This source file includes following definitions.
- igbvf_desc_unused
- igbvf_receive_skb
- igbvf_rx_checksum_adv
- igbvf_alloc_rx_buffers
- igbvf_clean_rx_irq
- igbvf_put_txbuf
- igbvf_setup_tx_resources
- igbvf_setup_rx_resources
- igbvf_clean_tx_ring
- igbvf_free_tx_resources
- igbvf_clean_rx_ring
- igbvf_free_rx_resources
- igbvf_update_itr
- igbvf_range_to_itr
- igbvf_set_itr
- igbvf_clean_tx_irq
- igbvf_msix_other
- igbvf_intr_msix_tx
- igbvf_intr_msix_rx
- igbvf_assign_vector
- igbvf_configure_msix
- igbvf_reset_interrupt_capability
- igbvf_set_interrupt_capability
- igbvf_request_msix
- igbvf_alloc_queues
- igbvf_request_irq
- igbvf_free_irq
- igbvf_irq_disable
- igbvf_irq_enable
- igbvf_poll
- igbvf_set_rlpml
- igbvf_vlan_rx_add_vid
- igbvf_vlan_rx_kill_vid
- igbvf_restore_vlan
- igbvf_configure_tx
- igbvf_setup_srrctl
- igbvf_configure_rx
- igbvf_set_multi
- igbvf_set_uni
- igbvf_set_rx_mode
- igbvf_configure
- igbvf_reset
- igbvf_up
- igbvf_down
- igbvf_reinit_locked
- igbvf_sw_init
- igbvf_initialize_last_counter_stats
- igbvf_open
- igbvf_close
- igbvf_set_mac
- igbvf_update_stats
- igbvf_print_link_info
- igbvf_has_link
- igbvf_watchdog
- igbvf_watchdog_task
- igbvf_tx_ctxtdesc
- igbvf_tso
- igbvf_ipv6_csum_is_sctp
- igbvf_tx_csum
- igbvf_maybe_stop_tx
- igbvf_tx_map_adv
- igbvf_tx_queue_adv
- igbvf_xmit_frame_ring_adv
- igbvf_xmit_frame
- igbvf_tx_timeout
- igbvf_reset_task
- igbvf_change_mtu
- igbvf_ioctl
- igbvf_suspend
- igbvf_resume
- igbvf_shutdown
- igbvf_netpoll
- igbvf_io_error_detected
- igbvf_io_slot_reset
- igbvf_io_resume
- igbvf_print_device_info
- igbvf_set_features
- igbvf_features_check
- igbvf_probe
- igbvf_remove
- igbvf_init_module
- igbvf_exit_module
1
2
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/tcp.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/checksum.h>
18 #include <net/ip6_checksum.h>
19 #include <linux/mii.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/prefetch.h>
23 #include <linux/sctp.h>
24
25 #include "igbvf.h"
26
27 #define DRV_VERSION "2.4.0-k"
28 char igbvf_driver_name[] = "igbvf";
29 const char igbvf_driver_version[] = DRV_VERSION;
30 static const char igbvf_driver_string[] =
31 "Intel(R) Gigabit Virtual Function Network Driver";
32 static const char igbvf_copyright[] =
33 "Copyright (c) 2009 - 2012 Intel Corporation.";
34
35 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
36 static int debug = -1;
37 module_param(debug, int, 0);
38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39
40 static int igbvf_poll(struct napi_struct *napi, int budget);
41 static void igbvf_reset(struct igbvf_adapter *);
42 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
43 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
44
45 static struct igbvf_info igbvf_vf_info = {
46 .mac = e1000_vfadapt,
47 .flags = 0,
48 .pba = 10,
49 .init_ops = e1000_init_function_pointers_vf,
50 };
51
52 static struct igbvf_info igbvf_i350_vf_info = {
53 .mac = e1000_vfadapt_i350,
54 .flags = 0,
55 .pba = 10,
56 .init_ops = e1000_init_function_pointers_vf,
57 };
58
59 static const struct igbvf_info *igbvf_info_tbl[] = {
60 [board_vf] = &igbvf_vf_info,
61 [board_i350_vf] = &igbvf_i350_vf_info,
62 };
63
64
65
66
67
68 static int igbvf_desc_unused(struct igbvf_ring *ring)
69 {
70 if (ring->next_to_clean > ring->next_to_use)
71 return ring->next_to_clean - ring->next_to_use - 1;
72
73 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
74 }
75
76
77
78
79
80
81
82
83 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
84 struct net_device *netdev,
85 struct sk_buff *skb,
86 u32 status, u16 vlan)
87 {
88 u16 vid;
89
90 if (status & E1000_RXD_STAT_VP) {
91 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
92 (status & E1000_RXDEXT_STATERR_LB))
93 vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
94 else
95 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
96 if (test_bit(vid, adapter->active_vlans))
97 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
98 }
99
100 napi_gro_receive(&adapter->rx_ring->napi, skb);
101 }
102
103 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
104 u32 status_err, struct sk_buff *skb)
105 {
106 skb_checksum_none_assert(skb);
107
108
109 if ((status_err & E1000_RXD_STAT_IXSM) ||
110 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
111 return;
112
113
114 if (status_err &
115 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
116
117 adapter->hw_csum_err++;
118 return;
119 }
120
121
122 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
123 skb->ip_summed = CHECKSUM_UNNECESSARY;
124
125 adapter->hw_csum_good++;
126 }
127
128
129
130
131
132
133 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
134 int cleaned_count)
135 {
136 struct igbvf_adapter *adapter = rx_ring->adapter;
137 struct net_device *netdev = adapter->netdev;
138 struct pci_dev *pdev = adapter->pdev;
139 union e1000_adv_rx_desc *rx_desc;
140 struct igbvf_buffer *buffer_info;
141 struct sk_buff *skb;
142 unsigned int i;
143 int bufsz;
144
145 i = rx_ring->next_to_use;
146 buffer_info = &rx_ring->buffer_info[i];
147
148 if (adapter->rx_ps_hdr_size)
149 bufsz = adapter->rx_ps_hdr_size;
150 else
151 bufsz = adapter->rx_buffer_len;
152
153 while (cleaned_count--) {
154 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
155
156 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
157 if (!buffer_info->page) {
158 buffer_info->page = alloc_page(GFP_ATOMIC);
159 if (!buffer_info->page) {
160 adapter->alloc_rx_buff_failed++;
161 goto no_buffers;
162 }
163 buffer_info->page_offset = 0;
164 } else {
165 buffer_info->page_offset ^= PAGE_SIZE / 2;
166 }
167 buffer_info->page_dma =
168 dma_map_page(&pdev->dev, buffer_info->page,
169 buffer_info->page_offset,
170 PAGE_SIZE / 2,
171 DMA_FROM_DEVICE);
172 if (dma_mapping_error(&pdev->dev,
173 buffer_info->page_dma)) {
174 __free_page(buffer_info->page);
175 buffer_info->page = NULL;
176 dev_err(&pdev->dev, "RX DMA map failed\n");
177 break;
178 }
179 }
180
181 if (!buffer_info->skb) {
182 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
183 if (!skb) {
184 adapter->alloc_rx_buff_failed++;
185 goto no_buffers;
186 }
187
188 buffer_info->skb = skb;
189 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
190 bufsz,
191 DMA_FROM_DEVICE);
192 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
193 dev_kfree_skb(buffer_info->skb);
194 buffer_info->skb = NULL;
195 dev_err(&pdev->dev, "RX DMA map failed\n");
196 goto no_buffers;
197 }
198 }
199
200
201
202 if (adapter->rx_ps_hdr_size) {
203 rx_desc->read.pkt_addr =
204 cpu_to_le64(buffer_info->page_dma);
205 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
206 } else {
207 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
208 rx_desc->read.hdr_addr = 0;
209 }
210
211 i++;
212 if (i == rx_ring->count)
213 i = 0;
214 buffer_info = &rx_ring->buffer_info[i];
215 }
216
217 no_buffers:
218 if (rx_ring->next_to_use != i) {
219 rx_ring->next_to_use = i;
220 if (i == 0)
221 i = (rx_ring->count - 1);
222 else
223 i--;
224
225
226
227
228
229
230 wmb();
231 writel(i, adapter->hw.hw_addr + rx_ring->tail);
232 }
233 }
234
235
236
237
238
239
240
241
242 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
243 int *work_done, int work_to_do)
244 {
245 struct igbvf_ring *rx_ring = adapter->rx_ring;
246 struct net_device *netdev = adapter->netdev;
247 struct pci_dev *pdev = adapter->pdev;
248 union e1000_adv_rx_desc *rx_desc, *next_rxd;
249 struct igbvf_buffer *buffer_info, *next_buffer;
250 struct sk_buff *skb;
251 bool cleaned = false;
252 int cleaned_count = 0;
253 unsigned int total_bytes = 0, total_packets = 0;
254 unsigned int i;
255 u32 length, hlen, staterr;
256
257 i = rx_ring->next_to_clean;
258 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
259 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
260
261 while (staterr & E1000_RXD_STAT_DD) {
262 if (*work_done >= work_to_do)
263 break;
264 (*work_done)++;
265 rmb();
266
267 buffer_info = &rx_ring->buffer_info[i];
268
269
270
271
272
273
274 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
275 & E1000_RXDADV_HDRBUFLEN_MASK) >>
276 E1000_RXDADV_HDRBUFLEN_SHIFT;
277 if (hlen > adapter->rx_ps_hdr_size)
278 hlen = adapter->rx_ps_hdr_size;
279
280 length = le16_to_cpu(rx_desc->wb.upper.length);
281 cleaned = true;
282 cleaned_count++;
283
284 skb = buffer_info->skb;
285 prefetch(skb->data - NET_IP_ALIGN);
286 buffer_info->skb = NULL;
287 if (!adapter->rx_ps_hdr_size) {
288 dma_unmap_single(&pdev->dev, buffer_info->dma,
289 adapter->rx_buffer_len,
290 DMA_FROM_DEVICE);
291 buffer_info->dma = 0;
292 skb_put(skb, length);
293 goto send_up;
294 }
295
296 if (!skb_shinfo(skb)->nr_frags) {
297 dma_unmap_single(&pdev->dev, buffer_info->dma,
298 adapter->rx_ps_hdr_size,
299 DMA_FROM_DEVICE);
300 buffer_info->dma = 0;
301 skb_put(skb, hlen);
302 }
303
304 if (length) {
305 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
306 PAGE_SIZE / 2,
307 DMA_FROM_DEVICE);
308 buffer_info->page_dma = 0;
309
310 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
311 buffer_info->page,
312 buffer_info->page_offset,
313 length);
314
315 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
