3857                 case ESE_DZ_EV_CODE_TX_EV:
3858                         efx_ef10_handle_tx_event(channel, &event);
3859                         break;
3860                 case ESE_DZ_EV_CODE_DRIVER_EV:
3861                         efx_ef10_handle_driver_event(channel, &event);
3862                         if (++spent == quota)
3863                                 goto out;
3864                         break;
3865                 case EFX_EF10_DRVGEN_EV:
3866                         efx_ef10_handle_driver_generated_event(channel, &event);
3867                         break;
3868                 default:
3869                         netif_err(efx, hw, efx->net_dev,
3870                                   "channel %d unknown event type %d"
3871                                   " (data " EFX_QWORD_FMT ")\n",
3872                                   channel->channel, ev_code,
3873                                   EFX_QWORD_VAL(event));
3874                 }
3875         }
3876 
3877 out:
3878         channel->eventq_read_ptr = read_ptr;
3879         return spent;
3880 }
3881 
3882 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3883 {
3884         struct efx_nic *efx = channel->efx;
3885         efx_dword_t rptr;
3886 
3887         if (EFX_EF10_WORKAROUND_35388(efx)) {
3888                 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3889                              (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3890                 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3891                              (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3892 
3893                 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3894                                      EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3895                                      ERF_DD_EVQ_IND_RPTR,
3896                                      (channel->eventq_read_ptr &
3897                                       channel->eventq_mask) >>
3898                                      ERF_DD_EVQ_IND_RPTR_WIDTH);
3899                 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3900                                 channel->channel);
3901                 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3902                                      EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3903                                      ERF_DD_EVQ_IND_RPTR,
3904                                      channel->eventq_read_ptr &
3905                                      ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3906                 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3907                                 channel->channel);
3908         } else {
3909                 EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3910                                      channel->eventq_read_ptr &
3911                                      channel->eventq_mask);
3912                 efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3913         }
3914 }
3915 
3916 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3917 {
3918         MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3919         struct efx_nic *efx = channel->efx;
3920         efx_qword_t event;
3921         int rc;
3922 
3923         EFX_POPULATE_QWORD_2(event,
3924                              ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3925                              ESF_DZ_EV_DATA, EFX_EF10_TEST);
3926 
3927         MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3928 
3929         /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3930          * already swapped the data to little-endian order.
3931          */
3932         memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3933                sizeof(efx_qword_t));
3934 
3935         rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3936                           NULL, 0, NULL);
3937         if (rc != 0)
3938                 goto fail;
3939 
3940         return;
3941 
3942 fail:
3943         WARN_ON(true);
3944         netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3945 }
3946 
3947 void efx_ef10_handle_drain_event(struct efx_nic *efx)
3948 {
3949         if (atomic_dec_and_test(&efx->active_queues))
3950                 wake_up(&efx->flush_wq);
3951 
3952         WARN_ON(atomic_read(&efx->active_queues) < 0);
3953 }
3954 
3955 static int efx_ef10_fini_dmaq(struct efx_nic *efx)
3956 {
3957         struct efx_ef10_nic_data *nic_data = efx->nic_data;
3958         struct efx_channel *channel;
3959         struct efx_tx_queue *tx_queue;
3960         struct efx_rx_queue *rx_queue;
3961         int pending;
3962 
3963         /* If the MC has just rebooted, the TX/RX queues will have already been
3964          * torn down, but efx->active_queues needs to be set to zero.
3965          */
3966         if (nic_data->must_realloc_vis) {
3967                 atomic_set(&efx->active_queues, 0);
3968                 return 0;
3969         }
3970 
3971         /* Do not attempt to write to the NIC during EEH recovery */
3972         if (efx->state != STATE_RECOVERY) {
3973                 efx_for_each_channel(channel, efx) {
3974                         efx_for_each_channel_rx_queue(rx_queue, channel)
3975                                 efx_ef10_rx_fini(rx_queue);
3976                         efx_for_each_channel_tx_queue(tx_queue, channel)
3977                                 efx_ef10_tx_fini(tx_queue);
3978                 }
3979 
3980                 wait_event_timeout(efx->flush_wq,
3981                                    atomic_read(&efx->active_queues) == 0,
3982                                    msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
3983                 pending = atomic_read(&efx->active_queues);
3984                 if (pending) {
3985                         netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
3986                                   pending);
3987                         return -ETIMEDOUT;
3988                 }
3989         }
3990 
3991         return 0;
3992 }
3993 
3994 static void efx_ef10_prepare_flr(struct efx_nic *efx)
3995 {
3996         atomic_set(&efx->active_queues, 0);
3997 }
3998 
3999 /* Decide whether a filter should be exclusive or else should allow
4000  * delivery to additional recipients.  Currently we decide that
4001  * filters for specific local unicast MAC and IP addresses are
4002  * exclusive.
4003  */
4004 static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
4005 {
4006         if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
4007             !is_multicast_ether_addr(spec->loc_mac))
4008                 return true;
4009 
4010         if ((spec->match_flags &
4011              (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
4012             (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
4013                 if (spec->ether_type == htons(ETH_P_IP) &&
4014                     !ipv4_is_multicast(spec->loc_host[0]))
4015                         return true;
4016                 if (spec->ether_type == htons(ETH_P_IPV6) &&
4017                     ((const u8 *)spec->loc_host)[0] != 0xff)
4018                         return true;
4019         }
4020 
4021         return false;
4022 }
4023 
4024 static struct efx_filter_spec *
4025 efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
4026                            unsigned int filter_idx)
4027 {
4028         return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
4029                                           ~EFX_EF10_FILTER_FLAGS);
4030 }
4031 
4032 static unsigned int
4033 efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
4034                            unsigned int filter_idx)
4035 {
4036         return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
4037 }
4038 
4039 static void
4040 efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
4041                           unsigned int filter_idx,
4042                           const struct efx_filter_spec *spec,
4043                           unsigned int flags)
4044 {
4045         table->entry[filter_idx].spec = (unsigned long)spec | flags;
4046 }
4047 
4048 static void
4049 efx_ef10_filter_push_prep_set_match_fields(struct efx_nic *efx,
4050                                            const struct efx_filter_spec *spec,
4051                                            efx_dword_t *inbuf)
4052 {
4053         enum efx_encap_type encap_type = efx_filter_get_encap_type(spec);
4054         u32 match_fields = 0, uc_match, mc_match;
4055 
4056         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4057                        efx_ef10_filter_is_exclusive(spec) ?
4058                        MC_CMD_FILTER_OP_IN_OP_INSERT :
4059                        MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
4060 
4061         /* Convert match flags and values.  Unlike almost
4062          * everything else in MCDI, these fields are in
4063          * network byte order.
4064          */
4065 #define COPY_VALUE(value, mcdi_field)                                        \
4066         do {                                                         \
4067                 match_fields |=                                      \
4068                         1 << MC_CMD_FILTER_OP_IN_MATCH_ ##           \
4069                         mcdi_field ## _LBN;                          \
4070                 BUILD_BUG_ON(                                        \
4071                         MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
4072                         sizeof(value));                              \
4073                 memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ## mcdi_field), \
4074                        &value, sizeof(value));                       \
4075         } while (0)
4076 #define COPY_FIELD(gen_flag, gen_field, mcdi_field)                          \
4077         if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) {     \
4078                 COPY_VALUE(spec->gen_field, mcdi_field);             \
4079         }
4080         /* Handle encap filters first.  They will always be mismatch
4081          * (unknown UC or MC) filters
4082          */
4083         if (encap_type) {
4084                 /* ether_type and outer_ip_proto need to be variables
4085                  * because COPY_VALUE wants to memcpy them
4086                  */
4087                 __be16 ether_type =
4088                         htons(encap_type & EFX_ENCAP_FLAG_IPV6 ?
4089                               ETH_P_IPV6 : ETH_P_IP);
4090                 u8 vni_type = MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_GENEVE;
4091                 u8 outer_ip_proto;
4092 
4093                 switch (encap_type & EFX_ENCAP_TYPES_MASK) {
4094                 case EFX_ENCAP_TYPE_VXLAN:
4095                         vni_type = MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_VXLAN;
4096                         /* fallthrough */
4097                 case EFX_ENCAP_TYPE_GENEVE:
4098                         COPY_VALUE(ether_type, ETHER_TYPE);
4099                         outer_ip_proto = IPPROTO_UDP;
4100                         COPY_VALUE(outer_ip_proto, IP_PROTO);
4101                         /* We always need to set the type field, even
4102                          * though we're not matching on the TNI.
4103                          */
4104                         MCDI_POPULATE_DWORD_1(inbuf,
4105                                 FILTER_OP_EXT_IN_VNI_OR_VSID,
4106                                 FILTER_OP_EXT_IN_VNI_TYPE,
4107                                 vni_type);
4108                         break;
4109                 case EFX_ENCAP_TYPE_NVGRE:
4110                         COPY_VALUE(ether_type, ETHER_TYPE);
4111                         outer_ip_proto = IPPROTO_GRE;
4112                         COPY_VALUE(outer_ip_proto, IP_PROTO);
4113                         break;
4114                 default:
4115                         WARN_ON(1);
4116                 }
4117 
4118                 uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN;
4119                 mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN;
4120         } else {
4121                 uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
4122                 mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN;
4123         }
4124 
4125         if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
4126                 match_fields |=
4127                         is_multicast_ether_addr(spec->loc_mac) ?
4128                         1 << mc_match :
4129                         1 << uc_match;
4130         COPY_FIELD(REM_HOST, rem_host, SRC_IP);
4131         COPY_FIELD(LOC_HOST, loc_host, DST_IP);
4132         COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
4133         COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
4134         COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
4135         COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
4136         COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
4137         COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
4138         COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
4139         COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
4140 #undef COPY_FIELD
4141 #undef COPY_VALUE
4142         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
4143                        match_fields);
4144 }
4145 
4146 static void efx_ef10_filter_push_prep(struct efx_nic *efx,
4147                                       const struct efx_filter_spec *spec,
4148                                       efx_dword_t *inbuf, u64 handle,
4149                                       struct efx_rss_context *ctx,
4150                                       bool replacing)
4151 {
4152         struct efx_ef10_nic_data *nic_data = efx->nic_data;
4153         u32 flags = spec->flags;
4154 
4155         memset(inbuf, 0, MC_CMD_FILTER_OP_EXT_IN_LEN);
4156 
4157         /* If RSS filter, caller better have given us an RSS context */
4158         if (flags & EFX_FILTER_FLAG_RX_RSS) {
4159                 /* We don't have the ability to return an error, so we'll just
4160                  * log a warning and disable RSS for the filter.
4161                  */
4162                 if (WARN_ON_ONCE(!ctx))
4163                         flags &= ~EFX_FILTER_FLAG_RX_RSS;
4164                 else if (WARN_ON_ONCE(ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID))
4165                         flags &= ~EFX_FILTER_FLAG_RX_RSS;
4166         }
4167 
4168         if (replacing) {
4169                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4170                                MC_CMD_FILTER_OP_IN_OP_REPLACE);
4171                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
4172         } else {
4173                 efx_ef10_filter_push_prep_set_match_fields(efx, spec, inbuf);
4174         }
4175 
4176         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, nic_data->vport_id);
4177         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
4178                        spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
4179                        MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
4180                        MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
4181         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DOMAIN, 0);
4182         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
4183                        MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
4184         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
4185                        spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
4186                        0 : spec->dmaq_id);
4187         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
4188                        (flags & EFX_FILTER_FLAG_RX_RSS) ?
4189                        MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
4190                        MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
4191         if (flags & EFX_FILTER_FLAG_RX_RSS)
4192                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT, ctx->context_id);
4193 }
4194 
4195 static int efx_ef10_filter_push(struct efx_nic *efx,
4196                                 const struct efx_filter_spec *spec, u64 *handle,
4197                                 struct efx_rss_context *ctx, bool replacing)
4198 {
4199         MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
4200         MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_EXT_OUT_LEN);
4201         int rc;
4202 
4203         efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, ctx, replacing);
4204         rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
4205                           outbuf, sizeof(outbuf), NULL);
4206         if (rc == 0)
4207                 *handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
4208         if (rc == -ENOSPC)
4209                 rc = -EBUSY; /* to match efx_farch_filter_insert() */
4210         return rc;
4211 }
4212 
4213 static u32 efx_ef10_filter_mcdi_flags_from_spec(const struct efx_filter_spec *spec)
4214 {
4215         enum efx_encap_type encap_type = efx_filter_get_encap_type(spec);
4216         unsigned int match_flags = spec->match_flags;
4217         unsigned int uc_match, mc_match;
4218         u32 mcdi_flags = 0;
4219 
4220 #define MAP_FILTER_TO_MCDI_FLAG(gen_flag, mcdi_field, encap) {          \
4221                 unsigned int  old_match_flags = match_flags;            \
4222                 match_flags &= ~EFX_FILTER_MATCH_ ## gen_flag;          \
4223                 if (match_flags != old_match_flags)                     \
4224                         mcdi_flags |=                                   \
4225                                 (1 << ((encap) ?                        \
4226                                        MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_ ## \
4227                                        mcdi_field ## _LBN :             \
4228                                        MC_CMD_FILTER_OP_EXT_IN_MATCH_ ##\
4229                                        mcdi_field ## _LBN));            \
4230         }
4231         /* inner or outer based on encap type */
4232         MAP_FILTER_TO_MCDI_FLAG(REM_HOST, SRC_IP, encap_type);
4233         MAP_FILTER_TO_MCDI_FLAG(LOC_HOST, DST_IP, encap_type);
4234         MAP_FILTER_TO_MCDI_FLAG(REM_MAC, SRC_MAC, encap_type);
4235         MAP_FILTER_TO_MCDI_FLAG(REM_PORT, SRC_PORT, encap_type);
4236         MAP_FILTER_TO_MCDI_FLAG(LOC_MAC, DST_MAC, encap_type);
4237         MAP_FILTER_TO_MCDI_FLAG(LOC_PORT, DST_PORT, encap_type);
4238         MAP_FILTER_TO_MCDI_FLAG(ETHER_TYPE, ETHER_TYPE, encap_type);
4239         MAP_FILTER_TO_MCDI_FLAG(IP_PROTO, IP_PROTO, encap_type);
4240         /* always outer */
4241         MAP_FILTER_TO_MCDI_FLAG(INNER_VID, INNER_VLAN, false);
4242         MAP_FILTER_TO_MCDI_FLAG(OUTER_VID, OUTER_VLAN, false);
4243 #undef MAP_FILTER_TO_MCDI_FLAG
4244 
4245         /* special handling for encap type, and mismatch */
4246         if (encap_type) {
4247                 match_flags &= ~EFX_FILTER_MATCH_ENCAP_TYPE;
4248                 mcdi_flags |=
4249                         (1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN);
4250                 mcdi_flags |= (1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN);
4251 
4252                 uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN;
4253                 mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN;
4254         } else {
4255                 uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
4256                 mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN;
4257         }
4258 
4259         if (match_flags & EFX_FILTER_MATCH_LOC_MAC_IG) {
4260                 match_flags &= ~EFX_FILTER_MATCH_LOC_MAC_IG;
4261                 mcdi_flags |=
4262                         is_multicast_ether_addr(spec->loc_mac) ?
