root/drivers/net/ethernet/intel/e1000e/nvm.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. e1000_raise_eec_clk
  2. e1000_lower_eec_clk
  3. e1000_shift_out_eec_bits
  4. e1000_shift_in_eec_bits
  5. e1000e_poll_eerd_eewr_done
  6. e1000e_acquire_nvm
  7. e1000_standby_nvm
  8. e1000_stop_nvm
  9. e1000e_release_nvm
  10. e1000_ready_nvm_eeprom
  11. e1000e_read_nvm_eerd
  12. e1000e_write_nvm_spi
  13. e1000_read_pba_string_generic
  14. e1000_read_mac_addr_generic
  15. e1000e_validate_nvm_checksum_generic
  16. e1000e_update_nvm_checksum_generic
  17. e1000e_reload_nvm_generic

   1 // SPDX-License-Identifier: GPL-2.0
   2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
   3 
   4 #include "e1000.h"
   5 
   6 /**
   7  *  e1000_raise_eec_clk - Raise EEPROM clock
   8  *  @hw: pointer to the HW structure
   9  *  @eecd: pointer to the EEPROM
  10  *
  11  *  Enable/Raise the EEPROM clock bit.
  12  **/
  13 static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
  14 {
  15         *eecd = *eecd | E1000_EECD_SK;
  16         ew32(EECD, *eecd);
  17         e1e_flush();
  18         udelay(hw->nvm.delay_usec);
  19 }
  20 
  21 /**
  22  *  e1000_lower_eec_clk - Lower EEPROM clock
  23  *  @hw: pointer to the HW structure
  24  *  @eecd: pointer to the EEPROM
  25  *
  26  *  Clear/Lower the EEPROM clock bit.
  27  **/
  28 static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
  29 {
  30         *eecd = *eecd & ~E1000_EECD_SK;
  31         ew32(EECD, *eecd);
  32         e1e_flush();
  33         udelay(hw->nvm.delay_usec);
  34 }
  35 
  36 /**
  37  *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
  38  *  @hw: pointer to the HW structure
  39  *  @data: data to send to the EEPROM
  40  *  @count: number of bits to shift out
  41  *
  42  *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
  43  *  "data" parameter will be shifted out to the EEPROM one bit at a time.
  44  *  In order to do this, "data" must be broken down into bits.
  45  **/
  46 static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
  47 {
  48         struct e1000_nvm_info *nvm = &hw->nvm;
  49         u32 eecd = er32(EECD);
  50         u32 mask;
  51 
  52         mask = BIT(count - 1);
  53         if (nvm->type == e1000_nvm_eeprom_spi)
  54                 eecd |= E1000_EECD_DO;
  55 
  56         do {
  57                 eecd &= ~E1000_EECD_DI;
  58 
  59                 if (data & mask)
  60                         eecd |= E1000_EECD_DI;
  61 
  62                 ew32(EECD, eecd);
  63                 e1e_flush();
  64 
  65                 udelay(nvm->delay_usec);
  66 
  67                 e1000_raise_eec_clk(hw, &eecd);
  68                 e1000_lower_eec_clk(hw, &eecd);
  69 
  70                 mask >>= 1;
  71         } while (mask);
  72 
  73         eecd &= ~E1000_EECD_DI;
  74         ew32(EECD, eecd);
  75 }
  76 
  77 /**
  78  *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
  79  *  @hw: pointer to the HW structure
  80  *  @count: number of bits to shift in
  81  *
  82  *  In order to read a register from the EEPROM, we need to shift 'count' bits
  83  *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
  84  *  the EEPROM (setting the SK bit), and then reading the value of the data out
  85  *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
  86  *  always be clear.
  87  **/
  88 static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
  89 {
  90         u32 eecd;
  91         u32 i;
  92         u16 data;
  93 
  94         eecd = er32(EECD);
  95         eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
  96         data = 0;
  97 
  98         for (i = 0; i < count; i++) {
  99                 data <<= 1;
 100                 e1000_raise_eec_clk(hw, &eecd);
 101 
 102                 eecd = er32(EECD);
 103 
 104                 eecd &= ~E1000_EECD_DI;
 105                 if (eecd & E1000_EECD_DO)
 106                         data |= 1;
 107 
 108                 e1000_lower_eec_clk(hw, &eecd);
 109         }
 110 
 111         return data;
 112 }
 113 
 114 /**
 115  *  e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
 116  *  @hw: pointer to the HW structure
 117  *  @ee_reg: EEPROM flag for polling
 118  *
 119  *  Polls the EEPROM status bit for either read or write completion based
 120  *  upon the value of 'ee_reg'.