316 (page_count(buffer_info->page) != 1))
317 buffer_info->page = NULL;
318 else
319 get_page(buffer_info->page);
320
321 skb->len += length;
322 skb->data_len += length;
323 skb->truesize += PAGE_SIZE / 2;
324 }
325 send_up:
326 i++;
327 if (i == rx_ring->count)
328 i = 0;
329 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
330 prefetch(next_rxd);
331 next_buffer = &rx_ring->buffer_info[i];
332
333 if (!(staterr & E1000_RXD_STAT_EOP)) {
334 buffer_info->skb = next_buffer->skb;
335 buffer_info->dma = next_buffer->dma;
336 next_buffer->skb = skb;
337 next_buffer->dma = 0;
338 goto next_desc;
339 }
340
341 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
342 dev_kfree_skb_irq(skb);
343 goto next_desc;
344 }
345
346 total_bytes += skb->len;
347 total_packets++;
348
349 igbvf_rx_checksum_adv(adapter, staterr, skb);
350
351 skb->protocol = eth_type_trans(skb, netdev);
352
353 igbvf_receive_skb(adapter, netdev, skb, staterr,
354 rx_desc->wb.upper.vlan);
355
356 next_desc:
357 rx_desc->wb.upper.status_error = 0;
358
359
360 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
361 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
362 cleaned_count = 0;
363 }
364
365
366 rx_desc = next_rxd;
367 buffer_info = next_buffer;
368
369 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
370 }
371
372 rx_ring->next_to_clean = i;
373 cleaned_count = igbvf_desc_unused(rx_ring);
374
375 if (cleaned_count)
376 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
377
378 adapter->total_rx_packets += total_packets;
379 adapter->total_rx_bytes += total_bytes;
380 netdev->stats.rx_bytes += total_bytes;
381 netdev->stats.rx_packets += total_packets;
382 return cleaned;
383 }
384
385 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
386 struct igbvf_buffer *buffer_info)
387 {
388 if (buffer_info->dma) {
389 if (buffer_info->mapped_as_page)
390 dma_unmap_page(&adapter->pdev->dev,
391 buffer_info->dma,
392 buffer_info->length,
393 DMA_TO_DEVICE);
394 else
395 dma_unmap_single(&adapter->pdev->dev,
396 buffer_info->dma,
397 buffer_info->length,
398 DMA_TO_DEVICE);
399 buffer_info->dma = 0;
400 }
401 if (buffer_info->skb) {
402 dev_kfree_skb_any(buffer_info->skb);
403 buffer_info->skb = NULL;
404 }
405 buffer_info->time_stamp = 0;
406 }
407
408
409
410
411
412
413
414 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
415 struct igbvf_ring *tx_ring)
416 {
417 struct pci_dev *pdev = adapter->pdev;
418 int size;
419
420 size = sizeof(struct igbvf_buffer) * tx_ring->count;
421 tx_ring->buffer_info = vzalloc(size);
422 if (!tx_ring->buffer_info)
423 goto err;
424
425
426 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
427 tx_ring->size = ALIGN(tx_ring->size, 4096);
428
429 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
430 &tx_ring->dma, GFP_KERNEL);
431 if (!tx_ring->desc)
432 goto err;
433
434 tx_ring->adapter = adapter;
435 tx_ring->next_to_use = 0;
436 tx_ring->next_to_clean = 0;
437
438 return 0;
439 err:
440 vfree(tx_ring->buffer_info);
441 dev_err(&adapter->pdev->dev,
442 "Unable to allocate memory for the transmit descriptor ring\n");
443 return -ENOMEM;
444 }
445
446
447
448
449
450
451
452 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
453 struct igbvf_ring *rx_ring)
454 {
455 struct pci_dev *pdev = adapter->pdev;
456 int size, desc_len;
457
458 size = sizeof(struct igbvf_buffer) * rx_ring->count;
459 rx_ring->buffer_info = vzalloc(size);
460 if (!rx_ring->buffer_info)
461 goto err;
462
463 desc_len = sizeof(union e1000_adv_rx_desc);
464
465
466 rx_ring->size = rx_ring->count * desc_len;
467 rx_ring->size = ALIGN(rx_ring->size, 4096);
468
469 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
470 &rx_ring->dma, GFP_KERNEL);
471 if (!rx_ring->desc)
472 goto err;
473
474 rx_ring->next_to_clean = 0;
475 rx_ring->next_to_use = 0;
476
477 rx_ring->adapter = adapter;
478
479 return 0;
480
481 err:
482 vfree(rx_ring->buffer_info);
483 rx_ring->buffer_info = NULL;
484 dev_err(&adapter->pdev->dev,
485 "Unable to allocate memory for the receive descriptor ring\n");
486 return -ENOMEM;
487 }
488
489
490
491
492
493 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
494 {
495 struct igbvf_adapter *adapter = tx_ring->adapter;
496 struct igbvf_buffer *buffer_info;
497 unsigned long size;
498 unsigned int i;
499
500 if (!tx_ring->buffer_info)
501 return;
502
503
504 for (i = 0; i < tx_ring->count; i++) {
505 buffer_info = &tx_ring->buffer_info[i];
506 igbvf_put_txbuf(adapter, buffer_info);
507 }
508
509 size = sizeof(struct igbvf_buffer) * tx_ring->count;
510 memset(tx_ring->buffer_info, 0, size);
511
512
513 memset(tx_ring->desc, 0, tx_ring->size);
514
515 tx_ring->next_to_use = 0;
516 tx_ring->next_to_clean = 0;
517
518 writel(0, adapter->hw.hw_addr + tx_ring->head);
519 writel(0, adapter->hw.hw_addr + tx_ring->tail);
520 }
521
522
523
524
525
526
527
528 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
529 {
530 struct pci_dev *pdev = tx_ring->adapter->pdev;
531
532 igbvf_clean_tx_ring(tx_ring);
533
534 vfree(tx_ring->buffer_info);
535 tx_ring->buffer_info = NULL;
536
537 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
538 tx_ring->dma);
539
540 tx_ring->desc = NULL;
541 }
542
543
544
545
546
547 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
548 {
549 struct igbvf_adapter *adapter = rx_ring->adapter;
550 struct igbvf_buffer *buffer_info;
551 struct pci_dev *pdev = adapter->pdev;
552 unsigned long size;
553 unsigned int i;
554
555 if (!rx_ring->buffer_info)
556 return;
557
558
559 for (i = 0; i < rx_ring->count; i++) {
560 buffer_info = &rx_ring->buffer_info[i];
561 if (buffer_info->dma) {
562 if (adapter->rx_ps_hdr_size) {
563 dma_unmap_single(&pdev->dev, buffer_info->dma,
564 adapter->rx_ps_hdr_size,
565 DMA_FROM_DEVICE);
566 } else {
567 dma_unmap_single(&pdev->dev, buffer_info->dma,
568 adapter->rx_buffer_len,
569 DMA_FROM_DEVICE);
570 }
571 buffer_info->dma = 0;
572 }
573
574 if (buffer_info->skb) {
575 dev_kfree_skb(buffer_info->skb);
576 buffer_info->skb = NULL;
577 }
578
579 if (buffer_info->page) {
580 if (buffer_info->page_dma)
581 dma_unmap_page(&pdev->dev,
582 buffer_info->page_dma,
583 PAGE_SIZE / 2,
584 DMA_FROM_DEVICE);
585 put_page(buffer_info->page);
586 buffer_info->page = NULL;
587 buffer_info->page_dma = 0;
588 buffer_info->page_offset = 0;
589 }
590 }
591
592 size = sizeof(struct igbvf_buffer) * rx_ring->count;
593 memset(rx_ring->buffer_info, 0, size);
594
595
596 memset(rx_ring->desc, 0, rx_ring->size);
597
598 rx_ring->next_to_clean = 0;
599 rx_ring->next_to_use = 0;
600
601 writel(0, adapter->hw.hw_addr + rx_ring->head);
602 writel(0, adapter->hw.hw_addr + rx_ring->tail);
603 }
604
605
606
607
608
609
610
611
612 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
613 {
614 struct pci_dev *pdev = rx_ring->adapter->pdev;
615
616 igbvf_clean_rx_ring(rx_ring);
617
618 vfree(rx_ring->buffer_info);
619 rx_ring->buffer_info = NULL;
620
621 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
622 rx_ring->dma);
623 rx_ring->desc = NULL;
624 }
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
641 enum latency_range itr_setting,
642 int packets, int bytes)
643 {
644 enum latency_range retval = itr_setting;
645
646 if (packets == 0)
647 goto update_itr_done;
648
649 switch (itr_setting) {
650 case lowest_latency:
651
652 if (bytes/packets > 8000)
653 retval = bulk_latency;
654 else if ((packets < 5) && (bytes > 512))
655 retval = low_latency;
656 break;
657 case low_latency:
658 if (bytes > 10000) {
659
660 if (bytes/packets > 8000)
661 retval = bulk_latency;
662 else if ((packets < 10) || ((bytes/packets) > 1200))
663 retval = bulk_latency;
664 else if ((packets > 35))
665 retval = lowest_latency;
666 } else if (bytes/packets > 2000) {
667 retval = bulk_latency;
668 } else if (packets <= 2 && bytes < 512) {
669 retval = lowest_latency;
670 }
671 break;
672 case bulk_latency:
673 if (bytes > 25000) {
674 if (packets > 35)
675 retval = low_latency;
676 } else if (bytes < 6000) {
677 retval = low_latency;
678 }
679 break;
680 default:
681 break;
682 }
683
684 update_itr_done:
685 return retval;
686 }
687
688 static int igbvf_range_to_itr(enum latency_range current_range)
689 {
690 int new_itr;
691
692 switch (current_range) {
693
694 case lowest_latency:
695 new_itr = IGBVF_70K_ITR;
696 break;
697 case low_latency:
698 new_itr = IGBVF_20K_ITR;
699 break;
700 case bulk_latency:
701 new_itr = IGBVF_4K_ITR;
702 break;
703 default:
704 new_itr = IGBVF_START_ITR;
705 break;
706 }
707 return new_itr;
708 }
709
710 static void igbvf_set_itr(struct igbvf_adapter *adapter)
711 {
712 u32 new_itr;
713
714 adapter->tx_ring->itr_range =
715 igbvf_update_itr(adapter,
716 adapter->tx_ring->itr_val,
717 adapter->total_tx_packets,
718 adapter->total_tx_bytes);
719
720
721 if (adapter->requested_itr == 3 &&
722 adapter->tx_ring->itr_range == lowest_latency)
723 adapter->tx_ring->itr_range = low_latency;
724
725 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
726
727 if (new_itr != adapter->tx_ring->itr_val) {
728 u32 current_itr = adapter->tx_ring->itr_val;
729
730
731
732
733 new_itr = new_itr > current_itr ?