4263                         1 << mc_match :
4264                         1 << uc_match;
4265         }
4266 
4267         /* Did we map them all? */
4268         WARN_ON_ONCE(match_flags);
4269 
4270         return mcdi_flags;
4271 }
4272 
4273 static int efx_ef10_filter_pri(struct efx_ef10_filter_table *table,
4274                                const struct efx_filter_spec *spec)
4275 {
4276         u32 mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
4277         unsigned int match_pri;
4278 
4279         for (match_pri = 0;
4280              match_pri < table->rx_match_count;
4281              match_pri++)
4282                 if (table->rx_match_mcdi_flags[match_pri] == mcdi_flags)
4283                         return match_pri;
4284 
4285         return -EPROTONOSUPPORT;
4286 }
4287 
4288 static s32 efx_ef10_filter_insert_locked(struct efx_nic *efx,
4289                                          struct efx_filter_spec *spec,
4290                                          bool replace_equal)
4291 {
4292         DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
4293         struct efx_ef10_nic_data *nic_data = efx->nic_data;
4294         struct efx_ef10_filter_table *table;
4295         struct efx_filter_spec *saved_spec;
4296         struct efx_rss_context *ctx = NULL;
4297         unsigned int match_pri, hash;
4298         unsigned int priv_flags;
4299         bool rss_locked = false;
4300         bool replacing = false;
4301         unsigned int depth, i;
4302         int ins_index = -1;
4303         DEFINE_WAIT(wait);
4304         bool is_mc_recip;
4305         s32 rc;
4306 
4307         WARN_ON(!rwsem_is_locked(&efx->filter_sem));
4308         table = efx->filter_state;
4309         down_write(&table->lock);
4310 
4311         /* For now, only support RX filters */
4312         if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
4313             EFX_FILTER_FLAG_RX) {
4314                 rc = -EINVAL;
4315                 goto out_unlock;
4316         }
4317 
4318         rc = efx_ef10_filter_pri(table, spec);
4319         if (rc < 0)
4320                 goto out_unlock;
4321         match_pri = rc;
4322 
4323         hash = efx_filter_spec_hash(spec);
4324         is_mc_recip = efx_filter_is_mc_recipient(spec);
4325         if (is_mc_recip)
4326                 bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
4327 
4328         if (spec->flags & EFX_FILTER_FLAG_RX_RSS) {
4329                 mutex_lock(&efx->rss_lock);
4330                 rss_locked = true;
4331                 if (spec->rss_context)
4332                         ctx = efx_find_rss_context_entry(efx, spec->rss_context);
4333                 else
4334                         ctx = &efx->rss_context;
4335                 if (!ctx) {
4336                         rc = -ENOENT;
4337                         goto out_unlock;
4338                 }
4339                 if (ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID) {
4340                         rc = -EOPNOTSUPP;
4341                         goto out_unlock;
4342                 }
4343         }
4344 
4345         /* Find any existing filters with the same match tuple or
4346          * else a free slot to insert at.
4347          */
4348         for (depth = 1; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
4349                 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4350                 saved_spec = efx_ef10_filter_entry_spec(table, i);
4351 
4352                 if (!saved_spec) {
4353                         if (ins_index < 0)
4354                                 ins_index = i;
4355                 } else if (efx_filter_spec_equal(spec, saved_spec)) {
4356                         if (spec->priority < saved_spec->priority &&
4357                             spec->priority != EFX_FILTER_PRI_AUTO) {
4358                                 rc = -EPERM;
4359                                 goto out_unlock;
4360                         }
4361                         if (!is_mc_recip) {
4362                                 /* This is the only one */
4363                                 if (spec->priority ==
4364                                     saved_spec->priority &&
4365                                     !replace_equal) {
4366                                         rc = -EEXIST;
4367                                         goto out_unlock;
4368                                 }
4369                                 ins_index = i;
4370                                 break;
4371                         } else if (spec->priority >
4372                                    saved_spec->priority ||
4373                                    (spec->priority ==
4374                                     saved_spec->priority &&
4375                                     replace_equal)) {
4376                                 if (ins_index < 0)
4377                                         ins_index = i;
4378                                 else
4379                                         __set_bit(depth, mc_rem_map);
4380                         }
4381                 }
4382         }
4383 
4384         /* Once we reach the maximum search depth, use the first suitable
4385          * slot, or return -EBUSY if there was none
4386          */
4387         if (ins_index < 0) {
4388                 rc = -EBUSY;
4389                 goto out_unlock;
4390         }
4391 
4392         /* Create a software table entry if necessary. */
4393         saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
4394         if (saved_spec) {
4395                 if (spec->priority == EFX_FILTER_PRI_AUTO &&
4396                     saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
4397                         /* Just make sure it won't be removed */
4398                         if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
4399                                 saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
4400                         table->entry[ins_index].spec &=
4401                                 ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
4402                         rc = ins_index;
4403                         goto out_unlock;
4404                 }
4405                 replacing = true;
4406                 priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
4407         } else {
4408                 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
4409                 if (!saved_spec) {
4410                         rc = -ENOMEM;
4411                         goto out_unlock;
4412                 }
4413                 *saved_spec = *spec;
4414                 priv_flags = 0;
4415         }
4416         efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
4417 
4418         /* Actually insert the filter on the HW */
4419         rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
4420                                   ctx, replacing);
4421 
4422         if (rc == -EINVAL && nic_data->must_realloc_vis)
4423                 /* The MC rebooted under us, causing it to reject our filter
4424                  * insertion as pointing to an invalid VI (spec->dmaq_id).
4425                  */
4426                 rc = -EAGAIN;
4427 
4428         /* Finalise the software table entry */
4429         if (rc == 0) {
4430                 if (replacing) {
4431                         /* Update the fields that may differ */
4432                         if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
4433                                 saved_spec->flags |=
4434                                         EFX_FILTER_FLAG_RX_OVER_AUTO;
4435                         saved_spec->priority = spec->priority;
4436                         saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
4437                         saved_spec->flags |= spec->flags;
4438                         saved_spec->rss_context = spec->rss_context;
4439                         saved_spec->dmaq_id = spec->dmaq_id;
4440                 }
4441         } else if (!replacing) {
4442                 kfree(saved_spec);
4443                 saved_spec = NULL;
4444         } else {
4445                 /* We failed to replace, so the old filter is still present.
4446                  * Roll back the software table to reflect this.  In fact the
4447                  * efx_ef10_filter_set_entry() call below will do the right
4448                  * thing, so nothing extra is needed here.
4449                  */
4450         }
4451         efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
4452 
4453         /* Remove and finalise entries for lower-priority multicast
4454          * recipients
4455          */
4456         if (is_mc_recip) {
4457                 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
4458                 unsigned int depth, i;
4459 
4460                 memset(inbuf, 0, sizeof(inbuf));
4461 
4462                 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
4463                         if (!test_bit(depth, mc_rem_map))
4464                                 continue;
4465 
4466                         i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4467                         saved_spec = efx_ef10_filter_entry_spec(table, i);
4468                         priv_flags = efx_ef10_filter_entry_flags(table, i);
4469 
4470                         if (rc == 0) {
4471                                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4472                                                MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4473                                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4474                                                table->entry[i].handle);
4475                                 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
4476                                                   inbuf, sizeof(inbuf),
4477                                                   NULL, 0, NULL);
4478                         }
4479 
4480                         if (rc == 0) {
4481                                 kfree(saved_spec);
4482                                 saved_spec = NULL;
4483                                 priv_flags = 0;
4484                         }
4485                         efx_ef10_filter_set_entry(table, i, saved_spec,
4486                                                   priv_flags);
4487                 }
4488         }
4489 
4490         /* If successful, return the inserted filter ID */
4491         if (rc == 0)
4492                 rc = efx_ef10_make_filter_id(match_pri, ins_index);
4493 
4494 out_unlock:
4495         if (rss_locked)
4496                 mutex_unlock(&efx->rss_lock);
4497         up_write(&table->lock);
4498         return rc;
4499 }
4500 
4501 static s32 efx_ef10_filter_insert(struct efx_nic *efx,
4502                                   struct efx_filter_spec *spec,
4503                                   bool replace_equal)
4504 {
4505         s32 ret;
4506 
4507         down_read(&efx->filter_sem);
4508         ret = efx_ef10_filter_insert_locked(efx, spec, replace_equal);
4509         up_read(&efx->filter_sem);
4510 
4511         return ret;
4512 }
4513 
4514 static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
4515 {
4516         /* no need to do anything here on EF10 */
4517 }
4518 
4519 /* Remove a filter.
4520  * If !by_index, remove by ID
4521  * If by_index, remove by index
4522  * Filter ID may come from userland and must be range-checked.
4523  * Caller must hold efx->filter_sem for read, and efx->filter_state->lock
4524  * for write.
4525  */
4526 static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
4527                                            unsigned int priority_mask,
4528                                            u32 filter_id, bool by_index)
4529 {
4530         unsigned int filter_idx = efx_ef10_filter_get_unsafe_id(filter_id);
4531         struct efx_ef10_filter_table *table = efx->filter_state;
4532         MCDI_DECLARE_BUF(inbuf,
4533                          MC_CMD_FILTER_OP_IN_HANDLE_OFST +
4534                          MC_CMD_FILTER_OP_IN_HANDLE_LEN);
4535         struct efx_filter_spec *spec;
4536         DEFINE_WAIT(wait);
4537         int rc;
4538 
4539         spec = efx_ef10_filter_entry_spec(table, filter_idx);
4540         if (!spec ||
4541             (!by_index &&
4542              efx_ef10_filter_pri(table, spec) !=
4543              efx_ef10_filter_get_unsafe_pri(filter_id)))
4544                 return -ENOENT;
4545 
4546         if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
4547             priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
4548                 /* Just remove flags */
4549                 spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
4550                 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
4551                 return 0;
4552         }
4553 
4554         if (!(priority_mask & (1U << spec->priority)))
4555                 return -ENOENT;
4556 
4557         if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
4558                 /* Reset to an automatic filter */
4559 
4560                 struct efx_filter_spec new_spec = *spec;
4561 
4562                 new_spec.priority = EFX_FILTER_PRI_AUTO;
4563                 new_spec.flags = (EFX_FILTER_FLAG_RX |
4564                                   (efx_rss_active(&efx->rss_context) ?
4565                                    EFX_FILTER_FLAG_RX_RSS : 0));
4566                 new_spec.dmaq_id = 0;
4567                 new_spec.rss_context = 0;
4568                 rc = efx_ef10_filter_push(efx, &new_spec,
4569                                           &table->entry[filter_idx].handle,
4570                                           &efx->rss_context,
4571                                           true);
4572 
4573                 if (rc == 0)
4574                         *spec = new_spec;
4575         } else {
4576                 /* Really remove the filter */
4577 
4578                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4579                                efx_ef10_filter_is_exclusive(spec) ?
