root/drivers/net/ethernet/intel/e100.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. e100_write_flush
  2. e100_enable_irq
  3. e100_disable_irq
  4. e100_hw_reset
  5. e100_self_test
  6. e100_eeprom_write
  7. e100_eeprom_read
  8. e100_eeprom_load
  9. e100_eeprom_save
  10. e100_exec_cmd
  11. e100_exec_cb
  12. mdio_read
  13. mdio_write
  14. mdio_ctrl_hw
  15. mdio_ctrl_phy_82552_v
  16. mdio_ctrl_phy_mii_emulated
  17. e100_phy_supports_mii
  18. e100_get_defaults
  19. e100_configure
  20. e100_request_firmware
  21. e100_setup_ucode
  22. e100_load_ucode_wait
  23. e100_setup_iaaddr
  24. e100_dump
  25. e100_phy_check_without_mii
  26. e100_phy_init
  27. e100_hw_init
  28. e100_multi
  29. e100_set_multicast_list
  30. e100_update_stats
  31. e100_adjust_adaptive_ifs
  32. e100_watchdog
  33. e100_xmit_prepare
  34. e100_xmit_frame
  35. e100_tx_clean
  36. e100_clean_cbs
  37. e100_alloc_cbs
  38. e100_start_receiver
  39. e100_rx_alloc_skb
  40. e100_rx_indicate
  41. e100_rx_clean
  42. e100_rx_clean_list
  43. e100_rx_alloc_list
  44. e100_intr
  45. e100_poll
  46. e100_netpoll
  47. e100_set_mac_address
  48. e100_asf
  49. e100_up
  50. e100_down
  51. e100_tx_timeout
  52. e100_tx_timeout_task
  53. e100_loopback_test
  54. e100_get_link_ksettings
  55. e100_set_link_ksettings
  56. e100_get_drvinfo
  57. e100_get_regs_len
  58. e100_get_regs
  59. e100_get_wol
  60. e100_set_wol
  61. e100_get_msglevel
  62. e100_set_msglevel
  63. e100_nway_reset
  64. e100_get_link
  65. e100_get_eeprom_len
  66. e100_get_eeprom
  67. e100_set_eeprom
  68. e100_get_ringparam
  69. e100_set_ringparam
  70. e100_diag_test
  71. e100_set_phys_id
  72. e100_get_sset_count
  73. e100_get_ethtool_stats
  74. e100_get_strings
  75. e100_do_ioctl
  76. e100_alloc
  77. e100_free
  78. e100_open
  79. e100_close
  80. e100_set_features
  81. e100_probe
  82. e100_remove
  83. __e100_shutdown
  84. __e100_power_off
  85. e100_suspend
  86. e100_resume
  87. e100_shutdown
  88. e100_io_error_detected
  89. e100_io_slot_reset
  90. e100_io_resume
  91. e100_init_module
  92. e100_cleanup_module

   1 // SPDX-License-Identifier: GPL-2.0
   2 /* Copyright(c) 1999 - 2006 Intel Corporation. */
   3 
   4 /*
   5  *      e100.c: Intel(R) PRO/100 ethernet driver
   6  *
   7  *      (Re)written 2003 by scott.feldman@intel.com.  Based loosely on
   8  *      original e100 driver, but better described as a munging of
   9  *      e100, e1000, eepro100, tg3, 8139cp, and other drivers.
  10  *
  11  *      References:
  12  *              Intel 8255x 10/100 Mbps Ethernet Controller Family,
  13  *              Open Source Software Developers Manual,
  14  *              http://sourceforge.net/projects/e1000
  15  *
  16  *
  17  *                            Theory of Operation
  18  *
  19  *      I.   General
  20  *
  21  *      The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
  22  *      controller family, which includes the 82557, 82558, 82559, 82550,
  23  *      82551, and 82562 devices.  82558 and greater controllers
  24  *      integrate the Intel 82555 PHY.  The controllers are used in
  25  *      server and client network interface cards, as well as in
  26  *      LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
  27  *      configurations.  8255x supports a 32-bit linear addressing
  28  *      mode and operates at 33Mhz PCI clock rate.
  29  *
  30  *      II.  Driver Operation
  31  *
  32  *      Memory-mapped mode is used exclusively to access the device's
  33  *      shared-memory structure, the Control/Status Registers (CSR). All
  34  *      setup, configuration, and control of the device, including queuing
  35  *      of Tx, Rx, and configuration commands is through the CSR.
  36  *      cmd_lock serializes accesses to the CSR command register.  cb_lock
  37  *      protects the shared Command Block List (CBL).
  38  *
  39  *      8255x is highly MII-compliant and all access to the PHY go
  40  *      through the Management Data Interface (MDI).  Consequently, the
  41  *      driver leverages the mii.c library shared with other MII-compliant
  42  *      devices.
  43  *
  44  *      Big- and Little-Endian byte order as well as 32- and 64-bit
  45  *      archs are supported.  Weak-ordered memory and non-cache-coherent
  46  *      archs are supported.
  47  *
  48  *      III. Transmit
  49  *
  50  *      A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
  51  *      together in a fixed-size ring (CBL) thus forming the flexible mode
  52  *      memory structure.  A TCB marked with the suspend-bit indicates
  53  *      the end of the ring.  The last TCB processed suspends the
  54  *      controller, and the controller can be restarted by issue a CU
  55  *      resume command to continue from the suspend point, or a CU start
  56  *      command to start at a given position in the ring.
  57  *
  58  *      Non-Tx commands (config, multicast setup, etc) are linked
  59  *      into the CBL ring along with Tx commands.  The common structure
  60  *      used for both Tx and non-Tx commands is the Command Block (CB).
  61  *
  62  *      cb_to_use is the next CB to use for queuing a command; cb_to_clean
  63  *      is the next CB to check for completion; cb_to_send is the first
  64  *      CB to start on in case of a previous failure to resume.  CB clean
  65  *      up happens in interrupt context in response to a CU interrupt.
  66  *      cbs_avail keeps track of number of free CB resources available.
  67  *
  68  *      Hardware padding of short packets to minimum packet size is
  69  *      enabled.  82557 pads with 7Eh, while the later controllers pad
  70  *      with 00h.
  71  *
  72  *      IV.  Receive
  73  *
  74  *      The Receive Frame Area (RFA) comprises a ring of Receive Frame
  75  *      Descriptors (RFD) + data buffer, thus forming the simplified mode
  76  *      memory structure.  Rx skbs are allocated to contain both the RFD
  77  *      and the data buffer, but the RFD is pulled off before the skb is
  78  *      indicated.  The data buffer is aligned such that encapsulated
  79  *      protocol headers are u32-aligned.  Since the RFD is part of the
  80  *      mapped shared memory, and completion status is contained within
  81  *      the RFD, the RFD must be dma_sync'ed to maintain a consistent
  82  *      view from software and hardware.
  83  *
  84  *      In order to keep updates to the RFD link field from colliding with
  85  *      hardware writes to mark packets complete, we use the feature that
  86  *      hardware will not write to a size 0 descriptor and mark the previous
  87  *      packet as end-of-list (EL).   After updating the link, we remove EL
  88  *      and only then restore the size such that hardware may use the
  89  *      previous-to-end RFD.
  90  *
  91  *      Under typical operation, the  receive unit (RU) is start once,
  92  *      and the controller happily fills RFDs as frames arrive.  If
  93  *      replacement RFDs cannot be allocated, or the RU goes non-active,
  94  *      the RU must be restarted.  Frame arrival generates an interrupt,
  95  *      and Rx indication and re-allocation happen in the same context,
  96  *      therefore no locking is required.  A software-generated interrupt
  97  *      is generated from the watchdog to recover from a failed allocation
  98  *      scenario where all Rx resources have been indicated and none re-
  99  *      placed.
 100  *
 101  *      V.   Miscellaneous
 102  *
 103  *      VLAN offloading of tagging, stripping and filtering is not
 104  *      supported, but driver will accommodate the extra 4-byte VLAN tag
 105  *      for processing by upper layers.  Tx/Rx Checksum offloading is not
 106  *      supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
 107  *      not supported (hardware limitation).
 108  *
 109  *      MagicPacket(tm) WoL support is enabled/disabled via ethtool.
 110  *
 111  *      Thanks to JC (jchapman@katalix.com) for helping with
 112  *      testing/troubleshooting the development driver.
 113  *
 114  *      TODO:
 115  *      o several entry points race with dev->close
 116  *      o check for tx-no-resources/stop Q races with tx clean/wake Q
 117  *
 118  *      FIXES:
 119  * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
 120  *      - Stratus87247: protect MDI control register manipulations
 121  * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
 122  *      - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
 123  */
 124 
 125 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 126 
 127 #include <linux/hardirq.h>
 128 #include <linux/interrupt.h>
 129 #include <linux/module.h>
 130 #include <linux/moduleparam.h>
 131 #include <linux/kernel.h>
 132 #include <linux/types.h>
 133 #include <linux/sched.h>
 134 #include <linux/slab.h>
 135 #include <linux/delay.h>
 136 #include <linux/init.h>
 137 #include <linux/pci.h>
 138 #include <linux/dma-mapping.h>
 139 #include <linux/dmapool.h>
 140 #include <linux/netdevice.h>
 141 #include <linux/etherdevice.h>
 142 #include <linux/mii.h>
 143 #include <linux/if_vlan.h>
 144 #include <linux/skbuff.h>
 145 #include <linux/ethtool.h>
 146 #include <linux/string.h>
 147 #include <linux/firmware.h>
 148 #include <linux/rtnetlink.h>
 149 #include <asm/unaligned.h>
 150 
 151 
 152 #define DRV_NAME                "e100"
 153 #define DRV_EXT                 "-NAPI"
 154 #define DRV_VERSION             "3.5.24-k2"DRV_EXT
 155 #define DRV_DESCRIPTION         "Intel(R) PRO/100 Network Driver"
 156 #define DRV_COPYRIGHT           "Copyright(c) 1999-2006 Intel Corporation"
 157 
 158 #define E100_WATCHDOG_PERIOD    (2 * HZ)
 159 #define E100_NAPI_WEIGHT        16
 160 
 161 #define FIRMWARE_D101M          "e100/d101m_ucode.bin"
 162 #define FIRMWARE_D101S          "e100/d101s_ucode.bin"
 163 #define FIRMWARE_D102E          "e100/d102e_ucode.bin"
 164 
 165 MODULE_DESCRIPTION(DRV_DESCRIPTION);
 166 MODULE_AUTHOR(DRV_COPYRIGHT);
 167 MODULE_LICENSE("GPL v2");
 168 MODULE_VERSION(DRV_VERSION);
 169 MODULE_FIRMWARE(FIRMWARE_D101M);
 170 MODULE_FIRMWARE(FIRMWARE_D101S);
 171 MODULE_FIRMWARE(FIRMWARE_D102E);
 172 
 173 static int debug = 3;
 174 static int eeprom_bad_csum_allow = 0;
 175 static int use_io = 0;
 176 module_param(debug, int, 0);
 177 module_param(eeprom_bad_csum_allow, int, 0);
 178 module_param(use_io, int, 0);
 179 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 180 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
 181 MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
 182 
 183 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
 184         PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
 185         PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
 186 static const struct pci_device_id e100_id_table[] = {
 187         INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
 188         INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
 189         INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
 190         INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
 191         INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
 192         INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
 193         INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
 194         INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
 195         INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
 196         INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
 197         INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
 198         INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
 199         INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
 200         INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
 201         INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
 202         INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
 203         INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
 204         INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
 205         INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
 206         INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
 207         INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
 208         INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
 209         INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
 210         INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
 211         INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
 212         INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
 213         INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
 214         INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
 215         INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
 216         INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
 217         INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
 218         INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
 219         INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
 220         INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
 221         INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
 222         INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
 223         INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
 224         INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
 225         INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
 226         INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
 227         INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
 228         INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
 229         { 0, }
 230 };
 231 MODULE_DEVICE_TABLE(pci, e100_id_table);
 232 
 233 enum mac {
 234         mac_82557_D100_A  = 0,
 235         mac_82557_D100_B  = 1,
 236         mac_82557_D100_C  = 2,
 237         mac_82558_D101_A4 = 4,
 238         mac_82558_D101_B0 = 5,
 239         mac_82559_D101M   = 8,
 240         mac_82559_D101S   = 9,
 241         mac_82550_D102    = 12,
 242         mac_82550_D102_C  = 13,
 243         mac_82551_E       = 14,
 244         mac_82551_F       = 15,
 245         mac_82551_10      = 16,
 246         mac_unknown       = 0xFF,
 247 };
 248 
 249 enum phy {
 250         phy_100a     = 0x000003E0,
 251         phy_100c     = 0x035002A8,
 252         phy_82555_tx = 0x015002A8,
 253         phy_nsc_tx   = 0x5C002000,
 254         phy_82562_et = 0x033002A8,
 255         phy_82562_em = 0x032002A8,
 256         phy_82562_ek = 0x031002A8,
 257         phy_82562_eh = 0x017002A8,
 258         phy_82552_v  = 0xd061004d,