734 min(current_itr + (new_itr >> 2), new_itr) :
735 new_itr;
736 adapter->tx_ring->itr_val = new_itr;
737
738 adapter->tx_ring->set_itr = 1;
739 }
740
741 adapter->rx_ring->itr_range =
742 igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
743 adapter->total_rx_packets,
744 adapter->total_rx_bytes);
745 if (adapter->requested_itr == 3 &&
746 adapter->rx_ring->itr_range == lowest_latency)
747 adapter->rx_ring->itr_range = low_latency;
748
749 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
750
751 if (new_itr != adapter->rx_ring->itr_val) {
752 u32 current_itr = adapter->rx_ring->itr_val;
753
754 new_itr = new_itr > current_itr ?
755 min(current_itr + (new_itr >> 2), new_itr) :
756 new_itr;
757 adapter->rx_ring->itr_val = new_itr;
758
759 adapter->rx_ring->set_itr = 1;
760 }
761 }
762
763
764
765
766
767
768
769 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
770 {
771 struct igbvf_adapter *adapter = tx_ring->adapter;
772 struct net_device *netdev = adapter->netdev;
773 struct igbvf_buffer *buffer_info;
774 struct sk_buff *skb;
775 union e1000_adv_tx_desc *tx_desc, *eop_desc;
776 unsigned int total_bytes = 0, total_packets = 0;
777 unsigned int i, count = 0;
778 bool cleaned = false;
779
780 i = tx_ring->next_to_clean;
781 buffer_info = &tx_ring->buffer_info[i];
782 eop_desc = buffer_info->next_to_watch;
783
784 do {
785
786 if (!eop_desc)
787 break;
788
789
790 smp_rmb();
791
792
793 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
794 break;
795
796
797 buffer_info->next_to_watch = NULL;
798
799 for (cleaned = false; !cleaned; count++) {
800 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
801 cleaned = (tx_desc == eop_desc);
802 skb = buffer_info->skb;
803
804 if (skb) {
805 unsigned int segs, bytecount;
806
807
808 segs = skb_shinfo(skb)->gso_segs ?: 1;
809
810 bytecount = ((segs - 1) * skb_headlen(skb)) +
811 skb->len;
812 total_packets += segs;
813 total_bytes += bytecount;
814 }
815
816 igbvf_put_txbuf(adapter, buffer_info);
817 tx_desc->wb.status = 0;
818
819 i++;
820 if (i == tx_ring->count)
821 i = 0;
822
823 buffer_info = &tx_ring->buffer_info[i];
824 }
825
826 eop_desc = buffer_info->next_to_watch;
827 } while (count < tx_ring->count);
828
829 tx_ring->next_to_clean = i;
830
831 if (unlikely(count && netif_carrier_ok(netdev) &&
832 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
833
834
835
836 smp_mb();
837 if (netif_queue_stopped(netdev) &&
838 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
839 netif_wake_queue(netdev);
840 ++adapter->restart_queue;
841 }
842 }
843
844 netdev->stats.tx_bytes += total_bytes;
845 netdev->stats.tx_packets += total_packets;
846 return count < tx_ring->count;
847 }
848
849 static irqreturn_t igbvf_msix_other(int irq, void *data)
850 {
851 struct net_device *netdev = data;
852 struct igbvf_adapter *adapter = netdev_priv(netdev);
853 struct e1000_hw *hw = &adapter->hw;
854
855 adapter->int_counter1++;
856
857 hw->mac.get_link_status = 1;
858 if (!test_bit(__IGBVF_DOWN, &adapter->state))
859 mod_timer(&adapter->watchdog_timer, jiffies + 1);
860
861 ew32(EIMS, adapter->eims_other);
862
863 return IRQ_HANDLED;
864 }
865
866 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
867 {
868 struct net_device *netdev = data;
869 struct igbvf_adapter *adapter = netdev_priv(netdev);
870 struct e1000_hw *hw = &adapter->hw;
871 struct igbvf_ring *tx_ring = adapter->tx_ring;
872
873 if (tx_ring->set_itr) {
874 writel(tx_ring->itr_val,
875 adapter->hw.hw_addr + tx_ring->itr_register);
876 adapter->tx_ring->set_itr = 0;
877 }
878
879 adapter->total_tx_bytes = 0;
880 adapter->total_tx_packets = 0;
881
882
883
884
885 if (!igbvf_clean_tx_irq(tx_ring))
886
887 ew32(EICS, tx_ring->eims_value);
888 else
889 ew32(EIMS, tx_ring->eims_value);
890
891 return IRQ_HANDLED;
892 }
893
894 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
895 {
896 struct net_device *netdev = data;
897 struct igbvf_adapter *adapter = netdev_priv(netdev);
898
899 adapter->int_counter0++;
900
901
902
903
904 if (adapter->rx_ring->set_itr) {
905 writel(adapter->rx_ring->itr_val,
906 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
907 adapter->rx_ring->set_itr = 0;
908 }
909
910 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
911 adapter->total_rx_bytes = 0;
912 adapter->total_rx_packets = 0;
913 __napi_schedule(&adapter->rx_ring->napi);
914 }
915
916 return IRQ_HANDLED;
917 }
918
919 #define IGBVF_NO_QUEUE -1
920
921 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
922 int tx_queue, int msix_vector)
923 {
924 struct e1000_hw *hw = &adapter->hw;
925 u32 ivar, index;
926
927
928
929
930
931
932 if (rx_queue > IGBVF_NO_QUEUE) {
933 index = (rx_queue >> 1);
934 ivar = array_er32(IVAR0, index);
935 if (rx_queue & 0x1) {
936
937 ivar = ivar & 0xFF00FFFF;
938 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
939 } else {
940
941 ivar = ivar & 0xFFFFFF00;
942 ivar |= msix_vector | E1000_IVAR_VALID;
943 }
944 adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
945 array_ew32(IVAR0, index, ivar);
946 }
947 if (tx_queue > IGBVF_NO_QUEUE) {
948 index = (tx_queue >> 1);
949 ivar = array_er32(IVAR0, index);
950 if (tx_queue & 0x1) {
951
952 ivar = ivar & 0x00FFFFFF;
953 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
954 } else {
955
956 ivar = ivar & 0xFFFF00FF;
957 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
958 }
959 adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
960 array_ew32(IVAR0, index, ivar);
961 }
962 }
963
964
965
966
967
968
969
970
971 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
972 {
973 u32 tmp;
974 struct e1000_hw *hw = &adapter->hw;
975 struct igbvf_ring *tx_ring = adapter->tx_ring;
976 struct igbvf_ring *rx_ring = adapter->rx_ring;
977 int vector = 0;
978
979 adapter->eims_enable_mask = 0;
980
981 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
982 adapter->eims_enable_mask |= tx_ring->eims_value;
983 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
984 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
985 adapter->eims_enable_mask |= rx_ring->eims_value;
986 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
987
988
989
990 tmp = (vector++ | E1000_IVAR_VALID);
991
992 ew32(IVAR_MISC, tmp);
993
994 adapter->eims_enable_mask = GENMASK(vector - 1, 0);
995 adapter->eims_other = BIT(vector - 1);
996 e1e_flush();
997 }
998
999 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1000 {
1001 if (adapter->msix_entries) {
1002 pci_disable_msix(adapter->pdev);
1003 kfree(adapter->msix_entries);
1004 adapter->msix_entries = NULL;
1005 }
1006 }
1007
1008
1009
1010
1011
1012
1013
1014
1015 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1016 {
1017 int err = -ENOMEM;
1018 int i;
1019
1020
1021 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1022 GFP_KERNEL);
1023 if (adapter->msix_entries) {
1024 for (i = 0; i < 3; i++)
1025 adapter->msix_entries[i].entry = i;
1026
1027 err = pci_enable_msix_range(adapter->pdev,
1028 adapter->msix_entries, 3, 3);
1029 }
1030
1031 if (err < 0) {
1032
1033 dev_err(&adapter->pdev->dev,
1034 "Failed to initialize MSI-X interrupts.\n");
1035 igbvf_reset_interrupt_capability(adapter);
1036 }
1037 }
1038
1039
1040
1041
1042
1043
1044
1045
1046 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1047 {
1048 struct net_device *netdev = adapter->netdev;
1049 int err = 0, vector = 0;
1050
1051 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1052 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1053 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1054 } else {
1055 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1056 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1057 }
1058
1059 err = request_irq(adapter->msix_entries[vector].vector,
1060 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1061 netdev);
1062 if (err)
1063 goto out;
1064
1065 adapter->tx_ring->itr_register = E1000_EITR(vector);
1066 adapter->tx_ring->itr_val = adapter->current_itr;
1067 vector++;
1068
1069 err = request_irq(adapter->msix_entries[vector].vector,
1070 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1071 netdev);
1072 if (err)
1073 goto out;
1074
1075 adapter->rx_ring->itr_register = E1000_EITR(vector);
1076 adapter->rx_ring->itr_val = adapter->current_itr;
1077 vector++;
1078
1079 err = request_irq(adapter->msix_entries[vector].vector,
1080 igbvf_msix_other, 0, netdev->name, netdev);
1081 if (err)
1082 goto out;
1083
1084 igbvf_configure_msix(adapter);
1085 return 0;
1086 out:
1087 return err;
1088 }
1089
1090
1091
1092
1093
1094 static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1095 {
1096 struct net_device *netdev = adapter->netdev;
1097
1098 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1099 if (!adapter->tx_ring)
1100 return -ENOMEM;
1101
1102 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1103 if (!adapter->rx_ring) {
1104 kfree(adapter->tx_ring);
1105 return -ENOMEM;
1106 }
1107
1108 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1109
1110 return 0;
1111 }