4580                                MC_CMD_FILTER_OP_IN_OP_REMOVE :
4581                                MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4582                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4583                                table->entry[filter_idx].handle);
4584                 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP,
4585                                         inbuf, sizeof(inbuf), NULL, 0, NULL);
4586 
4587                 if ((rc == 0) || (rc == -ENOENT)) {
4588                         /* Filter removed OK or didn't actually exist */
4589                         kfree(spec);
4590                         efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
4591                 } else {
4592                         efx_mcdi_display_error(efx, MC_CMD_FILTER_OP,
4593                                                MC_CMD_FILTER_OP_EXT_IN_LEN,
4594                                                NULL, 0, rc);
4595                 }
4596         }
4597 
4598         return rc;
4599 }
4600 
4601 static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
4602                                        enum efx_filter_priority priority,
4603                                        u32 filter_id)
4604 {
4605         struct efx_ef10_filter_table *table;
4606         int rc;
4607 
4608         down_read(&efx->filter_sem);
4609         table = efx->filter_state;
4610         down_write(&table->lock);
4611         rc = efx_ef10_filter_remove_internal(efx, 1U << priority, filter_id,
4612                                              false);
4613         up_write(&table->lock);
4614         up_read(&efx->filter_sem);
4615         return rc;
4616 }
4617 
4618 /* Caller must hold efx->filter_sem for read */
4619 static void efx_ef10_filter_remove_unsafe(struct efx_nic *efx,
4620                                           enum efx_filter_priority priority,
4621                                           u32 filter_id)
4622 {
4623         struct efx_ef10_filter_table *table = efx->filter_state;
4624 
4625         if (filter_id == EFX_EF10_FILTER_ID_INVALID)
4626                 return;
4627 
4628         down_write(&table->lock);
4629         efx_ef10_filter_remove_internal(efx, 1U << priority, filter_id,
4630                                         true);
4631         up_write(&table->lock);
4632 }
4633 
4634 static int efx_ef10_filter_get_safe(struct efx_nic *efx,
4635                                     enum efx_filter_priority priority,
4636                                     u32 filter_id, struct efx_filter_spec *spec)
4637 {
4638         unsigned int filter_idx = efx_ef10_filter_get_unsafe_id(filter_id);
4639         const struct efx_filter_spec *saved_spec;
4640         struct efx_ef10_filter_table *table;
4641         int rc;
4642 
4643         down_read(&efx->filter_sem);
4644         table = efx->filter_state;
4645         down_read(&table->lock);
4646         saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
4647         if (saved_spec && saved_spec->priority == priority &&
4648             efx_ef10_filter_pri(table, saved_spec) ==
4649             efx_ef10_filter_get_unsafe_pri(filter_id)) {
4650                 *spec = *saved_spec;
4651                 rc = 0;
4652         } else {
4653                 rc = -ENOENT;
4654         }
4655         up_read(&table->lock);
4656         up_read(&efx->filter_sem);
4657         return rc;
4658 }
4659 
4660 static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
4661                                     enum efx_filter_priority priority)
4662 {
4663         struct efx_ef10_filter_table *table;
4664         unsigned int priority_mask;
4665         unsigned int i;
4666         int rc;
4667 
4668         priority_mask = (((1U << (priority + 1)) - 1) &
4669                          ~(1U << EFX_FILTER_PRI_AUTO));
4670 
4671         down_read(&efx->filter_sem);
4672         table = efx->filter_state;
4673         down_write(&table->lock);
4674         for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
4675                 rc = efx_ef10_filter_remove_internal(efx, priority_mask,
4676                                                      i, true);
4677                 if (rc && rc != -ENOENT)
4678                         break;
4679                 rc = 0;
4680         }
4681 
4682         up_write(&table->lock);
4683         up_read(&efx->filter_sem);
4684         return rc;
4685 }
4686 
4687 static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
4688                                          enum efx_filter_priority priority)
4689 {
4690         struct efx_ef10_filter_table *table;
4691         unsigned int filter_idx;
4692         s32 count = 0;
4693 
4694         down_read(&efx->filter_sem);
4695         table = efx->filter_state;
4696         down_read(&table->lock);
4697         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4698                 if (table->entry[filter_idx].spec &&
4699                     efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
4700                     priority)
4701                         ++count;
4702         }
4703         up_read(&table->lock);
4704         up_read(&efx->filter_sem);
4705         return count;
4706 }
4707 
4708 static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
4709 {
4710         struct efx_ef10_filter_table *table = efx->filter_state;
4711 
4712         return table->rx_match_count * HUNT_FILTER_TBL_ROWS * 2;
4713 }
4714 
4715 static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
4716                                       enum efx_filter_priority priority,
4717                                       u32 *buf, u32 size)
4718 {
4719         struct efx_ef10_filter_table *table;
4720         struct efx_filter_spec *spec;
4721         unsigned int filter_idx;
4722         s32 count = 0;
4723 
4724         down_read(&efx->filter_sem);
4725         table = efx->filter_state;
4726         down_read(&table->lock);
4727 
4728         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4729                 spec = efx_ef10_filter_entry_spec(table, filter_idx);
4730                 if (spec && spec->priority == priority) {
4731                         if (count == size) {
4732                                 count = -EMSGSIZE;
4733                                 break;
4734                         }
4735                         buf[count++] =
4736                                 efx_ef10_make_filter_id(
4737                                         efx_ef10_filter_pri(table, spec),
4738                                         filter_idx);
4739                 }
4740         }
4741         up_read(&table->lock);
4742         up_read(&efx->filter_sem);
4743         return count;
4744 }
4745 
4746 #ifdef CONFIG_RFS_ACCEL
4747 
4748 static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
4749                                            unsigned int filter_idx)
4750 {
4751         struct efx_filter_spec *spec, saved_spec;
4752         struct efx_ef10_filter_table *table;
4753         struct efx_arfs_rule *rule = NULL;
4754         bool ret = true, force = false;
4755         u16 arfs_id;
4756 
4757         down_read(&efx->filter_sem);
4758         table = efx->filter_state;
4759         down_write(&table->lock);
4760         spec = efx_ef10_filter_entry_spec(table, filter_idx);
4761 
4762         if (!spec || spec->priority != EFX_FILTER_PRI_HINT)
4763                 goto out_unlock;
4764 
4765         spin_lock_bh(&efx->rps_hash_lock);
4766         if (!efx->rps_hash_table) {
4767                 /* In the absence of the table, we always return 0 to ARFS. */
4768                 arfs_id = 0;
4769         } else {
4770                 rule = efx_rps_hash_find(efx, spec);
4771                 if (!rule)
4772                         /* ARFS table doesn't know of this filter, so remove it */
4773                         goto expire;
4774                 arfs_id = rule->arfs_id;
4775                 ret = efx_rps_check_rule(rule, filter_idx, &force);
4776                 if (force)
4777                         goto expire;
4778                 if (!ret) {
4779                         spin_unlock_bh(&efx->rps_hash_lock);
4780                         goto out_unlock;
4781                 }
4782         }
4783         if (!rps_may_expire_flow(efx->net_dev, spec->dmaq_id, flow_id, arfs_id))
4784                 ret = false;
4785         else if (rule)
4786                 rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
4787 expire:
4788         saved_spec = *spec; /* remove operation will kfree spec */
4789         spin_unlock_bh(&efx->rps_hash_lock);
4790         /* At this point (since we dropped the lock), another thread might queue
4791          * up a fresh insertion request (but the actual insertion will be held
4792          * up by our possession of the filter table lock).  In that case, it
4793          * will set rule->filter_id to EFX_ARFS_FILTER_ID_PENDING, meaning that
4794          * the rule is not removed by efx_rps_hash_del() below.
4795          */
4796         if (ret)
4797                 ret = efx_ef10_filter_remove_internal(efx, 1U << spec->priority,
4798                                                       filter_idx, true) == 0;
4799         /* While we can't safely dereference rule (we dropped the lock), we can
4800          * still test it for NULL.
4801          */
4802         if (ret && rule) {
4803                 /* Expiring, so remove entry from ARFS table */
4804                 spin_lock_bh(&efx->rps_hash_lock);
4805                 efx_rps_hash_del(efx, &saved_spec);
4806                 spin_unlock_bh(&efx->rps_hash_lock);
4807         }
4808 out_unlock:
4809         up_write(&table->lock);
4810         up_read(&efx->filter_sem);
4811         return ret;
4812 }
4813 
4814 #endif /* CONFIG_RFS_ACCEL */
4815 
4816 static int efx_ef10_filter_match_flags_from_mcdi(bool encap, u32 mcdi_flags)
4817 {
4818         int match_flags = 0;
4819 
4820 #define MAP_FLAG(gen_flag, mcdi_field) do {                             \
4821                 u32 old_mcdi_flags = mcdi_flags;                        \
4822                 mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ ##  \
4823                                      mcdi_field ## _LBN);               \
4824                 if (mcdi_flags != old_mcdi_flags)                       \
4825                         match_flags |= EFX_FILTER_MATCH_ ## gen_flag;   \
4826         } while (0)
4827 
4828         if (encap) {
4829                 /* encap filters must specify encap type */
4830                 match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
4831                 /* and imply ethertype and ip proto */
4832                 mcdi_flags &=
4833                         ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN);
4834                 mcdi_flags &=
4835                         ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN);
4836                 /* VLAN tags refer to the outer packet */
4837                 MAP_FLAG(INNER_VID, INNER_VLAN);
4838                 MAP_FLAG(OUTER_VID, OUTER_VLAN);
4839                 /* everything else refers to the inner packet */
4840                 MAP_FLAG(LOC_MAC_IG, IFRM_UNKNOWN_UCAST_DST);
4841                 MAP_FLAG(LOC_MAC_IG, IFRM_UNKNOWN_MCAST_DST);
4842                 MAP_FLAG(REM_HOST, IFRM_SRC_IP);
4843                 MAP_FLAG(LOC_HOST, IFRM_DST_IP);
4844                 MAP_FLAG(REM_MAC, IFRM_SRC_MAC);
4845                 MAP_FLAG(REM_PORT, IFRM_SRC_PORT);
4846                 MAP_FLAG(LOC_MAC, IFRM_DST_MAC);
4847                 MAP_FLAG(LOC_PORT, IFRM_DST_PORT);
4848                 MAP_FLAG(ETHER_TYPE, IFRM_ETHER_TYPE);
4849                 MAP_FLAG(IP_PROTO, IFRM_IP_PROTO);
4850         } else {
4851                 MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
4852                 MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
4853                 MAP_FLAG(REM_HOST, SRC_IP);
4854                 MAP_FLAG(LOC_HOST, DST_IP);
4855                 MAP_FLAG(REM_MAC, SRC_MAC);
4856                 MAP_FLAG(REM_PORT, SRC_PORT);
4857                 MAP_FLAG(LOC_MAC, DST_MAC);
4858                 MAP_FLAG(LOC_PORT, DST_PORT);
4859                 MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
4860                 MAP_FLAG(INNER_VID, INNER_VLAN);
4861                 MAP_FLAG(OUTER_VID, OUTER_VLAN);
4862                 MAP_FLAG(IP_PROTO, IP_PROTO);
4863         }
4864 #undef MAP_FLAG
4865 
4866         /* Did we map them all? */
4867         if (mcdi_flags)
4868                 return -EINVAL;
4869 
4870         return match_flags;
4871 }
4872 
4873 static void efx_ef10_filter_cleanup_vlans(struct efx_nic *efx)
4874 {
4875         struct efx_ef10_filter_table *table = efx->filter_state;
4876         struct efx_ef10_filter_vlan *vlan, *next_vlan;
4877 
4878         /* See comment in efx_ef10_filter_table_remove() */
4879         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4880                 return;
4881 
4882         if (!table)
4883                 return;
4884 
4885         list_for_each_entry_safe(vlan, next_vlan, &table->vlan_list, list)
4886                 efx_ef10_filter_del_vlan_internal(efx, vlan);
4887 }
4888 
4889 static bool efx_ef10_filter_match_supported(struct efx_ef10_filter_table *table,
4890                                             bool encap,
4891                                             enum efx_filter_match_flags match_flags)
4892 {
4893         unsigned int match_pri;
4894         int mf;
4895 
4896         for (match_pri = 0;
4897              match_pri < table->rx_match_count;
4898              match_pri++) {
4899                 mf = efx_ef10_filter_match_flags_from_mcdi(encap,
4900                                 table->rx_match_mcdi_flags[match_pri]);
4901                 if (mf == match_flags)
4902                         return true;
4903         }
4904 
4905         return false;
4906 }
4907 
4908 static int
4909 efx_ef10_filter_table_probe_matches(struct efx_nic *efx,
4910                                     struct efx_ef10_filter_table *table,
4911                                     bool encap)
4912 {
4913         MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
4914         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
4915         unsigned int pd_match_pri, pd_match_count;
4916         size_t outlen;
4917         int rc;
4918 
4919         /* Find out which RX filter types are supported, and their priorities */
4920         MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
4921                        encap ?