 259         phy_unknown  = 0xFFFFFFFF,
 260 };
 261 
 262 /* CSR (Control/Status Registers) */
 263 struct csr {
 264         struct {
 265                 u8 status;
 266                 u8 stat_ack;
 267                 u8 cmd_lo;
 268                 u8 cmd_hi;
 269                 u32 gen_ptr;
 270         } scb;
 271         u32 port;
 272         u16 flash_ctrl;
 273         u8 eeprom_ctrl_lo;
 274         u8 eeprom_ctrl_hi;
 275         u32 mdi_ctrl;
 276         u32 rx_dma_count;
 277 };
 278 
 279 enum scb_status {
 280         rus_no_res       = 0x08,
 281         rus_ready        = 0x10,
 282         rus_mask         = 0x3C,
 283 };
 284 
 285 enum ru_state  {
 286         RU_SUSPENDED = 0,
 287         RU_RUNNING       = 1,
 288         RU_UNINITIALIZED = -1,
 289 };
 290 
 291 enum scb_stat_ack {
 292         stat_ack_not_ours    = 0x00,
 293         stat_ack_sw_gen      = 0x04,
 294         stat_ack_rnr         = 0x10,
 295         stat_ack_cu_idle     = 0x20,
 296         stat_ack_frame_rx    = 0x40,
 297         stat_ack_cu_cmd_done = 0x80,
 298         stat_ack_not_present = 0xFF,
 299         stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
 300         stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
 301 };
 302 
 303 enum scb_cmd_hi {
 304         irq_mask_none = 0x00,
 305         irq_mask_all  = 0x01,
 306         irq_sw_gen    = 0x02,
 307 };
 308 
 309 enum scb_cmd_lo {
 310         cuc_nop        = 0x00,
 311         ruc_start      = 0x01,
 312         ruc_load_base  = 0x06,
 313         cuc_start      = 0x10,
 314         cuc_resume     = 0x20,
 315         cuc_dump_addr  = 0x40,
 316         cuc_dump_stats = 0x50,
 317         cuc_load_base  = 0x60,
 318         cuc_dump_reset = 0x70,
 319 };
 320 
 321 enum cuc_dump {
 322         cuc_dump_complete       = 0x0000A005,
 323         cuc_dump_reset_complete = 0x0000A007,
 324 };
 325 
 326 enum port {
 327         software_reset  = 0x0000,
 328         selftest        = 0x0001,
 329         selective_reset = 0x0002,
 330 };
 331 
 332 enum eeprom_ctrl_lo {
 333         eesk = 0x01,
 334         eecs = 0x02,
 335         eedi = 0x04,
 336         eedo = 0x08,
 337 };
 338 
 339 enum mdi_ctrl {
 340         mdi_write = 0x04000000,
 341         mdi_read  = 0x08000000,
 342         mdi_ready = 0x10000000,
 343 };
 344 
 345 enum eeprom_op {
 346         op_write = 0x05,
 347         op_read  = 0x06,
 348         op_ewds  = 0x10,
 349         op_ewen  = 0x13,
 350 };
 351 
 352 enum eeprom_offsets {
 353         eeprom_cnfg_mdix  = 0x03,
 354         eeprom_phy_iface  = 0x06,
 355         eeprom_id         = 0x0A,
 356         eeprom_config_asf = 0x0D,
 357         eeprom_smbus_addr = 0x90,
 358 };
 359 
 360 enum eeprom_cnfg_mdix {
 361         eeprom_mdix_enabled = 0x0080,
 362 };
 363 
 364 enum eeprom_phy_iface {
 365         NoSuchPhy = 0,
 366         I82553AB,
 367         I82553C,
 368         I82503,
 369         DP83840,
 370         S80C240,
 371         S80C24,
 372         I82555,
 373         DP83840A = 10,
 374 };
 375 
 376 enum eeprom_id {
 377         eeprom_id_wol = 0x0020,
 378 };
 379 
 380 enum eeprom_config_asf {
 381         eeprom_asf = 0x8000,
 382         eeprom_gcl = 0x4000,
 383 };
 384 
 385 enum cb_status {
 386         cb_complete = 0x8000,
 387         cb_ok       = 0x2000,
 388 };
 389 
 390 /**
 391  * cb_command - Command Block flags
 392  * @cb_tx_nc:  0: controller does CRC (normal),  1: CRC from skb memory
 393  */
 394 enum cb_command {
 395         cb_nop    = 0x0000,
 396         cb_iaaddr = 0x0001,
 397         cb_config = 0x0002,
 398         cb_multi  = 0x0003,
 399         cb_tx     = 0x0004,
 400         cb_ucode  = 0x0005,
 401         cb_dump   = 0x0006,
 402         cb_tx_sf  = 0x0008,
 403         cb_tx_nc  = 0x0010,
 404         cb_cid    = 0x1f00,
 405         cb_i      = 0x2000,
 406         cb_s      = 0x4000,
 407         cb_el     = 0x8000,
 408 };
 409 
 410 struct rfd {
 411         __le16 status;
 412         __le16 command;
 413         __le32 link;
 414         __le32 rbd;
 415         __le16 actual_size;
 416         __le16 size;
 417 };
 418 
 419 struct rx {
 420         struct rx *next, *prev;
 421         struct sk_buff *skb;
 422         dma_addr_t dma_addr;
 423 };
 424 
 425 #if defined(__BIG_ENDIAN_BITFIELD)
 426 #define X(a,b)  b,a
 427 #else
 428 #define X(a,b)  a,b
 429 #endif
 430 struct config {
 431 /*0*/   u8 X(byte_count:6, pad0:2);
 432 /*1*/   u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
 433 /*2*/   u8 adaptive_ifs;
 434 /*3*/   u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
 435            term_write_cache_line:1), pad3:4);
 436 /*4*/   u8 X(rx_dma_max_count:7, pad4:1);
 437 /*5*/   u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
 438 /*6*/   u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
 439            tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
 440            rx_save_overruns : 1), rx_save_bad_frames : 1);
 441 /*7*/   u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
 442            pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
 443            tx_dynamic_tbd:1);
 444 /*8*/   u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
 445 /*9*/   u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
 446            link_status_wake:1), arp_wake:1), mcmatch_wake:1);
 447 /*10*/  u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
 448            loopback:2);
 449 /*11*/  u8 X(linear_priority:3, pad11:5);
 450 /*12*/  u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
 451 /*13*/  u8 ip_addr_lo;
 452 /*14*/  u8 ip_addr_hi;
 453 /*15*/  u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
 454            wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
 455            pad15_2:1), crs_or_cdt:1);
 456 /*16*/  u8 fc_delay_lo;
 457 /*17*/  u8 fc_delay_hi;
 458 /*18*/  u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
 459            rx_long_ok:1), fc_priority_threshold:3), pad18:1);
 460 /*19*/  u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
 461            fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
 462            full_duplex_force:1), full_duplex_pin:1);
 463 /*20*/  u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
 464 /*21*/  u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
 465 /*22*/  u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
 466         u8 pad_d102[9];
 467 };
 468 
 469 #define E100_MAX_MULTICAST_ADDRS        64
 470 struct multi {
 471         __le16 count;
 472         u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
 473 };
 474 
 475 /* Important: keep total struct u32-aligned */
 476 #define UCODE_SIZE                      134
 477 struct cb {
 478         __le16 status;
 479         __le16 command;
 480         __le32 link;
 481         union {
 482                 u8 iaaddr[ETH_ALEN];
 483                 __le32 ucode[UCODE_SIZE];
 484                 struct config config;
 485                 struct multi multi;
 486                 struct {
 487                         u32 tbd_array;
 488                         u16 tcb_byte_count;
 489                         u8 threshold;
 490                         u8 tbd_count;
 491                         struct {
 492                                 __le32 buf_addr;
 493                                 __le16 size;
 494                                 u16 eol;
 495                         } tbd;
 496                 } tcb;
 497                 __le32 dump_buffer_addr;
 498         } u;
 499         struct cb *next, *prev;
 500         dma_addr_t dma_addr;
 501         struct sk_buff *skb;
 502 };
 503 
 504 enum loopback {
 505         lb_none = 0, lb_mac = 1, lb_phy = 3,
 506 };
 507 
 508 struct stats {
 509         __le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
 510                 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
 511                 tx_multiple_collisions, tx_total_collisions;
 512         __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
 513                 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
 514                 rx_short_frame_errors;
 515         __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
 516         __le16 xmt_tco_frames, rcv_tco_frames;
 517         __le32 complete;
 518 };
 519 
 520 struct mem {
 521         struct {
 522                 u32 signature;
 523                 u32 result;
 524         } selftest;
 525         struct stats stats;
 526         u8 dump_buf[596];
 527 };
 528 
 529 struct param_range {
 530         u32 min;
 531         u32 max;
 532         u32 count;
 533 };
 534 
 535 struct params {
 536         struct param_range rfds;
 537         struct param_range cbs;
 538 };
 539 
 540 struct nic {
 541         /* Begin: frequently used values: keep adjacent for cache effect */
 542         u32 msg_enable                          ____cacheline_aligned;
 543         struct net_device *netdev;
 544         struct pci_dev *pdev;
 545         u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
 546 
 547         struct rx *rxs                          ____cacheline_aligned;
 548         struct rx *rx_to_use;
 549         struct rx *rx_to_clean;
 550         struct rfd blank_rfd;
 551         enum ru_state ru_running;
 552 
 553         spinlock_t cb_lock                      ____cacheline_aligned;
 554         spinlock_t cmd_lock;
 555         struct csr __iomem *csr;
 556         enum scb_cmd_lo cuc_cmd;
 557         unsigned int cbs_avail;
 558         struct napi_struct napi;
 559         struct cb *cbs;
 560         struct cb *cb_to_use;
 561         struct cb *cb_to_send;
 562         struct cb *cb_to_clean;
 563         __le16 tx_command;
 564         /* End: frequently used values: keep adjacent for cache effect */
 565 
 566         enum {
 567                 ich                = (1 << 0),
 568                 promiscuous        = (1 << 1),
 569                 multicast_all      = (1 << 2),
 570                 wol_magic          = (1 << 3),
 571                 ich_10h_workaround = (1 << 4),
 572         } flags                                 ____cacheline_aligned;
 573 
 574         enum mac mac;
 575         enum phy phy;
 576         struct params params;
 577         struct timer_list watchdog;
 578         struct mii_if_info mii;
 579         struct work_struct tx_timeout_task;
 580         enum loopback loopback;
 581 
 582         struct mem *mem;
 583         dma_addr_t dma_addr;
 584 
 585         struct dma_pool *cbs_pool;
 586         dma_addr_t cbs_dma_addr;
 587         u8 adaptive_ifs;
 588         u8 tx_threshold;
 589         u32 tx_frames;
 590         u32 tx_collisions;
 591         u32 tx_deferred;
 592         u32 tx_single_collisions;
 593         u32 tx_multiple_collisions;
 594         u32 tx_fc_pause;
 595         u32 tx_tco_frames;
 596 
 597         u32 rx_fc_pause;
 598         u32 rx_fc_unsupported;
 599         u32 rx_tco_frames;
 600         u32 rx_short_frame_errors;
 601         u32 rx_over_length_errors;
 602 
 603         u16 eeprom_wc;
 604         __le16 eeprom[256];
 605         spinlock_t mdio_lock;
 606         const struct firmware *fw;
 607 };
 608 
 609 static inline void e100_write_flush(struct nic *nic)
 610 {
 611         /* Flush previous PCI writes through intermediate bridges
 612          * by doing a benign read */
 613         (void)ioread8(&nic->csr->scb.status);
 614 }
 615 
 616 static void e100_enable_irq(struct nic *nic)
 617 {
 618         unsigned long flags;
 619 
 620         spin_lock_irqsave(&nic->cmd_lock, flags);
 621         iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
 622         e100_write_flush(nic);
 623         spin_unlock_irqrestore(&nic->cmd_lock, flags);
 624 }
 625 
 626 static void e100_disable_irq(struct nic *nic)
 627 {
 628         unsigned long flags;
 629 
 630         spin_lock_irqsave(&nic->cmd_lock, flags);
 631         iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
 632         e100_write_flush(nic);
 633         spin_unlock_irqrestore(&nic->cmd_lock, flags);
 634 }
 635 
 636 static void e100_hw_reset(struct nic *nic)
 637 {
 638         /* Put CU and RU into idle with a selective reset to get
 639          * device off of PCI bus */
 640         iowrite32(selective_reset, &nic->csr->port);
 641         e100_write_flush(nic); udelay(20);
 642 
 643         /* Now fully reset device */
 644         iowrite32(software_reset, &nic->csr->port);
 645         e100_write_flush(nic); udelay(20);
 646 
 647         /* Mask off our interrupt line - it's unmasked after reset */
 648         e100_disable_irq(nic);
 649 }
 650 
 651 static int e100_self_test(struct nic *nic)
 652 {
 653         u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
 654 
 655         /* Passing the self-test is a pretty good indication
 656          * that the device can DMA to/from host memory */
 657 
 658         nic->mem->selftest.signature = 0;
 659         nic->mem->selftest.result = 0xFFFFFFFF;
 660 
 661         iowrite32(selftest | dma_addr, &nic->csr->port);
 662         e100_write_flush(nic);
 663         /* Wait 10 msec for self-test to complete */
 664         msleep(10);
 665 
 666         /* Interrupts are enabled after self-test */
 667         e100_disable_irq(nic);
 668 
 669         /* Check results of self-test */
 670         if (nic->mem->selftest.result != 0) {
 671                 netif_err(nic, hw, nic->netdev,
 672                           "Self-test failed: result=0x%08X\n",
 673                           nic->mem->selftest.result);
 674                 return -ETIMEDOUT;
 675         }
 676         if (nic->mem->selftest.signature == 0) {
 677                 netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
 678                 return -ETIMEDOUT;
 679         }
 680 
 681         return 0;
 682 }
 683 
 684 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
 685 {
 686         u32 cmd_addr_data[3];
 687         u8 ctrl;
 688         int i, j;
 689 
 690         /* Three cmds: write/erase enable, write data, write/erase disable */
 691         cmd_addr_data[0] = op_ewen << (addr_len - 2);
 692         cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
 693                 le16_to_cpu(data);
 694         cmd_addr_data[2] = op_ewds << (addr_len - 2);
 695 
 696         /* Bit-bang cmds to write word to eeprom */
 697         for (j = 0; j < 3; j++) {
 698 
 699                 /* Chip select */
 700                 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
 701                 e100_write_flush(nic); udelay(4);
 702 
 703                 for (i = 31; i >= 0; i--) {
 704                         ctrl = (cmd_addr_data[j] & (1 << i)) ?
