root/drivers/net/ethernet/intel/e1000e/netdev.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. __ew32_prepare
  2. __ew32
  3. e1000_regdump
  4. e1000e_dump_ps_pages
  5. e1000e_dump
  6. e1000_desc_unused
  7. e1000e_systim_to_hwtstamp
  8. e1000e_rx_hwtstamp
  9. e1000_receive_skb
  10. e1000_rx_checksum
  11. e1000e_update_rdt_wa
  12. e1000e_update_tdt_wa
  13. e1000_alloc_rx_buffers
  14. e1000_alloc_rx_buffers_ps
  15. e1000_alloc_jumbo_rx_buffers
  16. e1000_rx_hash
  17. e1000_clean_rx_irq
  18. e1000_put_txbuf
  19. e1000_print_hw_hang
  20. e1000e_tx_hwtstamp_work
  21. e1000_clean_tx_irq
  22. e1000_clean_rx_irq_ps
  23. e1000_consume_page
  24. e1000_clean_jumbo_rx_irq
  25. e1000_clean_rx_ring
  26. e1000e_downshift_workaround
  27. e1000_intr_msi
  28. e1000_intr
  29. e1000_msix_other
  30. e1000_intr_msix_tx
  31. e1000_intr_msix_rx
  32. e1000_configure_msix
  33. e1000e_reset_interrupt_capability
  34. e1000e_set_interrupt_capability
  35. e1000_request_msix
  36. e1000_request_irq
  37. e1000_free_irq
  38. e1000_irq_disable
  39. e1000_irq_enable
  40. e1000e_get_hw_control
  41. e1000e_release_hw_control
  42. e1000_alloc_ring_dma
  43. e1000e_setup_tx_resources
  44. e1000e_setup_rx_resources
  45. e1000_clean_tx_ring
  46. e1000e_free_tx_resources
  47. e1000e_free_rx_resources
  48. e1000_update_itr
  49. e1000_set_itr
  50. e1000e_write_itr
  51. e1000_alloc_queues
  52. e1000e_poll
  53. e1000_vlan_rx_add_vid
  54. e1000_vlan_rx_kill_vid
  55. e1000e_vlan_filter_disable
  56. e1000e_vlan_filter_enable
  57. e1000e_vlan_strip_disable
  58. e1000e_vlan_strip_enable
  59. e1000_update_mng_vlan
  60. e1000_restore_vlan
  61. e1000_init_manageability_pt
  62. e1000_configure_tx
  63. e1000_setup_rctl
  64. e1000_configure_rx
  65. e1000e_write_mc_addr_list
  66. e1000e_write_uc_addr_list
  67. e1000e_set_rx_mode
  68. e1000e_setup_rss_hash
  69. e1000e_get_base_timinca
  70. e1000e_config_hwtstamp
  71. e1000_configure
  72. e1000e_power_up_phy
  73. e1000_power_down_phy
  74. e1000_flush_tx_ring
  75. e1000_flush_rx_ring
  76. e1000_flush_desc_rings
  77. e1000e_systim_reset
  78. e1000e_reset
  79. e1000e_trigger_lsc
  80. e1000e_up
  81. e1000e_flush_descriptors
  82. e1000e_down
  83. e1000e_reinit_locked
  84. e1000e_sanitize_systim
  85. e1000e_read_systim
  86. e1000e_cyclecounter_read
  87. e1000_sw_init
  88. e1000_intr_msi_test
  89. e1000_test_msi_interrupt
  90. e1000_test_msi
  91. e1000e_open
  92. e1000e_close
  93. e1000_set_mac
  94. e1000e_update_phy_task
  95. e1000_update_phy_info
  96. e1000e_update_phy_stats
  97. e1000e_update_stats
  98. e1000_phy_read_status
  99. e1000_print_link_info
  100. e1000e_has_link
  101. e1000e_enable_receives
  102. e1000e_check_82574_phy_workaround
  103. e1000_watchdog
  104. e1000_watchdog_task
  105. e1000_tso
  106. e1000_tx_csum
  107. e1000_tx_map
  108. e1000_tx_queue
  109. e1000_transfer_dhcp_info
  110. __e1000_maybe_stop_tx
  111. e1000_maybe_stop_tx
  112. e1000_xmit_frame
  113. e1000_tx_timeout
  114. e1000_reset_task
  115. e1000e_get_stats64
  116. e1000_change_mtu
  117. e1000_mii_ioctl
  118. e1000e_hwtstamp_set
  119. e1000e_hwtstamp_get
  120. e1000_ioctl
  121. e1000_init_phy_wakeup
  122. e1000e_flush_lpic
  123. e1000e_pm_freeze
  124. __e1000_shutdown
  125. __e1000e_disable_aspm
  126. e1000e_disable_aspm
  127. e1000e_disable_aspm_locked
  128. e1000e_pm_thaw
  129. __e1000_resume
  130. e1000e_pm_suspend
  131. e1000e_pm_resume
  132. e1000e_pm_runtime_idle
  133. e1000e_pm_runtime_resume
  134. e1000e_pm_runtime_suspend
  135. e1000_shutdown
  136. e1000_intr_msix
  137. e1000_netpoll
  138. e1000_io_error_detected
  139. e1000_io_slot_reset
  140. e1000_io_resume
  141. e1000_print_device_info
  142. e1000_eeprom_checks
  143. e1000_fix_features
  144. e1000_set_features
  145. e1000_probe
  146. e1000_remove
  147. e1000_init_module
  148. e1000_exit_module

   1 // SPDX-License-Identifier: GPL-2.0
   2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
   3 
   4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   5 
   6 #include <linux/module.h>
   7 #include <linux/types.h>
   8 #include <linux/init.h>
   9 #include <linux/pci.h>
  10 #include <linux/vmalloc.h>
  11 #include <linux/pagemap.h>
  12 #include <linux/delay.h>
  13 #include <linux/netdevice.h>
  14 #include <linux/interrupt.h>
  15 #include <linux/tcp.h>
  16 #include <linux/ipv6.h>
  17 #include <linux/slab.h>
  18 #include <net/checksum.h>
  19 #include <net/ip6_checksum.h>
  20 #include <linux/ethtool.h>
  21 #include <linux/if_vlan.h>
  22 #include <linux/cpu.h>
  23 #include <linux/smp.h>
  24 #include <linux/pm_qos.h>
  25 #include <linux/pm_runtime.h>
  26 #include <linux/aer.h>
  27 #include <linux/prefetch.h>
  28 
  29 #include "e1000.h"
  30 
  31 #define DRV_EXTRAVERSION "-k"
  32 
  33 #define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
  34 char e1000e_driver_name[] = "e1000e";
  35 const char e1000e_driver_version[] = DRV_VERSION;
  36 
  37 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  38 static int debug = -1;
  39 module_param(debug, int, 0);
  40 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  41 
  42 static const struct e1000_info *e1000_info_tbl[] = {
  43         [board_82571]           = &e1000_82571_info,
  44         [board_82572]           = &e1000_82572_info,
  45         [board_82573]           = &e1000_82573_info,
  46         [board_82574]           = &e1000_82574_info,
  47         [board_82583]           = &e1000_82583_info,
  48         [board_80003es2lan]     = &e1000_es2_info,
  49         [board_ich8lan]         = &e1000_ich8_info,
  50         [board_ich9lan]         = &e1000_ich9_info,
  51         [board_ich10lan]        = &e1000_ich10_info,
  52         [board_pchlan]          = &e1000_pch_info,
  53         [board_pch2lan]         = &e1000_pch2_info,
  54         [board_pch_lpt]         = &e1000_pch_lpt_info,
  55         [board_pch_spt]         = &e1000_pch_spt_info,
  56         [board_pch_cnp]         = &e1000_pch_cnp_info,
  57 };
  58 
  59 struct e1000_reg_info {
  60         u32 ofs;
  61         char *name;
  62 };
  63 
  64 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
  65         /* General Registers */
  66         {E1000_CTRL, "CTRL"},
  67         {E1000_STATUS, "STATUS"},
  68         {E1000_CTRL_EXT, "CTRL_EXT"},
  69 
  70         /* Interrupt Registers */
  71         {E1000_ICR, "ICR"},
  72 
  73         /* Rx Registers */
  74         {E1000_RCTL, "RCTL"},
  75         {E1000_RDLEN(0), "RDLEN"},
  76         {E1000_RDH(0), "RDH"},
  77         {E1000_RDT(0), "RDT"},
  78         {E1000_RDTR, "RDTR"},
  79         {E1000_RXDCTL(0), "RXDCTL"},
  80         {E1000_ERT, "ERT"},
  81         {E1000_RDBAL(0), "RDBAL"},
  82         {E1000_RDBAH(0), "RDBAH"},
  83         {E1000_RDFH, "RDFH"},
  84         {E1000_RDFT, "RDFT"},
  85         {E1000_RDFHS, "RDFHS"},
  86         {E1000_RDFTS, "RDFTS"},
  87         {E1000_RDFPC, "RDFPC"},
  88 
  89         /* Tx Registers */
  90         {E1000_TCTL, "TCTL"},
  91         {E1000_TDBAL(0), "TDBAL"},
  92         {E1000_TDBAH(0), "TDBAH"},
  93         {E1000_TDLEN(0), "TDLEN"},
  94         {E1000_TDH(0), "TDH"},
  95         {E1000_TDT(0), "TDT"},
  96         {E1000_TIDV, "TIDV"},
  97         {E1000_TXDCTL(0), "TXDCTL"},
  98         {E1000_TADV, "TADV"},
  99         {E1000_TARC(0), "TARC"},
 100         {E1000_TDFH, "TDFH"},
 101         {E1000_TDFT, "TDFT"},
 102         {E1000_TDFHS, "TDFHS"},
 103         {E1000_TDFTS, "TDFTS"},
 104         {E1000_TDFPC, "TDFPC"},
 105 
 106         /* List Terminator */
 107         {0, NULL}
 108 };
 109 
 110 /**
 111  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
 112  * @hw: pointer to the HW structure
 113  *
 114  * When updating the MAC CSR registers, the Manageability Engine (ME) could
 115  * be accessing the registers at the same time.  Normally, this is handled in
 116  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
 117  * accesses later than it should which could result in the register to have
 118  * an incorrect value.  Workaround this by checking the FWSM register which
 119  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
 120  * and try again a number of times.
 121  **/
 122 s32 __ew32_prepare(struct e1000_hw *hw)
 123 {
 124         s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
 125 
 126         while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
 127                 udelay(50);
 128 
 129         return i;
 130 }
 131 
 132 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
 133 {
 134         if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 135                 __ew32_prepare(hw);
 136 
 137         writel(val, hw->hw_addr + reg);
 138 }
 139 
 140 /**
 141  * e1000_regdump - register printout routine
 142  * @hw: pointer to the HW structure
 143  * @reginfo: pointer to the register info table
 144  **/
 145 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
 146 {
 147         int n = 0;
 148         char rname[16];
 149         u32 regs[8];
 150 
 151         switch (reginfo->ofs) {
 152         case E1000_RXDCTL(0):
 153                 for (n = 0; n < 2; n++)
 154                         regs[n] = __er32(hw, E1000_RXDCTL(n));
 155                 break;
 156         case E1000_TXDCTL(0):
 157                 for (n = 0; n < 2; n++)
 158                         regs[n] = __er32(hw, E1000_TXDCTL(n));
 159                 break;
 160         case E1000_TARC(0):
 161                 for (n = 0; n < 2; n++)
 162                         regs[n] = __er32(hw, E1000_TARC(n));
 163                 break;
 164         default:
 165                 pr_info("%-15s %08x\n",
 166                         reginfo->name, __er32(hw, reginfo->ofs));
 167                 return;
 168         }
 169 
 170         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
 171         pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
 172 }
 173 
 174 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
 175                                  struct e1000_buffer *bi)
 176 {
 177         int i;
 178         struct e1000_ps_page *ps_page;
 179 
 180         for (i = 0; i < adapter->rx_ps_pages; i++) {
 181                 ps_page = &bi->ps_pages[i];
 182 
 183                 if (ps_page->page) {
 184                         pr_info("packet dump for ps_page %d:\n", i);
 185                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 186                                        16, 1, page_address(ps_page->page),
 187                                        PAGE_SIZE, true);
 188                 }
 189         }
 190 }
 191 
 192 /**
 193  * e1000e_dump - Print registers, Tx-ring and Rx-ring
 194  * @adapter: board private structure
 195  **/
 196 static void e1000e_dump(struct e1000_adapter *adapter)
 197 {
 198         struct net_device *netdev = adapter->netdev;
 199         struct e1000_hw *hw = &adapter->hw;
 200         struct e1000_reg_info *reginfo;
 201         struct e1000_ring *tx_ring = adapter->tx_ring;
 202         struct e1000_tx_desc *tx_desc;
 203         struct my_u0 {
 204                 __le64 a;
 205                 __le64 b;
 206         } *u0;
 207         struct e1000_buffer *buffer_info;
 208         struct e1000_ring *rx_ring = adapter->rx_ring;
 209         union e1000_rx_desc_packet_split *rx_desc_ps;
 210         union e1000_rx_desc_extended *rx_desc;
 211         struct my_u1 {
 212                 __le64 a;
 213                 __le64 b;
 214                 __le64 c;
 215                 __le64 d;
 216         } *u1;
 217         u32 staterr;
 218         int i = 0;
 219 
 220         if (!netif_msg_hw(adapter))
 221                 return;
 222 
 223         /* Print netdevice Info */
 224         if (netdev) {
 225                 dev_info(&adapter->pdev->dev, "Net device Info\n");
 226                 pr_info("Device Name     state            trans_start\n");
 227                 pr_info("%-15s %016lX %016lX\n", netdev->name,
 228                         netdev->state, dev_trans_start(netdev));
 229         }
 230 
 231         /* Print Registers */
 232         dev_info(&adapter->pdev->dev, "Register Dump\n");
 233         pr_info(" Register Name   Value\n");
 234         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
 235              reginfo->name; reginfo++) {
 236                 e1000_regdump(hw, reginfo);
 237         }
 238 
 239         /* Print Tx Ring Summary */
 240         if (!netdev || !netif_running(netdev))
 241                 return;
 242 
 243         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
 244         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 245         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
 246         pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
 247                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
 248                 (unsigned long long)buffer_info->dma,
 249                 buffer_info->length,
 250                 buffer_info->next_to_watch,
 251                 (unsigned long long)buffer_info->time_stamp);
 252 
 253         /* Print Tx Ring */
 254         if (!netif_msg_tx_done(adapter))
 255                 goto rx_ring_summary;
 256 
 257         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
 258 
 259         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
 260          *
 261          * Legacy Transmit Descriptor
 262          *   +--------------------------------------------------------------+
 263          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
 264          *   +--------------------------------------------------------------+
 265          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
 266          *   +--------------------------------------------------------------+
 267          *   63       48 47        36 35    32 31     24 23    16 15        0
 268          *
 269          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
 270          *   63      48 47    40 39       32 31             16 15    8 7      0
 271          *   +----------------------------------------------------------------+
 272          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
 273          *   +----------------------------------------------------------------+
 274          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
 275          *   +----------------------------------------------------------------+
 276          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
 277          *
 278          * Extended Data Descriptor (DTYP=0x1)
 279          *   +----------------------------------------------------------------+
 280          * 0 |                     Buffer Address [63:0]                      |
 281          *   +----------------------------------------------------------------+
 282          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
 283          *   +----------------------------------------------------------------+
 284          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
 285          */
 286         pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
 287         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
 288         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
 289         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 290                 const char *next_desc;
 291                 tx_desc = E1000_TX_DESC(*tx_ring, i);
 292                 buffer_info = &tx_ring->buffer_info[i];
 293                 u0 = (struct my_u0 *)tx_desc;
 294                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
 295                         next_desc = " NTC/U";
 296                 else if (i == tx_ring->next_to_use)
 297                         next_desc = " NTU";
 298                 else if (i == tx_ring->next_to_clean)
 299                         next_desc = " NTC";
 300                 else
 301                         next_desc = "";
 302                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
 303                         (!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
 304                          ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
 305                         i,
 306                         (unsigned long long)le64_to_cpu(u0->a),
 307                         (unsigned long long)le64_to_cpu(u0->b),
 308                         (unsigned long long)buffer_info->dma,
 309                         buffer_info->length, buffer_info->next_to_watch,
 310                         (unsigned long long)buffer_info->time_stamp,
 311                         buffer_info->skb, next_desc);
 312 
 313                 if (netif_msg_pktdata(adapter) && buffer_info->skb)
 314                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 315                                        16, 1, buffer_info->skb->data,
 316                                        buffer_info->skb->len, true);
 317         }
 318 
 319         /* Print Rx Ring Summary */
 320 rx_ring_summary:
 321         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
 322         pr_info("Queue [NTU] [NTC]\n");
 323         pr_info(" %5d %5X %5X\n",
 324                 0, rx_ring->next_to_use, rx_ring->next_to_clean);
 325 
 326         /* Print Rx Ring */
 327         if (!netif_msg_rx_status(adapter))
 328                 return;
 329 