4922                        MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_ENCAP_RX_MATCHES :
4923                        MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
4924         rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
4925                           inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
4926                           &outlen);
4927         if (rc)
4928                 return rc;
4929 
4930         pd_match_count = MCDI_VAR_ARRAY_LEN(
4931                 outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
4932 
4933         for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
4934                 u32 mcdi_flags =
4935                         MCDI_ARRAY_DWORD(
4936                                 outbuf,
4937                                 GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
4938                                 pd_match_pri);
4939                 rc = efx_ef10_filter_match_flags_from_mcdi(encap, mcdi_flags);
4940                 if (rc < 0) {
4941                         netif_dbg(efx, probe, efx->net_dev,
4942                                   "%s: fw flags %#x pri %u not supported in driver\n",
4943                                   __func__, mcdi_flags, pd_match_pri);
4944                 } else {
4945                         netif_dbg(efx, probe, efx->net_dev,
4946                                   "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
4947                                   __func__, mcdi_flags, pd_match_pri,
4948                                   rc, table->rx_match_count);
4949                         table->rx_match_mcdi_flags[table->rx_match_count] = mcdi_flags;
4950                         table->rx_match_count++;
4951                 }
4952         }
4953 
4954         return 0;
4955 }
4956 
4957 static int efx_ef10_filter_table_probe(struct efx_nic *efx)
4958 {
4959         struct efx_ef10_nic_data *nic_data = efx->nic_data;
4960         struct net_device *net_dev = efx->net_dev;
4961         struct efx_ef10_filter_table *table;
4962         struct efx_ef10_vlan *vlan;
4963         int rc;
4964 
4965         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4966                 return -EINVAL;
4967 
4968         if (efx->filter_state) /* already probed */
4969                 return 0;
4970 
4971         table = kzalloc(sizeof(*table), GFP_KERNEL);
4972         if (!table)
4973                 return -ENOMEM;
4974 
4975         table->rx_match_count = 0;
4976         rc = efx_ef10_filter_table_probe_matches(efx, table, false);
4977         if (rc)
4978                 goto fail;
4979         if (nic_data->datapath_caps &
4980                    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
4981                 rc = efx_ef10_filter_table_probe_matches(efx, table, true);
4982         if (rc)
4983                 goto fail;
4984         if ((efx_supported_features(efx) & NETIF_F_HW_VLAN_CTAG_FILTER) &&
4985             !(efx_ef10_filter_match_supported(table, false,
4986                 (EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC)) &&
4987               efx_ef10_filter_match_supported(table, false,
4988                 (EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC_IG)))) {
4989                 netif_info(efx, probe, net_dev,
4990                            "VLAN filters are not supported in this firmware variant\n");
4991                 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4992                 efx->fixed_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4993                 net_dev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4994         }
4995 
4996         table->entry = vzalloc(array_size(HUNT_FILTER_TBL_ROWS,
4997                                           sizeof(*table->entry)));
4998         if (!table->entry) {
4999                 rc = -ENOMEM;
5000                 goto fail;
5001         }
5002 
5003         table->mc_promisc_last = false;
5004         table->vlan_filter =
5005                 !!(efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
5006         INIT_LIST_HEAD(&table->vlan_list);
5007         init_rwsem(&table->lock);
5008 
5009         efx->filter_state = table;
5010 
5011         list_for_each_entry(vlan, &nic_data->vlan_list, list) {
5012                 rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
5013                 if (rc)
5014                         goto fail_add_vlan;
5015         }
5016 
5017         return 0;
5018 
5019 fail_add_vlan:
5020         efx_ef10_filter_cleanup_vlans(efx);
5021         efx->filter_state = NULL;
5022 fail:
5023         kfree(table);
5024         return rc;
5025 }
5026 
5027 /* Caller must hold efx->filter_sem for read if race against
5028  * efx_ef10_filter_table_remove() is possible
5029  */
5030 static void efx_ef10_filter_table_restore(struct efx_nic *efx)
5031 {
5032         struct efx_ef10_filter_table *table = efx->filter_state;
5033         struct efx_ef10_nic_data *nic_data = efx->nic_data;
5034         unsigned int invalid_filters = 0, failed = 0;
5035         struct efx_ef10_filter_vlan *vlan;
5036         struct efx_filter_spec *spec;
5037         struct efx_rss_context *ctx;
5038         unsigned int filter_idx;
5039         u32 mcdi_flags;
5040         int match_pri;
5041         int rc, i;
5042 
5043         WARN_ON(!rwsem_is_locked(&efx->filter_sem));
5044 
5045         if (!nic_data->must_restore_filters)
5046                 return;
5047 
5048         if (!table)
5049                 return;
5050 
5051         down_write(&table->lock);
5052         mutex_lock(&efx->rss_lock);
5053 
5054         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
5055                 spec = efx_ef10_filter_entry_spec(table, filter_idx);
5056                 if (!spec)
5057                         continue;
5058 
5059                 mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
5060                 match_pri = 0;
5061                 while (match_pri < table->rx_match_count &&
5062                        table->rx_match_mcdi_flags[match_pri] != mcdi_flags)
5063                         ++match_pri;
5064                 if (match_pri >= table->rx_match_count) {
5065                         invalid_filters++;
5066                         goto not_restored;
5067                 }
5068                 if (spec->rss_context)
5069                         ctx = efx_find_rss_context_entry(efx, spec->rss_context);
5070                 else
5071                         ctx = &efx->rss_context;
5072                 if (spec->flags & EFX_FILTER_FLAG_RX_RSS) {
5073                         if (!ctx) {
5074                                 netif_warn(efx, drv, efx->net_dev,
5075                                            "Warning: unable to restore a filter with nonexistent RSS context %u.\n",
5076                                            spec->rss_context);
5077                                 invalid_filters++;
5078                                 goto not_restored;
5079                         }
5080                         if (ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID) {
5081                                 netif_warn(efx, drv, efx->net_dev,
5082                                            "Warning: unable to restore a filter with RSS context %u as it was not created.\n",
5083                                            spec->rss_context);
5084                                 invalid_filters++;
5085                                 goto not_restored;
5086                         }
5087                 }
5088 
5089                 rc = efx_ef10_filter_push(efx, spec,
5090                                           &table->entry[filter_idx].handle,
5091                                           ctx, false);
5092                 if (rc)
5093                         failed++;
5094 
5095                 if (rc) {
5096 not_restored:
5097                         list_for_each_entry(vlan, &table->vlan_list, list)
5098                                 for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; ++i)
5099                                         if (vlan->default_filters[i] == filter_idx)
5100                                                 vlan->default_filters[i] =
5101                                                         EFX_EF10_FILTER_ID_INVALID;
5102 
5103                         kfree(spec);
5104                         efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
5105                 }
5106         }
5107 
5108         mutex_unlock(&efx->rss_lock);
5109         up_write(&table->lock);
5110 
5111         /* This can happen validly if the MC's capabilities have changed, so
5112          * is not an error.
5113          */
5114         if (invalid_filters)
5115                 netif_dbg(efx, drv, efx->net_dev,
5116                           "Did not restore %u filters that are now unsupported.\n",
5117                           invalid_filters);
5118 
5119         if (failed)
5120                 netif_err(efx, hw, efx->net_dev,
5121                           "unable to restore %u filters\n", failed);
5122         else
5123                 nic_data->must_restore_filters = false;
5124 }
5125 
5126 static void efx_ef10_filter_table_remove(struct efx_nic *efx)
5127 {
5128         struct efx_ef10_filter_table *table = efx->filter_state;
5129         MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
5130         struct efx_filter_spec *spec;
5131         unsigned int filter_idx;
5132         int rc;
5133 
5134         efx_ef10_filter_cleanup_vlans(efx);
5135         efx->filter_state = NULL;
5136         /* If we were called without locking, then it's not safe to free
5137          * the table as others might be using it.  So we just WARN, leak
5138          * the memory, and potentially get an inconsistent filter table
5139          * state.
5140          * This should never actually happen.
5141          */
5142         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5143                 return;
5144 
5145         if (!table)
5146                 return;
5147 
5148         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
5149                 spec = efx_ef10_filter_entry_spec(table, filter_idx);
5150                 if (!spec)
5151                         continue;
5152 
5153                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
5154                                efx_ef10_filter_is_exclusive(spec) ?
5155                                MC_CMD_FILTER_OP_IN_OP_REMOVE :
5156                                MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
5157                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
5158                                table->entry[filter_idx].handle);
5159                 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP, inbuf,
5160                                         sizeof(inbuf), NULL, 0, NULL);
5161                 if (rc)
5162                         netif_info(efx, drv, efx->net_dev,
5163                                    "%s: filter %04x remove failed\n",
5164                                    __func__, filter_idx);
5165                 kfree(spec);
5166         }
5167 
5168         vfree(table->entry);
5169         kfree(table);
5170 }
5171 
5172 static void efx_ef10_filter_mark_one_old(struct efx_nic *efx, uint16_t *id)
5173 {
5174         struct efx_ef10_filter_table *table = efx->filter_state;
5175         unsigned int filter_idx;
5176 
5177         efx_rwsem_assert_write_locked(&table->lock);
5178 
5179         if (*id != EFX_EF10_FILTER_ID_INVALID) {
5180                 filter_idx = efx_ef10_filter_get_unsafe_id(*id);
5181                 if (!table->entry[filter_idx].spec)
5182                         netif_dbg(efx, drv, efx->net_dev,
5183                                   "marked null spec old %04x:%04x\n", *id,
5184                                   filter_idx);
5185                 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
5186                 *id = EFX_EF10_FILTER_ID_INVALID;
5187         }
5188 }
5189 
5190 /* Mark old per-VLAN filters that may need to be removed */
5191 static void _efx_ef10_filter_vlan_mark_old(struct efx_nic *efx,
5192                                            struct efx_ef10_filter_vlan *vlan)
5193 {
5194         struct efx_ef10_filter_table *table = efx->filter_state;
5195         unsigned int i;
5196 
5197         for (i = 0; i < table->dev_uc_count; i++)
5198                 efx_ef10_filter_mark_one_old(efx, &vlan->uc[i]);
5199         for (i = 0; i < table->dev_mc_count; i++)
5200                 efx_ef10_filter_mark_one_old(efx, &vlan->mc[i]);
5201         for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5202                 efx_ef10_filter_mark_one_old(efx, &vlan->default_filters[i]);
5203 }
5204 
5205 /* Mark old filters that may need to be removed.
5206  * Caller must hold efx->filter_sem for read if race against
5207  * efx_ef10_filter_table_remove() is possible
5208  */
5209 static void efx_ef10_filter_mark_old(struct efx_nic *efx)
5210 {
5211         struct efx_ef10_filter_table *table = efx->filter_state;
5212         struct efx_ef10_filter_vlan *vlan;
5213 
5214         down_write(&table->lock);
5215         list_for_each_entry(vlan, &table->vlan_list, list)
5216                 _efx_ef10_filter_vlan_mark_old(efx, vlan);
5217         up_write(&table->lock);
5218 }
5219 
5220 static void efx_ef10_filter_uc_addr_list(struct efx_nic *efx)
5221 {
5222         struct efx_ef10_filter_table *table = efx->filter_state;
5223         struct net_device *net_dev = efx->net_dev;
5224         struct netdev_hw_addr *uc;
5225         unsigned int i;
5226 
5227         table->uc_promisc = !!(net_dev->flags & IFF_PROMISC);
5228         ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
5229         i = 1;
5230         netdev_for_each_uc_addr(uc, net_dev) {
5231                 if (i >= EFX_EF10_FILTER_DEV_UC_MAX) {
5232                         table->uc_promisc = true;
5233                         break;
5234                 }
5235                 ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
5236                 i++;
5237         }
5238 
5239         table->dev_uc_count = i;
5240 }
5241 
5242 static void efx_ef10_filter_mc_addr_list(struct efx_nic *efx)
5243 {
5244         struct efx_ef10_filter_table *table = efx->filter_state;
5245         struct net_device *net_dev = efx->net_dev;
5246         struct netdev_hw_addr *mc;
5247         unsigned int i;
5248 
5249         table->mc_overflow = false;
5250         table->mc_promisc = !!(net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI));
5251 
5252         i = 0;
5253         netdev_for_each_mc_addr(mc, net_dev) {
5254                 if (i >= EFX_EF10_FILTER_DEV_MC_MAX) {
5255                         table->mc_promisc = true;
5256                         table->mc_overflow = true;
5257                         break;
5258                 }
5259                 ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
5260                 i++;
5261         }
5262 
5263         table->dev_mc_count = i;
5264 }
5265 
5266 static int efx_ef10_filter_insert_addr_list(struct efx_nic *efx,
5267                                             struct efx_ef10_filter_vlan *vlan,
5268                                             bool multicast, bool rollback)
5269 {
5270         struct efx_ef10_filter_table *table = efx->filter_state;
5271         struct efx_ef10_dev_addr *addr_list;
5272         enum efx_filter_flags filter_flags;
5273         struct efx_filter_spec spec;
5274         u8 baddr[ETH_ALEN];
5275         unsigned int i, j;
5276         int addr_count;
5277         u16 *ids;
5278         int rc;
5279 
5280         if (multicast) {
5281                 addr_list = table->dev_mc_list;
5282                 addr_count = table->dev_mc_count;
5283                 ids = vlan->mc;
5284         } else {
5285                 addr_list = table->dev_uc_list;
5286                 addr_count = table->dev_uc_count;
5287                 ids = vlan->uc;
5288         }
5289 
5290         filter_flags = efx_rss_active(&efx->rss_context) ? EFX_FILTER_FLAG_RX_RSS : 0;
5291 
5292         /* Insert/renew filters */
5293         for (i = 0; i < addr_count; i++) {
5294                 EFX_WARN_ON_PARANOID(ids[i] != EFX_EF10_FILTER_ID_INVALID);
5295                 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5296                 efx_filter_set_eth_local(&spec, vlan->vid, addr_list[i].addr);
5297                 rc = efx_ef10_filter_insert_locked(efx, &spec, true);
5298                 if (rc < 0) {
5299                         if (rollback) {
5300                                 netif_info(efx, drv, efx->net_dev,
5301                                            "efx_ef10_filter_insert failed rc=%d\n",
5302                                            rc);
5303                                 /* Fall back to promiscuous */
5304                                 for (j = 0; j < i; j++) {
5305                                         efx_ef10_filter_remove_unsafe(
5306                                                 efx, EFX_FILTER_PRI_AUTO,
5307                                                 ids[j]);
5308                                         ids[j] = EFX_EF10_FILTER_ID_INVALID;
5309                                 }
5310                                 return rc;
5311                         } else {
5312                                 /* keep invalid ID, and carry on */
5313                         }
5314                 } else {
5315                         ids[i] = efx_ef10_filter_get_unsafe_id(rc);
5316                 }
5317         }
5318 
5319         if (multicast && rollback) {
5320                 /* Also need an Ethernet broadcast filter */
5321                 EFX_WARN_ON_PARANOID(vlan->default_filters[EFX_EF10_BCAST] !=
5322                                      EFX_EF10_FILTER_ID_INVALID);
5323                 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5324                 eth_broadcast_addr(baddr);
5325                 efx_filter_set_eth_local(&spec, vlan->vid, baddr);
5326                 rc = efx_ef10_filter_insert_locked(efx, &spec, true);
5327                 if (rc < 0) {
5328                         netif_warn(efx, drv, efx->net_dev,
5329                                    "Broadcast filter insert failed rc=%d\n", rc);
5330                         /* Fall back to promiscuous */
5331                         for (j = 0; j < i; j++) {
5332                                 efx_ef10_filter_remove_unsafe(
5333                                         efx, EFX_FILTER_PRI_AUTO,
5334                                         ids[j]);
5335                                 ids[j] = EFX_EF10_FILTER_ID_INVALID;
5336                         }
5337                         return rc;
5338                 } else {
5339                         vlan->default_filters[EFX_EF10_BCAST] =
5340                                 efx_ef10_filter_get_unsafe_id(rc);
5341                 }
5342         }
5343 
5344         return 0;
5345 }
5346 
5347 static int efx_ef10_filter_insert_def(struct efx_nic *efx,
5348                                       struct efx_ef10_filter_vlan *vlan,
5349                                       enum efx_encap_type encap_type,
5350                                       bool multicast, bool rollback)
5351 {
5352         struct efx_ef10_nic_data *nic_data = efx->nic_data;
5353         enum efx_filter_flags filter_flags;
5354         struct efx_filter_spec spec;
5355         u8 baddr[ETH_ALEN];
5356         int rc;
5357         u16 *id;
5358 
5359         filter_flags = efx_rss_active(&efx->rss_context) ? EFX_FILTER_FLAG_RX_RSS : 0;
5360 
5361         efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5362 
5363         if (multicast)
5364                 efx_filter_set_mc_def(&spec);
5365         else
5366                 efx_filter_set_uc_def(&spec);
5367 
5368         if (encap_type) {
5369                 if (nic_data->datapath_caps &
5370                     (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
5371                         efx_filter_set_encap_type(&spec, encap_type);
5372                 else
5373                         /* don't insert encap filters on non-supporting
5374                          * platforms. ID will be left as INVALID.