 705                                 eecs | eedi : eecs;
 706                         iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
 707                         e100_write_flush(nic); udelay(4);
 708 
 709                         iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
 710                         e100_write_flush(nic); udelay(4);
 711                 }
 712                 /* Wait 10 msec for cmd to complete */
 713                 msleep(10);
 714 
 715                 /* Chip deselect */
 716                 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
 717                 e100_write_flush(nic); udelay(4);
 718         }
 719 };
 720 
 721 /* General technique stolen from the eepro100 driver - very clever */
 722 static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
 723 {
 724         u32 cmd_addr_data;
 725         u16 data = 0;
 726         u8 ctrl;
 727         int i;
 728 
 729         cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
 730 
 731         /* Chip select */
 732         iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
 733         e100_write_flush(nic); udelay(4);
 734 
 735         /* Bit-bang to read word from eeprom */
 736         for (i = 31; i >= 0; i--) {
 737                 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
 738                 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
 739                 e100_write_flush(nic); udelay(4);
 740 
 741                 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
 742                 e100_write_flush(nic); udelay(4);
 743 
 744                 /* Eeprom drives a dummy zero to EEDO after receiving
 745                  * complete address.  Use this to adjust addr_len. */
 746                 ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
 747                 if (!(ctrl & eedo) && i > 16) {
 748                         *addr_len -= (i - 16);
 749                         i = 17;
 750                 }
 751 
 752                 data = (data << 1) | (ctrl & eedo ? 1 : 0);
 753         }
 754 
 755         /* Chip deselect */
 756         iowrite8(0, &nic->csr->eeprom_ctrl_lo);
 757         e100_write_flush(nic); udelay(4);
 758 
 759         return cpu_to_le16(data);
 760 };
 761 
 762 /* Load entire EEPROM image into driver cache and validate checksum */
 763 static int e100_eeprom_load(struct nic *nic)
 764 {
 765         u16 addr, addr_len = 8, checksum = 0;
 766 
 767         /* Try reading with an 8-bit addr len to discover actual addr len */
 768         e100_eeprom_read(nic, &addr_len, 0);
 769         nic->eeprom_wc = 1 << addr_len;
 770 
 771         for (addr = 0; addr < nic->eeprom_wc; addr++) {
 772                 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
 773                 if (addr < nic->eeprom_wc - 1)
 774                         checksum += le16_to_cpu(nic->eeprom[addr]);
 775         }
 776 
 777         /* The checksum, stored in the last word, is calculated such that
 778          * the sum of words should be 0xBABA */
 779         if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
 780                 netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
 781                 if (!eeprom_bad_csum_allow)
 782                         return -EAGAIN;
 783         }
 784 
 785         return 0;
 786 }
 787 
 788 /* Save (portion of) driver EEPROM cache to device and update checksum */
 789 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
 790 {
 791         u16 addr, addr_len = 8, checksum = 0;
 792 
 793         /* Try reading with an 8-bit addr len to discover actual addr len */
 794         e100_eeprom_read(nic, &addr_len, 0);
 795         nic->eeprom_wc = 1 << addr_len;
 796 
 797         if (start + count >= nic->eeprom_wc)
 798                 return -EINVAL;
 799 
 800         for (addr = start; addr < start + count; addr++)
 801                 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
 802 
 803         /* The checksum, stored in the last word, is calculated such that
 804          * the sum of words should be 0xBABA */
 805         for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
 806                 checksum += le16_to_cpu(nic->eeprom[addr]);
 807         nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
 808         e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
 809                 nic->eeprom[nic->eeprom_wc - 1]);
 810 
 811         return 0;
 812 }
 813 
 814 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
 815 #define E100_WAIT_SCB_FAST 20       /* delay like the old code */
 816 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
 817 {
 818         unsigned long flags;
 819         unsigned int i;
 820         int err = 0;
 821 
 822         spin_lock_irqsave(&nic->cmd_lock, flags);
 823 
 824         /* Previous command is accepted when SCB clears */
 825         for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
 826                 if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
 827                         break;
 828                 cpu_relax();
 829                 if (unlikely(i > E100_WAIT_SCB_FAST))
 830                         udelay(5);
 831         }
 832         if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
 833                 err = -EAGAIN;
 834                 goto err_unlock;
 835         }
 836 
 837         if (unlikely(cmd != cuc_resume))
 838                 iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
 839         iowrite8(cmd, &nic->csr->scb.cmd_lo);
 840 
 841 err_unlock:
 842         spin_unlock_irqrestore(&nic->cmd_lock, flags);
 843 
 844         return err;
 845 }
 846 
 847 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
 848         int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
 849 {
 850         struct cb *cb;
 851         unsigned long flags;
 852         int err;
 853 
 854         spin_lock_irqsave(&nic->cb_lock, flags);
 855 
 856         if (unlikely(!nic->cbs_avail)) {
 857                 err = -ENOMEM;
 858                 goto err_unlock;
 859         }
 860 
 861         cb = nic->cb_to_use;
 862         nic->cb_to_use = cb->next;
 863         nic->cbs_avail--;
 864         cb->skb = skb;
 865 
 866         err = cb_prepare(nic, cb, skb);
 867         if (err)
 868                 goto err_unlock;
 869 
 870         if (unlikely(!nic->cbs_avail))
 871                 err = -ENOSPC;
 872 
 873 
 874         /* Order is important otherwise we'll be in a race with h/w:
 875          * set S-bit in current first, then clear S-bit in previous. */
 876         cb->command |= cpu_to_le16(cb_s);
 877         dma_wmb();
 878         cb->prev->command &= cpu_to_le16(~cb_s);
 879 
 880         while (nic->cb_to_send != nic->cb_to_use) {
 881                 if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
 882                         nic->cb_to_send->dma_addr))) {
 883                         /* Ok, here's where things get sticky.  It's
 884                          * possible that we can't schedule the command
 885                          * because the controller is too busy, so
 886                          * let's just queue the command and try again
 887                          * when another command is scheduled. */
 888                         if (err == -ENOSPC) {
 889                                 //request a reset
 890                                 schedule_work(&nic->tx_timeout_task);
 891                         }
 892                         break;
 893                 } else {
 894                         nic->cuc_cmd = cuc_resume;
 895                         nic->cb_to_send = nic->cb_to_send->next;
 896                 }
 897         }
 898 
 899 err_unlock:
 900         spin_unlock_irqrestore(&nic->cb_lock, flags);
 901 
 902         return err;
 903 }
 904 
 905 static int mdio_read(struct net_device *netdev, int addr, int reg)
 906 {
 907         struct nic *nic = netdev_priv(netdev);
 908         return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
 909 }
 910 
 911 static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
 912 {
 913         struct nic *nic = netdev_priv(netdev);
 914 
 915         nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
 916 }
 917 
 918 /* the standard mdio_ctrl() function for usual MII-compliant hardware */
 919 static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
 920 {
 921         u32 data_out = 0;
 922         unsigned int i;
 923         unsigned long flags;
 924 
 925 
 926         /*
 927          * Stratus87247: we shouldn't be writing the MDI control
 928          * register until the Ready bit shows True.  Also, since
 929          * manipulation of the MDI control registers is a multi-step
 930          * procedure it should be done under lock.
 931          */
 932         spin_lock_irqsave(&nic->mdio_lock, flags);
 933         for (i = 100; i; --i) {
 934                 if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
 935                         break;
 936                 udelay(20);
 937         }
 938         if (unlikely(!i)) {
 939                 netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
 940                 spin_unlock_irqrestore(&nic->mdio_lock, flags);
 941                 return 0;               /* No way to indicate timeout error */
 942         }
 943         iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
 944 
 945         for (i = 0; i < 100; i++) {
 946                 udelay(20);
 947                 if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
 948                         break;
 949         }
 950         spin_unlock_irqrestore(&nic->mdio_lock, flags);
 951         netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
 952                      "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
 953                      dir == mdi_read ? "READ" : "WRITE",
 954                      addr, reg, data, data_out);
 955         return (u16)data_out;
 956 }
 957 
 958 /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
 959 static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
 960                                  u32 addr,
 961                                  u32 dir,
 962                                  u32 reg,
 963                                  u16 data)
 964 {
 965         if ((reg == MII_BMCR) && (dir == mdi_write)) {
 966                 if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
 967                         u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
 968                                                         MII_ADVERTISE);
 969 
 970                         /*
 971                          * Workaround Si issue where sometimes the part will not
 972                          * autoneg to 100Mbps even when advertised.
 973                          */
 974                         if (advert & ADVERTISE_100FULL)
 975                                 data |= BMCR_SPEED100 | BMCR_FULLDPLX;
 976                         else if (advert & ADVERTISE_100HALF)
 977                                 data |= BMCR_SPEED100;
 978                 }
 979         }
 980         return mdio_ctrl_hw(nic, addr, dir, reg, data);
 981 }
 982 
 983 /* Fully software-emulated mdio_ctrl() function for cards without
 984  * MII-compliant PHYs.
 985  * For now, this is mainly geared towards 80c24 support; in case of further
 986  * requirements for other types (i82503, ...?) either extend this mechanism
 987  * or split it, whichever is cleaner.
 988  */
 989 static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
 990                                       u32 addr,
 991                                       u32 dir,
 992                                       u32 reg,
 993                                       u16 data)
 994 {
 995         /* might need to allocate a netdev_priv'ed register array eventually
 996          * to be able to record state changes, but for now
 997          * some fully hardcoded register handling ought to be ok I guess. */
 998 
 999         if (dir == mdi_read) {
1000                 switch (reg) {
1001                 case MII_BMCR:
1002                         /* Auto-negotiation, right? */
1003                         return  BMCR_ANENABLE |
1004                                 BMCR_FULLDPLX;
1005                 case MII_BMSR:
1006                         return  BMSR_LSTATUS /* for mii_link_ok() */ |
1007                                 BMSR_ANEGCAPABLE |
1008                                 BMSR_10FULL;
1009                 case MII_ADVERTISE:
1010                         /* 80c24 is a "combo card" PHY, right? */
1011                         return  ADVERTISE_10HALF |
1012                                 ADVERTISE_10FULL;
1013                 default:
1014                         netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1015                                      "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1016                                      dir == mdi_read ? "READ" : "WRITE",
1017                                      addr, reg, data);
1018                         return 0xFFFF;
1019                 }
1020         } else {
1021                 switch (reg) {
1022                 default:
1023                         netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1024                                      "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1025                                      dir == mdi_read ? "READ" : "WRITE",
1026                                      addr, reg, data);
1027                         return 0xFFFF;
1028                 }
1029         }
1030 }
1031 static inline int e100_phy_supports_mii(struct nic *nic)
1032 {
1033         /* for now, just check it by comparing whether we
1034            are using MII software emulation.
1035         */
1036         return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1037 }
1038 
1039 static void e100_get_defaults(struct nic *nic)
1040 {
1041         struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1042         struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };
1043 
1044         /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1045         nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1046         if (nic->mac == mac_unknown)
1047                 nic->mac = mac_82557_D100_A;
1048 
1049         nic->params.rfds = rfds;
1050         nic->params.cbs = cbs;
1051 
1052         /* Quadwords to DMA into FIFO before starting frame transmit */
1053         nic->tx_threshold = 0xE0;
1054 
1055         /* no interrupt for every tx completion, delay = 256us if not 557 */
1056         nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1057                 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1058 
1059         /* Template for a freshly allocated RFD */
1060         nic->blank_rfd.command = 0;
1061         nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1062         nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1063 
1064         /* MII setup */
1065         nic->mii.phy_id_mask = 0x1F;
1066         nic->mii.reg_num_mask = 0x1F;
1067         nic->mii.dev = nic->netdev;
1068         nic->mii.mdio_read = mdio_read;
1069         nic->mii.mdio_write = mdio_write;
1070 }
1071 
1072 static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1073 {
1074         struct config *config = &cb->u.config;
1075         u8 *c = (u8 *)config;
1076         struct net_device *netdev = nic->netdev;
1077 
1078         cb->command = cpu_to_le16(cb_config);
1079 
1080         memset(config, 0, sizeof(struct config));
1081 
1082         config->byte_count = 0x16;              /* bytes in this struct */
1083         config->rx_fifo_limit = 0x8;            /* bytes in FIFO before DMA */
1084         config->direct_rx_dma = 0x1;            /* reserved */
1085         config->standard_tcb = 0x1;             /* 1=standard, 0=extended */
1086         config->standard_stat_counter = 0x1;    /* 1=standard, 0=extended */
1087         config->rx_discard_short_frames = 0x1;  /* 1=discard, 0=pass */
1088         config->tx_underrun_retry = 0x3;        /* # of underrun retries */
1089         if (e100_phy_supports_mii(nic))
1090                 config->mii_mode = 1;           /* 1=MII mode, 0=i82503 mode */
1091         config->pad10 = 0x6;
1092         config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
1093         config->preamble_length = 0x2;          /* 0=1, 1=3, 2=7, 3=15 bytes */
1094         config->ifs = 0x6;                      /* x16 = inter frame spacing */
1095         config->ip_addr_hi = 0xF2;              /* ARP IP filter - not used */
1096         config->pad15_1 = 0x1;
1097         config->pad15_2 = 0x1;
1098         config->crs_or_cdt = 0x0;               /* 0=CRS only, 1=CRS or CDT */
1099         config->fc_delay_hi = 0x40;             /* time delay for fc frame */
1100         config->tx_padding = 0x1;               /* 1=pad short frames */
1101         config->fc_priority_threshold = 0x7;    /* 7=priority fc disabled */
1102         config->pad18 = 0x1;
1103         config->full_duplex_pin = 0x1;          /* 1=examine FDX# pin */
1104         config->pad20_1 = 0x1F;
1105         config->fc_priority_location = 0x1;     /* 1=byte#31, 0=byte#19 */
1106         config->pad21_1 = 0x5;
1107 
1108         config->adaptive_ifs = nic->adaptive_ifs;
1109         config->loopback = nic->loopback;
1110 
1111         if (nic->mii.force_media && nic->mii.full_duplex)
1112                 config->full_duplex_force = 0x1;        /* 1=force, 0=auto */
1113 
1114         if (nic->flags & promiscuous || nic->loopback) {
1115                 config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
1116                 config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
1117                 config->promiscuous_mode = 0x1;         /* 1=on, 0=off */
1118         }
1119 
1120         if (unlikely(netdev->features & NETIF_F_RXFCS))
1121                 config->rx_crc_transfer = 0x1;  /* 1=save, 0=discard */
1122 
1123         if (nic->flags & multicast_all)
1124                 config->multicast_all = 0x1;            /* 1=accept, 0=no */
1125 
1126         /* disable WoL when up */
1127         if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1128                 config->magic_packet_disable = 0x1;     /* 1=off, 0=on */
1129 
1130         if (nic->mac >= mac_82558_D101_A4) {
1131                 config->fc_disable = 0x1;       /* 1=Tx fc off, 0=Tx fc on */
1132                 config->mwi_enable = 0x1;       /* 1=enable, 0=disable */
1133                 config->standard_tcb = 0x0;     /* 1=standard, 0=extended */
1134                 config->rx_long_ok = 0x1;       /* 1=VLANs ok, 0=standard */
1135                 if (nic->mac >= mac_82559_D101M) {
1136                         config->tno_intr = 0x1;         /* TCO stats enable */
1137                         /* Enable TCO in extended config */
1138                         if (nic->mac >= mac_82551_10) {
1139                                 config->byte_count = 0x20; /* extended bytes */
1140                                 config->rx_d102_mode = 0x1; /* GMRC for TCO */
1141                         }
1142                 } else {
1143                         config->standard_stat_counter = 0x0;
1144                 }
1145         }
1146 
1147         if (netdev->features & NETIF_F_RXALL) {
1148                 config->rx_save_overruns = 0x1; /* 1=save, 0=discard */
1149                 config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
1150                 config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
1151         }
1152 
1153         netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n",
1154                      c + 0);
1155         netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n",
1156                      c + 8);
1157         netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n",
1158                      c + 16);
1159         return 0;
1160 }
1161 
1162 /*************************************************************************
1163 *  CPUSaver parameters
1164 *
1165 *  All CPUSaver parameters are 16-bit literals that are part of a
1166 *  "move immediate value" instruction.  By changing the value of
1167 *  the literal in the instruction before the code is loaded, the
1168 *  driver can change the algorithm.