 330         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
 331         switch (adapter->rx_ps_pages) {
 332         case 1:
 333         case 2:
 334         case 3:
 335                 /* [Extended] Packet Split Receive Descriptor Format
 336                  *
 337                  *    +-----------------------------------------------------+
 338                  *  0 |                Buffer Address 0 [63:0]              |
 339                  *    +-----------------------------------------------------+
 340                  *  8 |                Buffer Address 1 [63:0]              |
 341                  *    +-----------------------------------------------------+
 342                  * 16 |                Buffer Address 2 [63:0]              |
 343                  *    +-----------------------------------------------------+
 344                  * 24 |                Buffer Address 3 [63:0]              |
 345                  *    +-----------------------------------------------------+
 346                  */
 347                 pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
 348                 /* [Extended] Receive Descriptor (Write-Back) Format
 349                  *
 350                  *   63       48 47    32 31     13 12    8 7    4 3        0
 351                  *   +------------------------------------------------------+
 352                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
 353                  *   | Checksum | Ident  |         | Queue |      |  Type   |
 354                  *   +------------------------------------------------------+
 355                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 356                  *   +------------------------------------------------------+
 357                  *   63       48 47    32 31            20 19               0
 358                  */
 359                 pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
 360                 for (i = 0; i < rx_ring->count; i++) {
 361                         const char *next_desc;
 362                         buffer_info = &rx_ring->buffer_info[i];
 363                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
 364                         u1 = (struct my_u1 *)rx_desc_ps;
 365                         staterr =
 366                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
 367 
 368                         if (i == rx_ring->next_to_use)
 369                                 next_desc = " NTU";
 370                         else if (i == rx_ring->next_to_clean)
 371                                 next_desc = " NTC";
 372                         else
 373                                 next_desc = "";
 374 
 375                         if (staterr & E1000_RXD_STAT_DD) {
 376                                 /* Descriptor Done */
 377                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
 378                                         "RWB", i,
 379                                         (unsigned long long)le64_to_cpu(u1->a),
 380                                         (unsigned long long)le64_to_cpu(u1->b),
 381                                         (unsigned long long)le64_to_cpu(u1->c),
 382                                         (unsigned long long)le64_to_cpu(u1->d),
 383                                         buffer_info->skb, next_desc);
 384                         } else {
 385                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
 386                                         "R  ", i,
 387                                         (unsigned long long)le64_to_cpu(u1->a),
 388                                         (unsigned long long)le64_to_cpu(u1->b),
 389                                         (unsigned long long)le64_to_cpu(u1->c),
 390                                         (unsigned long long)le64_to_cpu(u1->d),
 391                                         (unsigned long long)buffer_info->dma,
 392                                         buffer_info->skb, next_desc);
 393 
 394                                 if (netif_msg_pktdata(adapter))
 395                                         e1000e_dump_ps_pages(adapter,
 396                                                              buffer_info);
 397                         }
 398                 }
 399                 break;
 400         default:
 401         case 0:
 402                 /* Extended Receive Descriptor (Read) Format
 403                  *
 404                  *   +-----------------------------------------------------+
 405                  * 0 |                Buffer Address [63:0]                |
 406                  *   +-----------------------------------------------------+
 407                  * 8 |                      Reserved                       |
 408                  *   +-----------------------------------------------------+
 409                  */
 410                 pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
 411                 /* Extended Receive Descriptor (Write-Back) Format
 412                  *
 413                  *   63       48 47    32 31    24 23            4 3        0
 414                  *   +------------------------------------------------------+
 415                  *   |     RSS Hash      |        |               |         |
 416                  * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
 417                  *   | Packet   | IP     |        |               |  Type   |
 418                  *   | Checksum | Ident  |        |               |         |
 419                  *   +------------------------------------------------------+
 420                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 421                  *   +------------------------------------------------------+
 422                  *   63       48 47    32 31            20 19               0
 423                  */
 424                 pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
 425 
 426                 for (i = 0; i < rx_ring->count; i++) {
 427                         const char *next_desc;
 428 
 429                         buffer_info = &rx_ring->buffer_info[i];
 430                         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 431                         u1 = (struct my_u1 *)rx_desc;
 432                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 433 
 434                         if (i == rx_ring->next_to_use)
 435                                 next_desc = " NTU";
 436                         else if (i == rx_ring->next_to_clean)
 437                                 next_desc = " NTC";
 438                         else
 439                                 next_desc = "";
 440 
 441                         if (staterr & E1000_RXD_STAT_DD) {
 442                                 /* Descriptor Done */
 443                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
 444                                         "RWB", i,
 445                                         (unsigned long long)le64_to_cpu(u1->a),
 446                                         (unsigned long long)le64_to_cpu(u1->b),
 447                                         buffer_info->skb, next_desc);
 448                         } else {
 449                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
 450                                         "R  ", i,
 451                                         (unsigned long long)le64_to_cpu(u1->a),
 452                                         (unsigned long long)le64_to_cpu(u1->b),
 453                                         (unsigned long long)buffer_info->dma,
 454                                         buffer_info->skb, next_desc);
 455 
 456                                 if (netif_msg_pktdata(adapter) &&
 457                                     buffer_info->skb)
 458                                         print_hex_dump(KERN_INFO, "",
 459                                                        DUMP_PREFIX_ADDRESS, 16,
 460                                                        1,
 461                                                        buffer_info->skb->data,
 462                                                        adapter->rx_buffer_len,
 463                                                        true);
 464                         }
 465                 }
 466         }
 467 }
 468 
 469 /**
 470  * e1000_desc_unused - calculate if we have unused descriptors
 471  **/
 472 static int e1000_desc_unused(struct e1000_ring *ring)
 473 {
 474         if (ring->next_to_clean > ring->next_to_use)
 475                 return ring->next_to_clean - ring->next_to_use - 1;
 476 
 477         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
 478 }
 479 
 480 /**
 481  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
 482  * @adapter: board private structure
 483  * @hwtstamps: time stamp structure to update
 484  * @systim: unsigned 64bit system time value.
 485  *
 486  * Convert the system time value stored in the RX/TXSTMP registers into a
 487  * hwtstamp which can be used by the upper level time stamping functions.
 488  *
 489  * The 'systim_lock' spinlock is used to protect the consistency of the
 490  * system time value. This is needed because reading the 64 bit time
 491  * value involves reading two 32 bit registers. The first read latches the
 492  * value.
 493  **/
 494 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
 495                                       struct skb_shared_hwtstamps *hwtstamps,
 496                                       u64 systim)
 497 {
 498         u64 ns;
 499         unsigned long flags;
 500 
 501         spin_lock_irqsave(&adapter->systim_lock, flags);
 502         ns = timecounter_cyc2time(&adapter->tc, systim);
 503         spin_unlock_irqrestore(&adapter->systim_lock, flags);
 504 
 505         memset(hwtstamps, 0, sizeof(*hwtstamps));
 506         hwtstamps->hwtstamp = ns_to_ktime(ns);
 507 }
 508 
 509 /**
 510  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
 511  * @adapter: board private structure
 512  * @status: descriptor extended error and status field
 513  * @skb: particular skb to include time stamp
 514  *
 515  * If the time stamp is valid, convert it into the timecounter ns value
 516  * and store that result into the shhwtstamps structure which is passed
 517  * up the network stack.
 518  **/
 519 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
 520                                struct sk_buff *skb)
 521 {
 522         struct e1000_hw *hw = &adapter->hw;
 523         u64 rxstmp;
 524 
 525         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
 526             !(status & E1000_RXDEXT_STATERR_TST) ||
 527             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
 528                 return;
 529 
 530         /* The Rx time stamp registers contain the time stamp.  No other
 531          * received packet will be time stamped until the Rx time stamp
 532          * registers are read.  Because only one packet can be time stamped
 533          * at a time, the register values must belong to this packet and
 534          * therefore none of the other additional attributes need to be
 535          * compared.
 536          */
 537         rxstmp = (u64)er32(RXSTMPL);
 538         rxstmp |= (u64)er32(RXSTMPH) << 32;
 539         e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
 540 
 541         adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
 542 }
 543 
 544 /**
 545  * e1000_receive_skb - helper function to handle Rx indications
 546  * @adapter: board private structure
 547  * @staterr: descriptor extended error and status field as written by hardware
 548  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 549  * @skb: pointer to sk_buff to be indicated to stack
 550  **/
 551 static void e1000_receive_skb(struct e1000_adapter *adapter,
 552                               struct net_device *netdev, struct sk_buff *skb,
 553                               u32 staterr, __le16 vlan)
 554 {
 555         u16 tag = le16_to_cpu(vlan);
 556 
 557         e1000e_rx_hwtstamp(adapter, staterr, skb);
 558 
 559         skb->protocol = eth_type_trans(skb, netdev);
 560 
 561         if (staterr & E1000_RXD_STAT_VP)
 562                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
 563 
 564         napi_gro_receive(&adapter->napi, skb);
 565 }
 566 
 567 /**
 568  * e1000_rx_checksum - Receive Checksum Offload
 569  * @adapter: board private structure
 570  * @status_err: receive descriptor status and error fields
 571  * @csum: receive descriptor csum field
 572  * @sk_buff: socket buffer with received data
 573  **/
 574 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
 575                               struct sk_buff *skb)
 576 {
 577         u16 status = (u16)status_err;
 578         u8 errors = (u8)(status_err >> 24);
 579 
 580         skb_checksum_none_assert(skb);
 581 
 582         /* Rx checksum disabled */
 583         if (!(adapter->netdev->features & NETIF_F_RXCSUM))
 584                 return;
 585 
 586         /* Ignore Checksum bit is set */
 587         if (status & E1000_RXD_STAT_IXSM)
 588                 return;
 589 
 590         /* TCP/UDP checksum error bit or IP checksum error bit is set */
 591         if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
 592                 /* let the stack verify checksum errors */
 593                 adapter->hw_csum_err++;
 594                 return;
 595         }
 596 
 597         /* TCP/UDP Checksum has not been calculated */
 598         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
 599                 return;
 600 
 601         /* It must be a TCP or UDP packet with a valid checksum */
 602         skb->ip_summed = CHECKSUM_UNNECESSARY;
 603         adapter->hw_csum_good++;
 604 }
 605 
 606 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
 607 {
 608         struct e1000_adapter *adapter = rx_ring->adapter;
 609         struct e1000_hw *hw = &adapter->hw;
 610         s32 ret_val = __ew32_prepare(hw);
 611 
 612         writel(i, rx_ring->tail);
 613 
 614         if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
 615                 u32 rctl = er32(RCTL);
 616 
 617                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
 618                 e_err("ME firmware caused invalid RDT - resetting\n");
 619                 schedule_work(&adapter->reset_task);
 620         }
 621 }
 622 
 623 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
 624 {
 625         struct e1000_adapter *adapter = tx_ring->adapter;
 626         struct e1000_hw *hw = &adapter->hw;
 627         s32 ret_val = __ew32_prepare(hw);
 628 
 629         writel(i, tx_ring->tail);
 630 
 631         if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
 632                 u32 tctl = er32(TCTL);
 633 
 634                 ew32(TCTL, tctl & ~E1000_TCTL_EN);
 635                 e_err("ME firmware caused invalid TDT - resetting\n");
 636                 schedule_work(&adapter->reset_task);
 637         }
 638 }
 639 
 640 /**
 641  * e1000_alloc_rx_buffers - Replace used receive buffers
 642  * @rx_ring: Rx descriptor ring
 643  **/
 644 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
 645                                    int cleaned_count, gfp_t gfp)
 646 {
 647         struct e1000_adapter *adapter = rx_ring->adapter;
 648         struct net_device *netdev = adapter->netdev;
 649         struct pci_dev *pdev = adapter->pdev;
 650         union e1000_rx_desc_extended *rx_desc;
 651         struct e1000_buffer *buffer_info;
 652         struct sk_buff *skb;
 653         unsigned int i;
 654         unsigned int bufsz = adapter->rx_buffer_len;
 655 
 656         i = rx_ring->next_to_use;
 657         buffer_info = &rx_ring->buffer_info[i];
 658 
 659         while (cleaned_count--) {
 660                 skb = buffer_info->skb;
 661                 if (skb) {
 662                         skb_trim(skb, 0);
 663                         goto map_skb;
 664                 }
 665 
 666                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 667                 if (!skb) {
 668                         /* Better luck next round */
 669                         adapter->alloc_rx_buff_failed++;
 670                         break;
 671                 }
 672 
 673                 buffer_info->skb = skb;
 674 map_skb:
 675                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 676                                                   adapter->rx_buffer_len,
 677                                                   DMA_FROM_DEVICE);
 678                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 679                         dev_err(&pdev->dev, "Rx DMA map failed\n");
 680                         adapter->rx_dma_failed++;
 681                         break;
 682                 }
 683 
 684                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 685                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 686 
 687                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 688                         /* Force memory writes to complete before letting h/w
 689                          * know there are new descriptors to fetch.  (Only
 690                          * applicable for weak-ordered memory model archs,
 691                          * such as IA-64).
