root/drivers/net/ethernet/intel/fm10k/fm10k_main.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. fm10k_init_module
  2. fm10k_exit_module
  3. fm10k_alloc_mapped_page
  4. fm10k_alloc_rx_buffers
  5. fm10k_reuse_rx_page
  6. fm10k_page_is_reserved
  7. fm10k_can_reuse_rx_page
  8. fm10k_add_rx_frag
  9. fm10k_fetch_rx_buffer
  10. fm10k_rx_checksum
  11. fm10k_rx_hash
  12. fm10k_type_trans
  13. fm10k_process_skb_fields
  14. fm10k_is_non_eop
  15. fm10k_cleanup_headers
  16. fm10k_receive_skb
  17. fm10k_clean_rx_irq
  18. fm10k_gre_is_nvgre
  19. fm10k_tx_encap_offload
  20. fm10k_tso
  21. fm10k_tx_csum
  22. fm10k_tx_desc_flags
  23. fm10k_tx_desc_push
  24. __fm10k_maybe_stop_tx
  25. fm10k_maybe_stop_tx
  26. fm10k_tx_map
  27. fm10k_xmit_frame_ring
  28. fm10k_get_tx_completed
  29. fm10k_get_tx_pending
  30. fm10k_check_tx_hang
  31. fm10k_tx_timeout_reset
  32. fm10k_clean_tx_irq
  33. fm10k_update_itr
  34. fm10k_qv_enable
  35. fm10k_poll
  36. fm10k_set_qos_queues
  37. fm10k_set_rss_queues
  38. fm10k_set_num_queues
  39. fm10k_reset_num_queues
  40. fm10k_alloc_q_vector
  41. fm10k_free_q_vector
  42. fm10k_alloc_q_vectors
  43. fm10k_free_q_vectors
  44. fm10k_reset_msix_capability
  45. fm10k_init_msix_capability
  46. fm10k_cache_ring_qos
  47. fm10k_cache_ring_rss
  48. fm10k_assign_rings
  49. fm10k_init_reta
  50. fm10k_init_queueing_scheme
  51. fm10k_clear_queueing_scheme

   1 // SPDX-License-Identifier: GPL-2.0
   2 /* Copyright(c) 2013 - 2019 Intel Corporation. */
   3 
   4 #include <linux/types.h>
   5 #include <linux/module.h>
   6 #include <net/ipv6.h>
   7 #include <net/ip.h>
   8 #include <net/tcp.h>
   9 #include <linux/if_macvlan.h>
  10 #include <linux/prefetch.h>
  11 
  12 #include "fm10k.h"
  13 
  14 #define DRV_VERSION     "0.26.1-k"
  15 #define DRV_SUMMARY     "Intel(R) Ethernet Switch Host Interface Driver"
  16 const char fm10k_driver_version[] = DRV_VERSION;
  17 char fm10k_driver_name[] = "fm10k";
  18 static const char fm10k_driver_string[] = DRV_SUMMARY;
  19 static const char fm10k_copyright[] =
  20         "Copyright(c) 2013 - 2019 Intel Corporation.";
  21 
  22 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  23 MODULE_DESCRIPTION(DRV_SUMMARY);
  24 MODULE_LICENSE("GPL v2");
  25 MODULE_VERSION(DRV_VERSION);
  26 
  27 /* single workqueue for entire fm10k driver */
  28 struct workqueue_struct *fm10k_workqueue;
  29 
  30 /**
  31  * fm10k_init_module - Driver Registration Routine
  32  *
  33  * fm10k_init_module is the first routine called when the driver is
  34  * loaded.  All it does is register with the PCI subsystem.
  35  **/
  36 static int __init fm10k_init_module(void)
  37 {
  38         pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
  39         pr_info("%s\n", fm10k_copyright);
  40 
  41         /* create driver workqueue */
  42         fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0,
  43                                           fm10k_driver_name);
  44         if (!fm10k_workqueue)
  45                 return -ENOMEM;
  46 
  47         fm10k_dbg_init();
  48 
  49         return fm10k_register_pci_driver();
  50 }
  51 module_init(fm10k_init_module);
  52 
  53 /**
  54  * fm10k_exit_module - Driver Exit Cleanup Routine
  55  *
  56  * fm10k_exit_module is called just before the driver is removed
  57  * from memory.
  58  **/
  59 static void __exit fm10k_exit_module(void)
  60 {
  61         fm10k_unregister_pci_driver();
  62 
  63         fm10k_dbg_exit();
  64 
  65         /* destroy driver workqueue */
  66         destroy_workqueue(fm10k_workqueue);
  67 }
  68 module_exit(fm10k_exit_module);
  69 
  70 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
  71                                     struct fm10k_rx_buffer *bi)
  72 {
  73         struct page *page = bi->page;
  74         dma_addr_t dma;
  75 
  76         /* Only page will be NULL if buffer was consumed */
  77         if (likely(page))
  78                 return true;
  79 
  80         /* alloc new page for storage */
  81         page = dev_alloc_page();
  82         if (unlikely(!page)) {
  83                 rx_ring->rx_stats.alloc_failed++;
  84                 return false;
  85         }
  86 
  87         /* map page for use */
  88         dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
  89 
  90         /* if mapping failed free memory back to system since
  91          * there isn't much point in holding memory we can't use
  92          */
  93         if (dma_mapping_error(rx_ring->dev, dma)) {
  94                 __free_page(page);
  95 
  96                 rx_ring->rx_stats.alloc_failed++;
  97                 return false;
  98         }
  99 
 100         bi->dma = dma;
 101         bi->page = page;
 102         bi->page_offset = 0;
 103 
 104         return true;
 105 }
 106 
 107 /**
 108  * fm10k_alloc_rx_buffers - Replace used receive buffers
 109  * @rx_ring: ring to place buffers on
 110  * @cleaned_count: number of buffers to replace
 111  **/
 112 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
 113 {
 114         union fm10k_rx_desc *rx_desc;
 115         struct fm10k_rx_buffer *bi;
 116         u16 i = rx_ring->next_to_use;
 117 
 118         /* nothing to do */
 119         if (!cleaned_count)
 120                 return;
 121 
 122         rx_desc = FM10K_RX_DESC(rx_ring, i);
 123         bi = &rx_ring->rx_buffer[i];
 124         i -= rx_ring->count;
 125 
 126         do {
 127                 if (!fm10k_alloc_mapped_page(rx_ring, bi))
 128                         break;
 129 
 130                 /* Refresh the desc even if buffer_addrs didn't change
 131                  * because each write-back erases this info.
 132                  */
 133                 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 134 
 135                 rx_desc++;
 136                 bi++;
 137                 i++;
 138                 if (unlikely(!i)) {
 139                         rx_desc = FM10K_RX_DESC(rx_ring, 0);
 140                         bi = rx_ring->rx_buffer;
 141                         i -= rx_ring->count;
 142                 }
 143 
 144                 /* clear the status bits for the next_to_use descriptor */
 145                 rx_desc->d.staterr = 0;
 146 
 147                 cleaned_count--;
 148         } while (cleaned_count);
 149 
 150         i += rx_ring->count;
 151 
 152         if (rx_ring->next_to_use != i) {
 153                 /* record the next descriptor to use */
 154                 rx_ring->next_to_use = i;
 155 
 156                 /* update next to alloc since we have filled the ring */
 157                 rx_ring->next_to_alloc = i;
 158 
 159                 /* Force memory writes to complete before letting h/w
 160                  * know there are new descriptors to fetch.  (Only
 161                  * applicable for weak-ordered memory model archs,
 162                  * such as IA-64).
 163                  */
 164                 wmb();
 165 
 166                 /* notify hardware of new descriptors */
 167                 writel(i, rx_ring->tail);
 168         }
 169 }
 170 
 171 /**
 172  * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
 173  * @rx_ring: rx descriptor ring to store buffers on
 174  * @old_buff: donor buffer to have page reused
 175  *
 176  * Synchronizes page for reuse by the interface
 177  **/
 178 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
 179                                 struct fm10k_rx_buffer *old_buff)
 180 {
 181         struct fm10k_rx_buffer *new_buff;
 182         u16 nta = rx_ring->next_to_alloc;
 183 
 184         new_buff = &rx_ring->rx_buffer[nta];
 185 
 186         /* update, and store next to alloc */
 187         nta++;
 188         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 189 
 190         /* transfer page from old buffer to new buffer */
 191         *new_buff = *old_buff;
 192 
 193         /* sync the buffer for use by the device */
 194         dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
 195                                          old_buff->page_offset,
 196                                          FM10K_RX_BUFSZ,
 197                                          DMA_FROM_DEVICE);
 198 }
 199 
 200 static inline bool fm10k_page_is_reserved(struct page *page)
 201 {
 202         return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
 203 }
 204 
 205 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
 206                                     struct page *page,
 207                                     unsigned int __maybe_unused truesize)
 208 {
 209         /* avoid re-using remote pages */
 210         if (unlikely(fm10k_page_is_reserved(page)))
 211                 return false;
 212 
 213 #if (PAGE_SIZE < 8192)
 214         /* if we are only owner of page we can reuse it */
 215         if (unlikely(page_count(page) != 1))
 216                 return false;
 217 
 218         /* flip page offset to other buffer */
 219         rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
 220 #else
 221         /* move offset up to the next cache line */
 222         rx_buffer->page_offset += truesize;
 223 
 224         if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
 225                 return false;
 226 #endif
 227 
 228         /* Even if we own the page, we are not allowed to use atomic_set()
 229          * This would break get_page_unless_zero() users.