1169 *
1170 *  INTDELAY - This loads the dead-man timer with its initial value.
1171 *    When this timer expires the interrupt is asserted, and the
1172 *    timer is reset each time a new packet is received.  (see
1173 *    BUNDLEMAX below to set the limit on number of chained packets)
1174 *    The current default is 0x600 or 1536.  Experiments show that
1175 *    the value should probably stay within the 0x200 - 0x1000.
1176 *
1177 *  BUNDLEMAX -
1178 *    This sets the maximum number of frames that will be bundled.  In
1179 *    some situations, such as the TCP windowing algorithm, it may be
1180 *    better to limit the growth of the bundle size than let it go as
1181 *    high as it can, because that could cause too much added latency.
1182 *    The default is six, because this is the number of packets in the
1183 *    default TCP window size.  A value of 1 would make CPUSaver indicate
1184 *    an interrupt for every frame received.  If you do not want to put
1185 *    a limit on the bundle size, set this value to xFFFF.
1186 *
1187 *  BUNDLESMALL -
1188 *    This contains a bit-mask describing the minimum size frame that
1189 *    will be bundled.  The default masks the lower 7 bits, which means
1190 *    that any frame less than 128 bytes in length will not be bundled,
1191 *    but will instead immediately generate an interrupt.  This does
1192 *    not affect the current bundle in any way.  Any frame that is 128
1193 *    bytes or large will be bundled normally.  This feature is meant
1194 *    to provide immediate indication of ACK frames in a TCP environment.
1195 *    Customers were seeing poor performance when a machine with CPUSaver
1196 *    enabled was sending but not receiving.  The delay introduced when
1197 *    the ACKs were received was enough to reduce total throughput, because
1198 *    the sender would sit idle until the ACK was finally seen.
1199 *
1200 *    The current default is 0xFF80, which masks out the lower 7 bits.
1201 *    This means that any frame which is x7F (127) bytes or smaller
1202 *    will cause an immediate interrupt.  Because this value must be a
1203 *    bit mask, there are only a few valid values that can be used.  To
1204 *    turn this feature off, the driver can write the value xFFFF to the
1205 *    lower word of this instruction (in the same way that the other
1206 *    parameters are used).  Likewise, a value of 0xF800 (2047) would
1207 *    cause an interrupt to be generated for every frame, because all
1208 *    standard Ethernet frames are <= 2047 bytes in length.
1209 *************************************************************************/
1210 
1211 /* if you wish to disable the ucode functionality, while maintaining the
1212  * workarounds it provides, set the following defines to:
1213  * BUNDLESMALL 0
1214  * BUNDLEMAX 1
1215  * INTDELAY 1
1216  */
1217 #define BUNDLESMALL 1
1218 #define BUNDLEMAX (u16)6
1219 #define INTDELAY (u16)1536 /* 0x600 */
1220 
1221 /* Initialize firmware */
1222 static const struct firmware *e100_request_firmware(struct nic *nic)
1223 {
1224         const char *fw_name;
1225         const struct firmware *fw = nic->fw;
1226         u8 timer, bundle, min_size;
1227         int err = 0;
1228         bool required = false;
1229 
1230         /* do not load u-code for ICH devices */
1231         if (nic->flags & ich)
1232                 return NULL;
1233 
1234         /* Search for ucode match against h/w revision
1235          *
1236          * Based on comments in the source code for the FreeBSD fxp
1237          * driver, the FIRMWARE_D102E ucode includes both CPUSaver and
1238          *
1239          *    "fixes for bugs in the B-step hardware (specifically, bugs
1240          *     with Inline Receive)."
1241          *
1242          * So we must fail if it cannot be loaded.
1243          *
1244          * The other microcode files are only required for the optional
1245          * CPUSaver feature.  Nice to have, but no reason to fail.
1246          */
1247         if (nic->mac == mac_82559_D101M) {
1248                 fw_name = FIRMWARE_D101M;
1249         } else if (nic->mac == mac_82559_D101S) {
1250                 fw_name = FIRMWARE_D101S;
1251         } else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
1252                 fw_name = FIRMWARE_D102E;
1253                 required = true;
1254         } else { /* No ucode on other devices */
1255                 return NULL;
1256         }
1257 
1258         /* If the firmware has not previously been loaded, request a pointer
1259          * to it. If it was previously loaded, we are reinitializing the
1260          * adapter, possibly in a resume from hibernate, in which case
1261          * request_firmware() cannot be used.
1262          */
1263         if (!fw)
1264                 err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1265 
1266         if (err) {
1267                 if (required) {
1268                         netif_err(nic, probe, nic->netdev,
1269                                   "Failed to load firmware \"%s\": %d\n",
1270                                   fw_name, err);
1271                         return ERR_PTR(err);
1272                 } else {
1273                         netif_info(nic, probe, nic->netdev,
1274                                    "CPUSaver disabled. Needs \"%s\": %d\n",
1275                                    fw_name, err);
1276                         return NULL;
1277                 }
1278         }
1279 
1280         /* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1281            indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1282         if (fw->size != UCODE_SIZE * 4 + 3) {
1283                 netif_err(nic, probe, nic->netdev,
1284                           "Firmware \"%s\" has wrong size %zu\n",
1285                           fw_name, fw->size);
1286                 release_firmware(fw);
1287                 return ERR_PTR(-EINVAL);
1288         }
1289 
1290         /* Read timer, bundle and min_size from end of firmware blob */
1291         timer = fw->data[UCODE_SIZE * 4];
1292         bundle = fw->data[UCODE_SIZE * 4 + 1];
1293         min_size = fw->data[UCODE_SIZE * 4 + 2];
1294 
1295         if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1296             min_size >= UCODE_SIZE) {
1297                 netif_err(nic, probe, nic->netdev,
1298                           "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1299                           fw_name, timer, bundle, min_size);
1300                 release_firmware(fw);
1301                 return ERR_PTR(-EINVAL);
1302         }
1303 
1304         /* OK, firmware is validated and ready to use. Save a pointer
1305          * to it in the nic */
1306         nic->fw = fw;
1307         return fw;
1308 }
1309 
1310 static int e100_setup_ucode(struct nic *nic, struct cb *cb,
1311                              struct sk_buff *skb)
1312 {
1313         const struct firmware *fw = (void *)skb;
1314         u8 timer, bundle, min_size;
1315 
1316         /* It's not a real skb; we just abused the fact that e100_exec_cb
1317            will pass it through to here... */
1318         cb->skb = NULL;
1319 
1320         /* firmware is stored as little endian already */
1321         memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1322 
1323         /* Read timer, bundle and min_size from end of firmware blob */
1324         timer = fw->data[UCODE_SIZE * 4];
1325         bundle = fw->data[UCODE_SIZE * 4 + 1];
1326         min_size = fw->data[UCODE_SIZE * 4 + 2];
1327 
1328         /* Insert user-tunable settings in cb->u.ucode */
1329         cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1330         cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1331         cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1332         cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1333         cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1334         cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1335 
1336         cb->command = cpu_to_le16(cb_ucode | cb_el);
1337         return 0;
1338 }
1339 
1340 static inline int e100_load_ucode_wait(struct nic *nic)
1341 {
1342         const struct firmware *fw;
1343         int err = 0, counter = 50;
1344         struct cb *cb = nic->cb_to_clean;
1345 
1346         fw = e100_request_firmware(nic);
1347         /* If it's NULL, then no ucode is required */
1348         if (IS_ERR_OR_NULL(fw))
1349                 return PTR_ERR_OR_ZERO(fw);
1350 
1351         if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1352                 netif_err(nic, probe, nic->netdev,
1353                           "ucode cmd failed with error %d\n", err);
1354 
1355         /* must restart cuc */
1356         nic->cuc_cmd = cuc_start;
1357 
1358         /* wait for completion */
1359         e100_write_flush(nic);
1360         udelay(10);
1361 
1362         /* wait for possibly (ouch) 500ms */
1363         while (!(cb->status & cpu_to_le16(cb_complete))) {
1364                 msleep(10);
1365                 if (!--counter) break;
1366         }
1367 
1368         /* ack any interrupts, something could have been set */
1369         iowrite8(~0, &nic->csr->scb.stat_ack);
1370 
1371         /* if the command failed, or is not OK, notify and return */
1372         if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1373                 netif_err(nic, probe, nic->netdev, "ucode load failed\n");
1374                 err = -EPERM;
1375         }
1376 
1377         return err;
1378 }
1379 
1380 static int e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1381         struct sk_buff *skb)
1382 {
1383         cb->command = cpu_to_le16(cb_iaaddr);
1384         memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1385         return 0;
1386 }
1387 
1388 static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1389 {
1390         cb->command = cpu_to_le16(cb_dump);
1391         cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1392                 offsetof(struct mem, dump_buf));
1393         return 0;
1394 }
1395 
1396 static int e100_phy_check_without_mii(struct nic *nic)
1397 {
1398         u8 phy_type;
1399         int without_mii;
1400 
1401         phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f;
1402 
1403         switch (phy_type) {
1404         case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1405         case I82503: /* Non-MII PHY; UNTESTED! */
1406         case S80C24: /* Non-MII PHY; tested and working */
1407                 /* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1408                  * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1409                  * doesn't have a programming interface of any sort.  The
1410                  * media is sensed automatically based on how the link partner
1411                  * is configured.  This is, in essence, manual configuration.
1412                  */
1413                 netif_info(nic, probe, nic->netdev,
1414                            "found MII-less i82503 or 80c24 or other PHY\n");
1415 
1416                 nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1417                 nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1418 
1419                 /* these might be needed for certain MII-less cards...
1420                  * nic->flags |= ich;
1421                  * nic->flags |= ich_10h_workaround; */
1422 
1423                 without_mii = 1;
1424                 break;
1425         default:
1426                 without_mii = 0;
1427                 break;
1428         }
1429         return without_mii;
1430 }
1431 
1432 #define NCONFIG_AUTO_SWITCH     0x0080
1433 #define MII_NSC_CONG            MII_RESV1
1434 #define NSC_CONG_ENABLE         0x0100
1435 #define NSC_CONG_TXREADY        0x0400
1436 #define ADVERTISE_FC_SUPPORTED  0x0400
1437 static int e100_phy_init(struct nic *nic)
1438 {
1439         struct net_device *netdev = nic->netdev;
1440         u32 addr;
1441         u16 bmcr, stat, id_lo, id_hi, cong;
1442 
1443         /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1444         for (addr = 0; addr < 32; addr++) {
1445                 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1446                 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1447                 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1448                 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1449                 if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1450                         break;
1451         }
1452         if (addr == 32) {
1453                 /* uhoh, no PHY detected: check whether we seem to be some
1454                  * weird, rare variant which is *known* to not have any MII.
1455                  * But do this AFTER MII checking only, since this does
1456                  * lookup of EEPROM values which may easily be unreliable. */
1457                 if (e100_phy_check_without_mii(nic))
1458                         return 0; /* simply return and hope for the best */
1459                 else {
1460                         /* for unknown cases log a fatal error */
1461                         netif_err(nic, hw, nic->netdev,
1462                                   "Failed to locate any known PHY, aborting\n");
1463                         return -EAGAIN;
1464                 }
1465         } else
1466                 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1467                              "phy_addr = %d\n", nic->mii.phy_id);
1468 
1469         /* Get phy ID */
1470         id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1471         id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1472         nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1473         netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1474                      "phy ID = 0x%08X\n", nic->phy);
1475 
1476         /* Select the phy and isolate the rest */
1477         for (addr = 0; addr < 32; addr++) {
1478                 if (addr != nic->mii.phy_id) {
1479                         mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1480                 } else if (nic->phy != phy_82552_v) {
1481                         bmcr = mdio_read(netdev, addr, MII_BMCR);
1482                         mdio_write(netdev, addr, MII_BMCR,
1483                                 bmcr & ~BMCR_ISOLATE);
1484                 }
1485         }
1486         /*
1487          * Workaround for 82552:
1488          * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1489          * other phy_id's) using bmcr value from addr discovery loop above.