1112
1113
1114
1115
1116
1117
1118
1119
1120 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1121 {
1122 int err = -1;
1123
1124
1125 if (adapter->msix_entries)
1126 err = igbvf_request_msix(adapter);
1127
1128 if (!err)
1129 return err;
1130
1131 dev_err(&adapter->pdev->dev,
1132 "Unable to allocate interrupt, Error: %d\n", err);
1133
1134 return err;
1135 }
1136
1137 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1138 {
1139 struct net_device *netdev = adapter->netdev;
1140 int vector;
1141
1142 if (adapter->msix_entries) {
1143 for (vector = 0; vector < 3; vector++)
1144 free_irq(adapter->msix_entries[vector].vector, netdev);
1145 }
1146 }
1147
1148
1149
1150
1151
1152 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1153 {
1154 struct e1000_hw *hw = &adapter->hw;
1155
1156 ew32(EIMC, ~0);
1157
1158 if (adapter->msix_entries)
1159 ew32(EIAC, 0);
1160 }
1161
1162
1163
1164
1165
1166 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1167 {
1168 struct e1000_hw *hw = &adapter->hw;
1169
1170 ew32(EIAC, adapter->eims_enable_mask);
1171 ew32(EIAM, adapter->eims_enable_mask);
1172 ew32(EIMS, adapter->eims_enable_mask);
1173 }
1174
1175
1176
1177
1178
1179
1180 static int igbvf_poll(struct napi_struct *napi, int budget)
1181 {
1182 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1183 struct igbvf_adapter *adapter = rx_ring->adapter;
1184 struct e1000_hw *hw = &adapter->hw;
1185 int work_done = 0;
1186
1187 igbvf_clean_rx_irq(adapter, &work_done, budget);
1188
1189 if (work_done == budget)
1190 return budget;
1191
1192
1193
1194
1195 if (likely(napi_complete_done(napi, work_done))) {
1196 if (adapter->requested_itr & 3)
1197 igbvf_set_itr(adapter);
1198
1199 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1200 ew32(EIMS, adapter->rx_ring->eims_value);
1201 }
1202
1203 return work_done;
1204 }
1205
1206
1207
1208
1209
1210
1211
1212 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1213 {
1214 int max_frame_size;
1215 struct e1000_hw *hw = &adapter->hw;
1216
1217 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1218
1219 spin_lock_bh(&hw->mbx_lock);
1220
1221 e1000_rlpml_set_vf(hw, max_frame_size);
1222
1223 spin_unlock_bh(&hw->mbx_lock);
1224 }
1225
1226 static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1227 __be16 proto, u16 vid)
1228 {
1229 struct igbvf_adapter *adapter = netdev_priv(netdev);
1230 struct e1000_hw *hw = &adapter->hw;
1231
1232 spin_lock_bh(&hw->mbx_lock);
1233
1234 if (hw->mac.ops.set_vfta(hw, vid, true)) {
1235 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1236 spin_unlock_bh(&hw->mbx_lock);
1237 return -EINVAL;
1238 }
1239
1240 spin_unlock_bh(&hw->mbx_lock);
1241
1242 set_bit(vid, adapter->active_vlans);
1243 return 0;
1244 }
1245
1246 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1247 __be16 proto, u16 vid)
1248 {
1249 struct igbvf_adapter *adapter = netdev_priv(netdev);
1250 struct e1000_hw *hw = &adapter->hw;
1251
1252 spin_lock_bh(&hw->mbx_lock);
1253
1254 if (hw->mac.ops.set_vfta(hw, vid, false)) {
1255 dev_err(&adapter->pdev->dev,
1256 "Failed to remove vlan id %d\n", vid);
1257 spin_unlock_bh(&hw->mbx_lock);
1258 return -EINVAL;
1259 }
1260
1261 spin_unlock_bh(&hw->mbx_lock);
1262
1263 clear_bit(vid, adapter->active_vlans);
1264 return 0;
1265 }
1266
1267 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1268 {
1269 u16 vid;
1270
1271 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1272 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1273 }
1274
1275
1276
1277
1278
1279
1280
1281 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1282 {
1283 struct e1000_hw *hw = &adapter->hw;
1284 struct igbvf_ring *tx_ring = adapter->tx_ring;
1285 u64 tdba;
1286 u32 txdctl, dca_txctrl;
1287
1288
1289 txdctl = er32(TXDCTL(0));
1290 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1291 e1e_flush();
1292 msleep(10);
1293
1294
1295 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1296 tdba = tx_ring->dma;
1297 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1298 ew32(TDBAH(0), (tdba >> 32));
1299 ew32(TDH(0), 0);
1300 ew32(TDT(0), 0);
1301 tx_ring->head = E1000_TDH(0);
1302 tx_ring->tail = E1000_TDT(0);
1303
1304
1305
1306
1307
1308 dca_txctrl = er32(DCA_TXCTRL(0));
1309 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1310 ew32(DCA_TXCTRL(0), dca_txctrl);
1311
1312
1313 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1314 ew32(TXDCTL(0), txdctl);
1315
1316
1317 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1318
1319
1320 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1321 }
1322
1323
1324
1325
1326
1327 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1328 {
1329 struct e1000_hw *hw = &adapter->hw;
1330 u32 srrctl = 0;
1331
1332 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1333 E1000_SRRCTL_BSIZEHDR_MASK |
1334 E1000_SRRCTL_BSIZEPKT_MASK);
1335
1336
1337 srrctl |= E1000_SRRCTL_DROP_EN;
1338
1339
1340 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1341 E1000_SRRCTL_BSIZEPKT_SHIFT;
1342
1343 if (adapter->rx_buffer_len < 2048) {
1344 adapter->rx_ps_hdr_size = 0;
1345 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1346 } else {
1347 adapter->rx_ps_hdr_size = 128;
1348 srrctl |= adapter->rx_ps_hdr_size <<
1349 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1350 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1351 }
1352
1353 ew32(SRRCTL(0), srrctl);
1354 }
1355
1356
1357
1358
1359
1360
1361
1362 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1363 {
1364 struct e1000_hw *hw = &adapter->hw;
1365 struct igbvf_ring *rx_ring = adapter->rx_ring;
1366 u64 rdba;
1367 u32 rxdctl;
1368
1369
1370 rxdctl = er32(RXDCTL(0));
1371 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1372 e1e_flush();
1373 msleep(10);
1374
1375
1376
1377
1378 rdba = rx_ring->dma;
1379 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1380 ew32(RDBAH(0), (rdba >> 32));
1381 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1382 rx_ring->head = E1000_RDH(0);
1383 rx_ring->tail = E1000_RDT(0);
1384 ew32(RDH(0), 0);
1385 ew32(RDT(0), 0);
1386
1387 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1388 rxdctl &= 0xFFF00000;
1389 rxdctl |= IGBVF_RX_PTHRESH;
1390 rxdctl |= IGBVF_RX_HTHRESH << 8;
1391 rxdctl |= IGBVF_RX_WTHRESH << 16;
1392
1393 igbvf_set_rlpml(adapter);
1394
1395
1396 ew32(RXDCTL(0), rxdctl);
1397 }
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408 static void igbvf_set_multi(struct net_device *netdev)
1409 {
1410 struct igbvf_adapter *adapter = netdev_priv(netdev);
1411 struct e1000_hw *hw = &adapter->hw;
1412 struct netdev_hw_addr *ha;
1413 u8 *mta_list = NULL;
1414 int i;
1415
1416 if (!netdev_mc_empty(netdev)) {
1417 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1418 GFP_ATOMIC);
1419 if (!mta_list)
1420 return;
1421 }
1422
1423
1424 i = 0;
1425 netdev_for_each_mc_addr(ha, netdev)
1426 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1427
1428 spin_lock_bh(&hw->mbx_lock);
1429
1430 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1431
1432 spin_unlock_bh(&hw->mbx_lock);
1433 kfree(mta_list);
1434 }
1435
1436
1437
1438
1439
1440
1441
1442
1443 static int igbvf_set_uni(struct net_device *netdev)
1444 {
1445 struct igbvf_adapter *adapter = netdev_priv(netdev);
1446 struct e1000_hw *hw = &adapter->hw;
1447
1448 if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1449 pr_err("Too many unicast filters - No Space\n");
1450 return -ENOSPC;
1451 }
1452
1453 spin_lock_bh(&hw->mbx_lock);
1454
1455
1456 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1457
1458 spin_unlock_bh(&hw->mbx_lock);
1459
1460 if (!netdev_uc_empty(netdev)) {
1461 struct netdev_hw_addr *ha;
1462
1463
1464 netdev_for_each_uc_addr(ha, netdev) {
1465 spin_lock_bh(&hw->mbx_lock);
1466
1467 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1468 ha->addr);
1469
1470 spin_unlock_bh(&hw->mbx_lock);
1471 udelay(200);
1472 }
1473 }
1474
1475 return 0;
1476 }
1477
1478 static void igbvf_set_rx_mode(struct net_device *netdev)
1479 {
1480 igbvf_set_multi(netdev);
1481 igbvf_set_uni(netdev);
1482 }
1483
1484
1485
1486
1487
1488 static void igbvf_configure(struct igbvf_adapter *adapter)
1489 {
1490 igbvf_set_rx_mode(adapter->netdev);
1491
1492 igbvf_restore_vlan(adapter);
1493
1494 igbvf_configure_tx(adapter);
1495 igbvf_setup_srrctl(adapter);
1496 igbvf_configure_rx(adapter);
1497 igbvf_alloc_rx_buffers(adapter->rx_ring,
1498 igbvf_desc_unused(adapter->rx_ring));
1499 }
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509 static void igbvf_reset(struct igbvf_adapter *adapter)
1510 {
1511 struct e1000_mac_info *mac = &adapter->hw.mac;
1512 struct net_device *netdev = adapter->netdev;
1513 struct e1000_hw *hw = &adapter->hw;
1514
1515 spin_lock_bh(&hw->mbx_lock);
1516
1517
1518 if (mac->ops.reset_hw(hw))
1519 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1520
1521 mac->ops.init_hw(hw);
1522
1523 spin_unlock_bh(&hw->mbx_lock);
1524
1525 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1526 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1527 netdev->addr_len);