 121  **/
 122 s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
 123 {
 124         u32 attempts = 100000;
 125         u32 i, reg = 0;
 126 
 127         for (i = 0; i < attempts; i++) {
 128                 if (ee_reg == E1000_NVM_POLL_READ)
 129                         reg = er32(EERD);
 130                 else
 131                         reg = er32(EEWR);
 132 
 133                 if (reg & E1000_NVM_RW_REG_DONE)
 134                         return 0;
 135 
 136                 udelay(5);
 137         }
 138 
 139         return -E1000_ERR_NVM;
 140 }
 141 
 142 /**
 143  *  e1000e_acquire_nvm - Generic request for access to EEPROM
 144  *  @hw: pointer to the HW structure
 145  *
 146  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
 147  *  Return successful if access grant bit set, else clear the request for
 148  *  EEPROM access and return -E1000_ERR_NVM (-1).
 149  **/
 150 s32 e1000e_acquire_nvm(struct e1000_hw *hw)
 151 {
 152         u32 eecd = er32(EECD);
 153         s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
 154 
 155         ew32(EECD, eecd | E1000_EECD_REQ);
 156         eecd = er32(EECD);
 157 
 158         while (timeout) {
 159                 if (eecd & E1000_EECD_GNT)
 160                         break;
 161                 udelay(5);
 162                 eecd = er32(EECD);
 163                 timeout--;
 164         }
 165 
 166         if (!timeout) {
 167                 eecd &= ~E1000_EECD_REQ;
 168                 ew32(EECD, eecd);
 169                 e_dbg("Could not acquire NVM grant\n");
 170                 return -E1000_ERR_NVM;
 171         }
 172 
 173         return 0;
 174 }
 175 
 176 /**
 177  *  e1000_standby_nvm - Return EEPROM to standby state
 178  *  @hw: pointer to the HW structure
 179  *
 180  *  Return the EEPROM to a standby state.
 181  **/
 182 static void e1000_standby_nvm(struct e1000_hw *hw)
 183 {
 184         struct e1000_nvm_info *nvm = &hw->nvm;
 185         u32 eecd = er32(EECD);
 186 
 187         if (nvm->type == e1000_nvm_eeprom_spi) {
 188                 /* Toggle CS to flush commands */
 189                 eecd |= E1000_EECD_CS;
 190                 ew32(EECD, eecd);
 191                 e1e_flush();
 192                 udelay(nvm->delay_usec);
 193                 eecd &= ~E1000_EECD_CS;
 194                 ew32(EECD, eecd);
 195                 e1e_flush();
 196                 udelay(nvm->delay_usec);
 197         }
 198 }
 199 
 200 /**
 201  *  e1000_stop_nvm - Terminate EEPROM command
 202  *  @hw: pointer to the HW structure
 203  *
 204  *  Terminates the current command by inverting the EEPROM's chip select pin.
 205  **/
 206 static void e1000_stop_nvm(struct e1000_hw *hw)
 207 {
 208         u32 eecd;
 209 
 210         eecd = er32(EECD);
 211         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
 212                 /* Pull CS high */
 213                 eecd |= E1000_EECD_CS;
 214                 e1000_lower_eec_clk(hw, &eecd);
 215         }
 216 }
 217 
 218 /**
 219  *  e1000e_release_nvm - Release exclusive access to EEPROM
 220  *  @hw: pointer to the HW structure
 221  *
 222  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
 223  **/
 224 void e1000e_release_nvm(struct e1000_hw *hw)
 225 {
 226         u32 eecd;
 227 
 228         e1000_stop_nvm(hw);
 229 
 230         eecd = er32(EECD);
 231         eecd &= ~E1000_EECD_REQ;
 232         ew32(EECD, eecd);
 233 }
 234 
 235 /**
 236  *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
 237  *  @hw: pointer to the HW structure
 238  *
 239  *  Setups the EEPROM for reading and writing.