 692                          */
 693                         wmb();
 694                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 695                                 e1000e_update_rdt_wa(rx_ring, i);
 696                         else
 697                                 writel(i, rx_ring->tail);
 698                 }
 699                 i++;
 700                 if (i == rx_ring->count)
 701                         i = 0;
 702                 buffer_info = &rx_ring->buffer_info[i];
 703         }
 704 
 705         rx_ring->next_to_use = i;
 706 }
 707 
 708 /**
 709  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 710  * @rx_ring: Rx descriptor ring
 711  **/
 712 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
 713                                       int cleaned_count, gfp_t gfp)
 714 {
 715         struct e1000_adapter *adapter = rx_ring->adapter;
 716         struct net_device *netdev = adapter->netdev;
 717         struct pci_dev *pdev = adapter->pdev;
 718         union e1000_rx_desc_packet_split *rx_desc;
 719         struct e1000_buffer *buffer_info;
 720         struct e1000_ps_page *ps_page;
 721         struct sk_buff *skb;
 722         unsigned int i, j;
 723 
 724         i = rx_ring->next_to_use;
 725         buffer_info = &rx_ring->buffer_info[i];
 726 
 727         while (cleaned_count--) {
 728                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
 729 
 730                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
 731                         ps_page = &buffer_info->ps_pages[j];
 732                         if (j >= adapter->rx_ps_pages) {
 733                                 /* all unused desc entries get hw null ptr */
 734                                 rx_desc->read.buffer_addr[j + 1] =
 735                                     ~cpu_to_le64(0);
 736                                 continue;
 737                         }
 738                         if (!ps_page->page) {
 739                                 ps_page->page = alloc_page(gfp);
 740                                 if (!ps_page->page) {
 741                                         adapter->alloc_rx_buff_failed++;
 742                                         goto no_buffers;
 743                                 }
 744                                 ps_page->dma = dma_map_page(&pdev->dev,
 745                                                             ps_page->page,
 746                                                             0, PAGE_SIZE,
 747                                                             DMA_FROM_DEVICE);
 748                                 if (dma_mapping_error(&pdev->dev,
 749                                                       ps_page->dma)) {
 750                                         dev_err(&adapter->pdev->dev,
 751                                                 "Rx DMA page map failed\n");
 752                                         adapter->rx_dma_failed++;
 753                                         goto no_buffers;
 754                                 }
 755                         }
 756                         /* Refresh the desc even if buffer_addrs
 757                          * didn't change because each write-back
 758                          * erases this info.
 759                          */
 760                         rx_desc->read.buffer_addr[j + 1] =
 761                             cpu_to_le64(ps_page->dma);
 762                 }
 763 
 764                 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
 765                                                   gfp);
 766 
 767                 if (!skb) {
 768                         adapter->alloc_rx_buff_failed++;
 769                         break;
 770                 }
 771 
 772                 buffer_info->skb = skb;
 773                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 774                                                   adapter->rx_ps_bsize0,
 775                                                   DMA_FROM_DEVICE);
 776                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 777                         dev_err(&pdev->dev, "Rx DMA map failed\n");
 778                         adapter->rx_dma_failed++;
 779                         /* cleanup skb */
 780                         dev_kfree_skb_any(skb);
 781                         buffer_info->skb = NULL;
 782                         break;
 783                 }
 784 
 785                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
 786 
 787                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 788                         /* Force memory writes to complete before letting h/w
 789                          * know there are new descriptors to fetch.  (Only
 790                          * applicable for weak-ordered memory model archs,
 791                          * such as IA-64).
 792                          */
 793                         wmb();
 794                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 795                                 e1000e_update_rdt_wa(rx_ring, i << 1);
 796                         else
 797                                 writel(i << 1, rx_ring->tail);
 798                 }
 799 
 800                 i++;
 801                 if (i == rx_ring->count)
 802                         i = 0;
 803                 buffer_info = &rx_ring->buffer_info[i];
 804         }
 805 
 806 no_buffers:
 807         rx_ring->next_to_use = i;
 808 }
 809 
 810 /**
 811  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 812  * @rx_ring: Rx descriptor ring
 813  * @cleaned_count: number of buffers to allocate this pass
 814  **/
 815 
 816 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
 817                                          int cleaned_count, gfp_t gfp)
 818 {
 819         struct e1000_adapter *adapter = rx_ring->adapter;
 820         struct net_device *netdev = adapter->netdev;
 821         struct pci_dev *pdev = adapter->pdev;
 822         union e1000_rx_desc_extended *rx_desc;
 823         struct e1000_buffer *buffer_info;
 824         struct sk_buff *skb;
 825         unsigned int i;
 826         unsigned int bufsz = 256 - 16;  /* for skb_reserve */
 827 
 828         i = rx_ring->next_to_use;
 829         buffer_info = &rx_ring->buffer_info[i];
 830 
 831         while (cleaned_count--) {
 832                 skb = buffer_info->skb;
 833                 if (skb) {
 834                         skb_trim(skb, 0);
 835                         goto check_page;
 836                 }
 837 
 838                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 839                 if (unlikely(!skb)) {
 840                         /* Better luck next round */
 841                         adapter->alloc_rx_buff_failed++;
 842                         break;
 843                 }
 844 
 845                 buffer_info->skb = skb;
 846 check_page:
 847                 /* allocate a new page if necessary */
 848                 if (!buffer_info->page) {
 849                         buffer_info->page = alloc_page(gfp);
 850                         if (unlikely(!buffer_info->page)) {
 851                                 adapter->alloc_rx_buff_failed++;
 852                                 break;
 853                         }
 854                 }
 855 
 856                 if (!buffer_info->dma) {
 857                         buffer_info->dma = dma_map_page(&pdev->dev,
 858                                                         buffer_info->page, 0,
 859                                                         PAGE_SIZE,
 860                                                         DMA_FROM_DEVICE);
 861                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 862                                 adapter->alloc_rx_buff_failed++;
 863                                 break;
 864                         }
 865                 }
 866 
 867                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 868                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 869 
 870                 if (unlikely(++i == rx_ring->count))
 871                         i = 0;
 872                 buffer_info = &rx_ring->buffer_info[i];
 873         }
 874 
 875         if (likely(rx_ring->next_to_use != i)) {
 876                 rx_ring->next_to_use = i;
 877                 if (unlikely(i-- == 0))
 878                         i = (rx_ring->count - 1);
 879 
 880                 /* Force memory writes to complete before letting h/w
 881                  * know there are new descriptors to fetch.  (Only
 882                  * applicable for weak-ordered memory model archs,
 883                  * such as IA-64).
 884                  */
 885                 wmb();
 886                 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 887                         e1000e_update_rdt_wa(rx_ring, i);
 888                 else
 889                         writel(i, rx_ring->tail);
 890         }
 891 }
 892 
 893 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
 894                                  struct sk_buff *skb)
 895 {
 896         if (netdev->features & NETIF_F_RXHASH)
 897                 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
 898 }
 899 
 900 /**
 901  * e1000_clean_rx_irq - Send received data up the network stack
 902  * @rx_ring: Rx descriptor ring
 903  *
 904  * the return value indicates whether actual cleaning was done, there
 905  * is no guarantee that everything was cleaned
 906  **/
 907 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
 908                                int work_to_do)
 909 {
 910         struct e1000_adapter *adapter = rx_ring->adapter;
 911         struct net_device *netdev = adapter->netdev;
 912         struct pci_dev *pdev = adapter->pdev;
 913         struct e1000_hw *hw = &adapter->hw;
 914         union e1000_rx_desc_extended *rx_desc, *next_rxd;
 915         struct e1000_buffer *buffer_info, *next_buffer;
 916         u32 length, staterr;
 917         unsigned int i;
 918         int cleaned_count = 0;
 919         bool cleaned = false;
 920         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 921 
 922         i = rx_ring->next_to_clean;
 923         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 924         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 925         buffer_info = &rx_ring->buffer_info[i];
 926 
 927         while (staterr & E1000_RXD_STAT_DD) {
 928                 struct sk_buff *skb;
 929 
 930                 if (*work_done >= work_to_do)
 931                         break;
 932                 (*work_done)++;
 933                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
 934 
 935                 skb = buffer_info->skb;
 936                 buffer_info->skb = NULL;
 937 
 938                 prefetch(skb->data - NET_IP_ALIGN);
 939 
 940                 i++;
 941                 if (i == rx_ring->count)
 942                         i = 0;
 943                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
 944                 prefetch(next_rxd);
 945 
 946                 next_buffer = &rx_ring->buffer_info[i];
 947 
 948                 cleaned = true;
 949                 cleaned_count++;
 950                 dma_unmap_single(&pdev->dev, buffer_info->dma,
 951                                  adapter->rx_buffer_len, DMA_FROM_DEVICE);
 952                 buffer_info->dma = 0;
 953 
 954                 length = le16_to_cpu(rx_desc->wb.upper.length);
 955 
 956                 /* !EOP means multiple descriptors were used to store a single
 957                  * packet, if that's the case we need to toss it.  In fact, we
 958                  * need to toss every packet with the EOP bit clear and the
 959                  * next frame that _does_ have the EOP bit set, as it is by
 960                  * definition only a frame fragment
 961                  */
 962                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
 963                         adapter->flags2 |= FLAG2_IS_DISCARDING;
 964 
 965                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
 966                         /* All receives must fit into a single buffer */
 967                         e_dbg("Receive packet consumed multiple buffers\n");
 968                         /* recycle */
 969                         buffer_info->skb = skb;
 970                         if (staterr & E1000_RXD_STAT_EOP)
 971                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
 972                         goto next_desc;
 973                 }
 974 
 975                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
 976                              !(netdev->features & NETIF_F_RXALL))) {
 977                         /* recycle */
 978                         buffer_info->skb = skb;
 979                         goto next_desc;
 980                 }
 981 
 982                 /* adjust length to remove Ethernet CRC */
 983                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
 984                         /* If configured to store CRC, don't subtract FCS,
 985                          * but keep the FCS bytes out of the total_rx_bytes
 986                          * counter
 987                          */
 988                         if (netdev->features & NETIF_F_RXFCS)
 989                                 total_rx_bytes -= 4;
 990                         else
 991                                 length -= 4;
 992                 }
 993 
 994                 total_rx_bytes += length;
 995                 total_rx_packets++;
 996 
 997                 /* code added for copybreak, this should improve
 998                  * performance for small packets with large amounts
 999                  * of reassembly being done in the stack
1000                  */
1001                 if (length < copybreak) {
1002                         struct sk_buff *new_skb =
1003                                 napi_alloc_skb(&adapter->napi, length);
1004                         if (new_skb) {
1005                                 skb_copy_to_linear_data_offset(new_skb,
1006                                                                -NET_IP_ALIGN,
1007                                                                (skb->data -
1008                                                                 NET_IP_ALIGN),
1009                                                                (length +
1010                                                                 NET_IP_ALIGN));
1011                                 /* save the skb in buffer_info as good */
1012                                 buffer_info->skb = skb;
1013                                 skb = new_skb;
1014                         }
1015                         /* else just continue with the old one */
1016                 }
1017                 /* end copybreak code */
1018                 skb_put(skb, length);
1019 
1020                 /* Receive Checksum Offload */
1021                 e1000_rx_checksum(adapter, staterr, skb);
1022 
1023                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1024 
1025                 e1000_receive_skb(adapter, netdev, skb, staterr,
1026                                   rx_desc->wb.upper.vlan);
1027 
1028 next_desc:
1029                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1030 
1031                 /* return some buffers to hardware, one at a time is too slow */
1032                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1033                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1034                                               GFP_ATOMIC);
1035                         cleaned_count = 0;
1036                 }
1037 
1038                 /* use prefetched values */
1039                 rx_desc = next_rxd;
1040                 buffer_info = next_buffer;
1041 
1042                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1043         }
1044         rx_ring->next_to_clean = i;
1045 
1046         cleaned_count = e1000_desc_unused(rx_ring);
1047         if (cleaned_count)
1048                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1049 
1050         adapter->total_rx_bytes += total_rx_bytes;
1051         adapter->total_rx_packets += total_rx_packets;
1052         return cleaned;
1053 }
1054 
1055 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1056                             struct e1000_buffer *buffer_info,
1057                             bool drop)
1058 {
1059         struct e1000_adapter *adapter = tx_ring->adapter;
1060 
1061         if (buffer_info->dma) {
1062                 if (buffer_info->mapped_as_page)
1063                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1064                                        buffer_info->length, DMA_TO_DEVICE);
1065                 else
1066                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1067                                          buffer_info->length, DMA_TO_DEVICE);
1068                 buffer_info->dma = 0;
1069         }
1070         if (buffer_info->skb) {
1071                 if (drop)
1072                         dev_kfree_skb_any(buffer_info->skb);
1073                 else
1074                         dev_consume_skb_any(buffer_info->skb);
1075                 buffer_info->skb = NULL;
1076         }
1077         buffer_info->time_stamp = 0;
1078 }
1079 
1080 static void e1000_print_hw_hang(struct work_struct *work)
1081 {
1082         struct e1000_adapter *adapter = container_of(work,
1083                                                      struct e1000_adapter,
1084                                                      print_hang_task);
1085         struct net_device *netdev = adapter->netdev;
1086         struct e1000_ring *tx_ring = adapter->tx_ring;
1087         unsigned int i = tx_ring->next_to_clean;
1088         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1089         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1090         struct e1000_hw *hw = &adapter->hw;
1091         u16 phy_status, phy_1000t_status, phy_ext_status;
1092         u16 pci_status;
1093 
1094         if (test_bit(__E1000_DOWN, &adapter->state))
1095                 return;
1096 
1097         if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1098                 /* May be block on write-back, flush and detect again
1099                  * flush pending descriptor writebacks to memory
1100                  */
1101                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1102                 /* execute the writes immediately */
1103                 e1e_flush();
1104                 /* Due to rare timing issues, write to TIDV again to ensure
1105                  * the write is successful
1106                  */
1107                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1108                 /* execute the writes immediately */
1109                 e1e_flush();
1110                 adapter->tx_hang_recheck = true;
1111                 return;
1112         }
1113         adapter->tx_hang_recheck = false;
1114 
1115         if (er32(TDH(0)) == er32(TDT(0))) {
1116                 e_dbg("false hang detected, ignoring\n");
1117                 return;
1118         }
1119 
1120         /* Real hang detected */
1121         netif_stop_queue(netdev);
1122 
1123         e1e_rphy(hw, MII_BMSR, &phy_status);
1124         e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1125         e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1126 
1127         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1128 
1129         /* detected Hardware unit hang */
1130         e_err("Detected Hardware Unit Hang:\n"
1131               "  TDH                  <%x>\n"
1132               "  TDT                  <%x>\n"
1133               "  next_to_use          <%x>\n"
1134               "  next_to_clean        <%x>\n"
1135               "buffer_info[next_to_clean]:\n"
1136               "  time_stamp           <%lx>\n"
1137               "  next_to_watch        <%x>\n"
1138               "  jiffies              <%lx>\n"
1139               "  next_to_watch.status <%x>\n"
1140               "MAC Status             <%x>\n"
1141               "PHY Status             <%x>\n"
1142               "PHY 1000BASE-T Status  <%x>\n"
1143               "PHY Extended Status    <%x>\n"
1144               "PCI Status             <%x>\n",
1145               readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1146               tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1147               eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1148               phy_status, phy_1000t_status, phy_ext_status, pci_status);
1149 
1150         e1000e_dump(adapter);
1151 
1152         /* Suggest workaround for known h/w issue */
1153         if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1154                 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1155 }
1156 
1157 /**
1158  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1159  * @work: pointer to work struct
1160  *
1161  * This work function polls the TSYNCTXCTL valid bit to determine when a
1162  * timestamp has been taken for the current stored skb.  The timestamp must
1163  * be for this skb because only one such packet is allowed in the queue.
1164  */
1165 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1166 {
1167         struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1168                                                      tx_hwtstamp_work);
1169         struct e1000_hw *hw = &adapter->hw;
1170 
1171         if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1172                 struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1173                 struct skb_shared_hwtstamps shhwtstamps;
1174                 u64 txstmp;
1175 
1176                 txstmp = er32(TXSTMPL);
1177                 txstmp |= (u64)er32(TXSTMPH) << 32;
1178 
1179                 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1180 
1181                 /* Clear the global tx_hwtstamp_skb pointer and force writes
1182                  * prior to notifying the stack of a Tx timestamp.