1528 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1529 netdev->addr_len);
1530 }
1531
1532 adapter->last_reset = jiffies;
1533 }
1534
1535 int igbvf_up(struct igbvf_adapter *adapter)
1536 {
1537 struct e1000_hw *hw = &adapter->hw;
1538
1539
1540 igbvf_configure(adapter);
1541
1542 clear_bit(__IGBVF_DOWN, &adapter->state);
1543
1544 napi_enable(&adapter->rx_ring->napi);
1545 if (adapter->msix_entries)
1546 igbvf_configure_msix(adapter);
1547
1548
1549 er32(EICR);
1550 igbvf_irq_enable(adapter);
1551
1552
1553 hw->mac.get_link_status = 1;
1554 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1555
1556 return 0;
1557 }
1558
1559 void igbvf_down(struct igbvf_adapter *adapter)
1560 {
1561 struct net_device *netdev = adapter->netdev;
1562 struct e1000_hw *hw = &adapter->hw;
1563 u32 rxdctl, txdctl;
1564
1565
1566
1567
1568 set_bit(__IGBVF_DOWN, &adapter->state);
1569
1570
1571 rxdctl = er32(RXDCTL(0));
1572 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1573
1574 netif_carrier_off(netdev);
1575 netif_stop_queue(netdev);
1576
1577
1578 txdctl = er32(TXDCTL(0));
1579 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1580
1581
1582 e1e_flush();
1583 msleep(10);
1584
1585 napi_disable(&adapter->rx_ring->napi);
1586
1587 igbvf_irq_disable(adapter);
1588
1589 del_timer_sync(&adapter->watchdog_timer);
1590
1591
1592 igbvf_update_stats(adapter);
1593
1594 adapter->link_speed = 0;
1595 adapter->link_duplex = 0;
1596
1597 igbvf_reset(adapter);
1598 igbvf_clean_tx_ring(adapter->tx_ring);
1599 igbvf_clean_rx_ring(adapter->rx_ring);
1600 }
1601
1602 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1603 {
1604 might_sleep();
1605 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1606 usleep_range(1000, 2000);
1607 igbvf_down(adapter);
1608 igbvf_up(adapter);
1609 clear_bit(__IGBVF_RESETTING, &adapter->state);
1610 }
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620 static int igbvf_sw_init(struct igbvf_adapter *adapter)
1621 {
1622 struct net_device *netdev = adapter->netdev;
1623 s32 rc;
1624
1625 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1626 adapter->rx_ps_hdr_size = 0;
1627 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1628 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1629
1630 adapter->tx_int_delay = 8;
1631 adapter->tx_abs_int_delay = 32;
1632 adapter->rx_int_delay = 0;
1633 adapter->rx_abs_int_delay = 8;
1634 adapter->requested_itr = 3;
1635 adapter->current_itr = IGBVF_START_ITR;
1636
1637
1638 adapter->ei->init_ops(&adapter->hw);
1639
1640 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1641 if (rc)
1642 return rc;
1643
1644 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1645 if (rc)
1646 return rc;
1647
1648 igbvf_set_interrupt_capability(adapter);
1649
1650 if (igbvf_alloc_queues(adapter))
1651 return -ENOMEM;
1652
1653 spin_lock_init(&adapter->tx_queue_lock);
1654
1655
1656 igbvf_irq_disable(adapter);
1657
1658 spin_lock_init(&adapter->stats_lock);
1659 spin_lock_init(&adapter->hw.mbx_lock);
1660
1661 set_bit(__IGBVF_DOWN, &adapter->state);
1662 return 0;
1663 }
1664
1665 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1666 {
1667 struct e1000_hw *hw = &adapter->hw;
1668
1669 adapter->stats.last_gprc = er32(VFGPRC);
1670 adapter->stats.last_gorc = er32(VFGORC);
1671 adapter->stats.last_gptc = er32(VFGPTC);
1672 adapter->stats.last_gotc = er32(VFGOTC);
1673 adapter->stats.last_mprc = er32(VFMPRC);
1674 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1675 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1676 adapter->stats.last_gorlbc = er32(VFGORLBC);
1677 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1678
1679 adapter->stats.base_gprc = er32(VFGPRC);
1680 adapter->stats.base_gorc = er32(VFGORC);
1681 adapter->stats.base_gptc = er32(VFGPTC);
1682 adapter->stats.base_gotc = er32(VFGOTC);
1683 adapter->stats.base_mprc = er32(VFMPRC);
1684 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1685 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1686 adapter->stats.base_gorlbc = er32(VFGORLBC);
1687 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1688 }
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702 static int igbvf_open(struct net_device *netdev)
1703 {
1704 struct igbvf_adapter *adapter = netdev_priv(netdev);
1705 struct e1000_hw *hw = &adapter->hw;
1706 int err;
1707
1708
1709 if (test_bit(__IGBVF_TESTING, &adapter->state))
1710 return -EBUSY;
1711
1712
1713 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1714 if (err)
1715 goto err_setup_tx;
1716
1717
1718 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1719 if (err)
1720 goto err_setup_rx;
1721
1722
1723
1724
1725
1726
1727 igbvf_configure(adapter);
1728
1729 err = igbvf_request_irq(adapter);
1730 if (err)
1731 goto err_req_irq;
1732
1733
1734 clear_bit(__IGBVF_DOWN, &adapter->state);
1735
1736 napi_enable(&adapter->rx_ring->napi);
1737
1738
1739 er32(EICR);
1740
1741 igbvf_irq_enable(adapter);
1742
1743
1744 hw->mac.get_link_status = 1;
1745 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1746
1747 return 0;
1748
1749 err_req_irq:
1750 igbvf_free_rx_resources(adapter->rx_ring);
1751 err_setup_rx:
1752 igbvf_free_tx_resources(adapter->tx_ring);
1753 err_setup_tx:
1754 igbvf_reset(adapter);
1755
1756 return err;
1757 }
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770 static int igbvf_close(struct net_device *netdev)
1771 {
1772 struct igbvf_adapter *adapter = netdev_priv(netdev);
1773
1774 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1775 igbvf_down(adapter);
1776
1777 igbvf_free_irq(adapter);
1778
1779 igbvf_free_tx_resources(adapter->tx_ring);
1780 igbvf_free_rx_resources(adapter->rx_ring);
1781
1782 return 0;
1783 }
1784
1785
1786
1787
1788
1789
1790
1791
1792 static int igbvf_set_mac(struct net_device *netdev, void *p)
1793 {
1794 struct igbvf_adapter *adapter = netdev_priv(netdev);
1795 struct e1000_hw *hw = &adapter->hw;
1796 struct sockaddr *addr = p;
1797
1798 if (!is_valid_ether_addr(addr->sa_data))
1799 return -EADDRNOTAVAIL;
1800
1801 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1802
1803 spin_lock_bh(&hw->mbx_lock);
1804
1805 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1806
1807 spin_unlock_bh(&hw->mbx_lock);
1808
1809 if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1810 return -EADDRNOTAVAIL;
1811
1812 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1813
1814 return 0;
1815 }
1816
1817 #define UPDATE_VF_COUNTER(reg, name) \
1818 { \
1819 u32 current_counter = er32(reg); \
1820 if (current_counter < adapter->stats.last_##name) \
1821 adapter->stats.name += 0x100000000LL; \
1822 adapter->stats.last_##name = current_counter; \
1823 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1824 adapter->stats.name |= current_counter; \
1825 }
1826
1827
1828
1829
1830
1831 void igbvf_update_stats(struct igbvf_adapter *adapter)
1832 {
1833 struct e1000_hw *hw = &adapter->hw;
1834 struct pci_dev *pdev = adapter->pdev;
1835
1836
1837
1838
1839 if (adapter->link_speed == 0)
1840 return;
1841
1842 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1843 return;
1844
1845 if (pci_channel_offline(pdev))
1846 return;
1847
1848 UPDATE_VF_COUNTER(VFGPRC, gprc);
1849 UPDATE_VF_COUNTER(VFGORC, gorc);
1850 UPDATE_VF_COUNTER(VFGPTC, gptc);
1851 UPDATE_VF_COUNTER(VFGOTC, gotc);
1852 UPDATE_VF_COUNTER(VFMPRC, mprc);
1853 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1854 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1855 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1856 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1857
1858
1859 adapter->netdev->stats.multicast = adapter->stats.mprc;
1860 }
1861
1862 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1863 {
1864 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1865 adapter->link_speed,
1866 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1867 }
1868
1869 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1870 {
1871 struct e1000_hw *hw = &adapter->hw;
1872 s32 ret_val = E1000_SUCCESS;
1873 bool link_active;
1874
1875
1876 if (test_bit(__IGBVF_DOWN, &adapter->state))
1877 return false;
1878
1879 spin_lock_bh(&hw->mbx_lock);
1880
1881 ret_val = hw->mac.ops.check_for_link(hw);
1882
1883 spin_unlock_bh(&hw->mbx_lock);
1884
1885 link_active = !hw->mac.get_link_status;
1886
1887
1888 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1889 schedule_work(&adapter->reset_task);
1890
1891 return link_active;
1892 }
1893
1894
1895
1896
1897
1898 static void igbvf_watchdog(struct timer_list *t)
1899 {
1900 struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1901
1902
1903 schedule_work(&adapter->watchdog_task);
1904 }
1905
1906 static void igbvf_watchdog_task(struct work_struct *work)
1907 {
1908 struct igbvf_adapter *adapter = container_of(work,
1909 struct igbvf_adapter,
1910 watchdog_task);
1911 struct net_device *netdev = adapter->netdev;
1912 struct e1000_mac_info *mac = &adapter->hw.mac;