1490          */
1491         if (nic->phy == phy_82552_v)
1492                 mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1493                         bmcr & ~BMCR_ISOLATE);
1494 
1495         /* Handle National tx phys */
1496 #define NCS_PHY_MODEL_MASK      0xFFF0FFFF
1497         if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1498                 /* Disable congestion control */
1499                 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1500                 cong |= NSC_CONG_TXREADY;
1501                 cong &= ~NSC_CONG_ENABLE;
1502                 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1503         }
1504 
1505         if (nic->phy == phy_82552_v) {
1506                 u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1507 
1508                 /* assign special tweaked mdio_ctrl() function */
1509                 nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1510 
1511                 /* Workaround Si not advertising flow-control during autoneg */
1512                 advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1513                 mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1514 
1515                 /* Reset for the above changes to take effect */
1516                 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1517                 bmcr |= BMCR_RESET;
1518                 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1519         } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1520            (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1521                 (nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1522                 /* enable/disable MDI/MDI-X auto-switching. */
1523                 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1524                                 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1525         }
1526 
1527         return 0;
1528 }
1529 
1530 static int e100_hw_init(struct nic *nic)
1531 {
1532         int err = 0;
1533 
1534         e100_hw_reset(nic);
1535 
1536         netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
1537         if (!in_interrupt() && (err = e100_self_test(nic)))
1538                 return err;
1539 
1540         if ((err = e100_phy_init(nic)))
1541                 return err;
1542         if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1543                 return err;
1544         if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1545                 return err;
1546         if ((err = e100_load_ucode_wait(nic)))
1547                 return err;
1548         if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1549                 return err;
1550         if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1551                 return err;
1552         if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1553                 nic->dma_addr + offsetof(struct mem, stats))))
1554                 return err;
1555         if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1556                 return err;
1557 
1558         e100_disable_irq(nic);
1559 
1560         return 0;
1561 }
1562 
1563 static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1564 {
1565         struct net_device *netdev = nic->netdev;
1566         struct netdev_hw_addr *ha;
1567         u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
1568 
1569         cb->command = cpu_to_le16(cb_multi);
1570         cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1571         i = 0;
1572         netdev_for_each_mc_addr(ha, netdev) {
1573                 if (i == count)
1574                         break;
1575                 memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
1576                         ETH_ALEN);
1577         }
1578         return 0;
1579 }
1580 
1581 static void e100_set_multicast_list(struct net_device *netdev)
1582 {
1583         struct nic *nic = netdev_priv(netdev);
1584 
1585         netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1586                      "mc_count=%d, flags=0x%04X\n",
1587                      netdev_mc_count(netdev), netdev->flags);
1588 
1589         if (netdev->flags & IFF_PROMISC)
1590                 nic->flags |= promiscuous;
1591         else
1592                 nic->flags &= ~promiscuous;
1593 
1594         if (netdev->flags & IFF_ALLMULTI ||
1595                 netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
1596                 nic->flags |= multicast_all;
1597         else
1598                 nic->flags &= ~multicast_all;
1599 
1600         e100_exec_cb(nic, NULL, e100_configure);
1601         e100_exec_cb(nic, NULL, e100_multi);
1602 }
1603 
1604 static void e100_update_stats(struct nic *nic)
1605 {
1606         struct net_device *dev = nic->netdev;
1607         struct net_device_stats *ns = &dev->stats;
1608         struct stats *s = &nic->mem->stats;
1609         __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1610                 (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1611                 &s->complete;
1612 
1613         /* Device's stats reporting may take several microseconds to
1614          * complete, so we're always waiting for results of the
1615          * previous command. */
1616 
1617         if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1618                 *complete = 0;
1619                 nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1620                 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1621                 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1622                 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1623                 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1624                 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1625                 ns->collisions += nic->tx_collisions;
1626                 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1627                         le32_to_cpu(s->tx_lost_crs);
1628                 nic->rx_short_frame_errors +=
1629                         le32_to_cpu(s->rx_short_frame_errors);
1630                 ns->rx_length_errors = nic->rx_short_frame_errors +
1631                         nic->rx_over_length_errors;
1632                 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1633                 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1634                 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1635                 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1636                 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1637                 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1638                         le32_to_cpu(s->rx_alignment_errors) +
1639                         le32_to_cpu(s->rx_short_frame_errors) +
1640                         le32_to_cpu(s->rx_cdt_errors);
1641                 nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1642                 nic->tx_single_collisions +=
1643                         le32_to_cpu(s->tx_single_collisions);
1644                 nic->tx_multiple_collisions +=
1645                         le32_to_cpu(s->tx_multiple_collisions);
1646                 if (nic->mac >= mac_82558_D101_A4) {
1647                         nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1648                         nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1649                         nic->rx_fc_unsupported +=
1650                                 le32_to_cpu(s->fc_rcv_unsupported);
1651                         if (nic->mac >= mac_82559_D101M) {
1652                                 nic->tx_tco_frames +=
1653                                         le16_to_cpu(s->xmt_tco_frames);
1654                                 nic->rx_tco_frames +=
1655                                         le16_to_cpu(s->rcv_tco_frames);
1656                         }
1657                 }
1658         }
1659 
1660 
1661         if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1662                 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1663                              "exec cuc_dump_reset failed\n");
1664 }
1665 
1666 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1667 {
1668         /* Adjust inter-frame-spacing (IFS) between two transmits if
1669          * we're getting collisions on a half-duplex connection. */
1670 
1671         if (duplex == DUPLEX_HALF) {
1672                 u32 prev = nic->adaptive_ifs;
1673                 u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1674 
1675                 if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1676                    (nic->tx_frames > min_frames)) {
1677                         if (nic->adaptive_ifs < 60)
1678                                 nic->adaptive_ifs += 5;
1679                 } else if (nic->tx_frames < min_frames) {
1680                         if (nic->adaptive_ifs >= 5)
1681                                 nic->adaptive_ifs -= 5;
1682                 }
1683                 if (nic->adaptive_ifs != prev)
1684                         e100_exec_cb(nic, NULL, e100_configure);
1685         }
1686 }
1687 
1688 static void e100_watchdog(struct timer_list *t)
1689 {
1690         struct nic *nic = from_timer(nic, t, watchdog);
1691         struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
1692         u32 speed;
1693 
1694         netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
1695                      "right now = %ld\n", jiffies);
1696 
1697         /* mii library handles link maintenance tasks */
1698 
1699         mii_ethtool_gset(&nic->mii, &cmd);
1700         speed = ethtool_cmd_speed(&cmd);
1701 
1702         if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1703                 netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
1704                             speed == SPEED_100 ? 100 : 10,
1705                             cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1706         } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1707                 netdev_info(nic->netdev, "NIC Link is Down\n");
1708         }
1709 
1710         mii_check_link(&nic->mii);
1711 
1712         /* Software generated interrupt to recover from (rare) Rx
1713          * allocation failure.
1714          * Unfortunately have to use a spinlock to not re-enable interrupts
1715          * accidentally, due to hardware that shares a register between the
1716          * interrupt mask bit and the SW Interrupt generation bit */
1717         spin_lock_irq(&nic->cmd_lock);
1718         iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1719         e100_write_flush(nic);
1720         spin_unlock_irq(&nic->cmd_lock);
1721 
1722         e100_update_stats(nic);
1723         e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);
1724 
1725         if (nic->mac <= mac_82557_D100_C)
1726                 /* Issue a multicast command to workaround a 557 lock up */
1727                 e100_set_multicast_list(nic->netdev);
1728 
1729         if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
1730                 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1731                 nic->flags |= ich_10h_workaround;
1732         else
1733                 nic->flags &= ~ich_10h_workaround;
1734 
1735         mod_timer(&nic->watchdog,
1736                   round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1737 }
1738 
1739 static int e100_xmit_prepare(struct nic *nic, struct cb *cb,
1740         struct sk_buff *skb)
1741 {
1742         dma_addr_t dma_addr;
1743         cb->command = nic->tx_command;
1744 
1745         dma_addr = pci_map_single(nic->pdev,
1746                                   skb->data, skb->len, PCI_DMA_TODEVICE);
1747         /* If we can't map the skb, have the upper layer try later */
1748         if (pci_dma_mapping_error(nic->pdev, dma_addr)) {
1749                 dev_kfree_skb_any(skb);
1750                 skb = NULL;
1751                 return -ENOMEM;
1752         }
1753 
1754         /*
1755          * Use the last 4 bytes of the SKB payload packet as the CRC, used for
1756          * testing, ie sending frames with bad CRC.
1757          */
1758         if (unlikely(skb->no_fcs))
1759                 cb->command |= cpu_to_le16(cb_tx_nc);
1760         else
1761                 cb->command &= ~cpu_to_le16(cb_tx_nc);
1762 
1763         /* interrupt every 16 packets regardless of delay */
1764         if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1765                 cb->command |= cpu_to_le16(cb_i);
1766         cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1767         cb->u.tcb.tcb_byte_count = 0;
1768         cb->u.tcb.threshold = nic->tx_threshold;
1769         cb->u.tcb.tbd_count = 1;
1770         cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr);
1771         cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1772         skb_tx_timestamp(skb);
1773         return 0;
1774 }
1775 
1776 static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1777                                    struct net_device *netdev)
1778 {
1779         struct nic *nic = netdev_priv(netdev);
1780         int err;
1781 
1782         if (nic->flags & ich_10h_workaround) {
1783                 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1784                    Issue a NOP command followed by a 1us delay before
1785                    issuing the Tx command. */
1786                 if (e100_exec_cmd(nic, cuc_nop, 0))
1787                         netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1788                                      "exec cuc_nop failed\n");
1789                 udelay(1);
1790         }
1791 
1792         err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1793 
1794         switch (err) {
1795         case -ENOSPC:
1796                 /* We queued the skb, but now we're out of space. */
1797                 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1798                              "No space for CB\n");
1799                 netif_stop_queue(netdev);
1800                 break;
1801         case -ENOMEM:
1802                 /* This is a hard error - log it. */
1803                 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1804                              "Out of Tx resources, returning skb\n");
1805                 netif_stop_queue(netdev);
1806                 return NETDEV_TX_BUSY;
1807         }
1808 
1809         return NETDEV_TX_OK;
1810 }
1811 
1812 static int e100_tx_clean(struct nic *nic)
1813 {
1814         struct net_device *dev = nic->netdev;
1815         struct cb *cb;
1816         int tx_cleaned = 0;
1817 
1818         spin_lock(&nic->cb_lock);
1819 
1820         /* Clean CBs marked complete */
1821         for (cb = nic->cb_to_clean;
1822             cb->status & cpu_to_le16(cb_complete);
1823             cb = nic->cb_to_clean = cb->next) {
1824                 dma_rmb(); /* read skb after status */
1825                 netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
1826                              "cb[%d]->status = 0x%04X\n",
1827                              (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1828                              cb->status);
1829 
1830                 if (likely(cb->skb != NULL)) {
1831                         dev->stats.tx_packets++;
1832                         dev->stats.tx_bytes += cb->skb->len;
1833 
1834                         pci_unmap_single(nic->pdev,
1835                                 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1836                                 le16_to_cpu(cb->u.tcb.tbd.size),
1837                                 PCI_DMA_TODEVICE);
1838                         dev_kfree_skb_any(cb->skb);
1839                         cb->skb = NULL;
1840                         tx_cleaned = 1;
1841                 }
1842                 cb->status = 0;
1843                 nic->cbs_avail++;
1844         }
1845 
1846         spin_unlock(&nic->cb_lock);
1847 
1848         /* Recover from running out of Tx resources in xmit_frame */
1849         if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1850                 netif_wake_queue(nic->netdev);
1851 
1852         return tx_cleaned;
1853 }
1854 
1855 static void e100_clean_cbs(struct nic *nic)
1856 {
1857         if (nic->cbs) {
1858                 while (nic->cbs_avail != nic->params.cbs.count) {
1859                         struct cb *cb = nic->cb_to_clean;
1860                         if (cb->skb) {
1861                                 pci_unmap_single(nic->pdev,
1862                                         le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1863                                         le16_to_cpu(cb->u.tcb.tbd.size),
1864                                         PCI_DMA_TODEVICE);
1865                                 dev_kfree_skb(cb->skb);
1866                         }
1867                         nic->cb_to_clean = nic->cb_to_clean->next;
1868                         nic->cbs_avail++;
1869                 }
1870                 dma_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1871                 nic->cbs = NULL;
1872                 nic->cbs_avail = 0;
1873         }
1874         nic->cuc_cmd = cuc_start;
1875         nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1876                 nic->cbs;
1877 }
1878 
1879 static int e100_alloc_cbs(struct nic *nic)
1880 {
1881         struct cb *cb;
1882         unsigned int i, count = nic->params.cbs.count;
1883 
1884         nic->cuc_cmd = cuc_start;
1885         nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1886         nic->cbs_avail = 0;
1887 
1888         nic->cbs = dma_pool_zalloc(nic->cbs_pool, GFP_KERNEL,
1889                                    &nic->cbs_dma_addr);
1890         if (!nic->cbs)
1891                 return -ENOMEM;
1892 
1893         for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1894                 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1895                 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1896 
1897                 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1898                 cb->link = cpu_to_le32(nic->cbs_dma_addr +
1899                         ((i+1) % count) * sizeof(struct cb));
1900         }
1901 
1902         nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1903         nic->cbs_avail = count;
1904 
1905         return 0;
1906 }
1907 
1908 static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1909 {
1910         if (!nic->rxs) return;
1911         if (RU_SUSPENDED != nic->ru_running) return;
1912 
1913         /* handle init time starts */
1914         if (!rx) rx = nic->rxs;
1915 
1916         /* (Re)start RU if suspended or idle and RFA is non-NULL */
1917         if (rx->skb) {
1918                 e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1919                 nic->ru_running = RU_RUNNING;
1920         }
1921 }
1922 
1923 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
1924 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1925 {
1926         if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
1927                 return -ENOMEM;
1928 
1929         /* Init, and map the RFD. */
1930         skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1931         rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1932                 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1933 
1934         if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) {
1935                 dev_kfree_skb_any(rx->skb);
1936                 rx->skb = NULL;
1937                 rx->dma_addr = 0;
1938                 return -ENOMEM;
1939         }
1940 
1941         /* Link the RFD to end of RFA by linking previous RFD to
1942          * this one.  We are safe to touch the previous RFD because
1943          * it is protected by the before last buffer's el bit being set */
1944         if (rx->prev->skb) {
1945                 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1946                 put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1947                 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1948                         sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1949         }
1950 
1951         return 0;
1952 }
1953 
1954 static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1955         unsigned int *work_done, unsigned int work_to_do)
1956 {
1957         struct net_device *dev = nic->netdev;
1958         struct sk_buff *skb = rx->skb;
1959         struct rfd *rfd = (struct rfd *)skb->data;
1960         u16 rfd_status, actual_size;
1961         u16 fcs_pad = 0;
1962 
1963         if (unlikely(work_done && *work_done >= work_to_do))
1964                 return -EAGAIN;
1965 
1966         /* Need to sync before taking a peek at cb_complete bit */
1967         pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1968                 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1969         rfd_status = le16_to_cpu(rfd->status);
1970 
1971         netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
1972                      "status=0x%04X\n", rfd_status);
1973         dma_rmb(); /* read size after status bit */
1974 
1975         /* If data isn't ready, nothing to indicate */
1976         if (unlikely(!(rfd_status & cb_complete))) {
1977                 /* If the next buffer has the el bit, but we think the receiver
1978                  * is still running, check to see if it really stopped while
1979                  * we had interrupts off.