 230          */
 231         page_ref_inc(page);
 232 
 233         return true;
 234 }
 235 
 236 /**
 237  * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
 238  * @rx_buffer: buffer containing page to add
 239  * @size: packet size from rx_desc
 240  * @rx_desc: descriptor containing length of buffer written by hardware
 241  * @skb: sk_buff to place the data into
 242  *
 243  * This function will add the data contained in rx_buffer->page to the skb.
 244  * This is done either through a direct copy if the data in the buffer is
 245  * less than the skb header size, otherwise it will just attach the page as
 246  * a frag to the skb.
 247  *
 248  * The function will then update the page offset if necessary and return
 249  * true if the buffer can be reused by the interface.
 250  **/
 251 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
 252                               unsigned int size,
 253                               union fm10k_rx_desc *rx_desc,
 254                               struct sk_buff *skb)
 255 {
 256         struct page *page = rx_buffer->page;
 257         unsigned char *va = page_address(page) + rx_buffer->page_offset;
 258 #if (PAGE_SIZE < 8192)
 259         unsigned int truesize = FM10K_RX_BUFSZ;
 260 #else
 261         unsigned int truesize = ALIGN(size, 512);
 262 #endif
 263         unsigned int pull_len;
 264 
 265         if (unlikely(skb_is_nonlinear(skb)))
 266                 goto add_tail_frag;
 267 
 268         if (likely(size <= FM10K_RX_HDR_LEN)) {
 269                 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
 270 
 271                 /* page is not reserved, we can reuse buffer as-is */
 272                 if (likely(!fm10k_page_is_reserved(page)))
 273                         return true;
 274 
 275                 /* this page cannot be reused so discard it */
 276                 __free_page(page);
 277                 return false;
 278         }
 279 
 280         /* we need the header to contain the greater of either ETH_HLEN or
 281          * 60 bytes if the skb->len is less than 60 for skb_pad.
 282          */
 283         pull_len = eth_get_headlen(skb->dev, va, FM10K_RX_HDR_LEN);
 284 
 285         /* align pull length to size of long to optimize memcpy performance */
 286         memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
 287 
 288         /* update all of the pointers */
 289         va += pull_len;
 290         size -= pull_len;
 291 
 292 add_tail_frag:
 293         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
 294                         (unsigned long)va & ~PAGE_MASK, size, truesize);
 295 
 296         return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
 297 }
 298 
 299 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
 300                                              union fm10k_rx_desc *rx_desc,
 301                                              struct sk_buff *skb)
 302 {
 303         unsigned int size = le16_to_cpu(rx_desc->w.length);
 304         struct fm10k_rx_buffer *rx_buffer;
 305         struct page *page;
 306 
 307         rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
 308         page = rx_buffer->page;
 309         prefetchw(page);
 310 
 311         if (likely(!skb)) {
 312                 void *page_addr = page_address(page) +
 313                                   rx_buffer->page_offset;
 314 
 315                 /* prefetch first cache line of first page */
 316                 prefetch(page_addr);
 317 #if L1_CACHE_BYTES < 128
 318                 prefetch((void *)((u8 *)page_addr + L1_CACHE_BYTES));
 319 #endif
 320 
 321                 /* allocate a skb to store the frags */
 322                 skb = napi_alloc_skb(&rx_ring->q_vector->napi,
 323                                      FM10K_RX_HDR_LEN);
 324                 if (unlikely(!skb)) {
 325                         rx_ring->rx_stats.alloc_failed++;
 326                         return NULL;
 327                 }
 328 
 329                 /* we will be copying header into skb->data in
 330                  * pskb_may_pull so it is in our interest to prefetch
 331                  * it now to avoid a possible cache miss
 332                  */
 333                 prefetchw(skb->data);
 334         }
 335 
 336         /* we are reusing so sync this buffer for CPU use */
 337         dma_sync_single_range_for_cpu(rx_ring->dev,
 338                                       rx_buffer->dma,
 339                                       rx_buffer->page_offset,
 340                                       size,
 341                                       DMA_FROM_DEVICE);
 342 
 343         /* pull page into skb */
 344         if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) {
 345                 /* hand second half of page back to the ring */
 346                 fm10k_reuse_rx_page(rx_ring, rx_buffer);
 347         } else {
 348                 /* we are not reusing the buffer so unmap it */
 349                 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
 350                                PAGE_SIZE, DMA_FROM_DEVICE);
 351         }
 352 
 353         /* clear contents of rx_buffer */
 354         rx_buffer->page = NULL;
 355 
 356         return skb;
 357 }
 358 
 359 static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
 360                                      union fm10k_rx_desc *rx_desc,
 361                                      struct sk_buff *skb)
 362 {
 363         skb_checksum_none_assert(skb);
 364 
 365         /* Rx checksum disabled via ethtool */
 366         if (!(ring->netdev->features & NETIF_F_RXCSUM))
 367                 return;
 368 
 369         /* TCP/UDP checksum error bit is set */
 370         if (fm10k_test_staterr(rx_desc,
 371                                FM10K_RXD_STATUS_L4E |
 372                                FM10K_RXD_STATUS_L4E2 |
 373                                FM10K_RXD_STATUS_IPE |
 374                                FM10K_RXD_STATUS_IPE2)) {
 375                 ring->rx_stats.csum_err++;
 376                 return;
 377         }
 378 
 379         /* It must be a TCP or UDP packet with a valid checksum */
 380         if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
 381                 skb->encapsulation = true;
 382         else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
 383                 return;
 384 
 385         skb->ip_summed = CHECKSUM_UNNECESSARY;
 386 
 387         ring->rx_stats.csum_good++;
 388 }
 389 
 390 #define FM10K_RSS_L4_TYPES_MASK \
 391         (BIT(FM10K_RSSTYPE_IPV4_TCP) | \
 392          BIT(FM10K_RSSTYPE_IPV4_UDP) | \
 393          BIT(FM10K_RSSTYPE_IPV6_TCP) | \
 394          BIT(FM10K_RSSTYPE_IPV6_UDP))
 395 
 396 static inline void fm10k_rx_hash(struct fm10k_ring *ring,
 397                                  union fm10k_rx_desc *rx_desc,
 398                                  struct sk_buff *skb)
 399 {
 400         u16 rss_type;
 401 
 402         if (!(ring->netdev->features & NETIF_F_RXHASH))
 403                 return;
 404 
 405         rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
 406         if (!rss_type)
 407                 return;
 408 
 409         skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
 410                      (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
 411                      PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
 412 }
 413 
 414 static void fm10k_type_trans(struct fm10k_ring *rx_ring,
 415                              union fm10k_rx_desc __maybe_unused *rx_desc,
 416                              struct sk_buff *skb)
 417 {
 418         struct net_device *dev = rx_ring->netdev;
 419         struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
 420 
 421         /* check to see if DGLORT belongs to a MACVLAN */
 422         if (l2_accel) {
 423                 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
 424 
 425                 idx -= l2_accel->dglort;
 426                 if (idx < l2_accel->size && l2_accel->macvlan[idx])
 427                         dev = l2_accel->macvlan[idx];
 428                 else
 429                         l2_accel = NULL;
 430         }
 431 
 432         /* Record Rx queue, or update macvlan statistics */
 433         if (!l2_accel)
 434                 skb_record_rx_queue(skb, rx_ring->queue_index);
 435         else
 436                 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true,
 437                                  false);
 438 
 439         skb->protocol = eth_type_trans(skb, dev);
 440 }
 441 
 442 /**
 443  * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
 444  * @rx_ring: rx descriptor ring packet is being transacted on
 445  * @rx_desc: pointer to the EOP Rx descriptor
 446  * @skb: pointer to current skb being populated
 447  *
 448  * This function checks the ring, descriptor, and packet information in
 449  * order to populate the hash, checksum, VLAN, timestamp, protocol, and
 450  * other fields within the skb.