5375                          */
5376                         return 0;
5377         }
5378 
5379         if (vlan->vid != EFX_FILTER_VID_UNSPEC)
5380                 efx_filter_set_eth_local(&spec, vlan->vid, NULL);
5381 
5382         rc = efx_ef10_filter_insert_locked(efx, &spec, true);
5383         if (rc < 0) {
5384                 const char *um = multicast ? "Multicast" : "Unicast";
5385                 const char *encap_name = "";
5386                 const char *encap_ipv = "";
5387 
5388                 if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5389                     EFX_ENCAP_TYPE_VXLAN)
5390                         encap_name = "VXLAN ";
5391                 else if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5392                          EFX_ENCAP_TYPE_NVGRE)
5393                         encap_name = "NVGRE ";
5394                 else if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5395                          EFX_ENCAP_TYPE_GENEVE)
5396                         encap_name = "GENEVE ";
5397                 if (encap_type & EFX_ENCAP_FLAG_IPV6)
5398                         encap_ipv = "IPv6 ";
5399                 else if (encap_type)
5400                         encap_ipv = "IPv4 ";
5401 
5402                 /* unprivileged functions can't insert mismatch filters
5403                  * for encapsulated or unicast traffic, so downgrade
5404                  * those warnings to debug.
5405                  */
5406                 netif_cond_dbg(efx, drv, efx->net_dev,
5407                                rc == -EPERM && (encap_type || !multicast), warn,
5408                                "%s%s%s mismatch filter insert failed rc=%d\n",
5409                                encap_name, encap_ipv, um, rc);
5410         } else if (multicast) {
5411                 /* mapping from encap types to default filter IDs (multicast) */
5412                 static enum efx_ef10_default_filters map[] = {
5413                         [EFX_ENCAP_TYPE_NONE] = EFX_EF10_MCDEF,
5414                         [EFX_ENCAP_TYPE_VXLAN] = EFX_EF10_VXLAN4_MCDEF,
5415                         [EFX_ENCAP_TYPE_NVGRE] = EFX_EF10_NVGRE4_MCDEF,
5416                         [EFX_ENCAP_TYPE_GENEVE] = EFX_EF10_GENEVE4_MCDEF,
5417                         [EFX_ENCAP_TYPE_VXLAN | EFX_ENCAP_FLAG_IPV6] =
5418                                 EFX_EF10_VXLAN6_MCDEF,
5419                         [EFX_ENCAP_TYPE_NVGRE | EFX_ENCAP_FLAG_IPV6] =
5420                                 EFX_EF10_NVGRE6_MCDEF,
5421                         [EFX_ENCAP_TYPE_GENEVE | EFX_ENCAP_FLAG_IPV6] =
5422                                 EFX_EF10_GENEVE6_MCDEF,
5423                 };
5424 
5425                 /* quick bounds check (BCAST result impossible) */
5426                 BUILD_BUG_ON(EFX_EF10_BCAST != 0);
5427                 if (encap_type >= ARRAY_SIZE(map) || map[encap_type] == 0) {
5428                         WARN_ON(1);
5429                         return -EINVAL;
5430                 }
5431                 /* then follow map */
5432                 id = &vlan->default_filters[map[encap_type]];
5433 
5434                 EFX_WARN_ON_PARANOID(*id != EFX_EF10_FILTER_ID_INVALID);
5435                 *id = efx_ef10_filter_get_unsafe_id(rc);
5436                 if (!nic_data->workaround_26807 && !encap_type) {
5437                         /* Also need an Ethernet broadcast filter */
5438                         efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
5439                                            filter_flags, 0);
5440                         eth_broadcast_addr(baddr);
5441                         efx_filter_set_eth_local(&spec, vlan->vid, baddr);
5442                         rc = efx_ef10_filter_insert_locked(efx, &spec, true);
5443                         if (rc < 0) {
5444                                 netif_warn(efx, drv, efx->net_dev,
5445                                            "Broadcast filter insert failed rc=%d\n",
5446                                            rc);
5447                                 if (rollback) {
5448                                         /* Roll back the mc_def filter */
5449                                         efx_ef10_filter_remove_unsafe(
5450                                                         efx, EFX_FILTER_PRI_AUTO,
5451                                                         *id);
5452                                         *id = EFX_EF10_FILTER_ID_INVALID;
5453                                         return rc;
5454                                 }
5455                         } else {
5456                                 EFX_WARN_ON_PARANOID(
5457                                         vlan->default_filters[EFX_EF10_BCAST] !=
5458                                         EFX_EF10_FILTER_ID_INVALID);
5459                                 vlan->default_filters[EFX_EF10_BCAST] =
5460                                         efx_ef10_filter_get_unsafe_id(rc);
5461                         }
5462                 }
5463                 rc = 0;
5464         } else {
5465                 /* mapping from encap types to default filter IDs (unicast) */
5466                 static enum efx_ef10_default_filters map[] = {
5467                         [EFX_ENCAP_TYPE_NONE] = EFX_EF10_UCDEF,
5468                         [EFX_ENCAP_TYPE_VXLAN] = EFX_EF10_VXLAN4_UCDEF,
5469                         [EFX_ENCAP_TYPE_NVGRE] = EFX_EF10_NVGRE4_UCDEF,
5470                         [EFX_ENCAP_TYPE_GENEVE] = EFX_EF10_GENEVE4_UCDEF,
5471                         [EFX_ENCAP_TYPE_VXLAN | EFX_ENCAP_FLAG_IPV6] =
5472                                 EFX_EF10_VXLAN6_UCDEF,
5473                         [EFX_ENCAP_TYPE_NVGRE | EFX_ENCAP_FLAG_IPV6] =
5474                                 EFX_EF10_NVGRE6_UCDEF,
5475                         [EFX_ENCAP_TYPE_GENEVE | EFX_ENCAP_FLAG_IPV6] =
5476                                 EFX_EF10_GENEVE6_UCDEF,
5477                 };
5478 
5479                 /* quick bounds check (BCAST result impossible) */
5480                 BUILD_BUG_ON(EFX_EF10_BCAST != 0);
5481                 if (encap_type >= ARRAY_SIZE(map) || map[encap_type] == 0) {
5482                         WARN_ON(1);
5483                         return -EINVAL;
5484                 }
5485                 /* then follow map */
5486                 id = &vlan->default_filters[map[encap_type]];
5487                 EFX_WARN_ON_PARANOID(*id != EFX_EF10_FILTER_ID_INVALID);
5488                 *id = rc;
5489                 rc = 0;
5490         }
5491         return rc;
5492 }
5493 
5494 /* Remove filters that weren't renewed. */
5495 static void efx_ef10_filter_remove_old(struct efx_nic *efx)
5496 {
5497         struct efx_ef10_filter_table *table = efx->filter_state;
5498         int remove_failed = 0;
5499         int remove_noent = 0;
5500         int rc;
5501         int i;
5502 
5503         down_write(&table->lock);
5504         for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
5505                 if (READ_ONCE(table->entry[i].spec) &
5506                     EFX_EF10_FILTER_FLAG_AUTO_OLD) {
5507                         rc = efx_ef10_filter_remove_internal(efx,
5508                                         1U << EFX_FILTER_PRI_AUTO, i, true);
5509                         if (rc == -ENOENT)
5510                                 remove_noent++;
5511                         else if (rc)
5512                                 remove_failed++;
5513                 }
5514         }
5515         up_write(&table->lock);
5516 
5517         if (remove_failed)
5518                 netif_info(efx, drv, efx->net_dev,
5519                            "%s: failed to remove %d filters\n",
5520                            __func__, remove_failed);
5521         if (remove_noent)
5522                 netif_info(efx, drv, efx->net_dev,
5523                            "%s: failed to remove %d non-existent filters\n",
5524                            __func__, remove_noent);
5525 }
5526 
5527 static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
5528 {
5529         struct efx_ef10_nic_data *nic_data = efx->nic_data;
5530         u8 mac_old[ETH_ALEN];
5531         int rc, rc2;
5532 
5533         /* Only reconfigure a PF-created vport */
5534         if (is_zero_ether_addr(nic_data->vport_mac))
5535                 return 0;
5536 
5537         efx_device_detach_sync(efx);
5538         efx_net_stop(efx->net_dev);
5539         down_write(&efx->filter_sem);
5540         efx_ef10_filter_table_remove(efx);
5541         up_write(&efx->filter_sem);
5542 
5543         rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id);
5544         if (rc)
5545                 goto restore_filters;
5546 
5547         ether_addr_copy(mac_old, nic_data->vport_mac);
5548         rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id,
5549                                     nic_data->vport_mac);
5550         if (rc)
5551                 goto restore_vadaptor;
5552 
5553         rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id,
5554                                     efx->net_dev->dev_addr);
5555         if (!rc) {
5556                 ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
5557         } else {
5558                 rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old);
5559                 if (rc2) {
5560                         /* Failed to add original MAC, so clear vport_mac */
5561                         eth_zero_addr(nic_data->vport_mac);
5562                         goto reset_nic;
5563                 }
5564         }
5565 
5566 restore_vadaptor:
5567         rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id);
5568         if (rc2)
5569                 goto reset_nic;
5570 restore_filters:
5571         down_write(&efx->filter_sem);
5572         rc2 = efx_ef10_filter_table_probe(efx);
5573         up_write(&efx->filter_sem);
5574         if (rc2)
5575                 goto reset_nic;
5576 
5577         rc2 = efx_net_open(efx->net_dev);
5578         if (rc2)
5579                 goto reset_nic;
5580 
5581         efx_device_attach_if_not_resetting(efx);
5582 
5583         return rc;
5584 
5585 reset_nic:
5586         netif_err(efx, drv, efx->net_dev,
5587                   "Failed to restore when changing MAC address - scheduling reset\n");
5588         efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
5589 
5590         return rc ? rc : rc2;
5591 }
5592 
5593 /* Caller must hold efx->filter_sem for read if race against
5594  * efx_ef10_filter_table_remove() is possible
5595  */
5596 static void efx_ef10_filter_vlan_sync_rx_mode(struct efx_nic *efx,
5597                                               struct efx_ef10_filter_vlan *vlan)
5598 {
5599         struct efx_ef10_filter_table *table = efx->filter_state;
5600         struct efx_ef10_nic_data *nic_data = efx->nic_data;
5601 
5602         /* Do not install unspecified VID if VLAN filtering is enabled.
5603          * Do not install all specified VIDs if VLAN filtering is disabled.
5604          */
5605         if ((vlan->vid == EFX_FILTER_VID_UNSPEC) == table->vlan_filter)
5606                 return;
5607 
5608         /* Insert/renew unicast filters */
5609         if (table->uc_promisc) {
5610                 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NONE,
5611                                            false, false);
5612                 efx_ef10_filter_insert_addr_list(efx, vlan, false, false);
5613         } else {
5614                 /* If any of the filters failed to insert, fall back to
5615                  * promiscuous mode - add in the uc_def filter.  But keep
5616                  * our individual unicast filters.
5617                  */
5618                 if (efx_ef10_filter_insert_addr_list(efx, vlan, false, false))
5619                         efx_ef10_filter_insert_def(efx, vlan,
5620                                                    EFX_ENCAP_TYPE_NONE,
5621                                                    false, false);
5622         }
5623         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN,
5624                                    false, false);
5625         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN |
5626                                               EFX_ENCAP_FLAG_IPV6,
5627                                    false, false);
5628         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE,
5629                                    false, false);
5630         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE |
5631                                               EFX_ENCAP_FLAG_IPV6,
5632                                    false, false);
5633         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE,
5634                                    false, false);
5635         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE |
5636                                               EFX_ENCAP_FLAG_IPV6,
5637                                    false, false);
5638 
5639         /* Insert/renew multicast filters */
5640         /* If changing promiscuous state with cascaded multicast filters, remove
5641          * old filters first, so that packets are dropped rather than duplicated
5642          */
5643         if (nic_data->workaround_26807 &&
5644             table->mc_promisc_last != table->mc_promisc)
5645                 efx_ef10_filter_remove_old(efx);
5646         if (table->mc_promisc) {
5647                 if (nic_data->workaround_26807) {
5648                         /* If we failed to insert promiscuous filters, rollback
5649                          * and fall back to individual multicast filters
5650                          */
5651                         if (efx_ef10_filter_insert_def(efx, vlan,
5652                                                        EFX_ENCAP_TYPE_NONE,
5653                                                        true, true)) {
5654                                 /* Changing promisc state, so remove old filters */
5655                                 efx_ef10_filter_remove_old(efx);
5656                                 efx_ef10_filter_insert_addr_list(efx, vlan,
5657                                                                  true, false);
5658                         }
5659                 } else {
5660                         /* If we failed to insert promiscuous filters, don't
5661                          * rollback.  Regardless, also insert the mc_list,
5662                          * unless it's incomplete due to overflow
5663                          */
5664                         efx_ef10_filter_insert_def(efx, vlan,
5665                                                    EFX_ENCAP_TYPE_NONE,
5666                                                    true, false);
5667                         if (!table->mc_overflow)
5668                                 efx_ef10_filter_insert_addr_list(efx, vlan,
5669                                                                  true, false);
5670                 }
5671         } else {
5672                 /* If any filters failed to insert, rollback and fall back to
5673                  * promiscuous mode - mc_def filter and maybe broadcast.  If
5674                  * that fails, roll back again and insert as many of our
5675                  * individual multicast filters as we can.