1980                  * This allows for a fast restart without re-enabling
1981                  * interrupts */
1982                 if ((le16_to_cpu(rfd->command) & cb_el) &&
1983                     (RU_RUNNING == nic->ru_running))
1984 
1985                         if (ioread8(&nic->csr->scb.status) & rus_no_res)
1986                                 nic->ru_running = RU_SUSPENDED;
1987                 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
1988                                                sizeof(struct rfd),
1989                                                PCI_DMA_FROMDEVICE);
1990                 return -ENODATA;
1991         }
1992 
1993         /* Get actual data size */
1994         if (unlikely(dev->features & NETIF_F_RXFCS))
1995                 fcs_pad = 4;
1996         actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1997         if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1998                 actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1999 
2000         /* Get data */
2001         pci_unmap_single(nic->pdev, rx->dma_addr,
2002                 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2003 
2004         /* If this buffer has the el bit, but we think the receiver
2005          * is still running, check to see if it really stopped while
2006          * we had interrupts off.
2007          * This allows for a fast restart without re-enabling interrupts.
2008          * This can happen when the RU sees the size change but also sees
2009          * the el bit set. */
2010         if ((le16_to_cpu(rfd->command) & cb_el) &&
2011             (RU_RUNNING == nic->ru_running)) {
2012 
2013             if (ioread8(&nic->csr->scb.status) & rus_no_res)
2014                 nic->ru_running = RU_SUSPENDED;
2015         }
2016 
2017         /* Pull off the RFD and put the actual data (minus eth hdr) */
2018         skb_reserve(skb, sizeof(struct rfd));
2019         skb_put(skb, actual_size);
2020         skb->protocol = eth_type_trans(skb, nic->netdev);
2021 
2022         /* If we are receiving all frames, then don't bother
2023          * checking for errors.
2024          */
2025         if (unlikely(dev->features & NETIF_F_RXALL)) {
2026                 if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad)
2027                         /* Received oversized frame, but keep it. */
2028                         nic->rx_over_length_errors++;
2029                 goto process_skb;
2030         }
2031 
2032         if (unlikely(!(rfd_status & cb_ok))) {
2033                 /* Don't indicate if hardware indicates errors */
2034                 dev_kfree_skb_any(skb);
2035         } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) {
2036                 /* Don't indicate oversized frames */
2037                 nic->rx_over_length_errors++;
2038                 dev_kfree_skb_any(skb);
2039         } else {
2040 process_skb:
2041                 dev->stats.rx_packets++;
2042                 dev->stats.rx_bytes += (actual_size - fcs_pad);
2043                 netif_receive_skb(skb);
2044                 if (work_done)
2045                         (*work_done)++;
2046         }
2047 
2048         rx->skb = NULL;
2049 
2050         return 0;
2051 }
2052 
2053 static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
2054         unsigned int work_to_do)
2055 {
2056         struct rx *rx;
2057         int restart_required = 0, err = 0;
2058         struct rx *old_before_last_rx, *new_before_last_rx;
2059         struct rfd *old_before_last_rfd, *new_before_last_rfd;
2060 
2061         /* Indicate newly arrived packets */
2062         for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
2063                 err = e100_rx_indicate(nic, rx, work_done, work_to_do);
2064                 /* Hit quota or no more to clean */
2065                 if (-EAGAIN == err || -ENODATA == err)
2066                         break;
2067         }
2068 
2069 
2070         /* On EAGAIN, hit quota so have more work to do, restart once
2071          * cleanup is complete.
2072          * Else, are we already rnr? then pay attention!!! this ensures that
2073          * the state machine progression never allows a start with a
2074          * partially cleaned list, avoiding a race between hardware
2075          * and rx_to_clean when in NAPI mode */
2076         if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
2077                 restart_required = 1;
2078 
2079         old_before_last_rx = nic->rx_to_use->prev->prev;
2080         old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
2081 
2082         /* Alloc new skbs to refill list */
2083         for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
2084                 if (unlikely(e100_rx_alloc_skb(nic, rx)))
2085                         break; /* Better luck next time (see watchdog) */
2086         }
2087 
2088         new_before_last_rx = nic->rx_to_use->prev->prev;
2089         if (new_before_last_rx != old_before_last_rx) {
2090                 /* Set the el-bit on the buffer that is before the last buffer.
2091                  * This lets us update the next pointer on the last buffer
2092                  * without worrying about hardware touching it.
2093                  * We set the size to 0 to prevent hardware from touching this
2094                  * buffer.
2095                  * When the hardware hits the before last buffer with el-bit
2096                  * and size of 0, it will RNR interrupt, the RUS will go into
2097                  * the No Resources state.  It will not complete nor write to
2098                  * this buffer. */
2099                 new_before_last_rfd =
2100                         (struct rfd *)new_before_last_rx->skb->data;
2101                 new_before_last_rfd->size = 0;
2102                 new_before_last_rfd->command |= cpu_to_le16(cb_el);
2103                 pci_dma_sync_single_for_device(nic->pdev,
2104                         new_before_last_rx->dma_addr, sizeof(struct rfd),
2105                         PCI_DMA_BIDIRECTIONAL);
2106 
2107                 /* Now that we have a new stopping point, we can clear the old
2108                  * stopping point.  We must sync twice to get the proper
2109                  * ordering on the hardware side of things. */
2110                 old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2111                 pci_dma_sync_single_for_device(nic->pdev,
2112                         old_before_last_rx->dma_addr, sizeof(struct rfd),
2113                         PCI_DMA_BIDIRECTIONAL);
2114                 old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN
2115                                                         + ETH_FCS_LEN);
2116                 pci_dma_sync_single_for_device(nic->pdev,
2117                         old_before_last_rx->dma_addr, sizeof(struct rfd),
2118                         PCI_DMA_BIDIRECTIONAL);
2119         }
2120 
2121         if (restart_required) {
2122                 // ack the rnr?
2123                 iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2124                 e100_start_receiver(nic, nic->rx_to_clean);
2125                 if (work_done)
2126                         (*work_done)++;
2127         }
2128 }
2129 
2130 static void e100_rx_clean_list(struct nic *nic)
2131 {
2132         struct rx *rx;
2133         unsigned int i, count = nic->params.rfds.count;
2134 
2135         nic->ru_running = RU_UNINITIALIZED;
2136 
2137         if (nic->rxs) {
2138                 for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2139                         if (rx->skb) {
2140                                 pci_unmap_single(nic->pdev, rx->dma_addr,
2141                                         RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2142                                 dev_kfree_skb(rx->skb);
2143                         }
2144                 }
2145                 kfree(nic->rxs);
2146                 nic->rxs = NULL;
2147         }
2148 
2149         nic->rx_to_use = nic->rx_to_clean = NULL;
2150 }
2151 
2152 static int e100_rx_alloc_list(struct nic *nic)
2153 {
2154         struct rx *rx;
2155         unsigned int i, count = nic->params.rfds.count;
2156         struct rfd *before_last;
2157 
2158         nic->rx_to_use = nic->rx_to_clean = NULL;
2159         nic->ru_running = RU_UNINITIALIZED;
2160 
2161         if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
2162                 return -ENOMEM;
2163 
2164         for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2165                 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2166                 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2167                 if (e100_rx_alloc_skb(nic, rx)) {
2168                         e100_rx_clean_list(nic);
2169                         return -ENOMEM;
2170                 }
2171         }
2172         /* Set the el-bit on the buffer that is before the last buffer.
2173          * This lets us update the next pointer on the last buffer without
2174          * worrying about hardware touching it.
2175          * We set the size to 0 to prevent hardware from touching this buffer.
2176          * When the hardware hits the before last buffer with el-bit and size
2177          * of 0, it will RNR interrupt, the RU will go into the No Resources
2178          * state.  It will not complete nor write to this buffer. */
2179         rx = nic->rxs->prev->prev;
2180         before_last = (struct rfd *)rx->skb->data;
2181         before_last->command |= cpu_to_le16(cb_el);
2182         before_last->size = 0;
2183         pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
2184                 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
2185 
2186         nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2187         nic->ru_running = RU_SUSPENDED;
2188 
2189         return 0;
2190 }
2191 
2192 static irqreturn_t e100_intr(int irq, void *dev_id)
2193 {
2194         struct net_device *netdev = dev_id;
2195         struct nic *nic = netdev_priv(netdev);
2196         u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2197 
2198         netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
2199                      "stat_ack = 0x%02X\n", stat_ack);
2200 
2201         if (stat_ack == stat_ack_not_ours ||    /* Not our interrupt */
2202            stat_ack == stat_ack_not_present)    /* Hardware is ejected */
2203                 return IRQ_NONE;
2204 
2205         /* Ack interrupt(s) */
2206         iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2207 
2208         /* We hit Receive No Resource (RNR); restart RU after cleaning */
2209         if (stat_ack & stat_ack_rnr)
2210                 nic->ru_running = RU_SUSPENDED;
2211 
2212         if (likely(napi_schedule_prep(&nic->napi))) {
2213                 e100_disable_irq(nic);
2214                 __napi_schedule(&nic->napi);
2215         }
2216 
2217         return IRQ_HANDLED;
2218 }
2219 
2220 static int e100_poll(struct napi_struct *napi, int budget)
2221 {
2222         struct nic *nic = container_of(napi, struct nic, napi);
2223         unsigned int work_done = 0;
2224 
2225         e100_rx_clean(nic, &work_done, budget);
2226         e100_tx_clean(nic);
2227 
2228         /* If budget fully consumed, continue polling */
2229         if (work_done == budget)
2230                 return budget;
2231 
2232         /* only re-enable interrupt if stack agrees polling is really done */
2233         if (likely(napi_complete_done(napi, work_done)))
2234                 e100_enable_irq(nic);
2235 
2236         return work_done;
2237 }
2238 
2239 #ifdef CONFIG_NET_POLL_CONTROLLER
2240 static void e100_netpoll(struct net_device *netdev)
2241 {
2242         struct nic *nic = netdev_priv(netdev);
2243 
2244         e100_disable_irq(nic);
2245         e100_intr(nic->pdev->irq, netdev);
2246         e100_tx_clean(nic);
2247         e100_enable_irq(nic);
2248 }
2249 #endif
2250 
2251 static int e100_set_mac_address(struct net_device *netdev, void *p)
2252 {
2253         struct nic *nic = netdev_priv(netdev);
2254         struct sockaddr *addr = p;
2255 
2256         if (!is_valid_ether_addr(addr->sa_data))
2257                 return -EADDRNOTAVAIL;
2258 
2259         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2260         e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2261 
2262         return 0;
2263 }
2264 
2265 static int e100_asf(struct nic *nic)
2266 {
2267         /* ASF can be enabled from eeprom */
2268         return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2269            (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
2270            !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
2271            ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE);
2272 }
2273 
2274 static int e100_up(struct nic *nic)
2275 {
2276         int err;
2277 
2278         if ((err = e100_rx_alloc_list(nic)))
2279                 return err;
2280         if ((err = e100_alloc_cbs(nic)))
2281                 goto err_rx_clean_list;
2282         if ((err = e100_hw_init(nic)))
2283                 goto err_clean_cbs;
2284         e100_set_multicast_list(nic->netdev);
2285         e100_start_receiver(nic, NULL);
2286         mod_timer(&nic->watchdog, jiffies);
2287         if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2288                 nic->netdev->name, nic->netdev)))
2289                 goto err_no_irq;
2290         netif_wake_queue(nic->netdev);
2291         napi_enable(&nic->napi);
2292         /* enable ints _after_ enabling poll, preventing a race between
2293          * disable ints+schedule */
2294         e100_enable_irq(nic);
2295         return 0;
2296 
2297 err_no_irq:
2298         del_timer_sync(&nic->watchdog);
2299 err_clean_cbs:
2300         e100_clean_cbs(nic);
2301 err_rx_clean_list:
2302         e100_rx_clean_list(nic);
2303         return err;
2304 }
2305 
2306 static void e100_down(struct nic *nic)
2307 {
2308         /* wait here for poll to complete */
2309         napi_disable(&nic->napi);
2310         netif_stop_queue(nic->netdev);
2311         e100_hw_reset(nic);
2312         free_irq(nic->pdev->irq, nic->netdev);
2313         del_timer_sync(&nic->watchdog);
2314         netif_carrier_off(nic->netdev);
2315         e100_clean_cbs(nic);
2316         e100_rx_clean_list(nic);
2317 }
2318 
2319 static void e100_tx_timeout(struct net_device *netdev)
2320 {
2321         struct nic *nic = netdev_priv(netdev);
2322 
2323         /* Reset outside of interrupt context, to avoid request_irq
2324          * in interrupt context */
2325         schedule_work(&nic->tx_timeout_task);
2326 }
2327 
2328 static void e100_tx_timeout_task(struct work_struct *work)
2329 {
2330         struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2331         struct net_device *netdev = nic->netdev;
2332 
2333         netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
2334                      "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
2335 
2336         rtnl_lock();
2337         if (netif_running(netdev)) {
2338                 e100_down(netdev_priv(netdev));
2339                 e100_up(netdev_priv(netdev));
2340         }
2341         rtnl_unlock();
2342 }
2343 
2344 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2345 {
2346         int err;