 451  **/
 452 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
 453                                              union fm10k_rx_desc *rx_desc,
 454                                              struct sk_buff *skb)
 455 {
 456         unsigned int len = skb->len;
 457 
 458         fm10k_rx_hash(rx_ring, rx_desc, skb);
 459 
 460         fm10k_rx_checksum(rx_ring, rx_desc, skb);
 461 
 462         FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
 463 
 464         FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
 465 
 466         FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
 467 
 468         if (rx_desc->w.vlan) {
 469                 u16 vid = le16_to_cpu(rx_desc->w.vlan);
 470 
 471                 if ((vid & VLAN_VID_MASK) != rx_ring->vid)
 472                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
 473                 else if (vid & VLAN_PRIO_MASK)
 474                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 475                                                vid & VLAN_PRIO_MASK);
 476         }
 477 
 478         fm10k_type_trans(rx_ring, rx_desc, skb);
 479 
 480         return len;
 481 }
 482 
 483 /**
 484  * fm10k_is_non_eop - process handling of non-EOP buffers
 485  * @rx_ring: Rx ring being processed
 486  * @rx_desc: Rx descriptor for current buffer
 487  *
 488  * This function updates next to clean.  If the buffer is an EOP buffer
 489  * this function exits returning false, otherwise it will place the
 490  * sk_buff in the next buffer to be chained and return true indicating
 491  * that this is in fact a non-EOP buffer.
 492  **/
 493 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
 494                              union fm10k_rx_desc *rx_desc)
 495 {
 496         u32 ntc = rx_ring->next_to_clean + 1;
 497 
 498         /* fetch, update, and store next to clean */
 499         ntc = (ntc < rx_ring->count) ? ntc : 0;
 500         rx_ring->next_to_clean = ntc;
 501 
 502         prefetch(FM10K_RX_DESC(rx_ring, ntc));
 503 
 504         if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
 505                 return false;
 506 
 507         return true;
 508 }
 509 
 510 /**
 511  * fm10k_cleanup_headers - Correct corrupted or empty headers
 512  * @rx_ring: rx descriptor ring packet is being transacted on
 513  * @rx_desc: pointer to the EOP Rx descriptor
 514  * @skb: pointer to current skb being fixed
 515  *
 516  * Address the case where we are pulling data in on pages only
 517  * and as such no data is present in the skb header.
 518  *
 519  * In addition if skb is not at least 60 bytes we need to pad it so that
 520  * it is large enough to qualify as a valid Ethernet frame.
 521  *
 522  * Returns true if an error was encountered and skb was freed.
 523  **/
 524 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
 525                                   union fm10k_rx_desc *rx_desc,
 526                                   struct sk_buff *skb)
 527 {
 528         if (unlikely((fm10k_test_staterr(rx_desc,
 529                                          FM10K_RXD_STATUS_RXE)))) {
 530 #define FM10K_TEST_RXD_BIT(rxd, bit) \
 531         ((rxd)->w.csum_err & cpu_to_le16(bit))
 532                 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
 533                         rx_ring->rx_stats.switch_errors++;
 534                 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
 535                         rx_ring->rx_stats.drops++;
 536                 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
 537                         rx_ring->rx_stats.pp_errors++;
 538                 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
 539                         rx_ring->rx_stats.link_errors++;
 540                 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
 541                         rx_ring->rx_stats.length_errors++;
 542                 dev_kfree_skb_any(skb);
 543                 rx_ring->rx_stats.errors++;
 544                 return true;
 545         }
 546 
 547         /* if eth_skb_pad returns an error the skb was freed */
 548         if (eth_skb_pad(skb))
 549                 return true;
 550 
 551         return false;
 552 }
 553 
 554 /**
 555  * fm10k_receive_skb - helper function to handle rx indications
 556  * @q_vector: structure containing interrupt and ring information
 557  * @skb: packet to send up
 558  **/
 559 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
 560                               struct sk_buff *skb)
 561 {
 562         napi_gro_receive(&q_vector->napi, skb);
 563 }
 564 
 565 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
 566                               struct fm10k_ring *rx_ring,
 567                               int budget)
 568 {
 569         struct sk_buff *skb = rx_ring->skb;
 570         unsigned int total_bytes = 0, total_packets = 0;
 571         u16 cleaned_count = fm10k_desc_unused(rx_ring);
 572 
 573         while (likely(total_packets < budget)) {
 574                 union fm10k_rx_desc *rx_desc;
 575 
 576                 /* return some buffers to hardware, one at a time is too slow */
 577                 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
 578                         fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
 579                         cleaned_count = 0;
 580                 }
 581 
 582                 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
 583 
 584                 if (!rx_desc->d.staterr)
 585                         break;
 586 
 587                 /* This memory barrier is needed to keep us from reading
 588                  * any other fields out of the rx_desc until we know the
 589                  * descriptor has been written back
 590                  */
 591                 dma_rmb();
 592 
 593                 /* retrieve a buffer from the ring */
 594                 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
 595 
 596                 /* exit if we failed to retrieve a buffer */
 597                 if (!skb)
 598                         break;
 599 
 600                 cleaned_count++;
 601 
 602                 /* fetch next buffer in frame if non-eop */
 603                 if (fm10k_is_non_eop(rx_ring, rx_desc))
 604                         continue;
 605 
 606                 /* verify the packet layout is correct */
 607                 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
 608                         skb = NULL;
 609                         continue;
 610                 }
 611 
 612                 /* populate checksum, timestamp, VLAN, and protocol */
 613                 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
 614 
 615                 fm10k_receive_skb(q_vector, skb);
 616 
 617                 /* reset skb pointer */
 618                 skb = NULL;
 619 
 620                 /* update budget accounting */
 621                 total_packets++;
 622         }
 623 
 624         /* place incomplete frames back on ring for completion */
 625         rx_ring->skb = skb;
 626 
 627         u64_stats_update_begin(&rx_ring->syncp);
 628         rx_ring->stats.packets += total_packets;
 629         rx_ring->stats.bytes += total_bytes;
 630         u64_stats_update_end(&rx_ring->syncp);
 631         q_vector->rx.total_packets += total_packets;
 632         q_vector->rx.total_bytes += total_bytes;
 633 
 634         return total_packets;
 635 }
 636 
 637 #define VXLAN_HLEN (sizeof(struct udphdr) + 8)
 638 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
 639 {
 640         struct fm10k_intfc *interface = netdev_priv(skb->dev);
 641         struct fm10k_udp_port *vxlan_port;
 642 
 643         /* we can only offload a vxlan if we recognize it as such */
 644         vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
 645                                               struct fm10k_udp_port, list);
 646 
 647         if (!vxlan_port)
 648                 return NULL;
 649         if (vxlan_port->port != udp_hdr(skb)->dest)
 650                 return NULL;
 651 
 652         /* return offset of udp_hdr plus 8 bytes for VXLAN header */
 653         return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
 654 }
 655 
 656 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
 657 #define NVGRE_TNI htons(0x2000)
 658 struct fm10k_nvgre_hdr {
 659         __be16 flags;
 660         __be16 proto;
 661         __be32 tni;
 662 };
 663 
 664 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
 665 {
 666         struct fm10k_nvgre_hdr *nvgre_hdr;
 667         int hlen = ip_hdrlen(skb);
 668 
 669         /* currently only IPv4 is supported due to hlen above */
 670         if (vlan_get_protocol(skb) != htons(ETH_P_IP))
 671                 return NULL;
 672 
 673         /* our transport header should be NVGRE */
 674         nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
 675 
 676         /* verify all reserved flags are 0 */
 677         if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
 678                 return NULL;
 679 
 680         /* report start of ethernet header */
 681         if (nvgre_hdr->flags & NVGRE_TNI)
 682                 return (struct ethhdr *)(nvgre_hdr + 1);
 683 
 684         return (struct ethhdr *)(&nvgre_hdr->tni);
 685 }
 686 
 687 __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
 688 {
 689         u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
 690         struct ethhdr *eth_hdr;
 691 
 692         if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
 693             skb->inner_protocol != htons(ETH_P_TEB))
 694                 return 0;
 695 
 696         switch (vlan_get_protocol(skb)) {
 697         case htons(ETH_P_IP):
 698                 l4_hdr = ip_hdr(skb)->protocol;
 699                 break;
 700         case htons(ETH_P_IPV6):
 701                 l4_hdr = ipv6_hdr(skb)->nexthdr;
 702                 break;
 703         default:
 704                 return 0;
 705         }
 706 
 707         switch (l4_hdr) {
 708         case IPPROTO_UDP:
 709                 eth_hdr = fm10k_port_is_vxlan(skb);
 710                 break;
 711         case IPPROTO_GRE:
 712                 eth_hdr = fm10k_gre_is_nvgre(skb);
 713                 break;
 714         default:
 715                 return 0;
 716         }
 717 
 718         if (!eth_hdr)
 719                 return 0;
 720 
 721         switch (eth_hdr->h_proto) {
 722         case htons(ETH_P_IP):
 723                 inner_l4_hdr = inner_ip_hdr(skb)->protocol;
 724                 break;
 725         case htons(ETH_P_IPV6):
 726                 inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
 727                 break;
 728         default:
 729                 return 0;
 730         }
 731 
 732         switch (inner_l4_hdr) {
 733         case IPPROTO_TCP:
 734                 inner_l4_hlen = inner_tcp_hdrlen(skb);
 735                 break;
 736         case IPPROTO_UDP:
 737                 inner_l4_hlen = 8;
 738                 break;
 739         default:
 740                 return 0;
 741         }
 742 
 743         /* The hardware allows tunnel offloads only if the combined inner and
 744          * outer header is 184 bytes or less
 745          */
 746         if (skb_inner_transport_header(skb) + inner_l4_hlen -
 747             skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
 748                 return 0;
 749 
 750         return eth_hdr->h_proto;
 751 }
 752 
 753 static int fm10k_tso(struct fm10k_ring *tx_ring,
 754                      struct fm10k_tx_buffer *first)
 755 {
 756         struct sk_buff *skb = first->skb;
 757         struct fm10k_tx_desc *tx_desc;
 758         unsigned char *th;
 759         u8 hdrlen;
 760 
 761         if (skb->ip_summed != CHECKSUM_PARTIAL)
 762                 return 0;
 763 
 764         if (!skb_is_gso(skb))
 765                 return 0;
 766 
 767         /* compute header lengths */
 768         if (skb->encapsulation) {
 769                 if (!fm10k_tx_encap_offload(skb))
 770                         goto err_vxlan;
 771                 th = skb_inner_transport_header(skb);
 772         } else {
 773                 th = skb_transport_header(skb);
 774         }
 775 
 776         /* compute offset from SOF to transport header and add header len */
 777         hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
 778 
 779         first->tx_flags |= FM10K_TX_FLAGS_CSUM;
 780 
 781         /* update gso size and bytecount with header size */
 782         first->gso_segs = skb_shinfo(skb)->gso_segs;
 783         first->bytecount += (first->gso_segs - 1) * hdrlen;
 784 
 785         /* populate Tx descriptor header size and mss */
 786         tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
 787         tx_desc->hdrlen = hdrlen;
 788         tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
 789 
 790         return 1;
 791 
 792 err_vxlan:
 793         tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
 794         if (net_ratelimit())
 795                 netdev_err(tx_ring->netdev,
 796                            "TSO requested for unsupported tunnel, disabling offload\n");
 797         return -1;
 798 }
 799 
 800 static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
 801                           struct fm10k_tx_buffer *first)
 802 {
 803         struct sk_buff *skb = first->skb;
 804         struct fm10k_tx_desc *tx_desc;
 805         union {
 806                 struct iphdr *ipv4;
 807                 struct ipv6hdr *ipv6;
 808                 u8 *raw;
 809         } network_hdr;
 810         u8 *transport_hdr;
 811         __be16 frag_off;
 812         __be16 protocol;
 813         u8 l4_hdr = 0;
 814 
 815         if (skb->ip_summed != CHECKSUM_PARTIAL)
 816                 goto no_csum;
 817 
 818         if (skb->encapsulation) {
 819                 protocol = fm10k_tx_encap_offload(skb);
 820                 if (!protocol) {
 821                         if (skb_checksum_help(skb)) {
 822                                 dev_warn(tx_ring->dev,
 823                                          "failed to offload encap csum!\n");
 824                                 tx_ring->tx_stats.csum_err++;
 825                         }
 826                         goto no_csum;
 827                 }
 828                 network_hdr.raw = skb_inner_network_header(skb);
 829                 transport_hdr = skb_inner_transport_header(skb);
 830         } else {
 831                 protocol = vlan_get_protocol(skb);
 832                 network_hdr.raw = skb_network_header(skb);
 833                 transport_hdr = skb_transport_header(skb);
 834         }
 835 
 836         switch (protocol) {
 837         case htons(ETH_P_IP):
 838                 l4_hdr = network_hdr.ipv4->protocol;
 839                 break;
 840         case htons(ETH_P_IPV6):
 841                 l4_hdr = network_hdr.ipv6->nexthdr;
 842                 if (likely((transport_hdr - network_hdr.raw) ==
 843                            sizeof(struct ipv6hdr)))
 844                         break;
 845                 ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
 846                                       sizeof(struct ipv6hdr),
 847                                  &l4_hdr, &frag_off);
 848                 if (unlikely(frag_off))
 849                         l4_hdr = NEXTHDR_FRAGMENT;
 850                 break;
 851         default:
 852                 break;
 853         }
 854 
 855         switch (l4_hdr) {
 856         case IPPROTO_TCP:
 857         case IPPROTO_UDP:
 858                 break;
 859         case IPPROTO_GRE:
 860                 if (skb->encapsulation)
 861                         break;
 862                 /* fall through */
 863         default:
 864                 if (unlikely(net_ratelimit())) {
 865                         dev_warn(tx_ring->dev,
 866                                  "partial checksum, version=%d l4 proto=%x\n",
 867                                  protocol, l4_hdr);
 868                 }
 869                 skb_checksum_help(skb);
 870                 tx_ring->tx_stats.csum_err++;
 871                 goto no_csum;
 872         }
 873 
 874         /* update TX checksum flag */
 875         first->tx_flags |= FM10K_TX_FLAGS_CSUM;
 876         tx_ring->tx_stats.csum_good++;
 877 
 878 no_csum:
 879         /* populate Tx descriptor header size and mss */
 880         tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
 881         tx_desc->hdrlen = 0;
 882         tx_desc->mss = 0;
 883 }
 884 
 885 #define FM10K_SET_FLAG(_input, _flag, _result) \
 886         ((_flag <= _result) ? \
 887          ((u32)(_input & _flag) * (_result / _flag)) : \
 888          ((u32)(_input & _flag) / (_flag / _result)))
 889 
 890 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
 891 {
 892         /* set type for advanced descriptor with frame checksum insertion */
 893         u32 desc_flags = 0;
 894 
 895         /* set checksum offload bits */
 896         desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
 897                                      FM10K_TXD_FLAG_CSUM);
 898 
 899         return desc_flags;
 900 }
 901 
 902 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
 903                                struct fm10k_tx_desc *tx_desc, u16 i,
 904                                dma_addr_t dma, unsigned int size, u8 desc_flags)
 905 {
 906         /* set RS and INT for last frame in a cache line */
 907         if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
 908                 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
 909 
 910         /* record values to descriptor */
 911         tx_desc->buffer_addr = cpu_to_le64(dma);
 912         tx_desc->flags = desc_flags;
 913         tx_desc->buflen = cpu_to_le16(size);
 914 
 915         /* return true if we just wrapped the ring */
 916         return i == tx_ring->count;
 917 }
 918 
 919 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
 920 {
 921         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
 922 
 923         /* Memory barrier before checking head and tail */
 924         smp_mb();
 925 
 926         /* Check again in a case another CPU has just made room available */
 927         if (likely(fm10k_desc_unused(tx_ring) < size))
 928                 return -EBUSY;
 929 
 930         /* A reprieve! - use start_queue because it doesn't call schedule */
 931         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
 932         ++tx_ring->tx_stats.restart_queue;
 933         return 0;
 934 }
 935 
 936 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
 937 {
 938         if (likely(fm10k_desc_unused(tx_ring) >= size))
 939                 return 0;
 940         return __fm10k_maybe_stop_tx(tx_ring, size);
 941 }
 942 
 943 static void fm10k_tx_map(struct fm10k_ring *tx_ring,
 944                          struct fm10k_tx_buffer *first)
 945 {
 946         struct sk_buff *skb = first->skb;
 947         struct fm10k_tx_buffer *tx_buffer;
 948         struct fm10k_tx_desc *tx_desc;
 949         skb_frag_t *frag;
 950         unsigned char *data;
 951         dma_addr_t dma;
 952         unsigned int data_len, size;
 953         u32 tx_flags = first->tx_flags;
 954         u16 i = tx_ring->next_to_use;
 955         u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
 956 
 957         tx_desc = FM10K_TX_DESC(tx_ring, i);
 958 
 959         /* add HW VLAN tag */
 960         if (skb_vlan_tag_present(skb))
 961                 tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
 962         else
 963                 tx_desc->vlan = 0;
 964 
 965         size = skb_headlen(skb);
 966         data = skb->data;
 967 
 968         dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
 969 
 970         data_len = skb->data_len;
 971         tx_buffer = first;
 972 
 973         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
 974                 if (dma_mapping_error(tx_ring->dev, dma))
 975                         goto dma_error;
 976 
 977                 /* record length, and DMA address */
 978                 dma_unmap_len_set(tx_buffer, len, size);
 979                 dma_unmap_addr_set(tx_buffer, dma, dma);
 980 
 981                 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
 982                         if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
 983                                                FM10K_MAX_DATA_PER_TXD, flags)) {
 984                                 tx_desc = FM10K_TX_DESC(tx_ring, 0);
 985                                 i = 0;
 986                         }
 987 
 988                         dma += FM10K_MAX_DATA_PER_TXD;
 989                         size -= FM10K_MAX_DATA_PER_TXD;
 990                 }
 991 
 992                 if (likely(!data_len))
 993                         break;
 994 
 995                 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
 996                                        dma, size, flags)) {
 997                         tx_desc = FM10K_TX_DESC(tx_ring, 0);
 998                         i = 0;
 999                 }
1000 
1001                 size = skb_frag_size(frag);
1002                 data_len -= size;
1003 
1004                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1005                                        DMA_TO_DEVICE);
1006 
1007                 tx_buffer = &tx_ring->tx_buffer[i];
1008         }
1009 
1010         /* write last descriptor with LAST bit set */
1011         flags |= FM10K_TXD_FLAG_LAST;
1012 
1013         if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1014                 i = 0;
1015 
1016         /* record bytecount for BQL */
1017         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1018 
1019         /* record SW timestamp if HW timestamp is not available */
1020         skb_tx_timestamp(first->skb);
1021 
1022         /* Force memory writes to complete before letting h/w know there
1023          * are new descriptors to fetch.  (Only applicable for weak-ordered
1024          * memory model archs, such as IA-64).