 240  **/
 241 static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
 242 {
 243         struct e1000_nvm_info *nvm = &hw->nvm;
 244         u32 eecd = er32(EECD);
 245         u8 spi_stat_reg;
 246 
 247         if (nvm->type == e1000_nvm_eeprom_spi) {
 248                 u16 timeout = NVM_MAX_RETRY_SPI;
 249 
 250                 /* Clear SK and CS */
 251                 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
 252                 ew32(EECD, eecd);
 253                 e1e_flush();
 254                 udelay(1);
 255 
 256                 /* Read "Status Register" repeatedly until the LSB is cleared.
 257                  * The EEPROM will signal that the command has been completed
 258                  * by clearing bit 0 of the internal status register.  If it's
 259                  * not cleared within 'timeout', then error out.
 260                  */
 261                 while (timeout) {
 262                         e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
 263                                                  hw->nvm.opcode_bits);
 264                         spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
 265                         if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
 266                                 break;
 267 
 268                         udelay(5);
 269                         e1000_standby_nvm(hw);
 270                         timeout--;
 271                 }
 272 
 273                 if (!timeout) {
 274                         e_dbg("SPI NVM Status error\n");
 275                         return -E1000_ERR_NVM;
 276                 }
 277         }
 278 
 279         return 0;
 280 }
 281 
 282 /**
 283  *  e1000e_read_nvm_eerd - Reads EEPROM using EERD register
 284  *  @hw: pointer to the HW structure
 285  *  @offset: offset of word in the EEPROM to read
 286  *  @words: number of words to read
 287  *  @data: word read from the EEPROM
 288  *
 289  *  Reads a 16 bit word from the EEPROM using the EERD register.
 290  **/
 291 s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
 292 {
 293         struct e1000_nvm_info *nvm = &hw->nvm;
 294         u32 i, eerd = 0;
 295         s32 ret_val = 0;
 296 
 297         /* A check for invalid values:  offset too large, too many words,
 298          * too many words for the offset, and not enough words.
 299          */
 300         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
 301             (words == 0)) {
 302                 e_dbg("nvm parameter(s) out of bounds\n");
 303                 return -E1000_ERR_NVM;
 304         }
 305 
 306         for (i = 0; i < words; i++) {
 307                 eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) +
 308                     E1000_NVM_RW_REG_START;
 309 
 310                 ew32(EERD, eerd);
 311                 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
 312                 if (ret_val) {
 313                         e_dbg("NVM read error: %d\n", ret_val);
 314                         break;
 315                 }
 316 
 317                 data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
 318         }
 319 
 320         return ret_val;
 321 }
 322 
 323 /**
 324  *  e1000e_write_nvm_spi - Write to EEPROM using SPI
 325  *  @hw: pointer to the HW structure
 326  *  @offset: offset within the EEPROM to be written to
 327  *  @words: number of words to write
 328  *  @data: 16 bit word(s) to be written to the EEPROM
 329  *
 330  *  Writes data to EEPROM at offset using SPI interface.
 331  *
 332  *  If e1000e_update_nvm_checksum is not called after this function , the
 333  *  EEPROM will most likely contain an invalid checksum.
 334  **/
 335 s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
 336 {
 337         struct e1000_nvm_info *nvm = &hw->nvm;
 338         s32 ret_val = -E1000_ERR_NVM;
 339         u16 widx = 0;
 340 
 341         /* A check for invalid values:  offset too large, too many words,
 342          * and not enough words.