1183                  */
1184                 adapter->tx_hwtstamp_skb = NULL;
1185                 wmb(); /* force write prior to skb_tstamp_tx */
1186 
1187                 skb_tstamp_tx(skb, &shhwtstamps);
1188                 dev_consume_skb_any(skb);
1189         } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1190                               + adapter->tx_timeout_factor * HZ)) {
1191                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1192                 adapter->tx_hwtstamp_skb = NULL;
1193                 adapter->tx_hwtstamp_timeouts++;
1194                 e_warn("clearing Tx timestamp hang\n");
1195         } else {
1196                 /* reschedule to check later */
1197                 schedule_work(&adapter->tx_hwtstamp_work);
1198         }
1199 }
1200 
1201 /**
1202  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1203  * @tx_ring: Tx descriptor ring
1204  *
1205  * the return value indicates whether actual cleaning was done, there
1206  * is no guarantee that everything was cleaned
1207  **/
1208 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1209 {
1210         struct e1000_adapter *adapter = tx_ring->adapter;
1211         struct net_device *netdev = adapter->netdev;
1212         struct e1000_hw *hw = &adapter->hw;
1213         struct e1000_tx_desc *tx_desc, *eop_desc;
1214         struct e1000_buffer *buffer_info;
1215         unsigned int i, eop;
1216         unsigned int count = 0;
1217         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1218         unsigned int bytes_compl = 0, pkts_compl = 0;
1219 
1220         i = tx_ring->next_to_clean;
1221         eop = tx_ring->buffer_info[i].next_to_watch;
1222         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1223 
1224         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1225                (count < tx_ring->count)) {
1226                 bool cleaned = false;
1227 
1228                 dma_rmb();              /* read buffer_info after eop_desc */
1229                 for (; !cleaned; count++) {
1230                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1231                         buffer_info = &tx_ring->buffer_info[i];
1232                         cleaned = (i == eop);
1233 
1234                         if (cleaned) {
1235                                 total_tx_packets += buffer_info->segs;
1236                                 total_tx_bytes += buffer_info->bytecount;
1237                                 if (buffer_info->skb) {
1238                                         bytes_compl += buffer_info->skb->len;
1239                                         pkts_compl++;
1240                                 }
1241                         }
1242 
1243                         e1000_put_txbuf(tx_ring, buffer_info, false);
1244                         tx_desc->upper.data = 0;
1245 
1246                         i++;
1247                         if (i == tx_ring->count)
1248                                 i = 0;
1249                 }
1250 
1251                 if (i == tx_ring->next_to_use)
1252                         break;
1253                 eop = tx_ring->buffer_info[i].next_to_watch;
1254                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1255         }
1256 
1257         tx_ring->next_to_clean = i;
1258 
1259         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1260 
1261 #define TX_WAKE_THRESHOLD 32
1262         if (count && netif_carrier_ok(netdev) &&
1263             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1264                 /* Make sure that anybody stopping the queue after this
1265                  * sees the new next_to_clean.
1266                  */
1267                 smp_mb();
1268 
1269                 if (netif_queue_stopped(netdev) &&
1270                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1271                         netif_wake_queue(netdev);
1272                         ++adapter->restart_queue;
1273                 }
1274         }
1275 
1276         if (adapter->detect_tx_hung) {
1277                 /* Detect a transmit hang in hardware, this serializes the
1278                  * check with the clearing of time_stamp and movement of i
1279                  */
1280                 adapter->detect_tx_hung = false;
1281                 if (tx_ring->buffer_info[i].time_stamp &&
1282                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1283                                + (adapter->tx_timeout_factor * HZ)) &&
1284                     !(er32(STATUS) & E1000_STATUS_TXOFF))
1285                         schedule_work(&adapter->print_hang_task);
1286                 else
1287                         adapter->tx_hang_recheck = false;
1288         }
1289         adapter->total_tx_bytes += total_tx_bytes;
1290         adapter->total_tx_packets += total_tx_packets;
1291         return count < tx_ring->count;
1292 }
1293 
1294 /**
1295  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1296  * @rx_ring: Rx descriptor ring
1297  *
1298  * the return value indicates whether actual cleaning was done, there
1299  * is no guarantee that everything was cleaned
1300  **/
1301 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1302                                   int work_to_do)
1303 {
1304         struct e1000_adapter *adapter = rx_ring->adapter;
1305         struct e1000_hw *hw = &adapter->hw;
1306         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1307         struct net_device *netdev = adapter->netdev;
1308         struct pci_dev *pdev = adapter->pdev;
1309         struct e1000_buffer *buffer_info, *next_buffer;
1310         struct e1000_ps_page *ps_page;
1311         struct sk_buff *skb;
1312         unsigned int i, j;
1313         u32 length, staterr;
1314         int cleaned_count = 0;
1315         bool cleaned = false;
1316         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1317 
1318         i = rx_ring->next_to_clean;
1319         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1320         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1321         buffer_info = &rx_ring->buffer_info[i];
1322 
1323         while (staterr & E1000_RXD_STAT_DD) {
1324                 if (*work_done >= work_to_do)
1325                         break;
1326                 (*work_done)++;
1327                 skb = buffer_info->skb;
1328                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1329 
1330                 /* in the packet split case this is header only */
1331                 prefetch(skb->data - NET_IP_ALIGN);
1332 
1333                 i++;
1334                 if (i == rx_ring->count)
1335                         i = 0;
1336                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1337                 prefetch(next_rxd);
1338 
1339                 next_buffer = &rx_ring->buffer_info[i];
1340 
1341                 cleaned = true;
1342                 cleaned_count++;
1343                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1344                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1345                 buffer_info->dma = 0;
1346 
1347                 /* see !EOP comment in other Rx routine */
1348                 if (!(staterr & E1000_RXD_STAT_EOP))
1349                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1350 
1351                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1352                         e_dbg("Packet Split buffers didn't pick up the full packet\n");
1353                         dev_kfree_skb_irq(skb);
1354                         if (staterr & E1000_RXD_STAT_EOP)
1355                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1356                         goto next_desc;
1357                 }
1358 
1359                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1360                              !(netdev->features & NETIF_F_RXALL))) {
1361                         dev_kfree_skb_irq(skb);
1362                         goto next_desc;
1363                 }
1364 
1365                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1366 
1367                 if (!length) {
1368                         e_dbg("Last part of the packet spanning multiple descriptors\n");
1369                         dev_kfree_skb_irq(skb);
1370                         goto next_desc;
1371                 }
1372 
1373                 /* Good Receive */
1374                 skb_put(skb, length);
1375 
1376                 {
1377                         /* this looks ugly, but it seems compiler issues make
1378                          * it more efficient than reusing j
1379                          */
1380                         int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1381 
1382                         /* page alloc/put takes too long and effects small
1383                          * packet throughput, so unsplit small packets and
1384                          * save the alloc/put only valid in softirq (napi)
1385                          * context to call kmap_*
1386                          */
1387                         if (l1 && (l1 <= copybreak) &&
1388                             ((length + l1) <= adapter->rx_ps_bsize0)) {
1389                                 u8 *vaddr;
1390 
1391                                 ps_page = &buffer_info->ps_pages[0];
1392 
1393                                 /* there is no documentation about how to call
1394                                  * kmap_atomic, so we can't hold the mapping
1395                                  * very long
1396                                  */
1397                                 dma_sync_single_for_cpu(&pdev->dev,
1398                                                         ps_page->dma,
1399                                                         PAGE_SIZE,
1400                                                         DMA_FROM_DEVICE);
1401                                 vaddr = kmap_atomic(ps_page->page);
1402                                 memcpy(skb_tail_pointer(skb), vaddr, l1);
1403                                 kunmap_atomic(vaddr);
1404                                 dma_sync_single_for_device(&pdev->dev,
1405                                                            ps_page->dma,
1406                                                            PAGE_SIZE,
1407                                                            DMA_FROM_DEVICE);
1408 
1409                                 /* remove the CRC */
1410                                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1411                                         if (!(netdev->features & NETIF_F_RXFCS))
1412                                                 l1 -= 4;
1413                                 }
1414 
1415                                 skb_put(skb, l1);
1416                                 goto copydone;
1417                         }       /* if */
1418                 }
1419 
1420                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1421                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1422                         if (!length)
1423                                 break;
1424 
1425                         ps_page = &buffer_info->ps_pages[j];
1426                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1427                                        DMA_FROM_DEVICE);
1428                         ps_page->dma = 0;
1429                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1430                         ps_page->page = NULL;
1431                         skb->len += length;
1432                         skb->data_len += length;
1433                         skb->truesize += PAGE_SIZE;
1434                 }
1435 
1436                 /* strip the ethernet crc, problem is we're using pages now so
1437                  * this whole operation can get a little cpu intensive
1438                  */
1439                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1440                         if (!(netdev->features & NETIF_F_RXFCS))
1441                                 pskb_trim(skb, skb->len - 4);
1442                 }
1443 
1444 copydone:
1445                 total_rx_bytes += skb->len;
1446                 total_rx_packets++;
1447 
1448                 e1000_rx_checksum(adapter, staterr, skb);
1449 
1450                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1451 
1452                 if (rx_desc->wb.upper.header_status &
1453                     cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1454                         adapter->rx_hdr_split++;
1455 
1456                 e1000_receive_skb(adapter, netdev, skb, staterr,
1457                                   rx_desc->wb.middle.vlan);
1458 
1459 next_desc:
1460                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1461                 buffer_info->skb = NULL;
1462 
1463                 /* return some buffers to hardware, one at a time is too slow */
1464                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1465                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1466                                               GFP_ATOMIC);
1467                         cleaned_count = 0;
1468                 }
1469 
1470                 /* use prefetched values */
1471                 rx_desc = next_rxd;
1472                 buffer_info = next_buffer;
1473 
1474                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1475         }
1476         rx_ring->next_to_clean = i;
1477 
1478         cleaned_count = e1000_desc_unused(rx_ring);
1479         if (cleaned_count)
1480                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1481 
1482         adapter->total_rx_bytes += total_rx_bytes;
1483         adapter->total_rx_packets += total_rx_packets;
1484         return cleaned;
1485 }
1486 
1487 /**
1488  * e1000_consume_page - helper function
1489  **/
1490 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1491                                u16 length)
1492 {
1493         bi->page = NULL;
1494         skb->len += length;
1495         skb->data_len += length;
1496         skb->truesize += PAGE_SIZE;
1497 }
1498 
1499 /**
1500  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1501  * @adapter: board private structure
1502  *
1503  * the return value indicates whether actual cleaning was done, there
1504  * is no guarantee that everything was cleaned
1505  **/
1506 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1507                                      int work_to_do)
1508 {
1509         struct e1000_adapter *adapter = rx_ring->adapter;
1510         struct net_device *netdev = adapter->netdev;
1511         struct pci_dev *pdev = adapter->pdev;
1512         union e1000_rx_desc_extended *rx_desc, *next_rxd;
1513         struct e1000_buffer *buffer_info, *next_buffer;
1514         u32 length, staterr;
1515         unsigned int i;
1516         int cleaned_count = 0;
1517         bool cleaned = false;
1518         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1519         struct skb_shared_info *shinfo;
1520 
1521         i = rx_ring->next_to_clean;
1522         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1523         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1524         buffer_info = &rx_ring->buffer_info[i];
1525 
1526         while (staterr & E1000_RXD_STAT_DD) {
1527                 struct sk_buff *skb;
1528 
1529                 if (*work_done >= work_to_do)
1530                         break;
1531                 (*work_done)++;
1532                 dma_rmb();      /* read descriptor and rx_buffer_info after status DD */
1533 
1534                 skb = buffer_info->skb;
1535                 buffer_info->skb = NULL;
1536 
1537                 ++i;
1538                 if (i == rx_ring->count)
1539                         i = 0;
1540                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1541                 prefetch(next_rxd);
1542 
1543                 next_buffer = &rx_ring->buffer_info[i];
1544 
1545                 cleaned = true;
1546                 cleaned_count++;
1547                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1548                                DMA_FROM_DEVICE);
1549                 buffer_info->dma = 0;
1550 
1551                 length = le16_to_cpu(rx_desc->wb.upper.length);
1552 
1553                 /* errors is only valid for DD + EOP descriptors */
1554                 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1555                              ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1556                               !(netdev->features & NETIF_F_RXALL)))) {
1557                         /* recycle both page and skb */
1558                         buffer_info->skb = skb;
1559                         /* an error means any chain goes out the window too */
1560                         if (rx_ring->rx_skb_top)
1561                                 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1562                         rx_ring->rx_skb_top = NULL;
1563                         goto next_desc;
1564                 }
1565 #define rxtop (rx_ring->rx_skb_top)
1566                 if (!(staterr & E1000_RXD_STAT_EOP)) {
1567                         /* this descriptor is only the beginning (or middle) */
1568                         if (!rxtop) {
1569                                 /* this is the beginning of a chain */
1570                                 rxtop = skb;
1571                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1572                                                    0, length);
1573                         } else {
1574                                 /* this is the middle of a chain */
1575                                 shinfo = skb_shinfo(rxtop);
1576                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1577                                                    buffer_info->page, 0,
1578                                                    length);
1579                                 /* re-use the skb, only consumed the page */
1580                                 buffer_info->skb = skb;
1581                         }
1582                         e1000_consume_page(buffer_info, rxtop, length);
1583                         goto next_desc;
1584                 } else {
1585                         if (rxtop) {
1586                                 /* end of the chain */
1587                                 shinfo = skb_shinfo(rxtop);
1588                                 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1589                                                    buffer_info->page, 0,
1590                                                    length);
1591                                 /* re-use the current skb, we only consumed the
1592                                  * page
1593                                  */
1594                                 buffer_info->skb = skb;
1595                                 skb = rxtop;
1596                                 rxtop = NULL;
1597                                 e1000_consume_page(buffer_info, skb, length);
1598                         } else {
1599                                 /* no chain, got EOP, this buf is the packet
1600                                  * copybreak to save the put_page/alloc_page
1601                                  */
1602                                 if (length <= copybreak &&
1603                                     skb_tailroom(skb) >= length) {
1604                                         u8 *vaddr;
1605                                         vaddr = kmap_atomic(buffer_info->page);
1606                                         memcpy(skb_tail_pointer(skb), vaddr,
1607                                                length);
1608                                         kunmap_atomic(vaddr);
1609                                         /* re-use the page, so don't erase
1610                                          * buffer_info->page
1611                                          */
1612                                         skb_put(skb, length);
1613                                 } else {
1614                                         skb_fill_page_desc(skb, 0,
1615                                                            buffer_info->page, 0,