2347         struct sk_buff *skb;
2348 
2349         /* Use driver resources to perform internal MAC or PHY
2350          * loopback test.  A single packet is prepared and transmitted
2351          * in loopback mode, and the test passes if the received
2352          * packet compares byte-for-byte to the transmitted packet. */
2353 
2354         if ((err = e100_rx_alloc_list(nic)))
2355                 return err;
2356         if ((err = e100_alloc_cbs(nic)))
2357                 goto err_clean_rx;
2358 
2359         /* ICH PHY loopback is broken so do MAC loopback instead */
2360         if (nic->flags & ich && loopback_mode == lb_phy)
2361                 loopback_mode = lb_mac;
2362 
2363         nic->loopback = loopback_mode;
2364         if ((err = e100_hw_init(nic)))
2365                 goto err_loopback_none;
2366 
2367         if (loopback_mode == lb_phy)
2368                 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2369                         BMCR_LOOPBACK);
2370 
2371         e100_start_receiver(nic, NULL);
2372 
2373         if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2374                 err = -ENOMEM;
2375                 goto err_loopback_none;
2376         }
2377         skb_put(skb, ETH_DATA_LEN);
2378         memset(skb->data, 0xFF, ETH_DATA_LEN);
2379         e100_xmit_frame(skb, nic->netdev);
2380 
2381         msleep(10);
2382 
2383         pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
2384                         RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2385 
2386         if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2387            skb->data, ETH_DATA_LEN))
2388                 err = -EAGAIN;
2389 
2390 err_loopback_none:
2391         mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2392         nic->loopback = lb_none;
2393         e100_clean_cbs(nic);
2394         e100_hw_reset(nic);
2395 err_clean_rx:
2396         e100_rx_clean_list(nic);
2397         return err;
2398 }
2399 
2400 #define MII_LED_CONTROL 0x1B
2401 #define E100_82552_LED_OVERRIDE 0x19
2402 #define E100_82552_LED_ON       0x000F /* LEDTX and LED_RX both on */
2403 #define E100_82552_LED_OFF      0x000A /* LEDTX and LED_RX both off */
2404 
2405 static int e100_get_link_ksettings(struct net_device *netdev,
2406                                    struct ethtool_link_ksettings *cmd)
2407 {
2408         struct nic *nic = netdev_priv(netdev);
2409 
2410         mii_ethtool_get_link_ksettings(&nic->mii, cmd);
2411 
2412         return 0;
2413 }
2414 
2415 static int e100_set_link_ksettings(struct net_device *netdev,
2416                                    const struct ethtool_link_ksettings *cmd)
2417 {
2418         struct nic *nic = netdev_priv(netdev);
2419         int err;
2420 
2421         mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2422         err = mii_ethtool_set_link_ksettings(&nic->mii, cmd);
2423         e100_exec_cb(nic, NULL, e100_configure);
2424 
2425         return err;
2426 }
2427 
2428 static void e100_get_drvinfo(struct net_device *netdev,
2429         struct ethtool_drvinfo *info)
2430 {
2431         struct nic *nic = netdev_priv(netdev);
2432         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2433         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2434         strlcpy(info->bus_info, pci_name(nic->pdev),
2435                 sizeof(info->bus_info));
2436 }
2437 
2438 #define E100_PHY_REGS 0x1C
2439 static int e100_get_regs_len(struct net_device *netdev)
2440 {
2441         struct nic *nic = netdev_priv(netdev);
2442         return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
2443 }
2444 
2445 static void e100_get_regs(struct net_device *netdev,
2446         struct ethtool_regs *regs, void *p)
2447 {
2448         struct nic *nic = netdev_priv(netdev);
2449         u32 *buff = p;
2450         int i;
2451 
2452         regs->version = (1 << 24) | nic->pdev->revision;
2453         buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2454                 ioread8(&nic->csr->scb.cmd_lo) << 16 |
2455                 ioread16(&nic->csr->scb.status);
2456         for (i = E100_PHY_REGS; i >= 0; i--)
2457                 buff[1 + E100_PHY_REGS - i] =
2458                         mdio_read(netdev, nic->mii.phy_id, i);
2459         memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2460         e100_exec_cb(nic, NULL, e100_dump);
2461         msleep(10);
2462         memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2463                 sizeof(nic->mem->dump_buf));
2464 }
2465 
2466 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2467 {
2468         struct nic *nic = netdev_priv(netdev);
2469         wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
2470         wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2471 }
2472 
2473 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2474 {
2475         struct nic *nic = netdev_priv(netdev);
2476 
2477         if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2478             !device_can_wakeup(&nic->pdev->dev))
2479                 return -EOPNOTSUPP;
2480 
2481         if (wol->wolopts)
2482                 nic->flags |= wol_magic;
2483         else
2484                 nic->flags &= ~wol_magic;
2485 
2486         device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2487 
2488         e100_exec_cb(nic, NULL, e100_configure);
2489 
2490         return 0;
2491 }
2492 
2493 static u32 e100_get_msglevel(struct net_device *netdev)
2494 {
2495         struct nic *nic = netdev_priv(netdev);
2496         return nic->msg_enable;
2497 }
2498 
2499 static void e100_set_msglevel(struct net_device *netdev, u32 value)
2500 {
2501         struct nic *nic = netdev_priv(netdev);
2502         nic->msg_enable = value;
2503 }
2504 
2505 static int e100_nway_reset(struct net_device *netdev)
2506 {
2507         struct nic *nic = netdev_priv(netdev);
2508         return mii_nway_restart(&nic->mii);
2509 }
2510 
2511 static u32 e100_get_link(struct net_device *netdev)
2512 {
2513         struct nic *nic = netdev_priv(netdev);
2514         return mii_link_ok(&nic->mii);
2515 }
2516 
2517 static int e100_get_eeprom_len(struct net_device *netdev)
2518 {
2519         struct nic *nic = netdev_priv(netdev);
2520         return nic->eeprom_wc << 1;
2521 }
2522 
2523 #define E100_EEPROM_MAGIC       0x1234
2524 static int e100_get_eeprom(struct net_device *netdev,
2525         struct ethtool_eeprom *eeprom, u8 *bytes)
2526 {
2527         struct nic *nic = netdev_priv(netdev);
2528 
2529         eeprom->magic = E100_EEPROM_MAGIC;
2530         memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2531 
2532         return 0;
2533 }
2534 
2535 static int e100_set_eeprom(struct net_device *netdev,
2536         struct ethtool_eeprom *eeprom, u8 *bytes)
2537 {
2538         struct nic *nic = netdev_priv(netdev);
2539 
2540         if (eeprom->magic != E100_EEPROM_MAGIC)
2541                 return -EINVAL;
2542 
2543         memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2544 
2545         return e100_eeprom_save(nic, eeprom->offset >> 1,
2546                 (eeprom->len >> 1) + 1);
2547 }
2548 
2549 static void e100_get_ringparam(struct net_device *netdev,
2550         struct ethtool_ringparam *ring)
2551 {
2552         struct nic *nic = netdev_priv(netdev);
2553         struct param_range *rfds = &nic->params.rfds;
2554         struct param_range *cbs = &nic->params.cbs;
2555 
2556         ring->rx_max_pending = rfds->max;
2557         ring->tx_max_pending = cbs->max;
2558         ring->rx_pending = rfds->count;
2559         ring->tx_pending = cbs->count;
2560 }
2561 
2562 static int e100_set_ringparam(struct net_device *netdev,
2563         struct ethtool_ringparam *ring)
2564 {
2565         struct nic *nic = netdev_priv(netdev);
2566         struct param_range *rfds = &nic->params.rfds;
2567         struct param_range *cbs = &nic->params.cbs;
2568 
2569         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2570                 return -EINVAL;
2571 
2572         if (netif_running(netdev))
2573                 e100_down(nic);
2574         rfds->count = max(ring->rx_pending, rfds->min);
2575         rfds->count = min(rfds->count, rfds->max);
2576         cbs->count = max(ring->tx_pending, cbs->min);
2577         cbs->count = min(cbs->count, cbs->max);
2578         netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
2579                    rfds->count, cbs->count);
2580         if (netif_running(netdev))
2581                 e100_up(nic);
2582 
2583         return 0;
2584 }
2585 
2586 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2587         "Link test     (on/offline)",
2588         "Eeprom test   (on/offline)",
2589         "Self test        (offline)",
2590         "Mac loopback     (offline)",
2591         "Phy loopback     (offline)",
2592 };
2593 #define E100_TEST_LEN   ARRAY_SIZE(e100_gstrings_test)
2594 
2595 static void e100_diag_test(struct net_device *netdev,
2596         struct ethtool_test *test, u64 *data)
2597 {
2598         struct ethtool_cmd cmd;
2599         struct nic *nic = netdev_priv(netdev);
2600         int i, err;
2601 
2602         memset(data, 0, E100_TEST_LEN * sizeof(u64));
2603         data[0] = !mii_link_ok(&nic->mii);
2604         data[1] = e100_eeprom_load(nic);
2605         if (test->flags & ETH_TEST_FL_OFFLINE) {
2606 
2607                 /* save speed, duplex & autoneg settings */
2608                 err = mii_ethtool_gset(&nic->mii, &cmd);
2609 
2610                 if (netif_running(netdev))
2611                         e100_down(nic);
2612                 data[2] = e100_self_test(nic);
2613                 data[3] = e100_loopback_test(nic, lb_mac);
2614                 data[4] = e100_loopback_test(nic, lb_phy);
2615 
2616                 /* restore speed, duplex & autoneg settings */
2617                 err = mii_ethtool_sset(&nic->mii, &cmd);
2618 
2619                 if (netif_running(netdev))
2620                         e100_up(nic);
2621         }
2622         for (i = 0; i < E100_TEST_LEN; i++)
2623                 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2624 
2625         msleep_interruptible(4 * 1000);
2626 }
2627 
2628 static int e100_set_phys_id(struct net_device *netdev,
2629                             enum ethtool_phys_id_state state)
2630 {
2631         struct nic *nic = netdev_priv(netdev);
2632         enum led_state {
2633                 led_on     = 0x01,
2634                 led_off    = 0x04,
2635                 led_on_559 = 0x05,
2636                 led_on_557 = 0x07,
2637         };
2638         u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2639                 MII_LED_CONTROL;
2640         u16 leds = 0;
2641 
2642         switch (state) {
2643         case ETHTOOL_ID_ACTIVE:
2644                 return 2;
2645 
2646         case ETHTOOL_ID_ON:
2647                 leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
2648                        (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2649                 break;
2650 
2651         case ETHTOOL_ID_OFF:
2652                 leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
2653                 break;
2654 
2655         case ETHTOOL_ID_INACTIVE:
2656                 break;
2657         }
2658 
2659         mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
2660         return 0;
2661 }
2662 
2663 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2664         "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2665         "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2666         "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2667         "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2668         "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2669         "tx_heartbeat_errors", "tx_window_errors",
2670         /* device-specific stats */
2671         "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2672         "tx_flow_control_pause", "rx_flow_control_pause",
2673         "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2674         "rx_short_frame_errors", "rx_over_length_errors",
2675 };
2676 #define E100_NET_STATS_LEN      21
2677 #define E100_STATS_LEN  ARRAY_SIZE(e100_gstrings_stats)
2678 
2679 static int e100_get_sset_count(struct net_device *netdev, int sset)
2680 {
2681         switch (sset) {
2682         case ETH_SS_TEST:
2683                 return E100_TEST_LEN;
2684         case ETH_SS_STATS:
2685                 return E100_STATS_LEN;
2686         default:
2687                 return -EOPNOTSUPP;
2688         }
2689 }
2690 
2691 static void e100_get_ethtool_stats(struct net_device *netdev,
2692         struct ethtool_stats *stats, u64 *data)
2693 {
2694         struct nic *nic = netdev_priv(netdev);
2695         int i;
2696 
2697         for (i = 0; i < E100_NET_STATS_LEN; i++)
2698                 data[i] = ((unsigned long *)&netdev->stats)[i];
2699 
2700         data[i++] = nic->tx_deferred;
2701         data[i++] = nic->tx_single_collisions;
2702         data[i++] = nic->tx_multiple_collisions;
2703         data[i++] = nic->tx_fc_pause;
2704         data[i++] = nic->rx_fc_pause;
2705         data[i++] = nic->rx_fc_unsupported;
2706         data[i++] = nic->tx_tco_frames;
2707         data[i++] = nic->rx_tco_frames;
2708         data[i++] = nic->rx_short_frame_errors;
2709         data[i++] = nic->rx_over_length_errors;
2710 }
2711 
2712 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2713 {
2714         switch (stringset) {
2715         case ETH_SS_TEST:
2716                 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2717                 break;
2718         case ETH_SS_STATS:
2719                 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2720                 break;
2721         }
2722 }
2723 
2724 static const struct ethtool_ops e100_ethtool_ops = {
2725         .get_drvinfo            = e100_get_drvinfo,
2726         .get_regs_len           = e100_get_regs_len,
2727         .get_regs               = e100_get_regs,
2728         .get_wol                = e100_get_wol,
2729         .set_wol                = e100_set_wol,
2730         .get_msglevel           = e100_get_msglevel,
2731         .set_msglevel           = e100_set_msglevel,
2732         .nway_reset             = e100_nway_reset,
2733         .get_link               = e100_get_link,
2734         .get_eeprom_len         = e100_get_eeprom_len,
2735         .get_eeprom             = e100_get_eeprom,
2736         .set_eeprom             = e100_set_eeprom,
2737         .get_ringparam          = e100_get_ringparam,
2738         .set_ringparam          = e100_set_ringparam,
2739         .self_test              = e100_diag_test,
2740         .get_strings            = e100_get_strings,
2741         .set_phys_id            = e100_set_phys_id,
2742         .get_ethtool_stats      = e100_get_ethtool_stats,
2743         .get_sset_count         = e100_get_sset_count,
2744         .get_ts_info            = ethtool_op_get_ts_info,
2745         .get_link_ksettings     = e100_get_link_ksettings,
2746         .set_link_ksettings     = e100_set_link_ksettings,
2747 };
2748 
2749 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2750 {
2751         struct nic *nic = netdev_priv(netdev);
2752 
2753         return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2754 }
2755 
2756 static int e100_alloc(struct nic *nic)
2757 {