1913 struct igbvf_ring *tx_ring = adapter->tx_ring;
1914 struct e1000_hw *hw = &adapter->hw;
1915 u32 link;
1916 int tx_pending = 0;
1917
1918 link = igbvf_has_link(adapter);
1919
1920 if (link) {
1921 if (!netif_carrier_ok(netdev)) {
1922 mac->ops.get_link_up_info(&adapter->hw,
1923 &adapter->link_speed,
1924 &adapter->link_duplex);
1925 igbvf_print_link_info(adapter);
1926
1927 netif_carrier_on(netdev);
1928 netif_wake_queue(netdev);
1929 }
1930 } else {
1931 if (netif_carrier_ok(netdev)) {
1932 adapter->link_speed = 0;
1933 adapter->link_duplex = 0;
1934 dev_info(&adapter->pdev->dev, "Link is Down\n");
1935 netif_carrier_off(netdev);
1936 netif_stop_queue(netdev);
1937 }
1938 }
1939
1940 if (netif_carrier_ok(netdev)) {
1941 igbvf_update_stats(adapter);
1942 } else {
1943 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1944 tx_ring->count);
1945 if (tx_pending) {
1946
1947
1948
1949
1950
1951 adapter->tx_timeout_count++;
1952 schedule_work(&adapter->reset_task);
1953 }
1954 }
1955
1956
1957 ew32(EICS, adapter->rx_ring->eims_value);
1958
1959
1960 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1961 mod_timer(&adapter->watchdog_timer,
1962 round_jiffies(jiffies + (2 * HZ)));
1963 }
1964
1965 #define IGBVF_TX_FLAGS_CSUM 0x00000001
1966 #define IGBVF_TX_FLAGS_VLAN 0x00000002
1967 #define IGBVF_TX_FLAGS_TSO 0x00000004
1968 #define IGBVF_TX_FLAGS_IPV4 0x00000008
1969 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1970 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1971
1972 static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1973 u32 type_tucmd, u32 mss_l4len_idx)
1974 {
1975 struct e1000_adv_tx_context_desc *context_desc;
1976 struct igbvf_buffer *buffer_info;
1977 u16 i = tx_ring->next_to_use;
1978
1979 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1980 buffer_info = &tx_ring->buffer_info[i];
1981
1982 i++;
1983 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1984
1985
1986 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1987
1988 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1989 context_desc->seqnum_seed = 0;
1990 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1991 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1992
1993 buffer_info->time_stamp = jiffies;
1994 buffer_info->dma = 0;
1995 }
1996
1997 static int igbvf_tso(struct igbvf_ring *tx_ring,
1998 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1999 {
2000 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
2001 union {
2002 struct iphdr *v4;
2003 struct ipv6hdr *v6;
2004 unsigned char *hdr;
2005 } ip;
2006 union {
2007 struct tcphdr *tcp;
2008 unsigned char *hdr;
2009 } l4;
2010 u32 paylen, l4_offset;
2011 int err;
2012
2013 if (skb->ip_summed != CHECKSUM_PARTIAL)
2014 return 0;
2015
2016 if (!skb_is_gso(skb))
2017 return 0;
2018
2019 err = skb_cow_head(skb, 0);
2020 if (err < 0)
2021 return err;
2022
2023 ip.hdr = skb_network_header(skb);
2024 l4.hdr = skb_checksum_start(skb);
2025
2026
2027 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2028
2029
2030 if (ip.v4->version == 4) {
2031 unsigned char *csum_start = skb_checksum_start(skb);
2032 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
2033
2034
2035
2036
2037 ip.v4->check = csum_fold(csum_partial(trans_start,
2038 csum_start - trans_start,
2039 0));
2040 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2041
2042 ip.v4->tot_len = 0;
2043 } else {
2044 ip.v6->payload_len = 0;
2045 }
2046
2047
2048 l4_offset = l4.hdr - skb->data;
2049
2050
2051 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2052
2053
2054 paylen = skb->len - l4_offset;
2055 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
2056
2057
2058 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2059 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2060
2061
2062 vlan_macip_lens = l4.hdr - ip.hdr;
2063 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2064 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2065
2066 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2067
2068 return 1;
2069 }
2070
2071 static inline bool igbvf_ipv6_csum_is_sctp(struct sk_buff *skb)
2072 {
2073 unsigned int offset = 0;
2074
2075 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
2076
2077 return offset == skb_checksum_start_offset(skb);
2078 }
2079
2080 static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2081 u32 tx_flags, __be16 protocol)
2082 {
2083 u32 vlan_macip_lens = 0;
2084 u32 type_tucmd = 0;
2085
2086 if (skb->ip_summed != CHECKSUM_PARTIAL) {
2087 csum_failed:
2088 if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2089 return false;
2090 goto no_csum;
2091 }
2092
2093 switch (skb->csum_offset) {
2094 case offsetof(struct tcphdr, check):
2095 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2096
2097 case offsetof(struct udphdr, check):
2098 break;
2099 case offsetof(struct sctphdr, checksum):
2100
2101 if (((protocol == htons(ETH_P_IP)) &&
2102 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
2103 ((protocol == htons(ETH_P_IPV6)) &&
2104 igbvf_ipv6_csum_is_sctp(skb))) {
2105 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2106 break;
2107 }
2108
2109 default:
2110 skb_checksum_help(skb);
2111 goto csum_failed;
2112 }
2113
2114 vlan_macip_lens = skb_checksum_start_offset(skb) -
2115 skb_network_offset(skb);
2116 no_csum:
2117 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2118 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2119
2120 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2121 return true;
2122 }
2123
2124 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2125 {
2126 struct igbvf_adapter *adapter = netdev_priv(netdev);
2127
2128
2129 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2130 return 0;
2131
2132 netif_stop_queue(netdev);
2133
2134
2135
2136
2137
2138 smp_mb();
2139
2140
2141 if (igbvf_desc_unused(adapter->tx_ring) < size)
2142 return -EBUSY;
2143
2144 netif_wake_queue(netdev);
2145
2146 ++adapter->restart_queue;
2147 return 0;
2148 }
2149
2150 #define IGBVF_MAX_TXD_PWR 16
2151 #define IGBVF_MAX_DATA_PER_TXD (1u << IGBVF_MAX_TXD_PWR)
2152
2153 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2154 struct igbvf_ring *tx_ring,
2155 struct sk_buff *skb)
2156 {
2157 struct igbvf_buffer *buffer_info;
2158 struct pci_dev *pdev = adapter->pdev;
2159 unsigned int len = skb_headlen(skb);
2160 unsigned int count = 0, i;
2161 unsigned int f;
2162
2163 i = tx_ring->next_to_use;
2164
2165 buffer_info = &tx_ring->buffer_info[i];
2166 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2167 buffer_info->length = len;
2168
2169 buffer_info->time_stamp = jiffies;
2170 buffer_info->mapped_as_page = false;
2171 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2172 DMA_TO_DEVICE);
2173 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2174 goto dma_error;
2175
2176 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2177 const skb_frag_t *frag;
2178
2179 count++;
2180 i++;
2181 if (i == tx_ring->count)
2182 i = 0;
2183
2184 frag = &skb_shinfo(skb)->frags[f];
2185 len = skb_frag_size(frag);
2186
2187 buffer_info = &tx_ring->buffer_info[i];
2188 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2189 buffer_info->length = len;
2190 buffer_info->time_stamp = jiffies;
2191 buffer_info->mapped_as_page = true;
2192 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2193 DMA_TO_DEVICE);
2194 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2195 goto dma_error;
2196 }
2197
2198 tx_ring->buffer_info[i].skb = skb;
2199
2200 return ++count;
2201
2202 dma_error:
2203 dev_err(&pdev->dev, "TX DMA map failed\n");
2204
2205
2206 buffer_info->dma = 0;
2207 buffer_info->time_stamp = 0;
2208 buffer_info->length = 0;
2209 buffer_info->mapped_as_page = false;
2210 if (count)
2211 count--;
2212
2213
2214 while (count--) {
2215 if (i == 0)
2216 i += tx_ring->count;
2217 i--;
2218 buffer_info = &tx_ring->buffer_info[i];
2219 igbvf_put_txbuf(adapter, buffer_info);
2220 }
2221
2222 return 0;
2223 }
2224
2225 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2226 struct igbvf_ring *tx_ring,
2227 int tx_flags, int count,
2228 unsigned int first, u32 paylen,
2229 u8 hdr_len)
2230 {
2231 union e1000_adv_tx_desc *tx_desc = NULL;
2232 struct igbvf_buffer *buffer_info;
2233 u32 olinfo_status = 0, cmd_type_len;
2234 unsigned int i;
2235
2236 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2237 E1000_ADVTXD_DCMD_DEXT);
2238
2239 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2240 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2241
2242 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2243 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2244
2245
2246 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2247
2248
2249 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2250 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2251
2252 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2253 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2254 }
2255
2256 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2257