1616                                                            length);
1617                                         e1000_consume_page(buffer_info, skb,
1618                                                            length);
1619                                 }
1620                         }
1621                 }
1622 
1623                 /* Receive Checksum Offload */
1624                 e1000_rx_checksum(adapter, staterr, skb);
1625 
1626                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1627 
1628                 /* probably a little skewed due to removing CRC */
1629                 total_rx_bytes += skb->len;
1630                 total_rx_packets++;
1631 
1632                 /* eth type trans needs skb->data to point to something */
1633                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1634                         e_err("pskb_may_pull failed.\n");
1635                         dev_kfree_skb_irq(skb);
1636                         goto next_desc;
1637                 }
1638 
1639                 e1000_receive_skb(adapter, netdev, skb, staterr,
1640                                   rx_desc->wb.upper.vlan);
1641 
1642 next_desc:
1643                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1644 
1645                 /* return some buffers to hardware, one at a time is too slow */
1646                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1647                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1648                                               GFP_ATOMIC);
1649                         cleaned_count = 0;
1650                 }
1651 
1652                 /* use prefetched values */
1653                 rx_desc = next_rxd;
1654                 buffer_info = next_buffer;
1655 
1656                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1657         }
1658         rx_ring->next_to_clean = i;
1659 
1660         cleaned_count = e1000_desc_unused(rx_ring);
1661         if (cleaned_count)
1662                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1663 
1664         adapter->total_rx_bytes += total_rx_bytes;
1665         adapter->total_rx_packets += total_rx_packets;
1666         return cleaned;
1667 }
1668 
1669 /**
1670  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1671  * @rx_ring: Rx descriptor ring
1672  **/
1673 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1674 {
1675         struct e1000_adapter *adapter = rx_ring->adapter;
1676         struct e1000_buffer *buffer_info;
1677         struct e1000_ps_page *ps_page;
1678         struct pci_dev *pdev = adapter->pdev;
1679         unsigned int i, j;
1680 
1681         /* Free all the Rx ring sk_buffs */
1682         for (i = 0; i < rx_ring->count; i++) {
1683                 buffer_info = &rx_ring->buffer_info[i];
1684                 if (buffer_info->dma) {
1685                         if (adapter->clean_rx == e1000_clean_rx_irq)
1686                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1687                                                  adapter->rx_buffer_len,
1688                                                  DMA_FROM_DEVICE);
1689                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1690                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1691                                                PAGE_SIZE, DMA_FROM_DEVICE);
1692                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1693                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1694                                                  adapter->rx_ps_bsize0,
1695                                                  DMA_FROM_DEVICE);
1696                         buffer_info->dma = 0;
1697                 }
1698 
1699                 if (buffer_info->page) {
1700                         put_page(buffer_info->page);
1701                         buffer_info->page = NULL;
1702                 }
1703 
1704                 if (buffer_info->skb) {
1705                         dev_kfree_skb(buffer_info->skb);
1706                         buffer_info->skb = NULL;
1707                 }
1708 
1709                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1710                         ps_page = &buffer_info->ps_pages[j];
1711                         if (!ps_page->page)
1712                                 break;
1713                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1714                                        DMA_FROM_DEVICE);
1715                         ps_page->dma = 0;
1716                         put_page(ps_page->page);
1717                         ps_page->page = NULL;
1718                 }
1719         }
1720 
1721         /* there also may be some cached data from a chained receive */
1722         if (rx_ring->rx_skb_top) {
1723                 dev_kfree_skb(rx_ring->rx_skb_top);
1724                 rx_ring->rx_skb_top = NULL;
1725         }
1726 
1727         /* Zero out the descriptor ring */
1728         memset(rx_ring->desc, 0, rx_ring->size);
1729 
1730         rx_ring->next_to_clean = 0;
1731         rx_ring->next_to_use = 0;
1732         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1733 }
1734 
1735 static void e1000e_downshift_workaround(struct work_struct *work)
1736 {
1737         struct e1000_adapter *adapter = container_of(work,
1738                                                      struct e1000_adapter,
1739                                                      downshift_task);
1740 
1741         if (test_bit(__E1000_DOWN, &adapter->state))
1742                 return;
1743 
1744         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1745 }
1746 
1747 /**
1748  * e1000_intr_msi - Interrupt Handler
1749  * @irq: interrupt number
1750  * @data: pointer to a network interface device structure
1751  **/
1752 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1753 {
1754         struct net_device *netdev = data;
1755         struct e1000_adapter *adapter = netdev_priv(netdev);
1756         struct e1000_hw *hw = &adapter->hw;
1757         u32 icr = er32(ICR);
1758 
1759         /* read ICR disables interrupts using IAM */
1760         if (icr & E1000_ICR_LSC) {
1761                 hw->mac.get_link_status = true;
1762                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1763                  * disconnect (LSC) before accessing any PHY registers
1764                  */
1765                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1766                     (!(er32(STATUS) & E1000_STATUS_LU)))
1767                         schedule_work(&adapter->downshift_task);
1768 
1769                 /* 80003ES2LAN workaround-- For packet buffer work-around on
1770                  * link down event; disable receives here in the ISR and reset
1771                  * adapter in watchdog
1772                  */
1773                 if (netif_carrier_ok(netdev) &&
1774                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1775                         /* disable receives */
1776                         u32 rctl = er32(RCTL);
1777 
1778                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1779                         adapter->flags |= FLAG_RESTART_NOW;
1780                 }
1781                 /* guard against interrupt when we're going down */
1782                 if (!test_bit(__E1000_DOWN, &adapter->state))
1783                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1784         }
1785 
1786         /* Reset on uncorrectable ECC error */
1787         if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1788                 u32 pbeccsts = er32(PBECCSTS);
1789 
1790                 adapter->corr_errors +=
1791                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1792                 adapter->uncorr_errors +=
1793                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1794                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1795 
1796                 /* Do the reset outside of interrupt context */
1797                 schedule_work(&adapter->reset_task);
1798 
1799                 /* return immediately since reset is imminent */
1800                 return IRQ_HANDLED;
1801         }
1802 
1803         if (napi_schedule_prep(&adapter->napi)) {
1804                 adapter->total_tx_bytes = 0;
1805                 adapter->total_tx_packets = 0;
1806                 adapter->total_rx_bytes = 0;
1807                 adapter->total_rx_packets = 0;
1808                 __napi_schedule(&adapter->napi);
1809         }
1810 
1811         return IRQ_HANDLED;
1812 }
1813 
1814 /**
1815  * e1000_intr - Interrupt Handler
1816  * @irq: interrupt number
1817  * @data: pointer to a network interface device structure
1818  **/
1819 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1820 {
1821         struct net_device *netdev = data;
1822         struct e1000_adapter *adapter = netdev_priv(netdev);
1823         struct e1000_hw *hw = &adapter->hw;
1824         u32 rctl, icr = er32(ICR);
1825 
1826         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1827                 return IRQ_NONE;        /* Not our interrupt */
1828 
1829         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1830          * not set, then the adapter didn't send an interrupt
1831          */
1832         if (!(icr & E1000_ICR_INT_ASSERTED))
1833                 return IRQ_NONE;
1834 
1835         /* Interrupt Auto-Mask...upon reading ICR,
1836          * interrupts are masked.  No need for the
1837          * IMC write
1838          */
1839 
1840         if (icr & E1000_ICR_LSC) {
1841                 hw->mac.get_link_status = true;
1842                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1843                  * disconnect (LSC) before accessing any PHY registers
1844                  */
1845                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1846                     (!(er32(STATUS) & E1000_STATUS_LU)))
1847                         schedule_work(&adapter->downshift_task);
1848 
1849                 /* 80003ES2LAN workaround--
1850                  * For packet buffer work-around on link down event;
1851                  * disable receives here in the ISR and
1852                  * reset adapter in watchdog
1853                  */
1854                 if (netif_carrier_ok(netdev) &&
1855                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1856                         /* disable receives */
1857                         rctl = er32(RCTL);
1858                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1859                         adapter->flags |= FLAG_RESTART_NOW;
1860                 }
1861                 /* guard against interrupt when we're going down */
1862                 if (!test_bit(__E1000_DOWN, &adapter->state))
1863                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1864         }
1865 
1866         /* Reset on uncorrectable ECC error */
1867         if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1868                 u32 pbeccsts = er32(PBECCSTS);
1869 
1870                 adapter->corr_errors +=
1871                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1872                 adapter->uncorr_errors +=
1873                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1874                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1875 
1876                 /* Do the reset outside of interrupt context */
1877                 schedule_work(&adapter->reset_task);
1878 
1879                 /* return immediately since reset is imminent */
1880                 return IRQ_HANDLED;
1881         }
1882 
1883         if (napi_schedule_prep(&adapter->napi)) {
1884                 adapter->total_tx_bytes = 0;
1885                 adapter->total_tx_packets = 0;
1886                 adapter->total_rx_bytes = 0;
1887                 adapter->total_rx_packets = 0;
1888                 __napi_schedule(&adapter->napi);
1889         }
1890 
1891         return IRQ_HANDLED;
1892 }
1893 
1894 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1895 {
1896         struct net_device *netdev = data;
1897         struct e1000_adapter *adapter = netdev_priv(netdev);
1898         struct e1000_hw *hw = &adapter->hw;
1899         u32 icr = er32(ICR);
1900 
1901         if (icr & adapter->eiac_mask)
1902                 ew32(ICS, (icr & adapter->eiac_mask));
1903 
1904         if (icr & E1000_ICR_LSC) {
1905                 hw->mac.get_link_status = true;
1906                 /* guard against interrupt when we're going down */
1907                 if (!test_bit(__E1000_DOWN, &adapter->state))
1908                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1909         }
1910 
1911         if (!test_bit(__E1000_DOWN, &adapter->state))
1912                 ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1913 
1914         return IRQ_HANDLED;
1915 }
1916 
1917 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1918 {
1919         struct net_device *netdev = data;
1920         struct e1000_adapter *adapter = netdev_priv(netdev);
1921         struct e1000_hw *hw = &adapter->hw;
1922         struct e1000_ring *tx_ring = adapter->tx_ring;
1923 
1924         adapter->total_tx_bytes = 0;
1925         adapter->total_tx_packets = 0;
1926 
1927         if (!e1000_clean_tx_irq(tx_ring))
1928                 /* Ring was not completely cleaned, so fire another interrupt */
1929                 ew32(ICS, tx_ring->ims_val);
1930 
1931         if (!test_bit(__E1000_DOWN, &adapter->state))
1932                 ew32(IMS, adapter->tx_ring->ims_val);
1933 
1934         return IRQ_HANDLED;
1935 }
1936 
1937 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1938 {
1939         struct net_device *netdev = data;
1940         struct e1000_adapter *adapter = netdev_priv(netdev);
1941         struct e1000_ring *rx_ring = adapter->rx_ring;
1942 
1943         /* Write the ITR value calculated at the end of the
1944          * previous interrupt.
1945          */
1946         if (rx_ring->set_itr) {
1947                 u32 itr = rx_ring->itr_val ?
1948                           1000000000 / (rx_ring->itr_val * 256) : 0;
1949 
1950                 writel(itr, rx_ring->itr_register);
1951                 rx_ring->set_itr = 0;
1952         }
1953 
1954         if (napi_schedule_prep(&adapter->napi)) {
1955                 adapter->total_rx_bytes = 0;
1956                 adapter->total_rx_packets = 0;
1957                 __napi_schedule(&adapter->napi);
1958         }
1959         return IRQ_HANDLED;
1960 }
1961 
1962 /**
1963  * e1000_configure_msix - Configure MSI-X hardware
1964  *
1965  * e1000_configure_msix sets up the hardware to properly
1966  * generate MSI-X interrupts.
1967  **/
1968 static void e1000_configure_msix(struct e1000_adapter *adapter)
1969 {
1970         struct e1000_hw *hw = &adapter->hw;
1971         struct e1000_ring *rx_ring = adapter->rx_ring;
1972         struct e1000_ring *tx_ring = adapter->tx_ring;
1973         int vector = 0;
1974         u32 ctrl_ext, ivar = 0;
1975 
1976         adapter->eiac_mask = 0;
1977 
1978         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1979         if (hw->mac.type == e1000_82574) {
1980                 u32 rfctl = er32(RFCTL);
1981 
1982                 rfctl |= E1000_RFCTL_ACK_DIS;
1983                 ew32(RFCTL, rfctl);
1984         }
1985 
1986         /* Configure Rx vector */
1987         rx_ring->ims_val = E1000_IMS_RXQ0;
1988         adapter->eiac_mask |= rx_ring->ims_val;
1989         if (rx_ring->itr_val)
1990                 writel(1000000000 / (rx_ring->itr_val * 256),
1991                        rx_ring->itr_register);
1992         else
1993                 writel(1, rx_ring->itr_register);
1994         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1995 
1996         /* Configure Tx vector */
1997         tx_ring->ims_val = E1000_IMS_TXQ0;
1998         vector++;
1999         if (tx_ring->itr_val)
2000                 writel(1000000000 / (tx_ring->itr_val * 256),
2001                        tx_ring->itr_register);
2002         else
2003                 writel(1, tx_ring->itr_register);
2004         adapter->eiac_mask |= tx_ring->ims_val;
2005         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2006 
2007         /* set vector for Other Causes, e.g. link changes */
2008         vector++;
2009         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2010         if (rx_ring->itr_val)
2011                 writel(1000000000 / (rx_ring->itr_val * 256),
2012                        hw->hw_addr + E1000_EITR_82574(vector));
2013         else
2014                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2015 
2016         /* Cause Tx interrupts on every write back */
2017         ivar |= BIT(31);
2018 
2019         ew32(IVAR, ivar);
2020 
2021         /* enable MSI-X PBA support */
2022         ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2023         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2024         ew32(CTRL_EXT, ctrl_ext);
2025         e1e_flush();
2026 }
2027 
2028 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2029 {
2030         if (adapter->msix_entries) {
2031                 pci_disable_msix(adapter->pdev);
2032                 kfree(adapter->msix_entries);
2033                 adapter->msix_entries = NULL;
2034         } else if (adapter->flags & FLAG_MSI_ENABLED) {
2035                 pci_disable_msi(adapter->pdev);
2036                 adapter->flags &= ~FLAG_MSI_ENABLED;
2037         }
2038 }
2039 
2040 /**
2041  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2042  *
2043  * Attempt to configure interrupts using the best available
2044  * capabilities of the hardware and kernel.
2045  **/
2046 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2047 {
2048         int err;
2049         int i;
2050 
2051         switch (adapter->int_mode) {
2052         case E1000E_INT_MODE_MSIX:
2053                 if (adapter->flags & FLAG_HAS_MSIX) {
2054                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2055                         adapter->msix_entries = kcalloc(adapter->num_vectors,
2056                                                         sizeof(struct
2057                                                                msix_entry),
2058                                                         GFP_KERNEL);
2059                         if (adapter->msix_entries) {
2060                                 struct e1000_adapter *a = adapter;
2061 
2062                                 for (i = 0; i < adapter->num_vectors; i++)
2063                                         adapter->msix_entries[i].entry = i;
2064 
2065                                 err = pci_enable_msix_range(a->pdev,
2066                                                             a->msix_entries,
2067                                                             a->num_vectors,
2068                                                             a->num_vectors);
2069                                 if (err > 0)
2070                                         return;
2071                         }
2072                         /* MSI-X failed, so fall through and try MSI */
2073                         e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2074                         e1000e_reset_interrupt_capability(adapter);
2075                 }
2076                 adapter->int_mode = E1000E_INT_MODE_MSI;
2077                 /* Fall through */
2078         case E1000E_INT_MODE_MSI:
2079                 if (!pci_enable_msi(adapter->pdev)) {
2080                         adapter->flags |= FLAG_MSI_ENABLED;
2081                 } else {
2082                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
2083                         e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2084                 }
2085                 /* Fall through */
2086         case E1000E_INT_MODE_LEGACY:
2087                 /* Don't do anything; this is the system default */
2088                 break;
2089         }
2090 
2091         /* store the number of vectors being used */
2092         adapter->num_vectors = 1;
2093 }
2094 
2095 /**
2096  * e1000_request_msix - Initialize MSI-X interrupts
2097  *
2098  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2099  * kernel.