 343          */
 344         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
 345             (words == 0)) {
 346                 e_dbg("nvm parameter(s) out of bounds\n");
 347                 return -E1000_ERR_NVM;
 348         }
 349 
 350         while (widx < words) {
 351                 u8 write_opcode = NVM_WRITE_OPCODE_SPI;
 352 
 353                 ret_val = nvm->ops.acquire(hw);
 354                 if (ret_val)
 355                         return ret_val;
 356 
 357                 ret_val = e1000_ready_nvm_eeprom(hw);
 358                 if (ret_val) {
 359                         nvm->ops.release(hw);
 360                         return ret_val;
 361                 }
 362 
 363                 e1000_standby_nvm(hw);
 364 
 365                 /* Send the WRITE ENABLE command (8 bit opcode) */
 366                 e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
 367                                          nvm->opcode_bits);
 368 
 369                 e1000_standby_nvm(hw);
 370 
 371                 /* Some SPI eeproms use the 8th address bit embedded in the
 372                  * opcode
 373                  */
 374                 if ((nvm->address_bits == 8) && (offset >= 128))
 375                         write_opcode |= NVM_A8_OPCODE_SPI;
 376 
 377                 /* Send the Write command (8-bit opcode + addr) */
 378                 e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
 379                 e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
 380                                          nvm->address_bits);
 381 
 382                 /* Loop to allow for up to whole page write of eeprom */
 383                 while (widx < words) {
 384                         u16 word_out = data[widx];
 385 
 386                         word_out = (word_out >> 8) | (word_out << 8);
 387                         e1000_shift_out_eec_bits(hw, word_out, 16);
 388                         widx++;
 389 
 390                         if ((((offset + widx) * 2) % nvm->page_size) == 0) {
 391                                 e1000_standby_nvm(hw);
 392                                 break;
 393                         }
 394                 }
 395                 usleep_range(10000, 11000);
 396                 nvm->ops.release(hw);
 397         }
 398 
 399         return ret_val;
 400 }
 401 
 402 /**
 403  *  e1000_read_pba_string_generic - Read device part number
 404  *  @hw: pointer to the HW structure
 405  *  @pba_num: pointer to device part number
 406  *  @pba_num_size: size of part number buffer
 407  *
 408  *  Reads the product board assembly (PBA) number from the EEPROM and stores
 409  *  the value in pba_num.
 410  **/
 411 s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
 412                                   u32 pba_num_size)
 413 {
 414         s32 ret_val;
 415         u16 nvm_data;
 416         u16 pba_ptr;
 417         u16 offset;
 418         u16 length;
 419 
 420         if (pba_num == NULL) {
 421                 e_dbg("PBA string buffer was null\n");
 422                 return -E1000_ERR_INVALID_ARGUMENT;
 423         }
 424 
 425         ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
 426         if (ret_val) {
 427                 e_dbg("NVM Read Error\n");
 428                 return ret_val;
 429         }
 430 
 431         ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
 432         if (ret_val) {
 433                 e_dbg("NVM Read Error\n");
 434                 return ret_val;
 435         }
 436 
 437         /* if nvm_data is not ptr guard the PBA must be in legacy format which
 438          * means pba_ptr is actually our second data word for the PBA number
 439          * and we can decode it into an ascii string
 440          */
 441         if (nvm_data != NVM_PBA_PTR_GUARD) {
 442                 e_dbg("NVM PBA number is not stored as string\n");
 443 
 444                 /* make sure callers buffer is big enough to store the PBA */
 445                 if (pba_num_size < E1000_PBANUM_LENGTH) {
 446                         e_dbg("PBA string buffer too small\n");
 447                         return E1000_ERR_NO_SPACE;
 448                 }
 449 
 450                 /* extract hex string from data and pba_ptr */
 451                 pba_num[0] = (nvm_data >> 12) & 0xF;
 452                 pba_num[1] = (nvm_data >> 8) & 0xF;
 453                 pba_num[2] = (nvm_data >> 4) & 0xF;
 454                 pba_num[3] = nvm_data & 0xF;
 455                 pba_num[4] = (pba_ptr >> 12) & 0xF;
 456                 pba_num[5] = (pba_ptr >> 8) & 0xF;
 457                 pba_num[6] = '-';
 458                 pba_num[7] = 0;
 459                 pba_num[8] = (pba_ptr >> 4) & 0xF;
 460                 pba_num[9] = pba_ptr & 0xF;
 461 
 462                 /* put a null character on the end of our string */
 463                 pba_num[10] = '\0';
 464 
 465                 /* switch all the data but the '-' to hex char */
 466                 for (offset = 0; offset < 10; offset++) {
 467                         if (pba_num[offset] < 0xA)
 468                                 pba_num[offset] += '0';
 469                         else if (pba_num[offset] < 0x10)
 470                                 pba_num[offset] += 'A' - 0xA;
 471                 }
 472 
 473                 return 0;
 474         }
 475 
 476         ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length);
 477         if (ret_val) {
 478                 e_dbg("NVM Read Error\n");
 479                 return ret_val;
 480         }
 481 
 482         if (length == 0xFFFF || length == 0) {
 483                 e_dbg("NVM PBA number section invalid length\n");
 484                 return -E1000_ERR_NVM_PBA_SECTION;
 485         }
 486         /* check if pba_num buffer is big enough */
 487         if (pba_num_size < (((u32)length * 2) - 1)) {
 488                 e_dbg("PBA string buffer too small\n");
 489                 return -E1000_ERR_NO_SPACE;
 490         }
 491 
 492         /* trim pba length from start of string */
 493         pba_ptr++;
 494         length--;
 495 
 496         for (offset = 0; offset < length; offset++) {
 497                 ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data);
 498                 if (ret_val) {
 499                         e_dbg("NVM Read Error\n");
 500                         return ret_val;
 501                 }
 502                 pba_num[offset * 2] = (u8)(nvm_data >> 8);
 503                 pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
 504         }
 505         pba_num[offset * 2] = '\0';
 506 
 507         return 0;
 508 }
 509 
 510 /**
 511  *  e1000_read_mac_addr_generic - Read device MAC address
 512  *  @hw: pointer to the HW structure
 513  *
 514  *  Reads the device MAC address from the EEPROM and stores the value.