2258 i = tx_ring->next_to_use;
2259 while (count--) {
2260 buffer_info = &tx_ring->buffer_info[i];
2261 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2262 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2263 tx_desc->read.cmd_type_len =
2264 cpu_to_le32(cmd_type_len | buffer_info->length);
2265 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2266 i++;
2267 if (i == tx_ring->count)
2268 i = 0;
2269 }
2270
2271 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2272
2273
2274
2275
2276
2277 wmb();
2278
2279 tx_ring->buffer_info[first].next_to_watch = tx_desc;
2280 tx_ring->next_to_use = i;
2281 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2282 }
2283
2284 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2285 struct net_device *netdev,
2286 struct igbvf_ring *tx_ring)
2287 {
2288 struct igbvf_adapter *adapter = netdev_priv(netdev);
2289 unsigned int first, tx_flags = 0;
2290 u8 hdr_len = 0;
2291 int count = 0;
2292 int tso = 0;
2293 __be16 protocol = vlan_get_protocol(skb);
2294
2295 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2296 dev_kfree_skb_any(skb);
2297 return NETDEV_TX_OK;
2298 }
2299
2300 if (skb->len <= 0) {
2301 dev_kfree_skb_any(skb);
2302 return NETDEV_TX_OK;
2303 }
2304
2305
2306
2307
2308
2309
2310
2311 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2312
2313 return NETDEV_TX_BUSY;
2314 }
2315
2316 if (skb_vlan_tag_present(skb)) {
2317 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2318 tx_flags |= (skb_vlan_tag_get(skb) <<
2319 IGBVF_TX_FLAGS_VLAN_SHIFT);
2320 }
2321
2322 if (protocol == htons(ETH_P_IP))
2323 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2324
2325 first = tx_ring->next_to_use;
2326
2327 tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2328 if (unlikely(tso < 0)) {
2329 dev_kfree_skb_any(skb);
2330 return NETDEV_TX_OK;
2331 }
2332
2333 if (tso)
2334 tx_flags |= IGBVF_TX_FLAGS_TSO;
2335 else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2336 (skb->ip_summed == CHECKSUM_PARTIAL))
2337 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2338
2339
2340
2341
2342 count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2343
2344 if (count) {
2345 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2346 first, skb->len, hdr_len);
2347
2348 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2349 } else {
2350 dev_kfree_skb_any(skb);
2351 tx_ring->buffer_info[first].time_stamp = 0;
2352 tx_ring->next_to_use = first;
2353 }
2354
2355 return NETDEV_TX_OK;
2356 }
2357
2358 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2359 struct net_device *netdev)
2360 {
2361 struct igbvf_adapter *adapter = netdev_priv(netdev);
2362 struct igbvf_ring *tx_ring;
2363
2364 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2365 dev_kfree_skb_any(skb);
2366 return NETDEV_TX_OK;
2367 }
2368
2369 tx_ring = &adapter->tx_ring[0];
2370
2371 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2372 }
2373
2374
2375
2376
2377
2378 static void igbvf_tx_timeout(struct net_device *netdev)
2379 {
2380 struct igbvf_adapter *adapter = netdev_priv(netdev);
2381
2382
2383 adapter->tx_timeout_count++;
2384 schedule_work(&adapter->reset_task);
2385 }
2386
2387 static void igbvf_reset_task(struct work_struct *work)
2388 {
2389 struct igbvf_adapter *adapter;
2390
2391 adapter = container_of(work, struct igbvf_adapter, reset_task);
2392
2393 igbvf_reinit_locked(adapter);
2394 }
2395
2396
2397
2398
2399
2400
2401
2402
2403 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2404 {
2405 struct igbvf_adapter *adapter = netdev_priv(netdev);
2406 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2407
2408 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2409 usleep_range(1000, 2000);
2410
2411 adapter->max_frame_size = max_frame;
2412 if (netif_running(netdev))
2413 igbvf_down(adapter);
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423 if (max_frame <= 1024)
2424 adapter->rx_buffer_len = 1024;
2425 else if (max_frame <= 2048)
2426 adapter->rx_buffer_len = 2048;
2427 else
2428 #if (PAGE_SIZE / 2) > 16384
2429 adapter->rx_buffer_len = 16384;
2430 #else
2431 adapter->rx_buffer_len = PAGE_SIZE / 2;
2432 #endif
2433
2434
2435 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2436 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2437 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2438 ETH_FCS_LEN;
2439
2440 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2441 netdev->mtu, new_mtu);
2442 netdev->mtu = new_mtu;
2443
2444 if (netif_running(netdev))
2445 igbvf_up(adapter);
2446 else
2447 igbvf_reset(adapter);
2448
2449 clear_bit(__IGBVF_RESETTING, &adapter->state);
2450
2451 return 0;
2452 }
2453
2454 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2455 {
2456 switch (cmd) {
2457 default:
2458 return -EOPNOTSUPP;
2459 }
2460 }
2461
2462 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2463 {
2464 struct net_device *netdev = pci_get_drvdata(pdev);
2465 struct igbvf_adapter *adapter = netdev_priv(netdev);
2466 #ifdef CONFIG_PM
2467 int retval = 0;
2468 #endif
2469
2470 netif_device_detach(netdev);
2471
2472 if (netif_running(netdev)) {
2473 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2474 igbvf_down(adapter);
2475 igbvf_free_irq(adapter);
2476 }
2477
2478 #ifdef CONFIG_PM
2479 retval = pci_save_state(pdev);
2480 if (retval)
2481 return retval;
2482 #endif
2483
2484 pci_disable_device(pdev);
2485
2486 return 0;
2487 }
2488
2489 #ifdef CONFIG_PM
2490 static int igbvf_resume(struct pci_dev *pdev)
2491 {
2492 struct net_device *netdev = pci_get_drvdata(pdev);
2493 struct igbvf_adapter *adapter = netdev_priv(netdev);
2494 u32 err;
2495
2496 pci_restore_state(pdev);
2497 err = pci_enable_device_mem(pdev);
2498 if (err) {
2499 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2500 return err;
2501 }
2502
2503 pci_set_master(pdev);
2504
2505 if (netif_running(netdev)) {
2506 err = igbvf_request_irq(adapter);
2507 if (err)
2508 return err;
2509 }
2510
2511 igbvf_reset(adapter);
2512
2513 if (netif_running(netdev))
2514 igbvf_up(adapter);
2515
2516 netif_device_attach(netdev);
2517
2518 return 0;
2519 }
2520 #endif
2521
2522 static void igbvf_shutdown(struct pci_dev *pdev)
2523 {
2524 igbvf_suspend(pdev, PMSG_SUSPEND);
2525 }
2526
2527 #ifdef CONFIG_NET_POLL_CONTROLLER
2528
2529
2530
2531
2532 static void igbvf_netpoll(struct net_device *netdev)
2533 {
2534 struct igbvf_adapter *adapter = netdev_priv(netdev);
2535
2536 disable_irq(adapter->pdev->irq);
2537
2538 igbvf_clean_tx_irq(adapter->tx_ring);
2539
2540 enable_irq(adapter->pdev->irq);
2541 }
2542 #endif
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2553 pci_channel_state_t state)
2554 {
2555 struct net_device *netdev = pci_get_drvdata(pdev);
2556 struct igbvf_adapter *adapter = netdev_priv(netdev);
2557
2558 netif_device_detach(netdev);
2559
2560 if (state == pci_channel_io_perm_failure)
2561 return PCI_ERS_RESULT_DISCONNECT;
2562
2563 if (netif_running(netdev))
2564 igbvf_down(adapter);
2565 pci_disable_device(pdev);
2566
2567
2568 return PCI_ERS_RESULT_NEED_RESET;
2569 }
2570
2571
2572
2573
2574
2575
2576
2577
2578 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2579 {
2580 struct net_device *netdev = pci_get_drvdata(pdev);
2581 struct igbvf_adapter *adapter = netdev_priv(netdev);
2582
2583 if (pci_enable_device_mem(pdev)) {
2584 dev_err(&pdev->dev,
2585 "Cannot re-enable PCI device after reset.\n");
2586 return PCI_ERS_RESULT_DISCONNECT;
2587 }
2588 pci_set_master(pdev);
2589
2590 igbvf_reset(adapter);
2591
2592 return PCI_ERS_RESULT_RECOVERED;
2593 }
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603 static void igbvf_io_resume(struct pci_dev *pdev)
2604 {
2605 struct net_device *netdev = pci_get_drvdata(pdev);
2606 struct igbvf_adapter *adapter = netdev_priv(netdev);
2607
2608 if (netif_running(netdev)) {
2609 if (igbvf_up(adapter)) {
2610 dev_err(&pdev->dev,
2611 "can't bring device back up after reset\n");
2612 return;
2613 }
2614 }
2615
2616 netif_device_attach(netdev);
2617 }
2618
2619 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2620 {
2621 struct e1000_hw *hw = &adapter->hw;
2622 struct net_device *netdev = adapter->netdev;
2623 struct pci_dev *pdev = adapter->pdev;
2624
2625 if (hw->mac.type == e1000_vfadapt_i350)
2626 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2627 else
2628 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2629 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2630 }
2631
2632 static int igbvf_set_features(struct net_device *netdev,
2633 netdev_features_t features)
2634 {
2635 struct igbvf_adapter *adapter = netdev_priv(netdev);
2636
2637 if (features & NETIF_F_RXCSUM)
2638 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2639 else
2640 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2641
2642 return 0;
2643 }
2644
2645 #define IGBVF_MAX_MAC_HDR_LEN 127
2646 #define IGBVF_MAX_NETWORK_HDR_LEN 511
2647
2648 static netdev_features_t
2649 igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2650 netdev_features_t features)