5676                  */
5677                 if (efx_ef10_filter_insert_addr_list(efx, vlan, true, true)) {
5678                         /* Changing promisc state, so remove old filters */
5679                         if (nic_data->workaround_26807)
5680                                 efx_ef10_filter_remove_old(efx);
5681                         if (efx_ef10_filter_insert_def(efx, vlan,
5682                                                        EFX_ENCAP_TYPE_NONE,
5683                                                        true, true))
5684                                 efx_ef10_filter_insert_addr_list(efx, vlan,
5685                                                                  true, false);
5686                 }
5687         }
5688         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN,
5689                                    true, false);
5690         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN |
5691                                               EFX_ENCAP_FLAG_IPV6,
5692                                    true, false);
5693         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE,
5694                                    true, false);
5695         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE |
5696                                               EFX_ENCAP_FLAG_IPV6,
5697                                    true, false);
5698         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE,
5699                                    true, false);
5700         efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE |
5701                                               EFX_ENCAP_FLAG_IPV6,
5702                                    true, false);
5703 }
5704 
5705 /* Caller must hold efx->filter_sem for read if race against
5706  * efx_ef10_filter_table_remove() is possible
5707  */
5708 static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
5709 {
5710         struct efx_ef10_filter_table *table = efx->filter_state;
5711         struct net_device *net_dev = efx->net_dev;
5712         struct efx_ef10_filter_vlan *vlan;
5713         bool vlan_filter;
5714 
5715         if (!efx_dev_registered(efx))
5716                 return;
5717 
5718         if (!table)
5719                 return;
5720 
5721         efx_ef10_filter_mark_old(efx);
5722 
5723         /* Copy/convert the address lists; add the primary station
5724          * address and broadcast address
5725          */
5726         netif_addr_lock_bh(net_dev);
5727         efx_ef10_filter_uc_addr_list(efx);
5728         efx_ef10_filter_mc_addr_list(efx);
5729         netif_addr_unlock_bh(net_dev);
5730 
5731         /* If VLAN filtering changes, all old filters are finally removed.
5732          * Do it in advance to avoid conflicts for unicast untagged and
5733          * VLAN 0 tagged filters.
5734          */
5735         vlan_filter = !!(net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
5736         if (table->vlan_filter != vlan_filter) {
5737                 table->vlan_filter = vlan_filter;
5738                 efx_ef10_filter_remove_old(efx);
5739         }
5740 
5741         list_for_each_entry(vlan, &table->vlan_list, list)
5742                 efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
5743 
5744         efx_ef10_filter_remove_old(efx);
5745         table->mc_promisc_last = table->mc_promisc;
5746 }
5747 
5748 static struct efx_ef10_filter_vlan *efx_ef10_filter_find_vlan(struct efx_nic *efx, u16 vid)
5749 {
5750         struct efx_ef10_filter_table *table = efx->filter_state;
5751         struct efx_ef10_filter_vlan *vlan;
5752 
5753         WARN_ON(!rwsem_is_locked(&efx->filter_sem));
5754 
5755         list_for_each_entry(vlan, &table->vlan_list, list) {
5756                 if (vlan->vid == vid)
5757                         return vlan;
5758         }
5759 
5760         return NULL;
5761 }
5762 
5763 static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid)
5764 {
5765         struct efx_ef10_filter_table *table = efx->filter_state;
5766         struct efx_ef10_filter_vlan *vlan;
5767         unsigned int i;
5768 
5769         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5770                 return -EINVAL;
5771 
5772         vlan = efx_ef10_filter_find_vlan(efx, vid);
5773         if (WARN_ON(vlan)) {
5774                 netif_err(efx, drv, efx->net_dev,
5775                           "VLAN %u already added\n", vid);
5776                 return -EALREADY;
5777         }
5778 
5779         vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
5780         if (!vlan)
5781                 return -ENOMEM;
5782 
5783         vlan->vid = vid;
5784 
5785         for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
5786                 vlan->uc[i] = EFX_EF10_FILTER_ID_INVALID;
5787         for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
5788                 vlan->mc[i] = EFX_EF10_FILTER_ID_INVALID;
5789         for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5790                 vlan->default_filters[i] = EFX_EF10_FILTER_ID_INVALID;
5791 
5792         list_add_tail(&vlan->list, &table->vlan_list);
5793 
5794         if (efx_dev_registered(efx))
5795                 efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
5796 
5797         return 0;
5798 }
5799 
5800 static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
5801                                               struct efx_ef10_filter_vlan *vlan)
5802 {
5803         unsigned int i;
5804 
5805         /* See comment in efx_ef10_filter_table_remove() */
5806         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5807                 return;
5808 
5809         list_del(&vlan->list);
5810 
5811         for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
5812                 efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5813                                               vlan->uc[i]);
5814         for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
5815                 efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5816                                               vlan->mc[i]);
5817         for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5818                 if (vlan->default_filters[i] != EFX_EF10_FILTER_ID_INVALID)
5819                         efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5820                                                       vlan->default_filters[i]);
5821 
5822         kfree(vlan);
5823 }
5824 
5825 static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid)
5826 {
5827         struct efx_ef10_filter_vlan *vlan;
5828 
5829         /* See comment in efx_ef10_filter_table_remove() */
5830         if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5831                 return;
5832 
5833         vlan = efx_ef10_filter_find_vlan(efx, vid);
5834         if (!vlan) {
5835                 netif_err(efx, drv, efx->net_dev,
5836                           "VLAN %u not found in filter state\n", vid);
5837                 return;
5838         }
5839 
5840         efx_ef10_filter_del_vlan_internal(efx, vlan);
5841 }
5842 
5843 static int efx_ef10_set_mac_address(struct efx_nic *efx)
5844 {
5845         MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
5846         struct efx_ef10_nic_data *nic_data = efx->nic_data;
5847         bool was_enabled = efx->port_enabled;
5848         int rc;
5849 
5850         efx_device_detach_sync(efx);
5851         efx_net_stop(efx->net_dev);
5852 
5853         mutex_lock(&efx->mac_lock);
5854         down_write(&efx->filter_sem);
5855         efx_ef10_filter_table_remove(efx);
5856 
5857         ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
5858                         efx->net_dev->dev_addr);
5859         MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
5860                        nic_data->vport_id);
5861         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
5862                                 sizeof(inbuf), NULL, 0, NULL);
5863 
5864         efx_ef10_filter_table_probe(efx);
5865         up_write(&efx->filter_sem);
5866         mutex_unlock(&efx->mac_lock);
5867 
5868         if (was_enabled)
5869                 efx_net_open(efx->net_dev);
5870         efx_device_attach_if_not_resetting(efx);
5871 
5872 #ifdef CONFIG_SFC_SRIOV
5873         if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
5874                 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
5875 
5876                 if (rc == -EPERM) {
5877                         struct efx_nic *efx_pf;
5878 
5879                         /* Switch to PF and change MAC address on vport */
5880                         efx_pf = pci_get_drvdata(pci_dev_pf);
5881 
5882                         rc = efx_ef10_sriov_set_vf_mac(efx_pf,
5883                                                        nic_data->vf_index,
5884                                                        efx->net_dev->dev_addr);
5885                 } else if (!rc) {
5886                         struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
5887                         struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
5888                         unsigned int i;
5889 
5890                         /* MAC address successfully changed by VF (with MAC
5891                          * spoofing) so update the parent PF if possible.
5892                          */
5893                         for (i = 0; i < efx_pf->vf_count; ++i) {
5894                                 struct ef10_vf *vf = nic_data->vf + i;
5895 
5896                                 if (vf->efx == efx) {
5897                                         ether_addr_copy(vf->mac,
5898                                                         efx->net_dev->dev_addr);
5899                                         return 0;
5900                                 }
5901                         }
5902                 }
5903         } else
5904 #endif
5905         if (rc == -EPERM) {
5906                 netif_err(efx, drv, efx->net_dev,
5907                           "Cannot change MAC address; use sfboot to enable"
5908                           " mac-spoofing on this interface\n");
5909         } else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
5910                 /* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
5911                  * fall-back to the method of changing the MAC address on the
5912                  * vport.  This only applies to PFs because such versions of
5913                  * MCFW do not support VFs.
5914                  */
5915                 rc = efx_ef10_vport_set_mac_address(efx);
5916         } else if (rc) {
5917                 efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
5918                                        sizeof(inbuf), NULL, 0, rc);
5919         }
5920 
5921         return rc;
5922 }
5923 
5924 static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
5925 {
5926         efx_ef10_filter_sync_rx_mode(efx);
5927 
5928         return efx_mcdi_set_mac(efx);
5929 }
5930 
5931 static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
5932 {
5933         efx_ef10_filter_sync_rx_mode(efx);
5934 
5935         return 0;
5936 }
5937 
5938 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
5939 {
5940         MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
5941 
5942         MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
5943         return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
5944                             NULL, 0, NULL);
5945 }
5946 
5947 /* MC BISTs follow a different poll mechanism to phy BISTs.
5948  * The BIST is done in the poll handler on the MC, and the MCDI command
5949  * will block until the BIST is done.
5950  */
5951 static int efx_ef10_poll_bist(struct efx_nic *efx)
5952 {
5953         int rc;
5954         MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
5955         size_t outlen;
5956         u32 result;
5957 
5958         rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
5959                            outbuf, sizeof(outbuf), &outlen);
5960         if (rc != 0)
5961                 return rc;
5962 
5963         if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
5964                 return -EIO;
5965 
5966         result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
5967         switch (result) {
5968         case MC_CMD_POLL_BIST_PASSED:
5969                 netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
5970                 return 0;
5971         case MC_CMD_POLL_BIST_TIMEOUT:
5972                 netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
5973                 return -EIO;
5974         case MC_CMD_POLL_BIST_FAILED:
5975                 netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
5976                 return -EIO;
5977         default:
5978                 netif_err(efx, hw, efx->net_dev,
5979                           "BIST returned unknown result %u", result);
5980                 return -EIO;
5981         }
5982 }
5983 
5984 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
5985 {
5986         int rc;
5987 
5988         netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
5989 
5990         rc = efx_ef10_start_bist(efx, bist_type);
5991         if (rc != 0)
5992                 return rc;
5993 
5994         return efx_ef10_poll_bist(efx);
5995 }
5996 
5997 static int
5998 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
5999 {
6000         int rc, rc2;
6001 
6002         efx_reset_down(efx, RESET_TYPE_WORLD);
6003 
6004         rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
6005                           NULL, 0, NULL, 0, NULL);
6006         if (rc != 0)
6007                 goto out;
6008 
6009         tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
6010         tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
6011 
6012         rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
6013 
6014 out:
6015         if (rc == -EPERM)
6016                 rc = 0;
6017         rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
6018         return rc ? rc : rc2;
6019 }
6020 
6021 #ifdef CONFIG_SFC_MTD
6022 
6023 struct efx_ef10_nvram_type_info {
6024         u16 type, type_mask;
6025         u8 port;
6026         const char *name;
6027 };
6028 
6029 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
6030         { NVRAM_PARTITION_TYPE_MC_FIRMWARE,        0,    0, "sfc_mcfw" },
6031         { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
6032         { NVRAM_PARTITION_TYPE_EXPANSION_ROM,      0,    0, "sfc_exp_rom" },
6033         { NVRAM_PARTITION_TYPE_STATIC_CONFIG,      0,    0, "sfc_static_cfg" },
6034         { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,     0,    0, "sfc_dynamic_cfg" },
6035         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
6036         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
6037         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
6038         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
6039         { NVRAM_PARTITION_TYPE_LICENSE,            0,    0, "sfc_license" },
6040         { NVRAM_PARTITION_TYPE_PHY_MIN,            0xff, 0, "sfc_phy_fw" },
6041         { NVRAM_PARTITION_TYPE_MUM_FIRMWARE,       0,    0, "sfc_mumfw" },
6042         { NVRAM_PARTITION_TYPE_EXPANSION_UEFI,     0,    0, "sfc_uefi" },
6043         { NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS, 0,    0, "sfc_dynamic_cfg_dflt" },
6044         { NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS, 0,    0, "sfc_exp_rom_cfg_dflt" },
6045         { NVRAM_PARTITION_TYPE_STATUS,             0,    0, "sfc_status" },
6046         { NVRAM_PARTITION_TYPE_BUNDLE,             0,    0, "sfc_bundle" },
6047         { NVRAM_PARTITION_TYPE_BUNDLE_METADATA,    0,    0, "sfc_bundle_metadata" },
6048 };
6049 #define EF10_NVRAM_PARTITION_COUNT      ARRAY_SIZE(efx_ef10_nvram_types)
6050 
6051 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
6052                                         struct efx_mcdi_mtd_partition *part,
6053                                         unsigned int type,
6054                                         unsigned long *found)
6055 {
6056         MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
6057         MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
6058         const struct efx_ef10_nvram_type_info *info;
6059         size_t size, erase_size, outlen;
6060         int type_idx = 0;
6061         bool protected;
6062         int rc;
6063 
6064         for (type_idx = 0; ; type_idx++) {
6065                 if (type_idx == EF10_NVRAM_PARTITION_COUNT)
6066                         return -ENODEV;
6067                 info = efx_ef10_nvram_types + type_idx;
6068                 if ((type & ~info->type_mask) == info->type)
6069                         break;
6070         }
6071         if (info->port != efx_port_num(efx))
6072                 return -ENODEV;
6073 
6074         rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
6075         if (rc)
6076                 return rc;
6077         if (protected &&
6078             (type != NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS &&
6079              type != NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS))
6080                 /* Hide protected partitions that don't provide defaults. */
6081                 return -ENODEV;
6082 
6083         if (protected)
6084                 /* Protected partitions are read only. */
6085                 erase_size = 0;
6086 
6087         /* If we've already exposed a partition of this type, hide this
6088          * duplicate.  All operations on MTDs are keyed by the type anyway,
6089          * so we can't act on the duplicate.