1025          *
1026          * We also need this memory barrier to make certain all of the
1027          * status bits have been updated before next_to_watch is written.
1028          */
1029         wmb();
1030 
1031         /* set next_to_watch value indicating a packet is present */
1032         first->next_to_watch = tx_desc;
1033 
1034         tx_ring->next_to_use = i;
1035 
1036         /* Make sure there is space in the ring for the next send. */
1037         fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1038 
1039         /* notify HW of packet */
1040         if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1041                 writel(i, tx_ring->tail);
1042         }
1043 
1044         return;
1045 dma_error:
1046         dev_err(tx_ring->dev, "TX DMA map failed\n");
1047 
1048         /* clear dma mappings for failed tx_buffer map */
1049         for (;;) {
1050                 tx_buffer = &tx_ring->tx_buffer[i];
1051                 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1052                 if (tx_buffer == first)
1053                         break;
1054                 if (i == 0)
1055                         i = tx_ring->count;
1056                 i--;
1057         }
1058 
1059         tx_ring->next_to_use = i;
1060 }
1061 
1062 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1063                                   struct fm10k_ring *tx_ring)
1064 {
1065         u16 count = TXD_USE_COUNT(skb_headlen(skb));
1066         struct fm10k_tx_buffer *first;
1067         unsigned short f;
1068         u32 tx_flags = 0;
1069         int tso;
1070 
1071         /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1072          *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1073          *       + 2 desc gap to keep tail from touching head
1074          * otherwise try next time
1075          */
1076         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1077                 skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
1078 
1079                 count += TXD_USE_COUNT(skb_frag_size(frag));
1080         }
1081 
1082         if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1083                 tx_ring->tx_stats.tx_busy++;
1084                 return NETDEV_TX_BUSY;
1085         }
1086 
1087         /* record the location of the first descriptor for this packet */
1088         first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1089         first->skb = skb;
1090         first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1091         first->gso_segs = 1;
1092 
1093         /* record initial flags and protocol */
1094         first->tx_flags = tx_flags;
1095 
1096         tso = fm10k_tso(tx_ring, first);
1097         if (tso < 0)
1098                 goto out_drop;
1099         else if (!tso)
1100                 fm10k_tx_csum(tx_ring, first);
1101 
1102         fm10k_tx_map(tx_ring, first);
1103 
1104         return NETDEV_TX_OK;
1105 
1106 out_drop:
1107         dev_kfree_skb_any(first->skb);
1108         first->skb = NULL;
1109 
1110         return NETDEV_TX_OK;
1111 }
1112 
1113 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1114 {
1115         return ring->stats.packets;
1116 }
1117 
1118 /**
1119  * fm10k_get_tx_pending - how many Tx descriptors not processed
1120  * @ring: the ring structure
1121  * @in_sw: is tx_pending being checked in SW or in HW?
1122  */
1123 u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw)
1124 {
1125         struct fm10k_intfc *interface = ring->q_vector->interface;
1126         struct fm10k_hw *hw = &interface->hw;
1127         u32 head, tail;
1128 
1129         if (likely(in_sw)) {
1130                 head = ring->next_to_clean;
1131                 tail = ring->next_to_use;
1132         } else {
1133                 head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx));
1134                 tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx));
1135         }
1136 
1137         return ((head <= tail) ? tail : tail + ring->count) - head;
1138 }
1139 
1140 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1141 {
1142         u32 tx_done = fm10k_get_tx_completed(tx_ring);
1143         u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1144         u32 tx_pending = fm10k_get_tx_pending(tx_ring, true);
1145 
1146         clear_check_for_tx_hang(tx_ring);
1147 
1148         /* Check for a hung queue, but be thorough. This verifies
1149          * that a transmit has been completed since the previous
1150          * check AND there is at least one packet pending. By
1151          * requiring this to fail twice we avoid races with
1152          * clearing the ARMED bit and conditions where we
1153          * run the check_tx_hang logic with a transmit completion
1154          * pending but without time to complete it yet.
1155          */
1156         if (!tx_pending || (tx_done_old != tx_done)) {
1157                 /* update completed stats and continue */
1158                 tx_ring->tx_stats.tx_done_old = tx_done;
1159                 /* reset the countdown */
1160                 clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1161 
1162                 return false;
1163         }
1164 
1165         /* make sure it is true for two checks in a row */
1166         return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1167 }
1168 
1169 /**
1170  * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1171  * @interface: driver private struct
1172  **/
1173 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1174 {
1175         /* Do the reset outside of interrupt context */
1176         if (!test_bit(__FM10K_DOWN, interface->state)) {
1177                 interface->tx_timeout_count++;
1178                 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1179                 fm10k_service_event_schedule(interface);
1180         }
1181 }
1182 
1183 /**
1184  * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1185  * @q_vector: structure containing interrupt and ring information
1186  * @tx_ring: tx ring to clean
1187  * @napi_budget: Used to determine if we are in netpoll
1188  **/
1189 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1190                                struct fm10k_ring *tx_ring, int napi_budget)
1191 {
1192         struct fm10k_intfc *interface = q_vector->interface;
1193         struct fm10k_tx_buffer *tx_buffer;
1194         struct fm10k_tx_desc *tx_desc;
1195         unsigned int total_bytes = 0, total_packets = 0;
1196         unsigned int budget = q_vector->tx.work_limit;
1197         unsigned int i = tx_ring->next_to_clean;
1198 
1199         if (test_bit(__FM10K_DOWN, interface->state))
1200                 return true;
1201 
1202         tx_buffer = &tx_ring->tx_buffer[i];
1203         tx_desc = FM10K_TX_DESC(tx_ring, i);
1204         i -= tx_ring->count;
1205 
1206         do {
1207                 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1208 
1209                 /* if next_to_watch is not set then there is no work pending */
1210                 if (!eop_desc)
1211                         break;
1212 
1213                 /* prevent any other reads prior to eop_desc */
1214                 smp_rmb();
1215 
1216                 /* if DD is not set pending work has not been completed */
1217                 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1218                         break;
1219 
1220                 /* clear next_to_watch to prevent false hangs */
1221                 tx_buffer->next_to_watch = NULL;
1222 
1223                 /* update the statistics for this packet */
1224                 total_bytes += tx_buffer->bytecount;
1225                 total_packets += tx_buffer->gso_segs;
1226 
1227                 /* free the skb */
1228                 napi_consume_skb(tx_buffer->skb, napi_budget);
1229 
1230                 /* unmap skb header data */
1231                 dma_unmap_single(tx_ring->dev,
1232                                  dma_unmap_addr(tx_buffer, dma),
1233                                  dma_unmap_len(tx_buffer, len),
1234                                  DMA_TO_DEVICE);
1235 
1236                 /* clear tx_buffer data */
1237                 tx_buffer->skb = NULL;
1238                 dma_unmap_len_set(tx_buffer, len, 0);
1239 
1240                 /* unmap remaining buffers */
1241                 while (tx_desc != eop_desc) {
1242                         tx_buffer++;
1243                         tx_desc++;
1244                         i++;
1245                         if (unlikely(!i)) {
1246                                 i -= tx_ring->count;
1247                                 tx_buffer = tx_ring->tx_buffer;
1248                                 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1249                         }
1250 
1251                         /* unmap any remaining paged data */
1252                         if (dma_unmap_len(tx_buffer, len)) {
1253                                 dma_unmap_page(tx_ring->dev,
1254                                                dma_unmap_addr(tx_buffer, dma),
1255                                                dma_unmap_len(tx_buffer, len),
1256                                                DMA_TO_DEVICE);
1257                                 dma_unmap_len_set(tx_buffer, len, 0);
1258                         }
1259                 }
1260 
1261                 /* move us one more past the eop_desc for start of next pkt */