2758         nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2759                 &nic->dma_addr);
2760         return nic->mem ? 0 : -ENOMEM;
2761 }
2762 
2763 static void e100_free(struct nic *nic)
2764 {
2765         if (nic->mem) {
2766                 pci_free_consistent(nic->pdev, sizeof(struct mem),
2767                         nic->mem, nic->dma_addr);
2768                 nic->mem = NULL;
2769         }
2770 }
2771 
2772 static int e100_open(struct net_device *netdev)
2773 {
2774         struct nic *nic = netdev_priv(netdev);
2775         int err = 0;
2776 
2777         netif_carrier_off(netdev);
2778         if ((err = e100_up(nic)))
2779                 netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
2780         return err;
2781 }
2782 
2783 static int e100_close(struct net_device *netdev)
2784 {
2785         e100_down(netdev_priv(netdev));
2786         return 0;
2787 }
2788 
2789 static int e100_set_features(struct net_device *netdev,
2790                              netdev_features_t features)
2791 {
2792         struct nic *nic = netdev_priv(netdev);
2793         netdev_features_t changed = features ^ netdev->features;
2794 
2795         if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL)))
2796                 return 0;
2797 
2798         netdev->features = features;
2799         e100_exec_cb(nic, NULL, e100_configure);
2800         return 1;
2801 }
2802 
2803 static const struct net_device_ops e100_netdev_ops = {
2804         .ndo_open               = e100_open,
2805         .ndo_stop               = e100_close,
2806         .ndo_start_xmit         = e100_xmit_frame,
2807         .ndo_validate_addr      = eth_validate_addr,
2808         .ndo_set_rx_mode        = e100_set_multicast_list,
2809         .ndo_set_mac_address    = e100_set_mac_address,
2810         .ndo_do_ioctl           = e100_do_ioctl,
2811         .ndo_tx_timeout         = e100_tx_timeout,
2812 #ifdef CONFIG_NET_POLL_CONTROLLER
2813         .ndo_poll_controller    = e100_netpoll,
2814 #endif
2815         .ndo_set_features       = e100_set_features,
2816 };
2817 
2818 static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2819 {
2820         struct net_device *netdev;
2821         struct nic *nic;
2822         int err;
2823 
2824         if (!(netdev = alloc_etherdev(sizeof(struct nic))))
2825                 return -ENOMEM;
2826 
2827         netdev->hw_features |= NETIF_F_RXFCS;
2828         netdev->priv_flags |= IFF_SUPP_NOFCS;
2829         netdev->hw_features |= NETIF_F_RXALL;
2830 
2831         netdev->netdev_ops = &e100_netdev_ops;
2832         netdev->ethtool_ops = &e100_ethtool_ops;
2833         netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2834         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2835 
2836         nic = netdev_priv(netdev);
2837         netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2838         nic->netdev = netdev;
2839         nic->pdev = pdev;
2840         nic->msg_enable = (1 << debug) - 1;
2841         nic->mdio_ctrl = mdio_ctrl_hw;
2842         pci_set_drvdata(pdev, netdev);
2843 
2844         if ((err = pci_enable_device(pdev))) {
2845                 netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
2846                 goto err_out_free_dev;
2847         }
2848 
2849         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2850                 netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
2851                 err = -ENODEV;
2852                 goto err_out_disable_pdev;
2853         }
2854 
2855         if ((err = pci_request_regions(pdev, DRV_NAME))) {
2856                 netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
2857                 goto err_out_disable_pdev;
2858         }
2859 
2860         if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
2861                 netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
2862                 goto err_out_free_res;
2863         }
2864 
2865         SET_NETDEV_DEV(netdev, &pdev->dev);
2866 
2867         if (use_io)
2868                 netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
2869 
2870         nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2871         if (!nic->csr) {
2872                 netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
2873                 err = -ENOMEM;
2874                 goto err_out_free_res;
2875         }
2876 
2877         if (ent->driver_data)
2878                 nic->flags |= ich;
2879         else
2880                 nic->flags &= ~ich;
2881 
2882         e100_get_defaults(nic);
2883 
2884         /* D100 MAC doesn't allow rx of vlan packets with normal MTU */
2885         if (nic->mac < mac_82558_D101_A4)
2886                 netdev->features |= NETIF_F_VLAN_CHALLENGED;
2887 
2888         /* locks must be initialized before calling hw_reset */
2889         spin_lock_init(&nic->cb_lock);
2890         spin_lock_init(&nic->cmd_lock);
2891         spin_lock_init(&nic->mdio_lock);
2892 
2893         /* Reset the device before pci_set_master() in case device is in some
2894          * funky state and has an interrupt pending - hint: we don't have the
2895          * interrupt handler registered yet. */
2896         e100_hw_reset(nic);
2897 
2898         pci_set_master(pdev);
2899 
2900         timer_setup(&nic->watchdog, e100_watchdog, 0);
2901 
2902         INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2903 
2904         if ((err = e100_alloc(nic))) {
2905                 netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
2906                 goto err_out_iounmap;
2907         }
2908 
2909         if ((err = e100_eeprom_load(nic)))
2910                 goto err_out_free;
2911 
2912         e100_phy_init(nic);
2913 
2914         memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2915         if (!is_valid_ether_addr(netdev->dev_addr)) {
2916                 if (!eeprom_bad_csum_allow) {
2917                         netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
2918                         err = -EAGAIN;
2919                         goto err_out_free;
2920                 } else {
2921                         netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2922                 }
2923         }
2924 
2925         /* Wol magic packet can be enabled from eeprom */
2926         if ((nic->mac >= mac_82558_D101_A4) &&
2927            (nic->eeprom[eeprom_id] & eeprom_id_wol)) {
2928                 nic->flags |= wol_magic;
2929                 device_set_wakeup_enable(&pdev->dev, true);
2930         }
2931 
2932         /* ack any pending wake events, disable PME */
2933         pci_pme_active(pdev, false);
2934 
2935         strcpy(netdev->name, "eth%d");
2936         if ((err = register_netdev(netdev))) {
2937                 netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
2938                 goto err_out_free;
2939         }
2940         nic->cbs_pool = dma_pool_create(netdev->name,
2941                            &nic->pdev->dev,
2942                            nic->params.cbs.max * sizeof(struct cb),
2943                            sizeof(u32),
2944                            0);
2945         if (!nic->cbs_pool) {
2946                 netif_err(nic, probe, nic->netdev, "Cannot create DMA pool, aborting\n");
2947                 err = -ENOMEM;
2948                 goto err_out_pool;
2949         }
2950         netif_info(nic, probe, nic->netdev,
2951                    "addr 0x%llx, irq %d, MAC addr %pM\n",
2952                    (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2953                    pdev->irq, netdev->dev_addr);
2954 
2955         return 0;
2956 
2957 err_out_pool:
2958         unregister_netdev(netdev);
2959 err_out_free:
2960         e100_free(nic);
2961 err_out_iounmap:
2962         pci_iounmap(pdev, nic->csr);
2963 err_out_free_res:
2964         pci_release_regions(pdev);
2965 err_out_disable_pdev:
2966         pci_disable_device(pdev);
2967 err_out_free_dev:
2968         free_netdev(netdev);
2969         return err;
2970 }
2971 
2972 static void e100_remove(struct pci_dev *pdev)
2973 {
2974         struct net_device *netdev = pci_get_drvdata(pdev);
2975 
2976         if (netdev) {
2977                 struct nic *nic = netdev_priv(netdev);
2978                 unregister_netdev(netdev);
2979                 e100_free(nic);
2980                 pci_iounmap(pdev, nic->csr);
2981                 dma_pool_destroy(nic->cbs_pool);
2982                 free_netdev(netdev);
2983                 pci_release_regions(pdev);
2984                 pci_disable_device(pdev);
2985         }
2986 }
2987 
2988 #define E100_82552_SMARTSPEED   0x14   /* SmartSpeed Ctrl register */
2989 #define E100_82552_REV_ANEG     0x0200 /* Reverse auto-negotiation */
2990 #define E100_82552_ANEG_NOW     0x0400 /* Auto-negotiate now */
2991 static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
2992 {
2993         struct net_device *netdev = pci_get_drvdata(pdev);
2994         struct nic *nic = netdev_priv(netdev);
2995 
2996         if (netif_running(netdev))
2997                 e100_down(nic);
2998         netif_device_detach(netdev);
2999 
3000         pci_save_state(pdev);
3001 
3002         if ((nic->flags & wol_magic) | e100_asf(nic)) {
3003                 /* enable reverse auto-negotiation */
3004                 if (nic->phy == phy_82552_v) {
3005                         u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3006                                                    E100_82552_SMARTSPEED);
3007 
3008                         mdio_write(netdev, nic->mii.phy_id,
3009                                    E100_82552_SMARTSPEED, smartspeed |
3010                                    E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
3011                 }
3012                 *enable_wake = true;
3013         } else {
3014                 *enable_wake = false;
3015         }
3016 
3017         pci_clear_master(pdev);
3018 }
3019 
3020 static int __e100_power_off(struct pci_dev *pdev, bool wake)
3021 {
3022         if (wake)
3023                 return pci_prepare_to_sleep(pdev);
3024 
3025         pci_wake_from_d3(pdev, false);
3026         pci_set_power_state(pdev, PCI_D3hot);
3027 
3028         return 0;
3029 }
3030 
3031 #ifdef CONFIG_PM
3032 static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
3033 {
3034         bool wake;
3035         __e100_shutdown(pdev, &wake);
3036         return __e100_power_off(pdev, wake);
3037 }
3038 
3039 static int e100_resume(struct pci_dev *pdev)
3040 {
3041         struct net_device *netdev = pci_get_drvdata(pdev);
3042         struct nic *nic = netdev_priv(netdev);
3043 
3044         pci_set_power_state(pdev, PCI_D0);
3045         pci_restore_state(pdev);
3046         /* ack any pending wake events, disable PME */
3047         pci_enable_wake(pdev, PCI_D0, 0);
3048 
3049         /* disable reverse auto-negotiation */
3050         if (nic->phy == phy_82552_v) {
3051                 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3052                                            E100_82552_SMARTSPEED);
3053 
3054                 mdio_write(netdev, nic->mii.phy_id,
3055                            E100_82552_SMARTSPEED,
3056                            smartspeed & ~(E100_82552_REV_ANEG));
3057         }
3058 
3059         netif_device_attach(netdev);
3060         if (netif_running(netdev))
3061                 e100_up(nic);
3062 
3063         return 0;
3064 }
3065 #endif /* CONFIG_PM */
3066 
3067 static void e100_shutdown(struct pci_dev *pdev)
3068 {
3069         bool wake;
3070         __e100_shutdown(pdev, &wake);
3071         if (system_state == SYSTEM_POWER_OFF)
3072                 __e100_power_off(pdev, wake);
3073 }
3074 
3075 /* ------------------ PCI Error Recovery infrastructure  -------------- */
3076 /**
3077  * e100_io_error_detected - called when PCI error is detected.
3078  * @pdev: Pointer to PCI device
3079  * @state: The current pci connection state
3080  */
3081 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
3082 {
3083         struct net_device *netdev = pci_get_drvdata(pdev);
3084         struct nic *nic = netdev_priv(netdev);
3085 
3086         netif_device_detach(netdev);
3087 
3088         if (state == pci_channel_io_perm_failure)
3089                 return PCI_ERS_RESULT_DISCONNECT;
3090 
3091         if (netif_running(netdev))
3092                 e100_down(nic);
3093         pci_disable_device(pdev);
3094 
3095         /* Request a slot reset. */
3096         return PCI_ERS_RESULT_NEED_RESET;
3097 }
3098 
3099 /**
3100  * e100_io_slot_reset - called after the pci bus has been reset.
3101  * @pdev: Pointer to PCI device
3102  *
3103  * Restart the card from scratch.
3104  */
3105 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3106 {
3107         struct net_device *netdev = pci_get_drvdata(pdev);
3108         struct nic *nic = netdev_priv(netdev);
3109 
3110         if (pci_enable_device(pdev)) {
3111                 pr_err("Cannot re-enable PCI device after reset\n");
3112                 return PCI_ERS_RESULT_DISCONNECT;
3113         }
3114         pci_set_master(pdev);
3115 
3116         /* Only one device per card can do a reset */
3117         if (0 != PCI_FUNC(pdev->devfn))
3118                 return PCI_ERS_RESULT_RECOVERED;
3119         e100_hw_reset(nic);
3120         e100_phy_init(nic);
3121 
3122         return PCI_ERS_RESULT_RECOVERED;
3123 }
3124 
3125 /**
3126  * e100_io_resume - resume normal operations
3127  * @pdev: Pointer to PCI device
3128  *
3129  * Resume normal operations after an error recovery
3130  * sequence has been completed.
3131  */
3132 static void e100_io_resume(struct pci_dev *pdev)
3133 {
3134         struct net_device *netdev = pci_get_drvdata(pdev);
3135         struct nic *nic = netdev_priv(netdev);
3136 
3137         /* ack any pending wake events, disable PME */
3138         pci_enable_wake(pdev, PCI_D0, 0);
3139 
3140         netif_device_attach(netdev);
3141         if (netif_running(netdev)) {
3142                 e100_open(netdev);
3143                 mod_timer(&nic->watchdog, jiffies);
3144         }
3145 }
3146 
3147 static const struct pci_error_handlers e100_err_handler = {
3148         .error_detected = e100_io_error_detected,
3149         .slot_reset = e100_io_slot_reset,
3150         .resume = e100_io_resume,
3151 };
3152 
3153 static struct pci_driver e100_driver = {
3154         .name =         DRV_NAME,
3155         .id_table =     e100_id_table,
3156         .probe =        e100_probe,
3157         .remove =       e100_remove,
3158 #ifdef CONFIG_PM
3159         /* Power Management hooks */
3160         .suspend =      e100_suspend,
3161         .resume =       e100_resume,
3162 #endif
3163         .shutdown =     e100_shutdown,
3164         .err_handler = &e100_err_handler,
3165 };
3166 
3167 static int __init e100_init_module(void)
3168 {
3169         if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3170                 pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
3171                 pr_info("%s\n", DRV_COPYRIGHT);
3172         }
3173         return pci_register_driver(&e100_driver);
3174 }
3175 
3176 static void __exit e100_cleanup_module(void)
3177 {
3178         pci_unregister_driver(&e100_driver);
3179 }
3180 
3181 module_init(e100_init_module);
3182 module_exit(e100_cleanup_module);

/* [<][>][^][v][top][bottom][index][help] */