2651 {
2652 unsigned int network_hdr_len, mac_hdr_len;
2653
2654
2655 mac_hdr_len = skb_network_header(skb) - skb->data;
2656 if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2657 return features & ~(NETIF_F_HW_CSUM |
2658 NETIF_F_SCTP_CRC |
2659 NETIF_F_HW_VLAN_CTAG_TX |
2660 NETIF_F_TSO |
2661 NETIF_F_TSO6);
2662
2663 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2664 if (unlikely(network_hdr_len > IGBVF_MAX_NETWORK_HDR_LEN))
2665 return features & ~(NETIF_F_HW_CSUM |
2666 NETIF_F_SCTP_CRC |
2667 NETIF_F_TSO |
2668 NETIF_F_TSO6);
2669
2670
2671
2672
2673 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2674 features &= ~NETIF_F_TSO;
2675
2676 return features;
2677 }
2678
2679 static const struct net_device_ops igbvf_netdev_ops = {
2680 .ndo_open = igbvf_open,
2681 .ndo_stop = igbvf_close,
2682 .ndo_start_xmit = igbvf_xmit_frame,
2683 .ndo_set_rx_mode = igbvf_set_rx_mode,
2684 .ndo_set_mac_address = igbvf_set_mac,
2685 .ndo_change_mtu = igbvf_change_mtu,
2686 .ndo_do_ioctl = igbvf_ioctl,
2687 .ndo_tx_timeout = igbvf_tx_timeout,
2688 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2689 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2690 #ifdef CONFIG_NET_POLL_CONTROLLER
2691 .ndo_poll_controller = igbvf_netpoll,
2692 #endif
2693 .ndo_set_features = igbvf_set_features,
2694 .ndo_features_check = igbvf_features_check,
2695 };
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2709 {
2710 struct net_device *netdev;
2711 struct igbvf_adapter *adapter;
2712 struct e1000_hw *hw;
2713 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2714
2715 static int cards_found;
2716 int err, pci_using_dac;
2717
2718 err = pci_enable_device_mem(pdev);
2719 if (err)
2720 return err;
2721
2722 pci_using_dac = 0;
2723 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2724 if (!err) {
2725 pci_using_dac = 1;
2726 } else {
2727 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2728 if (err) {
2729 dev_err(&pdev->dev,
2730 "No usable DMA configuration, aborting\n");
2731 goto err_dma;
2732 }
2733 }
2734
2735 err = pci_request_regions(pdev, igbvf_driver_name);
2736 if (err)
2737 goto err_pci_reg;
2738
2739 pci_set_master(pdev);
2740
2741 err = -ENOMEM;
2742 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2743 if (!netdev)
2744 goto err_alloc_etherdev;
2745
2746 SET_NETDEV_DEV(netdev, &pdev->dev);
2747
2748 pci_set_drvdata(pdev, netdev);
2749 adapter = netdev_priv(netdev);
2750 hw = &adapter->hw;
2751 adapter->netdev = netdev;
2752 adapter->pdev = pdev;
2753 adapter->ei = ei;
2754 adapter->pba = ei->pba;
2755 adapter->flags = ei->flags;
2756 adapter->hw.back = adapter;
2757 adapter->hw.mac.type = ei->mac;
2758 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2759
2760
2761
2762 hw->vendor_id = pdev->vendor;
2763 hw->device_id = pdev->device;
2764 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2765 hw->subsystem_device_id = pdev->subsystem_device;
2766 hw->revision_id = pdev->revision;
2767
2768 err = -EIO;
2769 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2770 pci_resource_len(pdev, 0));
2771
2772 if (!adapter->hw.hw_addr)
2773 goto err_ioremap;
2774
2775 if (ei->get_variants) {
2776 err = ei->get_variants(adapter);
2777 if (err)
2778 goto err_get_variants;
2779 }
2780
2781
2782 err = igbvf_sw_init(adapter);
2783 if (err)
2784 goto err_sw_init;
2785
2786
2787 netdev->netdev_ops = &igbvf_netdev_ops;
2788
2789 igbvf_set_ethtool_ops(netdev);
2790 netdev->watchdog_timeo = 5 * HZ;
2791 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2792
2793 adapter->bd_number = cards_found++;
2794
2795 netdev->hw_features = NETIF_F_SG |
2796 NETIF_F_TSO |
2797 NETIF_F_TSO6 |
2798 NETIF_F_RXCSUM |
2799 NETIF_F_HW_CSUM |
2800 NETIF_F_SCTP_CRC;
2801
2802 #define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2803 NETIF_F_GSO_GRE_CSUM | \
2804 NETIF_F_GSO_IPXIP4 | \
2805 NETIF_F_GSO_IPXIP6 | \
2806 NETIF_F_GSO_UDP_TUNNEL | \
2807 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2808
2809 netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2810 netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2811 IGBVF_GSO_PARTIAL_FEATURES;
2812
2813 netdev->features = netdev->hw_features;
2814
2815 if (pci_using_dac)
2816 netdev->features |= NETIF_F_HIGHDMA;
2817
2818 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2819 netdev->mpls_features |= NETIF_F_HW_CSUM;
2820 netdev->hw_enc_features |= netdev->vlan_features;
2821
2822
2823 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2824 NETIF_F_HW_VLAN_CTAG_RX |
2825 NETIF_F_HW_VLAN_CTAG_TX;
2826
2827
2828 netdev->min_mtu = ETH_MIN_MTU;
2829 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2830
2831 spin_lock_bh(&hw->mbx_lock);
2832
2833
2834 err = hw->mac.ops.reset_hw(hw);
2835 if (err) {
2836 dev_info(&pdev->dev,
2837 "PF still in reset state. Is the PF interface up?\n");
2838 } else {
2839 err = hw->mac.ops.read_mac_addr(hw);
2840 if (err)
2841 dev_info(&pdev->dev, "Error reading MAC address.\n");
2842 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2843 dev_info(&pdev->dev,
2844 "MAC address not assigned by administrator.\n");
2845 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2846 netdev->addr_len);
2847 }
2848
2849 spin_unlock_bh(&hw->mbx_lock);
2850
2851 if (!is_valid_ether_addr(netdev->dev_addr)) {
2852 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2853 eth_hw_addr_random(netdev);
2854 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2855 netdev->addr_len);
2856 }
2857
2858 timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
2859
2860 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2861 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2862
2863
2864 adapter->rx_ring->count = 1024;
2865 adapter->tx_ring->count = 1024;
2866
2867
2868 igbvf_reset(adapter);
2869
2870
2871 if (adapter->hw.mac.type == e1000_vfadapt_i350)
2872 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2873
2874 strcpy(netdev->name, "eth%d");
2875 err = register_netdev(netdev);
2876 if (err)
2877 goto err_hw_init;
2878
2879
2880 netif_carrier_off(netdev);
2881 netif_stop_queue(netdev);
2882
2883 igbvf_print_device_info(adapter);
2884
2885 igbvf_initialize_last_counter_stats(adapter);
2886
2887 return 0;
2888
2889 err_hw_init:
2890 kfree(adapter->tx_ring);
2891 kfree(adapter->rx_ring);
2892 err_sw_init:
2893 igbvf_reset_interrupt_capability(adapter);
2894 err_get_variants:
2895 iounmap(adapter->hw.hw_addr);
2896 err_ioremap:
2897 free_netdev(netdev);
2898 err_alloc_etherdev:
2899 pci_release_regions(pdev);
2900 err_pci_reg:
2901 err_dma:
2902 pci_disable_device(pdev);
2903 return err;
2904 }
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915 static void igbvf_remove(struct pci_dev *pdev)
2916 {
2917 struct net_device *netdev = pci_get_drvdata(pdev);
2918 struct igbvf_adapter *adapter = netdev_priv(netdev);
2919 struct e1000_hw *hw = &adapter->hw;
2920
2921
2922
2923
2924 set_bit(__IGBVF_DOWN, &adapter->state);
2925 del_timer_sync(&adapter->watchdog_timer);
2926
2927 cancel_work_sync(&adapter->reset_task);
2928 cancel_work_sync(&adapter->watchdog_task);
2929
2930 unregister_netdev(netdev);
2931
2932 igbvf_reset_interrupt_capability(adapter);
2933
2934
2935
2936
2937 netif_napi_del(&adapter->rx_ring->napi);
2938 kfree(adapter->tx_ring);
2939 kfree(adapter->rx_ring);
2940
2941 iounmap(hw->hw_addr);
2942 if (hw->flash_address)
2943 iounmap(hw->flash_address);
2944 pci_release_regions(pdev);
2945
2946 free_netdev(netdev);
2947
2948 pci_disable_device(pdev);
2949 }
2950
2951
2952 static const struct pci_error_handlers igbvf_err_handler = {
2953 .error_detected = igbvf_io_error_detected,
2954 .slot_reset = igbvf_io_slot_reset,
2955 .resume = igbvf_io_resume,
2956 };
2957
2958 static const struct pci_device_id igbvf_pci_tbl[] = {
2959 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2960 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2961 { }
2962 };
2963 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2964
2965
2966 static struct pci_driver igbvf_driver = {
2967 .name = igbvf_driver_name,
2968 .id_table = igbvf_pci_tbl,
2969 .probe = igbvf_probe,
2970 .remove = igbvf_remove,
2971 #ifdef CONFIG_PM
2972
2973 .suspend = igbvf_suspend,
2974 .resume = igbvf_resume,
2975 #endif
2976 .shutdown = igbvf_shutdown,
2977 .err_handler = &igbvf_err_handler
2978 };
2979
2980
2981
2982
2983
2984
2985
2986 static int __init igbvf_init_module(void)
2987 {
2988 int ret;
2989
2990 pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2991 pr_info("%s\n", igbvf_copyright);
2992
2993 ret = pci_register_driver(&igbvf_driver);
2994
2995 return ret;
2996 }
2997 module_init(igbvf_init_module);
2998
2999
3000
3001
3002
3003
3004
3005 static void __exit igbvf_exit_module(void)
3006 {
3007 pci_unregister_driver(&igbvf_driver);
3008 }
3009 module_exit(igbvf_exit_module);
3010
3011 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
3012 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
3013 MODULE_LICENSE("GPL v2");
3014 MODULE_VERSION(DRV_VERSION);
3015
3016