1262                 tx_buffer++;
1263                 tx_desc++;
1264                 i++;
1265                 if (unlikely(!i)) {
1266                         i -= tx_ring->count;
1267                         tx_buffer = tx_ring->tx_buffer;
1268                         tx_desc = FM10K_TX_DESC(tx_ring, 0);
1269                 }
1270 
1271                 /* issue prefetch for next Tx descriptor */
1272                 prefetch(tx_desc);
1273 
1274                 /* update budget accounting */
1275                 budget--;
1276         } while (likely(budget));
1277 
1278         i += tx_ring->count;
1279         tx_ring->next_to_clean = i;
1280         u64_stats_update_begin(&tx_ring->syncp);
1281         tx_ring->stats.bytes += total_bytes;
1282         tx_ring->stats.packets += total_packets;
1283         u64_stats_update_end(&tx_ring->syncp);
1284         q_vector->tx.total_bytes += total_bytes;
1285         q_vector->tx.total_packets += total_packets;
1286 
1287         if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1288                 /* schedule immediate reset if we believe we hung */
1289                 struct fm10k_hw *hw = &interface->hw;
1290 
1291                 netif_err(interface, drv, tx_ring->netdev,
1292                           "Detected Tx Unit Hang\n"
1293                           "  Tx Queue             <%d>\n"
1294                           "  TDH, TDT             <%x>, <%x>\n"
1295                           "  next_to_use          <%x>\n"
1296                           "  next_to_clean        <%x>\n",
1297                           tx_ring->queue_index,
1298                           fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1299                           fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1300                           tx_ring->next_to_use, i);
1301 
1302                 netif_stop_subqueue(tx_ring->netdev,
1303                                     tx_ring->queue_index);
1304 
1305                 netif_info(interface, probe, tx_ring->netdev,
1306                            "tx hang %d detected on queue %d, resetting interface\n",
1307                            interface->tx_timeout_count + 1,
1308                            tx_ring->queue_index);
1309 
1310                 fm10k_tx_timeout_reset(interface);
1311 
1312                 /* the netdev is about to reset, no point in enabling stuff */
1313                 return true;
1314         }
1315 
1316         /* notify netdev of completed buffers */
1317         netdev_tx_completed_queue(txring_txq(tx_ring),
1318                                   total_packets, total_bytes);
1319 
1320 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1321         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1322                      (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1323                 /* Make sure that anybody stopping the queue after this
1324                  * sees the new next_to_clean.
1325                  */
1326                 smp_mb();
1327                 if (__netif_subqueue_stopped(tx_ring->netdev,
1328                                              tx_ring->queue_index) &&
1329                     !test_bit(__FM10K_DOWN, interface->state)) {
1330                         netif_wake_subqueue(tx_ring->netdev,
1331                                             tx_ring->queue_index);
1332                         ++tx_ring->tx_stats.restart_queue;
1333                 }
1334         }
1335 
1336         return !!budget;
1337 }
1338 
1339 /**
1340  * fm10k_update_itr - update the dynamic ITR value based on packet size
1341  *
1342  *      Stores a new ITR value based on strictly on packet size.  The
1343  *      divisors and thresholds used by this function were determined based
1344  *      on theoretical maximum wire speed and testing data, in order to
1345  *      minimize response time while increasing bulk throughput.
1346  *
1347  * @ring_container: Container for rings to have ITR updated
1348  **/
1349 static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1350 {
1351         unsigned int avg_wire_size, packets, itr_round;
1352 
1353         /* Only update ITR if we are using adaptive setting */
1354         if (!ITR_IS_ADAPTIVE(ring_container->itr))
1355                 goto clear_counts;
1356 
1357         packets = ring_container->total_packets;
1358         if (!packets)
1359                 goto clear_counts;
1360 
1361         avg_wire_size = ring_container->total_bytes / packets;
1362 
1363         /* The following is a crude approximation of:
1364          *  wmem_default / (size + overhead) = desired_pkts_per_int
1365          *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1366          *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1367          *
1368          * Assuming wmem_default is 212992 and overhead is 640 bytes per
1369          * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1370          * formula down to
1371          *
1372          *  (34 * (size + 24)) / (size + 640) = ITR
1373          *
1374          * We first do some math on the packet size and then finally bitshift
1375          * by 8 after rounding up. We also have to account for PCIe link speed
1376          * difference as ITR scales based on this.
1377          */
1378         if (avg_wire_size <= 360) {
1379                 /* Start at 250K ints/sec and gradually drop to 77K ints/sec */
1380                 avg_wire_size *= 8;
1381                 avg_wire_size += 376;
1382         } else if (avg_wire_size <= 1152) {
1383                 /* 77K ints/sec to 45K ints/sec */
1384                 avg_wire_size *= 3;
1385                 avg_wire_size += 2176;
1386         } else if (avg_wire_size <= 1920) {
1387                 /* 45K ints/sec to 38K ints/sec */
1388                 avg_wire_size += 4480;
1389         } else {
1390                 /* plateau at a limit of 38K ints/sec */
1391                 avg_wire_size = 6656;
1392         }
1393 
1394         /* Perform final bitshift for division after rounding up to ensure
1395          * that the calculation will never get below a 1. The bit shift
1396          * accounts for changes in the ITR due to PCIe link speed.
1397          */
1398         itr_round = READ_ONCE(ring_container->itr_scale) + 8;
1399         avg_wire_size += BIT(itr_round) - 1;
1400         avg_wire_size >>= itr_round;
1401 
1402         /* write back value and retain adaptive flag */
1403         ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1404 
1405 clear_counts:
1406         ring_container->total_bytes = 0;
1407         ring_container->total_packets = 0;
1408 }
1409 
1410 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1411 {
1412         /* Enable auto-mask and clear the current mask */
1413         u32 itr = FM10K_ITR_ENABLE;
1414 
1415         /* Update Tx ITR */
1416         fm10k_update_itr(&q_vector->tx);
1417 
1418         /* Update Rx ITR */
1419         fm10k_update_itr(&q_vector->rx);
1420 
1421         /* Store Tx itr in timer slot 0 */
1422         itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1423 
1424         /* Shift Rx itr to timer slot 1 */
1425         itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1426 
1427         /* Write the final value to the ITR register */
1428         writel(itr, q_vector->itr);
1429 }
1430 
1431 static int fm10k_poll(struct napi_struct *napi, int budget)
1432 {
1433         struct fm10k_q_vector *q_vector =
1434                                container_of(napi, struct fm10k_q_vector, napi);
1435         struct fm10k_ring *ring;
1436         int per_ring_budget, work_done = 0;
1437         bool clean_complete = true;
1438 
1439         fm10k_for_each_ring(ring, q_vector->tx) {
1440                 if (!fm10k_clean_tx_irq(q_vector, ring, budget))
1441                         clean_complete = false;
1442         }
1443 
1444         /* Handle case where we are called by netpoll with a budget of 0 */
1445         if (budget <= 0)
1446                 return budget;
1447 
1448         /* attempt to distribute budget to each queue fairly, but don't
1449          * allow the budget to go below 1 because we'll exit polling
1450          */
1451         if (q_vector->rx.count > 1)
1452                 per_ring_budget = max(budget / q_vector->rx.count, 1);
1453         else
1454                 per_ring_budget = budget;
1455 
1456         fm10k_for_each_ring(ring, q_vector->rx) {
1457                 int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1458 
1459                 work_done += work;
1460                 if (work >= per_ring_budget)
1461                         clean_complete = false;
1462         }
1463 
1464         /* If all work not completed, return budget and keep polling */
1465         if (!clean_complete)
1466                 return budget;
1467 
1468         /* Exit the polling mode, but don't re-enable interrupts if stack might
1469          * poll us due to busy-polling
1470          */
1471         if (likely(napi_complete_done(napi, work_done)))
1472                 fm10k_qv_enable(q_vector);
1473 
1474         return min(work_done, budget - 1);
1475 }
1476 
1477 /**
1478  * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1479  * @interface: board private structure to initialize
1480  *
1481  * When QoS (Quality of Service) is enabled, allocate queues for
1482  * each traffic class.  If multiqueue isn't available,then abort QoS
1483  * initialization.