2100  **/
2101 static int e1000_request_msix(struct e1000_adapter *adapter)
2102 {
2103         struct net_device *netdev = adapter->netdev;
2104         int err = 0, vector = 0;
2105 
2106         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2107                 snprintf(adapter->rx_ring->name,
2108                          sizeof(adapter->rx_ring->name) - 1,
2109                          "%.14s-rx-0", netdev->name);
2110         else
2111                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2112         err = request_irq(adapter->msix_entries[vector].vector,
2113                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2114                           netdev);
2115         if (err)
2116                 return err;
2117         adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2118             E1000_EITR_82574(vector);
2119         adapter->rx_ring->itr_val = adapter->itr;
2120         vector++;
2121 
2122         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2123                 snprintf(adapter->tx_ring->name,
2124                          sizeof(adapter->tx_ring->name) - 1,
2125                          "%.14s-tx-0", netdev->name);
2126         else
2127                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2128         err = request_irq(adapter->msix_entries[vector].vector,
2129                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2130                           netdev);
2131         if (err)
2132                 return err;
2133         adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2134             E1000_EITR_82574(vector);
2135         adapter->tx_ring->itr_val = adapter->itr;
2136         vector++;
2137 
2138         err = request_irq(adapter->msix_entries[vector].vector,
2139                           e1000_msix_other, 0, netdev->name, netdev);
2140         if (err)
2141                 return err;
2142 
2143         e1000_configure_msix(adapter);
2144 
2145         return 0;
2146 }
2147 
2148 /**
2149  * e1000_request_irq - initialize interrupts
2150  *
2151  * Attempts to configure interrupts using the best available
2152  * capabilities of the hardware and kernel.
2153  **/
2154 static int e1000_request_irq(struct e1000_adapter *adapter)
2155 {
2156         struct net_device *netdev = adapter->netdev;
2157         int err;
2158 
2159         if (adapter->msix_entries) {
2160                 err = e1000_request_msix(adapter);
2161                 if (!err)
2162                         return err;
2163                 /* fall back to MSI */
2164                 e1000e_reset_interrupt_capability(adapter);
2165                 adapter->int_mode = E1000E_INT_MODE_MSI;
2166                 e1000e_set_interrupt_capability(adapter);
2167         }
2168         if (adapter->flags & FLAG_MSI_ENABLED) {
2169                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2170                                   netdev->name, netdev);
2171                 if (!err)
2172                         return err;
2173 
2174                 /* fall back to legacy interrupt */
2175                 e1000e_reset_interrupt_capability(adapter);
2176                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2177         }
2178 
2179         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2180                           netdev->name, netdev);
2181         if (err)
2182                 e_err("Unable to allocate interrupt, Error: %d\n", err);
2183 
2184         return err;
2185 }
2186 
2187 static void e1000_free_irq(struct e1000_adapter *adapter)
2188 {
2189         struct net_device *netdev = adapter->netdev;
2190 
2191         if (adapter->msix_entries) {
2192                 int vector = 0;
2193 
2194                 free_irq(adapter->msix_entries[vector].vector, netdev);
2195                 vector++;
2196 
2197                 free_irq(adapter->msix_entries[vector].vector, netdev);
2198                 vector++;
2199 
2200                 /* Other Causes interrupt vector */
2201                 free_irq(adapter->msix_entries[vector].vector, netdev);
2202                 return;
2203         }
2204 
2205         free_irq(adapter->pdev->irq, netdev);
2206 }
2207 
2208 /**
2209  * e1000_irq_disable - Mask off interrupt generation on the NIC
2210  **/
2211 static void e1000_irq_disable(struct e1000_adapter *adapter)
2212 {
2213         struct e1000_hw *hw = &adapter->hw;
2214 
2215         ew32(IMC, ~0);
2216         if (adapter->msix_entries)
2217                 ew32(EIAC_82574, 0);
2218         e1e_flush();
2219 
2220         if (adapter->msix_entries) {
2221                 int i;
2222 
2223                 for (i = 0; i < adapter->num_vectors; i++)
2224                         synchronize_irq(adapter->msix_entries[i].vector);
2225         } else {
2226                 synchronize_irq(adapter->pdev->irq);
2227         }
2228 }
2229 
2230 /**
2231  * e1000_irq_enable - Enable default interrupt generation settings
2232  **/
2233 static void e1000_irq_enable(struct e1000_adapter *adapter)
2234 {
2235         struct e1000_hw *hw = &adapter->hw;
2236 
2237         if (adapter->msix_entries) {
2238                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2239                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2240                      IMS_OTHER_MASK);
2241         } else if (hw->mac.type >= e1000_pch_lpt) {
2242                 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2243         } else {
2244                 ew32(IMS, IMS_ENABLE_MASK);
2245         }
2246         e1e_flush();
2247 }
2248 
2249 /**
2250  * e1000e_get_hw_control - get control of the h/w from f/w
2251  * @adapter: address of board private structure
2252  *
2253  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2254  * For ASF and Pass Through versions of f/w this means that
2255  * the driver is loaded. For AMT version (only with 82573)
2256  * of the f/w this means that the network i/f is open.
2257  **/
2258 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2259 {
2260         struct e1000_hw *hw = &adapter->hw;
2261         u32 ctrl_ext;
2262         u32 swsm;
2263 
2264         /* Let firmware know the driver has taken over */
2265         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2266                 swsm = er32(SWSM);
2267                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2268         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2269                 ctrl_ext = er32(CTRL_EXT);
2270                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2271         }
2272 }
2273 
2274 /**
2275  * e1000e_release_hw_control - release control of the h/w to f/w
2276  * @adapter: address of board private structure
2277  *
2278  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2279  * For ASF and Pass Through versions of f/w this means that the
2280  * driver is no longer loaded. For AMT version (only with 82573) i
2281  * of the f/w this means that the network i/f is closed.
2282  *
2283  **/
2284 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2285 {
2286         struct e1000_hw *hw = &adapter->hw;
2287         u32 ctrl_ext;
2288         u32 swsm;
2289 
2290         /* Let firmware taken over control of h/w */
2291         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2292                 swsm = er32(SWSM);
2293                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2294         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2295                 ctrl_ext = er32(CTRL_EXT);
2296                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2297         }
2298 }
2299 
2300 /**
2301  * e1000_alloc_ring_dma - allocate memory for a ring structure
2302  **/
2303 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2304                                 struct e1000_ring *ring)
2305 {
2306         struct pci_dev *pdev = adapter->pdev;
2307 
2308         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2309                                         GFP_KERNEL);
2310         if (!ring->desc)
2311                 return -ENOMEM;
2312 
2313         return 0;
2314 }
2315 
2316 /**
2317  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2318  * @tx_ring: Tx descriptor ring
2319  *
2320  * Return 0 on success, negative on failure
2321  **/
2322 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2323 {
2324         struct e1000_adapter *adapter = tx_ring->adapter;
2325         int err = -ENOMEM, size;
2326 
2327         size = sizeof(struct e1000_buffer) * tx_ring->count;
2328         tx_ring->buffer_info = vzalloc(size);
2329         if (!tx_ring->buffer_info)
2330                 goto err;
2331 
2332         /* round up to nearest 4K */
2333         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2334         tx_ring->size = ALIGN(tx_ring->size, 4096);
2335 
2336         err = e1000_alloc_ring_dma(adapter, tx_ring);
2337         if (err)
2338                 goto err;
2339 
2340         tx_ring->next_to_use = 0;
2341         tx_ring->next_to_clean = 0;
2342 
2343         return 0;
2344 err:
2345         vfree(tx_ring->buffer_info);
2346         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2347         return err;
2348 }
2349 
2350 /**
2351  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2352  * @rx_ring: Rx descriptor ring
2353  *
2354  * Returns 0 on success, negative on failure
2355  **/
2356 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2357 {
2358         struct e1000_adapter *adapter = rx_ring->adapter;
2359         struct e1000_buffer *buffer_info;
2360         int i, size, desc_len, err = -ENOMEM;
2361 
2362         size = sizeof(struct e1000_buffer) * rx_ring->count;
2363         rx_ring->buffer_info = vzalloc(size);
2364         if (!rx_ring->buffer_info)
2365                 goto err;
2366 
2367         for (i = 0; i < rx_ring->count; i++) {
2368                 buffer_info = &rx_ring->buffer_info[i];
2369                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2370                                                 sizeof(struct e1000_ps_page),
2371                                                 GFP_KERNEL);
2372                 if (!buffer_info->ps_pages)
2373                         goto err_pages;
2374         }
2375 
2376         desc_len = sizeof(union e1000_rx_desc_packet_split);
2377 
2378         /* Round up to nearest 4K */
2379         rx_ring->size = rx_ring->count * desc_len;
2380         rx_ring->size = ALIGN(rx_ring->size, 4096);
2381 
2382         err = e1000_alloc_ring_dma(adapter, rx_ring);
2383         if (err)
2384                 goto err_pages;
2385 
2386         rx_ring->next_to_clean = 0;
2387         rx_ring->next_to_use = 0;
2388         rx_ring->rx_skb_top = NULL;
2389 
2390         return 0;
2391 
2392 err_pages:
2393         for (i = 0; i < rx_ring->count; i++) {
2394                 buffer_info = &rx_ring->buffer_info[i];
2395                 kfree(buffer_info->ps_pages);
2396         }
2397 err:
2398         vfree(rx_ring->buffer_info);
2399         e_err("Unable to allocate memory for the receive descriptor ring\n");
2400         return err;
2401 }
2402 
2403 /**
2404  * e1000_clean_tx_ring - Free Tx Buffers
2405  * @tx_ring: Tx descriptor ring
2406  **/
2407 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2408 {
2409         struct e1000_adapter *adapter = tx_ring->adapter;
2410         struct e1000_buffer *buffer_info;
2411         unsigned long size;
2412         unsigned int i;
2413 
2414         for (i = 0; i < tx_ring->count; i++) {
2415                 buffer_info = &tx_ring->buffer_info[i];
2416                 e1000_put_txbuf(tx_ring, buffer_info, false);
2417         }
2418 
2419         netdev_reset_queue(adapter->netdev);
2420         size = sizeof(struct e1000_buffer) * tx_ring->count;
2421         memset(tx_ring->buffer_info, 0, size);
2422 
2423         memset(tx_ring->desc, 0, tx_ring->size);
2424 
2425         tx_ring->next_to_use = 0;
2426         tx_ring->next_to_clean = 0;
2427 }
2428 
2429 /**
2430  * e1000e_free_tx_resources - Free Tx Resources per Queue
2431  * @tx_ring: Tx descriptor ring
2432  *
2433  * Free all transmit software resources
2434  **/
2435 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2436 {
2437         struct e1000_adapter *adapter = tx_ring->adapter;
2438         struct pci_dev *pdev = adapter->pdev;
2439 
2440         e1000_clean_tx_ring(tx_ring);
2441 
2442         vfree(tx_ring->buffer_info);
2443         tx_ring->buffer_info = NULL;
2444 
2445         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2446                           tx_ring->dma);
2447         tx_ring->desc = NULL;
2448 }
2449 
2450 /**
2451  * e1000e_free_rx_resources - Free Rx Resources
2452  * @rx_ring: Rx descriptor ring
2453  *
2454  * Free all receive software resources
2455  **/
2456 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2457 {
2458         struct e1000_adapter *adapter = rx_ring->adapter;
2459         struct pci_dev *pdev = adapter->pdev;
2460         int i;
2461 
2462         e1000_clean_rx_ring(rx_ring);
2463 
2464         for (i = 0; i < rx_ring->count; i++)
2465                 kfree(rx_ring->buffer_info[i].ps_pages);
2466 
2467         vfree(rx_ring->buffer_info);
2468         rx_ring->buffer_info = NULL;
2469 
2470         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2471                           rx_ring->dma);
2472         rx_ring->desc = NULL;
2473 }
2474 
2475 /**
2476  * e1000_update_itr - update the dynamic ITR value based on statistics
2477  * @adapter: pointer to adapter
2478  * @itr_setting: current adapter->itr
2479  * @packets: the number of packets during this measurement interval
2480  * @bytes: the number of bytes during this measurement interval
2481  *
2482  *      Stores a new ITR value based on packets and byte
2483  *      counts during the last interrupt.  The advantage of per interrupt
2484  *      computation is faster updates and more accurate ITR for the current
2485  *      traffic pattern.  Constants in this function were computed
2486  *      based on theoretical maximum wire speed and thresholds were set based
2487  *      on testing data as well as attempting to minimize response time
2488  *      while increasing bulk throughput.  This functionality is controlled
2489  *      by the InterruptThrottleRate module parameter.
2490  **/
2491 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2492 {
2493         unsigned int retval = itr_setting;
2494 
2495         if (packets == 0)
2496                 return itr_setting;
2497 
2498         switch (itr_setting) {
2499         case lowest_latency:
2500                 /* handle TSO and jumbo frames */
2501                 if (bytes / packets > 8000)
2502                         retval = bulk_latency;
2503                 else if ((packets < 5) && (bytes > 512))
2504                         retval = low_latency;
2505                 break;
2506         case low_latency:       /* 50 usec aka 20000 ints/s */
2507                 if (bytes > 10000) {
2508                         /* this if handles the TSO accounting */
2509                         if (bytes / packets > 8000)
2510                                 retval = bulk_latency;
2511                         else if ((packets < 10) || ((bytes / packets) > 1200))
2512                                 retval = bulk_latency;
2513                         else if ((packets > 35))
2514                                 retval = lowest_latency;
2515                 } else if (bytes / packets > 2000) {
2516                         retval = bulk_latency;
2517                 } else if (packets <= 2 && bytes < 512) {
2518                         retval = lowest_latency;
2519                 }
2520                 break;
2521         case bulk_latency:      /* 250 usec aka 4000 ints/s */
2522                 if (bytes > 25000) {
2523                         if (packets > 35)
2524                                 retval = low_latency;
2525                 } else if (bytes < 6000) {
2526                         retval = low_latency;
2527                 }
2528                 break;
2529         }
2530 
2531         return retval;
2532 }
2533 
2534 static void e1000_set_itr(struct e1000_adapter *adapter)
2535 {
2536         u16 current_itr;
2537         u32 new_itr = adapter->itr;
2538 
2539         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2540         if (adapter->link_speed != SPEED_1000) {
2541                 current_itr = 0;
2542                 new_itr = 4000;
2543                 goto set_itr_now;
2544         }
2545 
2546         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2547                 new_itr = 0;
2548                 goto set_itr_now;
2549         }
2550 
2551         adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2552                                            adapter->total_tx_packets,
2553                                            adapter->total_tx_bytes);
2554         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2555         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2556                 adapter->tx_itr = low_latency;
2557 
2558         adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2559                                            adapter->total_rx_packets,
2560                                            adapter->total_rx_bytes);
2561         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2562         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2563                 adapter->rx_itr = low_latency;
2564 
2565         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2566 
2567         /* counts and packets in update_itr are dependent on these numbers */
2568         switch (current_itr) {
2569         case lowest_latency:
2570                 new_itr = 70000;
2571                 break;
2572         case low_latency:
2573                 new_itr = 20000;        /* aka hwitr = ~200 */
2574                 break;
2575         case bulk_latency:
2576                 new_itr = 4000;
2577                 break;
2578         default:
2579                 break;
2580         }
2581 
2582 set_itr_now:
2583         if (new_itr != adapter->itr) {
2584                 /* this attempts to bias the interrupt rate towards Bulk
2585                  * by adding intermediate steps when interrupt rate is
2586                  * increasing
2587                  */
2588                 new_itr = new_itr > adapter->itr ?
2589                     min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2590                 adapter->itr = new_itr;
2591                 adapter->rx_ring->itr_val = new_itr;
2592                 if (adapter->msix_entries)
2593                         adapter->rx_ring->set_itr = 1;
2594                 else
2595                         e1000e_write_itr(adapter, new_itr);
2596         }
2597 }
2598 
2599 /**
2600  * e1000e_write_itr - write the ITR value to the appropriate registers
2601  * @adapter: address of board private structure
2602  * @itr: new ITR value to program
2603  *
2604  * e1000e_write_itr determines if the adapter is in MSI-X mode
2605  * and, if so, writes the EITR registers with the ITR value.
2606  * Otherwise, it writes the ITR value into the ITR register.