 515  *  Since devices with two ports use the same EEPROM, we increment the
 516  *  last bit in the MAC address for the second port.
 517  **/
 518 s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
 519 {
 520         u32 rar_high;
 521         u32 rar_low;
 522         u16 i;
 523 
 524         rar_high = er32(RAH(0));
 525         rar_low = er32(RAL(0));
 526 
 527         for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
 528                 hw->mac.perm_addr[i] = (u8)(rar_low >> (i * 8));
 529 
 530         for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
 531                 hw->mac.perm_addr[i + 4] = (u8)(rar_high >> (i * 8));
 532 
 533         for (i = 0; i < ETH_ALEN; i++)
 534                 hw->mac.addr[i] = hw->mac.perm_addr[i];
 535 
 536         return 0;
 537 }
 538 
 539 /**
 540  *  e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
 541  *  @hw: pointer to the HW structure
 542  *
 543  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 544  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 545  **/
 546 s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
 547 {
 548         s32 ret_val;
 549         u16 checksum = 0;
 550         u16 i, nvm_data;
 551 
 552         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
 553                 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
 554                 if (ret_val) {
 555                         e_dbg("NVM Read Error\n");
 556                         return ret_val;
 557                 }
 558                 checksum += nvm_data;
 559         }
 560 
 561         if (checksum != (u16)NVM_SUM) {
 562                 e_dbg("NVM Checksum Invalid\n");
 563                 return -E1000_ERR_NVM;
 564         }
 565 
 566         return 0;
 567 }
 568 
 569 /**
 570  *  e1000e_update_nvm_checksum_generic - Update EEPROM checksum
 571  *  @hw: pointer to the HW structure
 572  *
 573  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 574  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 575  *  value to the EEPROM.
 576  **/
 577 s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
 578 {
 579         s32 ret_val;
 580         u16 checksum = 0;
 581         u16 i, nvm_data;
 582 
 583         for (i = 0; i < NVM_CHECKSUM_REG; i++) {
 584                 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
 585                 if (ret_val) {
 586                         e_dbg("NVM Read Error while updating checksum.\n");
 587                         return ret_val;
 588                 }
 589                 checksum += nvm_data;
 590         }
 591         checksum = (u16)NVM_SUM - checksum;
 592         ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
 593         if (ret_val)
 594                 e_dbg("NVM Write Error while updating checksum.\n");
 595 
 596         return ret_val;
 597 }
 598 
 599 /**
 600  *  e1000e_reload_nvm_generic - Reloads EEPROM
 601  *  @hw: pointer to the HW structure
 602  *
 603  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
 604  *  extended control register.
 605  **/
 606 void e1000e_reload_nvm_generic(struct e1000_hw *hw)
 607 {
 608         u32 ctrl_ext;
 609 
 610         usleep_range(10, 20);
 611         ctrl_ext = er32(CTRL_EXT);
 612         ctrl_ext |= E1000_CTRL_EXT_EE_RST;
 613         ew32(CTRL_EXT, ctrl_ext);
 614         e1e_flush();
 615 }

/* [<][>][^][v][top][bottom][index][help] */