1484  *
1485  * This function handles all combinations of Qos and RSS.
1486  *
1487  **/
1488 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1489 {
1490         struct net_device *dev = interface->netdev;
1491         struct fm10k_ring_feature *f;
1492         int rss_i, i;
1493         int pcs;
1494 
1495         /* Map queue offset and counts onto allocated tx queues */
1496         pcs = netdev_get_num_tc(dev);
1497 
1498         if (pcs <= 1)
1499                 return false;
1500 
1501         /* set QoS mask and indices */
1502         f = &interface->ring_feature[RING_F_QOS];
1503         f->indices = pcs;
1504         f->mask = BIT(fls(pcs - 1)) - 1;
1505 
1506         /* determine the upper limit for our current DCB mode */
1507         rss_i = interface->hw.mac.max_queues / pcs;
1508         rss_i = BIT(fls(rss_i) - 1);
1509 
1510         /* set RSS mask and indices */
1511         f = &interface->ring_feature[RING_F_RSS];
1512         rss_i = min_t(u16, rss_i, f->limit);
1513         f->indices = rss_i;
1514         f->mask = BIT(fls(rss_i - 1)) - 1;
1515 
1516         /* configure pause class to queue mapping */
1517         for (i = 0; i < pcs; i++)
1518                 netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1519 
1520         interface->num_rx_queues = rss_i * pcs;
1521         interface->num_tx_queues = rss_i * pcs;
1522 
1523         return true;
1524 }
1525 
1526 /**
1527  * fm10k_set_rss_queues: Allocate queues for RSS
1528  * @interface: board private structure to initialize
1529  *
1530  * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1531  * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1532  *
1533  **/
1534 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1535 {
1536         struct fm10k_ring_feature *f;
1537         u16 rss_i;
1538 
1539         f = &interface->ring_feature[RING_F_RSS];
1540         rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1541 
1542         /* record indices and power of 2 mask for RSS */
1543         f->indices = rss_i;
1544         f->mask = BIT(fls(rss_i - 1)) - 1;
1545 
1546         interface->num_rx_queues = rss_i;
1547         interface->num_tx_queues = rss_i;
1548 
1549         return true;
1550 }
1551 
1552 /**
1553  * fm10k_set_num_queues: Allocate queues for device, feature dependent
1554  * @interface: board private structure to initialize
1555  *
1556  * This is the top level queue allocation routine.  The order here is very
1557  * important, starting with the "most" number of features turned on at once,
1558  * and ending with the smallest set of features.  This way large combinations
1559  * can be allocated if they're turned on, and smaller combinations are the
1560  * fallthrough conditions.
1561  *
1562  **/
1563 static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1564 {
1565         /* Attempt to setup QoS and RSS first */
1566         if (fm10k_set_qos_queues(interface))
1567                 return;
1568 
1569         /* If we don't have QoS, just fallback to only RSS. */
1570         fm10k_set_rss_queues(interface);
1571 }
1572 
1573 /**
1574  * fm10k_reset_num_queues - Reset the number of queues to zero
1575  * @interface: board private structure
1576  *
1577  * This function should be called whenever we need to reset the number of
1578  * queues after an error condition.
1579  */
1580 static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
1581 {
1582         interface->num_tx_queues = 0;
1583         interface->num_rx_queues = 0;
1584         interface->num_q_vectors = 0;
1585 }
1586 
1587 /**
1588  * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1589  * @interface: board private structure to initialize
1590  * @v_count: q_vectors allocated on interface, used for ring interleaving
1591  * @v_idx: index of vector in interface struct
1592  * @txr_count: total number of Tx rings to allocate
1593  * @txr_idx: index of first Tx ring to allocate
1594  * @rxr_count: total number of Rx rings to allocate
1595  * @rxr_idx: index of first Rx ring to allocate
1596  *
1597  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1598  **/
1599 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1600                                 unsigned int v_count, unsigned int v_idx,
1601                                 unsigned int txr_count, unsigned int txr_idx,
1602                                 unsigned int rxr_count, unsigned int rxr_idx)
1603 {
1604         struct fm10k_q_vector *q_vector;
1605         struct fm10k_ring *ring;
1606         int ring_count;
1607 
1608         ring_count = txr_count + rxr_count;
1609 
1610         /* allocate q_vector and rings */
1611         q_vector = kzalloc(struct_size(q_vector, ring, ring_count), GFP_KERNEL);
1612         if (!q_vector)
1613                 return -ENOMEM;
1614 
1615         /* initialize NAPI */
1616         netif_napi_add(interface->netdev, &q_vector->napi,
1617                        fm10k_poll, NAPI_POLL_WEIGHT);
1618 
1619         /* tie q_vector and interface together */
1620         interface->q_vector[v_idx] = q_vector;
1621         q_vector->interface = interface;
1622         q_vector->v_idx = v_idx;
1623 
1624         /* initialize pointer to rings */
1625         ring = q_vector->ring;
1626 
1627         /* save Tx ring container info */
1628         q_vector->tx.ring = ring;
1629         q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1630         q_vector->tx.itr = interface->tx_itr;
1631         q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1632         q_vector->tx.count = txr_count;
1633 
1634         while (txr_count) {
1635                 /* assign generic ring traits */
1636                 ring->dev = &interface->pdev->dev;
1637                 ring->netdev = interface->netdev;
1638 
1639                 /* configure backlink on ring */
1640                 ring->q_vector = q_vector;
1641 
1642                 /* apply Tx specific ring traits */
1643                 ring->count = interface->tx_ring_count;
1644                 ring->queue_index = txr_idx;
1645 
1646                 /* assign ring to interface */
1647                 interface->tx_ring[txr_idx] = ring;
1648 
1649                 /* update count and index */
1650                 txr_count--;
1651                 txr_idx += v_count;
1652 
1653                 /* push pointer to next ring */
1654                 ring++;
1655         }
1656 
1657         /* save Rx ring container info */
1658         q_vector->rx.ring = ring;
1659         q_vector->rx.itr = interface->rx_itr;
1660         q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1661         q_vector->rx.count = rxr_count;
1662 
1663         while (rxr_count) {
1664                 /* assign generic ring traits */
1665                 ring->dev = &interface->pdev->dev;
1666                 ring->netdev = interface->netdev;
1667                 rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1668 
1669                 /* configure backlink on ring */
1670                 ring->q_vector = q_vector;
1671 
1672                 /* apply Rx specific ring traits */
1673                 ring->count = interface->rx_ring_count;
1674                 ring->queue_index = rxr_idx;
1675 
1676                 /* assign ring to interface */
1677                 interface->rx_ring[rxr_idx] = ring;
1678 
1679                 /* update count and index */
1680                 rxr_count--;
1681                 rxr_idx += v_count;
1682 
1683                 /* push pointer to next ring */
1684                 ring++;
1685         }
1686 
1687         fm10k_dbg_q_vector_init(q_vector);
1688 
1689         return 0;
1690 }
1691 
1692 /**
1693  * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1694  * @interface: board private structure to initialize
1695  * @v_idx: Index of vector to be freed
1696  *
1697  * This function frees the memory allocated to the q_vector.  In addition if
1698  * NAPI is enabled it will delete any references to the NAPI struct prior
1699  * to freeing the q_vector.
1700  **/
1701 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1702 {
1703         struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1704         struct fm10k_ring *ring;
1705 
1706         fm10k_dbg_q_vector_exit(q_vector);
1707 
1708         fm10k_for_each_ring(ring, q_vector->tx)
1709                 interface->tx_ring[ring->queue_index] = NULL;
1710 
1711         fm10k_for_each_ring(ring, q_vector->rx)
1712                 interface->rx_ring[ring->queue_index] = NULL;
1713 
1714         interface->q_vector[v_idx] = NULL;
1715         netif_napi_del(&q_vector->napi);
1716         kfree_rcu(q_vector, rcu);
1717 }
1718 
1719 /**
1720  * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1721  * @interface: board private structure to initialize
1722  *
1723  * We allocate one q_vector per queue interrupt.  If allocation fails we
1724  * return -ENOMEM.