6090          */
6091         if (__test_and_set_bit(type_idx, found))
6092                 return -EEXIST;
6093 
6094         part->nvram_type = type;
6095 
6096         MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
6097         rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
6098                           outbuf, sizeof(outbuf), &outlen);
6099         if (rc)
6100                 return rc;
6101         if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
6102                 return -EIO;
6103         if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
6104             (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
6105                 part->fw_subtype = MCDI_DWORD(outbuf,
6106                                               NVRAM_METADATA_OUT_SUBTYPE);
6107 
6108         part->common.dev_type_name = "EF10 NVRAM manager";
6109         part->common.type_name = info->name;
6110 
6111         part->common.mtd.type = MTD_NORFLASH;
6112         part->common.mtd.flags = MTD_CAP_NORFLASH;
6113         part->common.mtd.size = size;
6114         part->common.mtd.erasesize = erase_size;
6115         /* sfc_status is read-only */
6116         if (!erase_size)
6117                 part->common.mtd.flags |= MTD_NO_ERASE;
6118 
6119         return 0;
6120 }
6121 
6122 static int efx_ef10_mtd_probe(struct efx_nic *efx)
6123 {
6124         MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
6125         DECLARE_BITMAP(found, EF10_NVRAM_PARTITION_COUNT) = { 0 };
6126         struct efx_mcdi_mtd_partition *parts;
6127         size_t outlen, n_parts_total, i, n_parts;
6128         unsigned int type;
6129         int rc;
6130 
6131         ASSERT_RTNL();
6132 
6133         BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
6134         rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
6135                           outbuf, sizeof(outbuf), &outlen);
6136         if (rc)
6137                 return rc;
6138         if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
6139                 return -EIO;
6140 
6141         n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
6142         if (n_parts_total >
6143             MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
6144                 return -EIO;
6145 
6146         parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
6147         if (!parts)
6148                 return -ENOMEM;
6149 
6150         n_parts = 0;
6151         for (i = 0; i < n_parts_total; i++) {
6152                 type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
6153                                         i);
6154                 rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type,
6155                                                   found);
6156                 if (rc == -EEXIST || rc == -ENODEV)
6157                         continue;
6158                 if (rc)
6159                         goto fail;
6160                 n_parts++;
6161         }
6162 
6163         rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
6164 fail:
6165         if (rc)
6166                 kfree(parts);
6167         return rc;
6168 }
6169 
6170 #endif /* CONFIG_SFC_MTD */
6171 
6172 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
6173 {
6174         _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
6175 }
6176 
6177 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
6178                                             u32 host_time) {}
6179 
6180 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
6181                                            bool temp)
6182 {
6183         MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
6184         int rc;
6185 
6186         if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
6187             channel->sync_events_state == SYNC_EVENTS_VALID ||
6188             (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
6189                 return 0;
6190         channel->sync_events_state = SYNC_EVENTS_REQUESTED;
6191 
6192         MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
6193         MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
6194         MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
6195                        channel->channel);
6196 
6197         rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
6198                           inbuf, sizeof(inbuf), NULL, 0, NULL);
6199 
6200         if (rc != 0)
6201                 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
6202                                                     SYNC_EVENTS_DISABLED;
6203 
6204         return rc;
6205 }
6206 
6207 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
6208                                             bool temp)
6209 {
6210         MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
6211         int rc;
6212 
6213         if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
6214             (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
6215                 return 0;
6216         if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
6217                 channel->sync_events_state = SYNC_EVENTS_DISABLED;
6218                 return 0;
6219         }
6220         channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
6221                                             SYNC_EVENTS_DISABLED;
6222 
6223         MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
6224         MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
6225         MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
6226                        MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
6227         MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
6228                        channel->channel);
6229 
6230         rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
6231                           inbuf, sizeof(inbuf), NULL, 0, NULL);
6232 
6233         return rc;
6234 }
6235 
6236 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
6237                                            bool temp)
6238 {
6239         int (*set)(struct efx_channel *channel, bool temp);
6240         struct efx_channel *channel;
6241 
6242         set = en ?
6243               efx_ef10_rx_enable_timestamping :
6244               efx_ef10_rx_disable_timestamping;
6245 
6246         channel = efx_ptp_channel(efx);
6247         if (channel) {
6248                 int rc = set(channel, temp);
6249                 if (en && rc != 0) {
6250                         efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
6251                         return rc;
6252                 }
6253         }
6254 
6255         return 0;
6256 }
6257 
6258 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
6259                                          struct hwtstamp_config *init)
6260 {
6261         return -EOPNOTSUPP;
6262 }
6263 
6264 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
6265                                       struct hwtstamp_config *init)
6266 {
6267         int rc;
6268 
6269         switch (init->rx_filter) {
6270         case HWTSTAMP_FILTER_NONE:
6271                 efx_ef10_ptp_set_ts_sync_events(efx, false, false);
6272                 /* if TX timestamping is still requested then leave PTP on */
6273                 return efx_ptp_change_mode(efx,
6274                                            init->tx_type != HWTSTAMP_TX_OFF, 0);
6275         case HWTSTAMP_FILTER_ALL:
6276         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
6277         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
6278         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
6279         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
6280         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6281         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6282         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
6283         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6284         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6285         case HWTSTAMP_FILTER_PTP_V2_EVENT:
6286         case HWTSTAMP_FILTER_PTP_V2_SYNC:
6287         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6288         case HWTSTAMP_FILTER_NTP_ALL:
6289                 init->rx_filter = HWTSTAMP_FILTER_ALL;
6290                 rc = efx_ptp_change_mode(efx, true, 0);
6291                 if (!rc)
6292                         rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
6293                 if (rc)
6294                         efx_ptp_change_mode(efx, false, 0);
6295                 return rc;
6296         default:
6297                 return -ERANGE;
6298         }
6299 }
6300 
6301 static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
6302                                      struct netdev_phys_item_id *ppid)
6303 {
6304         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6305 
6306         if (!is_valid_ether_addr(nic_data->port_id))
6307                 return -EOPNOTSUPP;
6308 
6309         ppid->id_len = ETH_ALEN;
6310         memcpy(ppid->id, nic_data->port_id, ppid->id_len);
6311 
6312         return 0;
6313 }
6314 
6315 static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
6316 {
6317         if (proto != htons(ETH_P_8021Q))
6318                 return -EINVAL;
6319 
6320         return efx_ef10_add_vlan(efx, vid);
6321 }
6322 
6323 static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
6324 {
6325         if (proto != htons(ETH_P_8021Q))
6326                 return -EINVAL;
6327 
6328         return efx_ef10_del_vlan(efx, vid);
6329 }
6330 
6331 /* We rely on the MCDI wiping out our TX rings if it made any changes to the
6332  * ports table, ensuring that any TSO descriptors that were made on a now-
6333  * removed tunnel port will be blown away and won't break things when we try
6334  * to transmit them using the new ports table.
6335  */
6336 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
6337 {
6338         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6339         MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
6340         MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
6341         bool will_reset = false;
6342         size_t num_entries = 0;
6343         size_t inlen, outlen;
6344         size_t i;
6345         int rc;
6346         efx_dword_t flags_and_num_entries;
6347 
6348         WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
6349 
6350         nic_data->udp_tunnels_dirty = false;
6351 
6352         if (!(nic_data->datapath_caps &
6353             (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
6354                 efx_device_attach_if_not_resetting(efx);
6355                 return 0;
6356         }
6357 
6358         BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
6359                      MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
6360 
6361         for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
6362                 if (nic_data->udp_tunnels[i].count &&
6363                     nic_data->udp_tunnels[i].port) {
6364                         efx_dword_t entry;
6365 
6366                         EFX_POPULATE_DWORD_2(entry,
6367                                 TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
6368                                         ntohs(nic_data->udp_tunnels[i].port),
6369                                 TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
6370                                         nic_data->udp_tunnels[i].type);
6371                         *_MCDI_ARRAY_DWORD(inbuf,
6372                                 SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
6373                                 num_entries++) = entry;
6374                 }
6375         }
6376 
6377         BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
6378                       MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
6379                      EFX_WORD_1_LBN);
6380         BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
6381                      EFX_WORD_1_WIDTH);
6382         EFX_POPULATE_DWORD_2(flags_and_num_entries,
6383                              MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
6384                                 !!unloading,
6385                              EFX_WORD_1, num_entries);
6386         *_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
6387                 flags_and_num_entries;
6388 
6389         inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
6390 
6391         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
6392                                 inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
6393         if (rc == -EIO) {
6394                 /* Most likely the MC rebooted due to another function also
6395                  * setting its tunnel port list. Mark the tunnel port list as
6396                  * dirty, so it will be pushed upon coming up from the reboot.
6397                  */
6398                 nic_data->udp_tunnels_dirty = true;
6399                 return 0;
6400         }
6401 
6402         if (rc) {
6403                 /* expected not available on unprivileged functions */
6404                 if (rc != -EPERM)
6405                         netif_warn(efx, drv, efx->net_dev,
6406                                    "Unable to set UDP tunnel ports; rc=%d.\n", rc);
6407         } else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
6408                    (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
6409                 netif_info(efx, drv, efx->net_dev,
6410                            "Rebooting MC due to UDP tunnel port list change\n");
6411                 will_reset = true;
6412                 if (unloading)
6413                         /* Delay for the MC reset to complete. This will make
6414                          * unloading other functions a bit smoother. This is a
6415                          * race, but the other unload will work whichever way
6416                          * it goes, this just avoids an unnecessary error
6417                          * message.
6418                          */
6419                         msleep(100);
6420         }
6421         if (!will_reset && !unloading) {
6422                 /* The caller will have detached, relying on the MC reset to
6423                  * trigger a re-attach.  Since there won't be an MC reset, we
6424                  * have to do the attach ourselves.
6425                  */
6426                 efx_device_attach_if_not_resetting(efx);
6427         }
6428 
6429         return rc;
6430 }
6431 
6432 static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
6433 {
6434         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6435         int rc = 0;
6436 
6437         mutex_lock(&nic_data->udp_tunnels_lock);
6438         if (nic_data->udp_tunnels_dirty) {
6439                 /* Make sure all TX are stopped while we modify the table, else
6440                  * we might race against an efx_features_check().
6441                  */
6442                 efx_device_detach_sync(efx);
6443                 rc = efx_ef10_set_udp_tnl_ports(efx, false);
6444         }
6445         mutex_unlock(&nic_data->udp_tunnels_lock);
6446         return rc;
6447 }
6448 
6449 static struct efx_udp_tunnel *__efx_ef10_udp_tnl_lookup_port(struct efx_nic *efx,
6450                                                              __be16 port)
6451 {
6452         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6453         size_t i;
6454 
6455         for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
6456                 if (!nic_data->udp_tunnels[i].count)
6457                         continue;
6458                 if (nic_data->udp_tunnels[i].port == port)
6459                         return &nic_data->udp_tunnels[i];
6460         }
6461         return NULL;
6462 }
6463 
6464 static int efx_ef10_udp_tnl_add_port(struct efx_nic *efx,
6465                                      struct efx_udp_tunnel tnl)
6466 {
6467         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6468         struct efx_udp_tunnel *match;
6469         char typebuf[8];
6470         size_t i;
6471         int rc;
6472 
6473         if (!(nic_data->datapath_caps &
6474               (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6475                 return 0;
6476 
6477         efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
6478         netif_dbg(efx, drv, efx->net_dev, "Adding UDP tunnel (%s) port %d\n",
6479                   typebuf, ntohs(tnl.port));
6480 
6481         mutex_lock(&nic_data->udp_tunnels_lock);
6482         /* Make sure all TX are stopped while we add to the table, else we
6483          * might race against an efx_features_check().
6484          */
6485         efx_device_detach_sync(efx);
6486 
6487         match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
6488         if (match != NULL) {
6489                 if (match->type == tnl.type) {
6490                         netif_dbg(efx, drv, efx->net_dev,
6491                                   "Referencing existing tunnel entry\n");
6492                         match->count++;
6493                         /* No need to cause an MCDI update */
6494                         rc = 0;
6495                         goto unlock_out;
6496                 }
6497                 efx_get_udp_tunnel_type_name(match->type,
6498                                              typebuf, sizeof(typebuf));
6499                 netif_dbg(efx, drv, efx->net_dev,
6500                           "UDP port %d is already in use by %s\n",
6501                           ntohs(tnl.port), typebuf);
6502                 rc = -EEXIST;
6503                 goto unlock_out;
6504         }
6505 
6506         for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
6507                 if (!nic_data->udp_tunnels[i].count) {
6508                         nic_data->udp_tunnels[i] = tnl;
6509                         nic_data->udp_tunnels[i].count = 1;
6510                         rc = efx_ef10_set_udp_tnl_ports(efx, false);
6511                         goto unlock_out;
6512                 }
6513 
6514         netif_dbg(efx, drv, efx->net_dev,
6515                   "Unable to add UDP tunnel (%s) port %d; insufficient resources.\n",
6516                   typebuf, ntohs(tnl.port));
6517 
6518         rc = -ENOMEM;
6519 
6520 unlock_out:
6521         mutex_unlock(&nic_data->udp_tunnels_lock);
6522         return rc;
6523 }
6524 
6525 /* Called under the TX lock with the TX queue running, hence no-one can be
6526  * in the middle of updating the UDP tunnels table.  However, they could
6527  * have tried and failed the MCDI, in which case they'll have set the dirty
6528  * flag before dropping their locks.
6529  */
6530 static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
6531 {
6532         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6533 
6534         if (!(nic_data->datapath_caps &
6535               (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6536                 return false;
6537 
6538         if (nic_data->udp_tunnels_dirty)
6539                 /* SW table may not match HW state, so just assume we can't
6540                  * use any UDP tunnel offloads.
6541                  */
6542                 return false;
6543 
6544         return __efx_ef10_udp_tnl_lookup_port(efx, port) != NULL;
6545 }
6546 
6547 static int efx_ef10_udp_tnl_del_port(struct efx_nic *efx,
6548                                      struct efx_udp_tunnel tnl)
6549 {
6550         struct efx_ef10_nic_data *nic_data = efx->nic_data;
6551         struct efx_udp_tunnel *match;
6552         char typebuf[8];
6553         int rc;
6554 
6555         if (!(nic_data->datapath_caps &
6556               (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6557                 return 0;
6558 
6559         efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
6560         netif_dbg(efx, drv, efx->net_dev, "Removing UDP tunnel (%s) port %d\n",
6561                   typebuf, ntohs(tnl.port));
6562 
6563         mutex_lock(&nic_data->udp_tunnels_lock);
6564         /* Make sure all TX are stopped while we remove from the table, else we
6565          * might race against an efx_features_check().