2607  **/
2608 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2609 {
2610         struct e1000_hw *hw = &adapter->hw;
2611         u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2612 
2613         if (adapter->msix_entries) {
2614                 int vector;
2615 
2616                 for (vector = 0; vector < adapter->num_vectors; vector++)
2617                         writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2618         } else {
2619                 ew32(ITR, new_itr);
2620         }
2621 }
2622 
2623 /**
2624  * e1000_alloc_queues - Allocate memory for all rings
2625  * @adapter: board private structure to initialize
2626  **/
2627 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2628 {
2629         int size = sizeof(struct e1000_ring);
2630 
2631         adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2632         if (!adapter->tx_ring)
2633                 goto err;
2634         adapter->tx_ring->count = adapter->tx_ring_count;
2635         adapter->tx_ring->adapter = adapter;
2636 
2637         adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2638         if (!adapter->rx_ring)
2639                 goto err;
2640         adapter->rx_ring->count = adapter->rx_ring_count;
2641         adapter->rx_ring->adapter = adapter;
2642 
2643         return 0;
2644 err:
2645         e_err("Unable to allocate memory for queues\n");
2646         kfree(adapter->rx_ring);
2647         kfree(adapter->tx_ring);
2648         return -ENOMEM;
2649 }
2650 
2651 /**
2652  * e1000e_poll - NAPI Rx polling callback
2653  * @napi: struct associated with this polling callback
2654  * @budget: number of packets driver is allowed to process this poll
2655  **/
2656 static int e1000e_poll(struct napi_struct *napi, int budget)
2657 {
2658         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2659                                                      napi);
2660         struct e1000_hw *hw = &adapter->hw;
2661         struct net_device *poll_dev = adapter->netdev;
2662         int tx_cleaned = 1, work_done = 0;
2663 
2664         adapter = netdev_priv(poll_dev);
2665 
2666         if (!adapter->msix_entries ||
2667             (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2668                 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2669 
2670         adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2671 
2672         if (!tx_cleaned || work_done == budget)
2673                 return budget;
2674 
2675         /* Exit the polling mode, but don't re-enable interrupts if stack might
2676          * poll us due to busy-polling
2677          */
2678         if (likely(napi_complete_done(napi, work_done))) {
2679                 if (adapter->itr_setting & 3)
2680                         e1000_set_itr(adapter);
2681                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2682                         if (adapter->msix_entries)
2683                                 ew32(IMS, adapter->rx_ring->ims_val);
2684                         else
2685                                 e1000_irq_enable(adapter);
2686                 }
2687         }
2688 
2689         return work_done;
2690 }
2691 
2692 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2693                                  __always_unused __be16 proto, u16 vid)
2694 {
2695         struct e1000_adapter *adapter = netdev_priv(netdev);
2696         struct e1000_hw *hw = &adapter->hw;
2697         u32 vfta, index;
2698 
2699         /* don't update vlan cookie if already programmed */
2700         if ((adapter->hw.mng_cookie.status &
2701              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2702             (vid == adapter->mng_vlan_id))
2703                 return 0;
2704 
2705         /* add VID to filter table */
2706         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2707                 index = (vid >> 5) & 0x7F;
2708                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2709                 vfta |= BIT((vid & 0x1F));
2710                 hw->mac.ops.write_vfta(hw, index, vfta);
2711         }
2712 
2713         set_bit(vid, adapter->active_vlans);
2714 
2715         return 0;
2716 }
2717 
2718 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2719                                   __always_unused __be16 proto, u16 vid)
2720 {
2721         struct e1000_adapter *adapter = netdev_priv(netdev);
2722         struct e1000_hw *hw = &adapter->hw;
2723         u32 vfta, index;
2724 
2725         if ((adapter->hw.mng_cookie.status &
2726              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2727             (vid == adapter->mng_vlan_id)) {
2728                 /* release control to f/w */
2729                 e1000e_release_hw_control(adapter);
2730                 return 0;
2731         }
2732 
2733         /* remove VID from filter table */
2734         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2735                 index = (vid >> 5) & 0x7F;
2736                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2737                 vfta &= ~BIT((vid & 0x1F));
2738                 hw->mac.ops.write_vfta(hw, index, vfta);
2739         }
2740 
2741         clear_bit(vid, adapter->active_vlans);
2742 
2743         return 0;
2744 }
2745 
2746 /**
2747  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2748  * @adapter: board private structure to initialize
2749  **/
2750 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2751 {
2752         struct net_device *netdev = adapter->netdev;
2753         struct e1000_hw *hw = &adapter->hw;
2754         u32 rctl;
2755 
2756         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2757                 /* disable VLAN receive filtering */
2758                 rctl = er32(RCTL);
2759                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2760                 ew32(RCTL, rctl);
2761 
2762                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2763                         e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2764                                                adapter->mng_vlan_id);
2765                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2766                 }
2767         }
2768 }
2769 
2770 /**
2771  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2772  * @adapter: board private structure to initialize
2773  **/
2774 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2775 {
2776         struct e1000_hw *hw = &adapter->hw;
2777         u32 rctl;
2778 
2779         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2780                 /* enable VLAN receive filtering */
2781                 rctl = er32(RCTL);
2782                 rctl |= E1000_RCTL_VFE;
2783                 rctl &= ~E1000_RCTL_CFIEN;
2784                 ew32(RCTL, rctl);
2785         }
2786 }
2787 
2788 /**
2789  * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2790  * @adapter: board private structure to initialize
2791  **/
2792 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2793 {
2794         struct e1000_hw *hw = &adapter->hw;
2795         u32 ctrl;
2796 
2797         /* disable VLAN tag insert/strip */
2798         ctrl = er32(CTRL);
2799         ctrl &= ~E1000_CTRL_VME;
2800         ew32(CTRL, ctrl);
2801 }
2802 
2803 /**
2804  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2805  * @adapter: board private structure to initialize
2806  **/
2807 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2808 {
2809         struct e1000_hw *hw = &adapter->hw;
2810         u32 ctrl;
2811 
2812         /* enable VLAN tag insert/strip */
2813         ctrl = er32(CTRL);
2814         ctrl |= E1000_CTRL_VME;
2815         ew32(CTRL, ctrl);
2816 }
2817 
2818 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2819 {
2820         struct net_device *netdev = adapter->netdev;
2821         u16 vid = adapter->hw.mng_cookie.vlan_id;
2822         u16 old_vid = adapter->mng_vlan_id;
2823 
2824         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2825                 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2826                 adapter->mng_vlan_id = vid;
2827         }
2828 
2829         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2830                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2831 }
2832 
2833 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2834 {
2835         u16 vid;
2836 
2837         e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2838 
2839         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2840             e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2841 }
2842 
2843 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2844 {
2845         struct e1000_hw *hw = &adapter->hw;
2846         u32 manc, manc2h, mdef, i, j;
2847 
2848         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2849                 return;
2850 
2851         manc = er32(MANC);
2852 
2853         /* enable receiving management packets to the host. this will probably
2854          * generate destination unreachable messages from the host OS, but
2855          * the packets will be handled on SMBUS
2856          */
2857         manc |= E1000_MANC_EN_MNG2HOST;
2858         manc2h = er32(MANC2H);
2859 
2860         switch (hw->mac.type) {
2861         default:
2862                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2863                 break;
2864         case e1000_82574:
2865         case e1000_82583:
2866                 /* Check if IPMI pass-through decision filter already exists;
2867                  * if so, enable it.
2868                  */
2869                 for (i = 0, j = 0; i < 8; i++) {
2870                         mdef = er32(MDEF(i));
2871 
2872                         /* Ignore filters with anything other than IPMI ports */
2873                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2874                                 continue;
2875 
2876                         /* Enable this decision filter in MANC2H */
2877                         if (mdef)
2878                                 manc2h |= BIT(i);
2879 
2880                         j |= mdef;
2881                 }
2882 
2883                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2884                         break;
2885 
2886                 /* Create new decision filter in an empty filter */
2887                 for (i = 0, j = 0; i < 8; i++)
2888                         if (er32(MDEF(i)) == 0) {
2889                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2890                                                E1000_MDEF_PORT_664));
2891                                 manc2h |= BIT(1);
2892                                 j++;
2893                                 break;
2894                         }
2895 
2896                 if (!j)
2897                         e_warn("Unable to create IPMI pass-through filter\n");
2898                 break;
2899         }
2900 
2901         ew32(MANC2H, manc2h);
2902         ew32(MANC, manc);
2903 }
2904 
2905 /**
2906  * e1000_configure_tx - Configure Transmit Unit after Reset
2907  * @adapter: board private structure
2908  *
2909  * Configure the Tx unit of the MAC after a reset.
2910  **/
2911 static void e1000_configure_tx(struct e1000_adapter *adapter)
2912 {
2913         struct e1000_hw *hw = &adapter->hw;
2914         struct e1000_ring *tx_ring = adapter->tx_ring;
2915         u64 tdba;
2916         u32 tdlen, tctl, tarc;
2917 
2918         /* Setup the HW Tx Head and Tail descriptor pointers */
2919         tdba = tx_ring->dma;
2920         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2921         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2922         ew32(TDBAH(0), (tdba >> 32));
2923         ew32(TDLEN(0), tdlen);
2924         ew32(TDH(0), 0);
2925         ew32(TDT(0), 0);
2926         tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2927         tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2928 
2929         writel(0, tx_ring->head);
2930         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2931                 e1000e_update_tdt_wa(tx_ring, 0);
2932         else
2933                 writel(0, tx_ring->tail);
2934 
2935         /* Set the Tx Interrupt Delay register */
2936         ew32(TIDV, adapter->tx_int_delay);
2937         /* Tx irq moderation */
2938         ew32(TADV, adapter->tx_abs_int_delay);
2939 
2940         if (adapter->flags2 & FLAG2_DMA_BURST) {
2941                 u32 txdctl = er32(TXDCTL(0));
2942 
2943                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2944                             E1000_TXDCTL_WTHRESH);
2945                 /* set up some performance related parameters to encourage the
2946                  * hardware to use the bus more efficiently in bursts, depends
2947                  * on the tx_int_delay to be enabled,
2948                  * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2949                  * hthresh = 1 ==> prefetch when one or more available
2950                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2951                  * BEWARE: this seems to work but should be considered first if
2952                  * there are Tx hangs or other Tx related bugs
2953                  */
2954                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2955                 ew32(TXDCTL(0), txdctl);
2956         }
2957         /* erratum work around: set txdctl the same for both queues */
2958         ew32(TXDCTL(1), er32(TXDCTL(0)));
2959 
2960         /* Program the Transmit Control Register */
2961         tctl = er32(TCTL);
2962         tctl &= ~E1000_TCTL_CT;
2963         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2964                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2965 
2966         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2967                 tarc = er32(TARC(0));
2968                 /* set the speed mode bit, we'll clear it if we're not at
2969                  * gigabit link later
2970                  */
2971 #define SPEED_MODE_BIT BIT(21)
2972                 tarc |= SPEED_MODE_BIT;
2973                 ew32(TARC(0), tarc);
2974         }
2975 
2976         /* errata: program both queues to unweighted RR */
2977         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2978                 tarc = er32(TARC(0));
2979                 tarc |= 1;
2980                 ew32(TARC(0), tarc);
2981                 tarc = er32(TARC(1));
2982                 tarc |= 1;
2983                 ew32(TARC(1), tarc);
2984         }
2985 
2986         /* Setup Transmit Descriptor Settings for eop descriptor */
2987         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2988 
2989         /* only set IDE if we are delaying interrupts using the timers */
2990         if (adapter->tx_int_delay)
2991                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2992 
2993         /* enable Report Status bit */
2994         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2995 
2996         ew32(TCTL, tctl);
2997 
2998         hw->mac.ops.config_collision_dist(hw);
2999 
3000         /* SPT and KBL Si errata workaround to avoid data corruption */
3001         if (hw->mac.type == e1000_pch_spt) {
3002                 u32 reg_val;
3003 
3004                 reg_val = er32(IOSFPC);
3005                 reg_val |= E1000_RCTL_RDMTS_HEX;
3006                 ew32(IOSFPC, reg_val);
3007 
3008                 reg_val = er32(TARC(0));
3009                 /* SPT and KBL Si errata workaround to avoid Tx hang.
3010                  * Dropping the number of outstanding requests from
3011                  * 3 to 2 in order to avoid a buffer overrun.
3012                  */
3013                 reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3014                 reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3015                 ew32(TARC(0), reg_val);
3016         }
3017 }
3018 
3019 /**
3020  * e1000_setup_rctl - configure the receive control registers
3021  * @adapter: Board private structure
3022  **/
3023 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3024                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3025 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3026 {
3027         struct e1000_hw *hw = &adapter->hw;
3028         u32 rctl, rfctl;
3029         u32 pages = 0;
3030 
3031         /* Workaround Si errata on PCHx - configure jumbo frame flow.
3032          * If jumbo frames not set, program related MAC/PHY registers
3033          * to h/w defaults
3034          */
3035         if (hw->mac.type >= e1000_pch2lan) {
3036                 s32 ret_val;
3037 
3038                 if (adapter->netdev->mtu > ETH_DATA_LEN)
3039                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3040                 else
3041                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3042 
3043                 if (ret_val)
3044                         e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3045         }
3046 
3047         /* Program MC offset vector base */
3048         rctl = er32(RCTL);
3049         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3050         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3051             E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3052             (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3053 
3054         /* Do not Store bad packets */
3055         rctl &= ~E1000_RCTL_SBP;
3056 
3057         /* Enable Long Packet receive */
3058         if (adapter->netdev->mtu <= ETH_DATA_LEN)
3059                 rctl &= ~E1000_RCTL_LPE;
3060         else
3061                 rctl |= E1000_RCTL_LPE;
3062 
3063         /* Some systems expect that the CRC is included in SMBUS traffic. The
3064          * hardware strips the CRC before sending to both SMBUS (BMC) and to
3065          * host memory when this is enabled
3066          */
3067         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3068                 rctl |= E1000_RCTL_SECRC;
3069 
3070         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3071         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3072                 u16 phy_data;
3073 
3074                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3075                 phy_data &= 0xfff8;
3076                 phy_data |= BIT(2);
3077                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3078 
3079                 e1e_rphy(hw, 22, &phy_data);
3080                 phy_data &= 0x0fff;
3081                 phy_data |= BIT(14);
3082                 e1e_wphy(hw, 0x10, 0x2823);
3083                 e1e_wphy(hw, 0x11, 0x0003);
3084                 e1e_wphy(hw, 22, phy_data);
3085         }
3086 
3087         /* Setup buffer sizes */
3088         rctl &= ~E1000_RCTL_SZ_4096;
3089         rctl |= E1000_RCTL_BSEX;
3090         switch (adapter->rx_buffer_len) {
3091         case 2048:
3092         default:
3093                 rctl |= E1000_RCTL_SZ_2048;
3094                 rctl &= ~E1000_RCTL_BSEX;
3095                 break;
3096         case 4096:
3097                 rctl |= E1000_RCTL_SZ_4096;
3098                 break;
3099         case 8192:
3100                 rctl |= E1000_RCTL_SZ_8192;
3101                 break;
3102         case 16384:
3103                 rctl |= E1000_RCTL_SZ_16384;
3104                 break;
3105         }
3106 
3107         /* Enable Extended Status in all Receive Descriptors */
3108         rfctl = er32(RFCTL);
3109         rfctl |= E1000_RFCTL_EXTEN;
3110         ew32(RFCTL, rfctl);
3111 
3112         /* 82571 and greater support packet-split where the protocol
3113          * header is placed in skb->data and the packet data is
3114          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3115          * In the case of a non-split, skb->data is linearly filled,
3116          * followed by the page buffers.  Therefore, skb->data is
3117          * sized to hold the largest protocol header.