1725  **/
1726 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1727 {
1728         unsigned int q_vectors = interface->num_q_vectors;
1729         unsigned int rxr_remaining = interface->num_rx_queues;
1730         unsigned int txr_remaining = interface->num_tx_queues;
1731         unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1732         int err;
1733 
1734         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1735                 for (; rxr_remaining; v_idx++) {
1736                         err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1737                                                    0, 0, 1, rxr_idx);
1738                         if (err)
1739                                 goto err_out;
1740 
1741                         /* update counts and index */
1742                         rxr_remaining--;
1743                         rxr_idx++;
1744                 }
1745         }
1746 
1747         for (; v_idx < q_vectors; v_idx++) {
1748                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1749                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1750 
1751                 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1752                                            tqpv, txr_idx,
1753                                            rqpv, rxr_idx);
1754 
1755                 if (err)
1756                         goto err_out;
1757 
1758                 /* update counts and index */
1759                 rxr_remaining -= rqpv;
1760                 txr_remaining -= tqpv;
1761                 rxr_idx++;
1762                 txr_idx++;
1763         }
1764 
1765         return 0;
1766 
1767 err_out:
1768         fm10k_reset_num_queues(interface);
1769 
1770         while (v_idx--)
1771                 fm10k_free_q_vector(interface, v_idx);
1772 
1773         return -ENOMEM;
1774 }
1775 
1776 /**
1777  * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1778  * @interface: board private structure to initialize
1779  *
1780  * This function frees the memory allocated to the q_vectors.  In addition if
1781  * NAPI is enabled it will delete any references to the NAPI struct prior
1782  * to freeing the q_vector.
1783  **/
1784 static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1785 {
1786         int v_idx = interface->num_q_vectors;
1787 
1788         fm10k_reset_num_queues(interface);
1789 
1790         while (v_idx--)
1791                 fm10k_free_q_vector(interface, v_idx);
1792 }
1793 
1794 /**
1795  * f10k_reset_msix_capability - reset MSI-X capability
1796  * @interface: board private structure to initialize
1797  *
1798  * Reset the MSI-X capability back to its starting state
1799  **/
1800 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1801 {
1802         pci_disable_msix(interface->pdev);
1803         kfree(interface->msix_entries);
1804         interface->msix_entries = NULL;
1805 }
1806 
1807 /**
1808  * f10k_init_msix_capability - configure MSI-X capability
1809  * @interface: board private structure to initialize
1810  *
1811  * Attempt to configure the interrupts using the best available
1812  * capabilities of the hardware and the kernel.
1813  **/
1814 static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1815 {
1816         struct fm10k_hw *hw = &interface->hw;
1817         int v_budget, vector;
1818 
1819         /* It's easy to be greedy for MSI-X vectors, but it really
1820          * doesn't do us much good if we have a lot more vectors
1821          * than CPU's.  So let's be conservative and only ask for
1822          * (roughly) the same number of vectors as there are CPU's.
1823          * the default is to use pairs of vectors
1824          */
1825         v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1826         v_budget = min_t(u16, v_budget, num_online_cpus());
1827 
1828         /* account for vectors not related to queues */
1829         v_budget += NON_Q_VECTORS;
1830 
1831         /* At the same time, hardware can only support a maximum of
1832          * hw.mac->max_msix_vectors vectors.  With features
1833          * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1834          * descriptor queues supported by our device.  Thus, we cap it off in
1835          * those rare cases where the cpu count also exceeds our vector limit.
1836          */
1837         v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1838 
1839         /* A failure in MSI-X entry allocation is fatal. */
1840         interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1841                                           GFP_KERNEL);
1842         if (!interface->msix_entries)
1843                 return -ENOMEM;
1844 
1845         /* populate entry values */
1846         for (vector = 0; vector < v_budget; vector++)
1847                 interface->msix_entries[vector].entry = vector;
1848 
1849         /* Attempt to enable MSI-X with requested value */
1850         v_budget = pci_enable_msix_range(interface->pdev,
1851                                          interface->msix_entries,
1852                                          MIN_MSIX_COUNT(hw),
1853                                          v_budget);
1854         if (v_budget < 0) {
1855                 kfree(interface->msix_entries);
1856                 interface->msix_entries = NULL;
1857                 return v_budget;
1858         }
1859 
1860         /* record the number of queues available for q_vectors */
1861         interface->num_q_vectors = v_budget - NON_Q_VECTORS;
1862 
1863         return 0;
1864 }
1865 
1866 /**
1867  * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1868  * @interface: Interface structure continaining rings and devices
1869  *
1870  * Cache the descriptor ring offsets for Qos
1871  **/
1872 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1873 {
1874         struct net_device *dev = interface->netdev;
1875         int pc, offset, rss_i, i;
1876         u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1877         u8 num_pcs = netdev_get_num_tc(dev);
1878 
1879         if (num_pcs <= 1)
1880                 return false;
1881 
1882         rss_i = interface->ring_feature[RING_F_RSS].indices;
1883 
1884         for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1885                 int q_idx = pc;
1886 
1887                 for (i = 0; i < rss_i; i++) {
1888                         interface->tx_ring[offset + i]->reg_idx = q_idx;
1889                         interface->tx_ring[offset + i]->qos_pc = pc;
1890                         interface->rx_ring[offset + i]->reg_idx = q_idx;
1891                         interface->rx_ring[offset + i]->qos_pc = pc;
1892                         q_idx += pc_stride;
1893                 }
1894         }
1895 
1896         return true;
1897 }
1898 
1899 /**
1900  * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1901  * @interface: Interface structure continaining rings and devices
1902  *
1903  * Cache the descriptor ring offsets for RSS
1904  **/
1905 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1906 {
1907         int i;
1908 
1909         for (i = 0; i < interface->num_rx_queues; i++)
1910                 interface->rx_ring[i]->reg_idx = i;
1911 
1912         for (i = 0; i < interface->num_tx_queues; i++)
1913                 interface->tx_ring[i]->reg_idx = i;
1914 }
1915 
1916 /**
1917  * fm10k_assign_rings - Map rings to network devices
1918  * @interface: Interface structure containing rings and devices
1919  *
1920  * This function is meant to go though and configure both the network
1921  * devices so that they contain rings, and configure the rings so that
1922  * they function with their network devices.
1923  **/
1924 static void fm10k_assign_rings(struct fm10k_intfc *interface)
1925 {
1926         if (fm10k_cache_ring_qos(interface))
1927                 return;
1928 
1929         fm10k_cache_ring_rss(interface);
1930 }
1931 
1932 static void fm10k_init_reta(struct fm10k_intfc *interface)
1933 {
1934         u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1935         u32 reta;
1936 
1937         /* If the Rx flow indirection table has been configured manually, we
1938          * need to maintain it when possible.
1939          */
1940         if (netif_is_rxfh_configured(interface->netdev)) {
1941                 for (i = FM10K_RETA_SIZE; i--;) {
1942                         reta = interface->reta[i];
1943                         if ((((reta << 24) >> 24) < rss_i) &&
1944                             (((reta << 16) >> 24) < rss_i) &&
1945                             (((reta <<  8) >> 24) < rss_i) &&
1946                             (((reta)       >> 24) < rss_i))
1947                                 continue;
1948 
1949                         /* this should never happen */
1950                         dev_err(&interface->pdev->dev,
1951                                 "RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1952                         goto repopulate_reta;
1953                 }
1954 
1955                 /* do nothing if all of the elements are in bounds */
1956                 return;
1957         }
1958 
1959 repopulate_reta:
1960         fm10k_write_reta(interface, NULL);
1961 }
1962 
1963 /**
1964  * fm10k_init_queueing_scheme - Determine proper queueing scheme
1965  * @interface: board private structure to initialize
1966  *
1967  * We determine which queueing scheme to use based on...
1968  * - Hardware queue count (num_*_queues)
1969  *   - defined by miscellaneous hardware support/features (RSS, etc.)
1970  **/
1971 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1972 {
1973         int err;
1974 
1975         /* Number of supported queues */
1976         fm10k_set_num_queues(interface);
1977 
1978         /* Configure MSI-X capability */
1979         err = fm10k_init_msix_capability(interface);
1980         if (err) {
1981                 dev_err(&interface->pdev->dev,
1982                         "Unable to initialize MSI-X capability\n");
1983                 goto err_init_msix;
1984         }
1985 
1986         /* Allocate memory for queues */
1987         err = fm10k_alloc_q_vectors(interface);
1988         if (err) {
1989                 dev_err(&interface->pdev->dev,
1990                         "Unable to allocate queue vectors\n");
1991                 goto err_alloc_q_vectors;
1992         }
1993 
1994         /* Map rings to devices, and map devices to physical queues */
1995         fm10k_assign_rings(interface);
1996 
1997         /* Initialize RSS redirection table */
1998         fm10k_init_reta(interface);
1999 
2000         return 0;
2001 
2002 err_alloc_q_vectors:
2003         fm10k_reset_msix_capability(interface);
2004 err_init_msix:
2005         fm10k_reset_num_queues(interface);
2006         return err;
2007 }
2008 
2009 /**
2010  * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
2011  * @interface: board private structure to clear queueing scheme on
2012  *
2013  * We go through and clear queueing specific resources and reset the structure
2014  * to pre-load conditions
2015  **/
2016 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
2017 {
2018         fm10k_free_q_vectors(interface);
2019         fm10k_reset_msix_capability(interface);
2020 }

/* [<][>][^][v][top][bottom][index][help] */