6566          */
6567         efx_device_detach_sync(efx);
6568 
6569         match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
6570         if (match != NULL) {
6571                 if (match->type == tnl.type) {
6572                         if (--match->count) {
6573                                 /* Port is still in use, so nothing to do */
6574                                 netif_dbg(efx, drv, efx->net_dev,
6575                                           "UDP tunnel port %d remains active\n",
6576                                           ntohs(tnl.port));
6577                                 rc = 0;
6578                                 goto out_unlock;
6579                         }
6580                         rc = efx_ef10_set_udp_tnl_ports(efx, false);
6581                         goto out_unlock;
6582                 }
6583                 efx_get_udp_tunnel_type_name(match->type,
6584                                              typebuf, sizeof(typebuf));
6585                 netif_warn(efx, drv, efx->net_dev,
6586                            "UDP port %d is actually in use by %s, not removing\n",
6587                            ntohs(tnl.port), typebuf);
6588         }
6589         rc = -ENOENT;
6590 
6591 out_unlock:
6592         mutex_unlock(&nic_data->udp_tunnels_lock);
6593         return rc;
6594 }
6595 
6596 #define EF10_OFFLOAD_FEATURES           \
6597         (NETIF_F_IP_CSUM |              \
6598          NETIF_F_HW_VLAN_CTAG_FILTER |  \
6599          NETIF_F_IPV6_CSUM |            \
6600          NETIF_F_RXHASH |               \
6601          NETIF_F_NTUPLE)
6602 
6603 const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
6604         .is_vf = true,
6605         .mem_bar = efx_ef10_vf_mem_bar,
6606         .mem_map_size = efx_ef10_mem_map_size,
6607         .probe = efx_ef10_probe_vf,
6608         .remove = efx_ef10_remove,
6609         .dimension_resources = efx_ef10_dimension_resources,
6610         .init = efx_ef10_init_nic,
6611         .fini = efx_port_dummy_op_void,
6612         .map_reset_reason = efx_ef10_map_reset_reason,
6613         .map_reset_flags = efx_ef10_map_reset_flags,
6614         .reset = efx_ef10_reset,
6615         .probe_port = efx_mcdi_port_probe,
6616         .remove_port = efx_mcdi_port_remove,
6617         .fini_dmaq = efx_ef10_fini_dmaq,
6618         .prepare_flr = efx_ef10_prepare_flr,
6619         .finish_flr = efx_port_dummy_op_void,
6620         .describe_stats = efx_ef10_describe_stats,
6621         .update_stats = efx_ef10_update_stats_vf,
6622         .start_stats = efx_port_dummy_op_void,
6623         .pull_stats = efx_port_dummy_op_void,
6624         .stop_stats = efx_port_dummy_op_void,
6625         .set_id_led = efx_mcdi_set_id_led,
6626         .push_irq_moderation = efx_ef10_push_irq_moderation,
6627         .reconfigure_mac = efx_ef10_mac_reconfigure_vf,
6628         .check_mac_fault = efx_mcdi_mac_check_fault,
6629         .reconfigure_port = efx_mcdi_port_reconfigure,
6630         .get_wol = efx_ef10_get_wol_vf,
6631         .set_wol = efx_ef10_set_wol_vf,
6632         .resume_wol = efx_port_dummy_op_void,
6633         .mcdi_request = efx_ef10_mcdi_request,
6634         .mcdi_poll_response = efx_ef10_mcdi_poll_response,
6635         .mcdi_read_response = efx_ef10_mcdi_read_response,
6636         .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
6637         .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
6638         .irq_enable_master = efx_port_dummy_op_void,
6639         .irq_test_generate = efx_ef10_irq_test_generate,
6640         .irq_disable_non_ev = efx_port_dummy_op_void,
6641         .irq_handle_msi = efx_ef10_msi_interrupt,
6642         .irq_handle_legacy = efx_ef10_legacy_interrupt,
6643         .tx_probe = efx_ef10_tx_probe,
6644         .tx_init = efx_ef10_tx_init,
6645         .tx_remove = efx_ef10_tx_remove,
6646         .tx_write = efx_ef10_tx_write,
6647         .tx_limit_len = efx_ef10_tx_limit_len,
6648         .rx_push_rss_config = efx_ef10_vf_rx_push_rss_config,
6649         .rx_pull_rss_config = efx_ef10_rx_pull_rss_config,
6650         .rx_probe = efx_ef10_rx_probe,
6651         .rx_init = efx_ef10_rx_init,
6652         .rx_remove = efx_ef10_rx_remove,
6653         .rx_write = efx_ef10_rx_write,
6654         .rx_defer_refill = efx_ef10_rx_defer_refill,
6655         .ev_probe = efx_ef10_ev_probe,
6656         .ev_init = efx_ef10_ev_init,
6657         .ev_fini = efx_ef10_ev_fini,
6658         .ev_remove = efx_ef10_ev_remove,
6659         .ev_process = efx_ef10_ev_process,
6660         .ev_read_ack = efx_ef10_ev_read_ack,
6661         .ev_test_generate = efx_ef10_ev_test_generate,
6662         .filter_table_probe = efx_ef10_filter_table_probe,
6663         .filter_table_restore = efx_ef10_filter_table_restore,
6664         .filter_table_remove = efx_ef10_filter_table_remove,
6665         .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
6666         .filter_insert = efx_ef10_filter_insert,
6667         .filter_remove_safe = efx_ef10_filter_remove_safe,
6668         .filter_get_safe = efx_ef10_filter_get_safe,
6669         .filter_clear_rx = efx_ef10_filter_clear_rx,
6670         .filter_count_rx_used = efx_ef10_filter_count_rx_used,
6671         .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
6672         .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
6673 #ifdef CONFIG_RFS_ACCEL
6674         .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
6675 #endif
6676 #ifdef CONFIG_SFC_MTD
6677         .mtd_probe = efx_port_dummy_op_int,
6678 #endif
6679         .ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
6680         .ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
6681         .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
6682         .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
6683 #ifdef CONFIG_SFC_SRIOV
6684         .vswitching_probe = efx_ef10_vswitching_probe_vf,
6685         .vswitching_restore = efx_ef10_vswitching_restore_vf,
6686         .vswitching_remove = efx_ef10_vswitching_remove_vf,
6687 #endif
6688         .get_mac_address = efx_ef10_get_mac_address_vf,
6689         .set_mac_address = efx_ef10_set_mac_address,
6690 
6691         .get_phys_port_id = efx_ef10_get_phys_port_id,
6692         .revision = EFX_REV_HUNT_A0,
6693         .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
6694         .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
6695         .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
6696         .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
6697         .can_rx_scatter = true,
6698         .always_rx_scatter = true,
6699         .min_interrupt_mode = EFX_INT_MODE_MSIX,
6700         .max_interrupt_mode = EFX_INT_MODE_MSIX,
6701         .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
6702         .offload_features = EF10_OFFLOAD_FEATURES,
6703         .mcdi_max_ver = 2,
6704         .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
6705         .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
6706                             1 << HWTSTAMP_FILTER_ALL,
6707         .rx_hash_key_size = 40,
6708 };
6709 
6710 const struct efx_nic_type efx_hunt_a0_nic_type = {
6711         .is_vf = false,
6712         .mem_bar = efx_ef10_pf_mem_bar,
6713         .mem_map_size = efx_ef10_mem_map_size,
6714         .probe = efx_ef10_probe_pf,
6715         .remove = efx_ef10_remove,
6716         .dimension_resources = efx_ef10_dimension_resources,
6717         .init = efx_ef10_init_nic,
6718         .fini = efx_port_dummy_op_void,
6719         .map_reset_reason = efx_ef10_map_reset_reason,
6720         .map_reset_flags = efx_ef10_map_reset_flags,
6721         .reset = efx_ef10_reset,
6722         .probe_port = efx_mcdi_port_probe,
6723         .remove_port = efx_mcdi_port_remove,
6724         .fini_dmaq = efx_ef10_fini_dmaq,
6725         .prepare_flr = efx_ef10_prepare_flr,
6726         .finish_flr = efx_port_dummy_op_void,
6727         .describe_stats = efx_ef10_describe_stats,
6728         .update_stats = efx_ef10_update_stats_pf,
6729         .start_stats = efx_mcdi_mac_start_stats,
6730         .pull_stats = efx_mcdi_mac_pull_stats,
6731         .stop_stats = efx_mcdi_mac_stop_stats,
6732         .set_id_led = efx_mcdi_set_id_led,
6733         .push_irq_moderation = efx_ef10_push_irq_moderation,
6734         .reconfigure_mac = efx_ef10_mac_reconfigure,
6735         .check_mac_fault = efx_mcdi_mac_check_fault,
6736         .reconfigure_port = efx_mcdi_port_reconfigure,
6737         .get_wol = efx_ef10_get_wol,
6738         .set_wol = efx_ef10_set_wol,
6739         .resume_wol = efx_port_dummy_op_void,
6740         .test_chip = efx_ef10_test_chip,
6741         .test_nvram = efx_mcdi_nvram_test_all,
6742         .mcdi_request = efx_ef10_mcdi_request,
6743         .mcdi_poll_response = efx_ef10_mcdi_poll_response,
6744         .mcdi_read_response = efx_ef10_mcdi_read_response,
6745         .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
6746         .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
6747         .irq_enable_master = efx_port_dummy_op_void,
6748         .irq_test_generate = efx_ef10_irq_test_generate,
6749         .irq_disable_non_ev = efx_port_dummy_op_void,
6750         .irq_handle_msi = efx_ef10_msi_interrupt,
6751         .irq_handle_legacy = efx_ef10_legacy_interrupt,
6752         .tx_probe = efx_ef10_tx_probe,
6753         .tx_init = efx_ef10_tx_init,
6754         .tx_remove = efx_ef10_tx_remove,
6755         .tx_write = efx_ef10_tx_write,
6756         .tx_limit_len = efx_ef10_tx_limit_len,
6757         .rx_push_rss_config = efx_ef10_pf_rx_push_rss_config,
6758         .rx_pull_rss_config = efx_ef10_rx_pull_rss_config,
6759         .rx_push_rss_context_config = efx_ef10_rx_push_rss_context_config,
6760         .rx_pull_rss_context_config = efx_ef10_rx_pull_rss_context_config,
6761         .rx_restore_rss_contexts = efx_ef10_rx_restore_rss_contexts,
6762         .rx_probe = efx_ef10_rx_probe,
6763         .rx_init = efx_ef10_rx_init,
6764         .rx_remove = efx_ef10_rx_remove,
6765         .rx_write = efx_ef10_rx_write,
6766         .rx_defer_refill = efx_ef10_rx_defer_refill,
6767         .ev_probe = efx_ef10_ev_probe,
6768         .ev_init = efx_ef10_ev_init,
6769         .ev_fini = efx_ef10_ev_fini,
6770         .ev_remove = efx_ef10_ev_remove,
6771         .ev_process = efx_ef10_ev_process,
6772         .ev_read_ack = efx_ef10_ev_read_ack,
6773         .ev_test_generate = efx_ef10_ev_test_generate,
6774         .filter_table_probe = efx_ef10_filter_table_probe,
6775         .filter_table_restore = efx_ef10_filter_table_restore,
6776         .filter_table_remove = efx_ef10_filter_table_remove,
6777         .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
6778         .filter_insert = efx_ef10_filter_insert,
6779         .filter_remove_safe = efx_ef10_filter_remove_safe,
6780         .filter_get_safe = efx_ef10_filter_get_safe,
6781         .filter_clear_rx = efx_ef10_filter_clear_rx,
6782         .filter_count_rx_used = efx_ef10_filter_count_rx_used,
6783         .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
6784         .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
6785 #ifdef CONFIG_RFS_ACCEL
6786         .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
6787 #endif
6788 #ifdef CONFIG_SFC_MTD
6789         .mtd_probe = efx_ef10_mtd_probe,
6790         .mtd_rename = efx_mcdi_mtd_rename,
6791         .mtd_read = efx_mcdi_mtd_read,
6792         .mtd_erase = efx_mcdi_mtd_erase,
6793         .mtd_write = efx_mcdi_mtd_write,
6794         .mtd_sync = efx_mcdi_mtd_sync,
6795 #endif
6796         .ptp_write_host_time = efx_ef10_ptp_write_host_time,
6797         .ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
6798         .ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
6799         .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
6800         .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
6801         .udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
6802         .udp_tnl_add_port = efx_ef10_udp_tnl_add_port,
6803         .udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
6804         .udp_tnl_del_port = efx_ef10_udp_tnl_del_port,
6805 #ifdef CONFIG_SFC_SRIOV
6806         .sriov_configure = efx_ef10_sriov_configure,
6807         .sriov_init = efx_ef10_sriov_init,
6808         .sriov_fini = efx_ef10_sriov_fini,
6809         .sriov_wanted = efx_ef10_sriov_wanted,
6810         .sriov_reset = efx_ef10_sriov_reset,
6811         .sriov_flr = efx_ef10_sriov_flr,
6812         .sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
6813         .sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
6814         .sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
6815         .sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
6816         .sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
6817         .vswitching_probe = efx_ef10_vswitching_probe_pf,
6818         .vswitching_restore = efx_ef10_vswitching_restore_pf,
6819         .vswitching_remove = efx_ef10_vswitching_remove_pf,
6820 #endif
6821         .get_mac_address = efx_ef10_get_mac_address_pf,
6822         .set_mac_address = efx_ef10_set_mac_address,
6823         .tso_versions = efx_ef10_tso_versions,
6824 
6825         .get_phys_port_id = efx_ef10_get_phys_port_id,
6826         .revision = EFX_REV_HUNT_A0,
6827         .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
6828         .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
6829         .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
6830         .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
6831         .can_rx_scatter = true,
6832         .always_rx_scatter = true,
6833         .option_descriptors = true,
6834         .min_interrupt_mode = EFX_INT_MODE_LEGACY,
6835         .max_interrupt_mode = EFX_INT_MODE_MSIX,
6836         .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
6837         .offload_features = EF10_OFFLOAD_FEATURES,
6838         .mcdi_max_ver = 2,
6839         .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
6840         .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
6841                             1 << HWTSTAMP_FILTER_ALL,
6842         .rx_hash_key_size = 40,
6843 };

/* [<][>][^][v][top][bottom][index][help] */