3118          *
3119          * allocations using alloc_page take too long for regular MTU
3120          * so only enable packet split for jumbo frames
3121          *
3122          * Using pages when the page size is greater than 16k wastes
3123          * a lot of memory, since we allocate 3 pages at all times
3124          * per packet.
3125          */
3126         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3127         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3128                 adapter->rx_ps_pages = pages;
3129         else
3130                 adapter->rx_ps_pages = 0;
3131 
3132         if (adapter->rx_ps_pages) {
3133                 u32 psrctl = 0;
3134 
3135                 /* Enable Packet split descriptors */
3136                 rctl |= E1000_RCTL_DTYP_PS;
3137 
3138                 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3139 
3140                 switch (adapter->rx_ps_pages) {
3141                 case 3:
3142                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3143                         /* fall-through */
3144                 case 2:
3145                         psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3146                         /* fall-through */
3147                 case 1:
3148                         psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3149                         break;
3150                 }
3151 
3152                 ew32(PSRCTL, psrctl);
3153         }
3154 
3155         /* This is useful for sniffing bad packets. */
3156         if (adapter->netdev->features & NETIF_F_RXALL) {
3157                 /* UPE and MPE will be handled by normal PROMISC logic
3158                  * in e1000e_set_rx_mode
3159                  */
3160                 rctl |= (E1000_RCTL_SBP |       /* Receive bad packets */
3161                          E1000_RCTL_BAM |       /* RX All Bcast Pkts */
3162                          E1000_RCTL_PMCF);      /* RX All MAC Ctrl Pkts */
3163 
3164                 rctl &= ~(E1000_RCTL_VFE |      /* Disable VLAN filter */
3165                           E1000_RCTL_DPF |      /* Allow filtered pause */
3166                           E1000_RCTL_CFIEN);    /* Dis VLAN CFIEN Filter */
3167                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3168                  * and that breaks VLANs.
3169                  */
3170         }
3171 
3172         ew32(RCTL, rctl);
3173         /* just started the receive unit, no need to restart */
3174         adapter->flags &= ~FLAG_RESTART_NOW;
3175 }
3176 
3177 /**
3178  * e1000_configure_rx - Configure Receive Unit after Reset
3179  * @adapter: board private structure
3180  *
3181  * Configure the Rx unit of the MAC after a reset.
3182  **/
3183 static void e1000_configure_rx(struct e1000_adapter *adapter)
3184 {
3185         struct e1000_hw *hw = &adapter->hw;
3186         struct e1000_ring *rx_ring = adapter->rx_ring;
3187         u64 rdba;
3188         u32 rdlen, rctl, rxcsum, ctrl_ext;
3189 
3190         if (adapter->rx_ps_pages) {
3191                 /* this is a 32 byte descriptor */
3192                 rdlen = rx_ring->count *
3193                     sizeof(union e1000_rx_desc_packet_split);
3194                 adapter->clean_rx = e1000_clean_rx_irq_ps;
3195                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3196         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3197                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3198                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3199                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3200         } else {
3201                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3202                 adapter->clean_rx = e1000_clean_rx_irq;
3203                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3204         }
3205 
3206         /* disable receives while setting up the descriptors */
3207         rctl = er32(RCTL);
3208         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3209                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3210         e1e_flush();
3211         usleep_range(10000, 11000);
3212 
3213         if (adapter->flags2 & FLAG2_DMA_BURST) {
3214                 /* set the writeback threshold (only takes effect if the RDTR
3215                  * is set). set GRAN=1 and write back up to 0x4 worth, and
3216                  * enable prefetching of 0x20 Rx descriptors
3217                  * granularity = 01
3218                  * wthresh = 04,
3219                  * hthresh = 04,
3220                  * pthresh = 0x20
3221                  */
3222                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3223                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3224         }
3225 
3226         /* set the Receive Delay Timer Register */
3227         ew32(RDTR, adapter->rx_int_delay);
3228 
3229         /* irq moderation */
3230         ew32(RADV, adapter->rx_abs_int_delay);
3231         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3232                 e1000e_write_itr(adapter, adapter->itr);
3233 
3234         ctrl_ext = er32(CTRL_EXT);
3235         /* Auto-Mask interrupts upon ICR access */
3236         ctrl_ext |= E1000_CTRL_EXT_IAME;
3237         ew32(IAM, 0xffffffff);
3238         ew32(CTRL_EXT, ctrl_ext);
3239         e1e_flush();
3240 
3241         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3242          * the Base and Length of the Rx Descriptor Ring
3243          */
3244         rdba = rx_ring->dma;
3245         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3246         ew32(RDBAH(0), (rdba >> 32));
3247         ew32(RDLEN(0), rdlen);
3248         ew32(RDH(0), 0);
3249         ew32(RDT(0), 0);
3250         rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3251         rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3252 
3253         writel(0, rx_ring->head);
3254         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3255                 e1000e_update_rdt_wa(rx_ring, 0);
3256         else
3257                 writel(0, rx_ring->tail);
3258 
3259         /* Enable Receive Checksum Offload for TCP and UDP */
3260         rxcsum = er32(RXCSUM);
3261         if (adapter->netdev->features & NETIF_F_RXCSUM)
3262                 rxcsum |= E1000_RXCSUM_TUOFL;
3263         else
3264                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3265         ew32(RXCSUM, rxcsum);
3266 
3267         /* With jumbo frames, excessive C-state transition latencies result
3268          * in dropped transactions.
3269          */
3270         if (adapter->netdev->mtu > ETH_DATA_LEN) {
3271                 u32 lat =
3272                     ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3273                      adapter->max_frame_size) * 8 / 1000;
3274 
3275                 if (adapter->flags & FLAG_IS_ICH) {
3276                         u32 rxdctl = er32(RXDCTL(0));
3277 
3278                         ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3279                 }
3280 
3281                 dev_info(&adapter->pdev->dev,
3282                          "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3283                 pm_qos_update_request(&adapter->pm_qos_req, lat);
3284         } else {
3285                 pm_qos_update_request(&adapter->pm_qos_req,
3286                                       PM_QOS_DEFAULT_VALUE);
3287         }
3288 
3289         /* Enable Receives */
3290         ew32(RCTL, rctl);
3291 }
3292 
3293 /**
3294  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3295  * @netdev: network interface device structure
3296  *
3297  * Writes multicast address list to the MTA hash table.
3298  * Returns: -ENOMEM on failure
3299  *                0 on no addresses written
3300  *                X on writing X addresses to MTA
3301  */
3302 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3303 {
3304         struct e1000_adapter *adapter = netdev_priv(netdev);
3305         struct e1000_hw *hw = &adapter->hw;
3306         struct netdev_hw_addr *ha;
3307         u8 *mta_list;
3308         int i;
3309 
3310         if (netdev_mc_empty(netdev)) {
3311                 /* nothing to program, so clear mc list */
3312                 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3313                 return 0;
3314         }
3315 
3316         mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3317         if (!mta_list)
3318                 return -ENOMEM;
3319 
3320         /* update_mc_addr_list expects a packed array of only addresses. */
3321         i = 0;
3322         netdev_for_each_mc_addr(ha, netdev)
3323             memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3324 
3325         hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3326         kfree(mta_list);
3327 
3328         return netdev_mc_count(netdev);
3329 }
3330 
3331 /**
3332  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3333  * @netdev: network interface device structure
3334  *
3335  * Writes unicast address list to the RAR table.
3336  * Returns: -ENOMEM on failure/insufficient address space
3337  *                0 on no addresses written
3338  *                X on writing X addresses to the RAR table
3339  **/
3340 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3341 {
3342         struct e1000_adapter *adapter = netdev_priv(netdev);
3343         struct e1000_hw *hw = &adapter->hw;
3344         unsigned int rar_entries;
3345         int count = 0;
3346 
3347         rar_entries = hw->mac.ops.rar_get_count(hw);
3348 
3349         /* save a rar entry for our hardware address */
3350         rar_entries--;
3351 
3352         /* save a rar entry for the LAA workaround */
3353         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3354                 rar_entries--;
3355 
3356         /* return ENOMEM indicating insufficient memory for addresses */
3357         if (netdev_uc_count(netdev) > rar_entries)
3358                 return -ENOMEM;
3359 
3360         if (!netdev_uc_empty(netdev) && rar_entries) {
3361                 struct netdev_hw_addr *ha;
3362 
3363                 /* write the addresses in reverse order to avoid write
3364                  * combining
3365                  */
3366                 netdev_for_each_uc_addr(ha, netdev) {
3367                         int ret_val;
3368 
3369                         if (!rar_entries)
3370                                 break;
3371                         ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3372                         if (ret_val < 0)
3373                                 return -ENOMEM;
3374                         count++;
3375                 }
3376         }
3377 
3378         /* zero out the remaining RAR entries not used above */
3379         for (; rar_entries > 0; rar_entries--) {
3380                 ew32(RAH(rar_entries), 0);
3381                 ew32(RAL(rar_entries), 0);
3382         }
3383         e1e_flush();
3384 
3385         return count;
3386 }
3387 
3388 /**
3389  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3390  * @netdev: network interface device structure
3391  *
3392  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3393  * address list or the network interface flags are updated.  This routine is
3394  * responsible for configuring the hardware for proper unicast, multicast,
3395  * promiscuous mode, and all-multi behavior.
3396  **/
3397 static void e1000e_set_rx_mode(struct net_device *netdev)
3398 {
3399         struct e1000_adapter *adapter = netdev_priv(netdev);
3400         struct e1000_hw *hw = &adapter->hw;
3401         u32 rctl;
3402 
3403         if (pm_runtime_suspended(netdev->dev.parent))
3404                 return;
3405 
3406         /* Check for Promiscuous and All Multicast modes */
3407         rctl = er32(RCTL);
3408 
3409         /* clear the affected bits */
3410         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3411 
3412         if (netdev->flags & IFF_PROMISC) {
3413                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3414                 /* Do not hardware filter VLANs in promisc mode */
3415                 e1000e_vlan_filter_disable(adapter);
3416         } else {
3417                 int count;
3418 
3419                 if (netdev->flags & IFF_ALLMULTI) {
3420                         rctl |= E1000_RCTL_MPE;
3421                 } else {
3422                         /* Write addresses to the MTA, if the attempt fails
3423                          * then we should just turn on promiscuous mode so
3424                          * that we can at least receive multicast traffic
3425                          */
3426                         count = e1000e_write_mc_addr_list(netdev);
3427                         if (count < 0)
3428                                 rctl |= E1000_RCTL_MPE;
3429                 }
3430                 e1000e_vlan_filter_enable(adapter);
3431                 /* Write addresses to available RAR registers, if there is not
3432                  * sufficient space to store all the addresses then enable
3433                  * unicast promiscuous mode
3434                  */
3435                 count = e1000e_write_uc_addr_list(netdev);
3436                 if (count < 0)
3437                         rctl |= E1000_RCTL_UPE;
3438         }
3439 
3440         ew32(RCTL, rctl);
3441 
3442         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3443                 e1000e_vlan_strip_enable(adapter);
3444         else
3445                 e1000e_vlan_strip_disable(adapter);
3446 }
3447 
3448 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3449 {
3450         struct e1000_hw *hw = &adapter->hw;
3451         u32 mrqc, rxcsum;
3452         u32 rss_key[10];
3453         int i;
3454 
3455         netdev_rss_key_fill(rss_key, sizeof(rss_key));
3456         for (i = 0; i < 10; i++)
3457                 ew32(RSSRK(i), rss_key[i]);
3458 
3459         /* Direct all traffic to queue 0 */
3460         for (i = 0; i < 32; i++)
3461                 ew32(RETA(i), 0);
3462 
3463         /* Disable raw packet checksumming so that RSS hash is placed in
3464          * descriptor on writeback.
3465          */
3466         rxcsum = er32(RXCSUM);
3467         rxcsum |= E1000_RXCSUM_PCSD;
3468 
3469         ew32(RXCSUM, rxcsum);
3470 
3471         mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3472                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3473                 E1000_MRQC_RSS_FIELD_IPV6 |
3474                 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3475                 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3476 
3477         ew32(MRQC, mrqc);
3478 }
3479 
3480 /**
3481  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3482  * @adapter: board private structure
3483  * @timinca: pointer to returned time increment attributes
3484  *
3485  * Get attributes for incrementing the System Time Register SYSTIML/H at
3486  * the default base frequency, and set the cyclecounter shift value.
3487  **/
3488 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3489 {
3490         struct e1000_hw *hw = &adapter->hw;
3491         u32 incvalue, incperiod, shift;
3492 
3493         /* Make sure clock is enabled on I217/I218/I219  before checking
3494          * the frequency
3495          */
3496         if ((hw->mac.type >= e1000_pch_lpt) &&
3497             !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3498             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3499                 u32 fextnvm7 = er32(FEXTNVM7);
3500 
3501                 if (!(fextnvm7 & BIT(0))) {
3502                         ew32(FEXTNVM7, fextnvm7 | BIT(0));
3503                         e1e_flush();
3504                 }
3505         }
3506 
3507         switch (hw->mac.type) {
3508         case e1000_pch2lan:
3509                 /* Stable 96MHz frequency */
3510                 incperiod = INCPERIOD_96MHZ;
3511                 incvalue = INCVALUE_96MHZ;
3512                 shift = INCVALUE_SHIFT_96MHZ;
3513                 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3514                 break;
3515         case e1000_pch_lpt:
3516                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3517                         /* Stable 96MHz frequency */
3518                         incperiod = INCPERIOD_96MHZ;
3519                         incvalue = INCVALUE_96MHZ;
3520                         shift = INCVALUE_SHIFT_96MHZ;
3521                         adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3522                 } else {
3523                         /* Stable 25MHz frequency */
3524                         incperiod = INCPERIOD_25MHZ;
3525                         incvalue = INCVALUE_25MHZ;
3526                         shift = INCVALUE_SHIFT_25MHZ;
3527                         adapter->cc.shift = shift;
3528                 }
3529                 break;
3530         case e1000_pch_spt:
3531                 /* Stable 24MHz frequency */
3532                 incperiod = INCPERIOD_24MHZ;
3533                 incvalue = INCVALUE_24MHZ;
3534                 shift = INCVALUE_SHIFT_24MHZ;
3535                 adapter->cc.shift = shift;
3536                 break;
3537         case e1000_pch_cnp:
3538                 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3539                         /* Stable 24MHz frequency */
3540                         incperiod = INCPERIOD_24MHZ;
3541                         incvalue = INCVALUE_24MHZ;
3542                         shift = INCVALUE_SHIFT_24MHZ;
3543                         adapter->cc.shift = shift;
3544                 } else {
3545                         /* Stable 38400KHz frequency */
3546                         incperiod = INCPERIOD_38400KHZ;
3547                         incvalue = INCVALUE_38400KHZ;
3548                         shift = INCVALUE_SHIFT_38400KHZ;
3549                         adapter->cc.shift = shift;
3550                 }
3551                 break;
3552         case e1000_82574:
3553         case e1000_82583:
3554                 /* Stable 25MHz frequency */
3555                 incperiod = INCPERIOD_25MHZ;
3556                 incvalue = INCVALUE_25MHZ;
3557                 shift = INCVALUE_SHIFT_25MHZ;
3558                 adapter->cc.shift = shift;
3559                 break;
3560         default:
3561                 return -EINVAL;
3562         }
3563 
3564         *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3565                     ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3566 
3567         return 0;
3568 }
3569 
3570 /**
3571  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3572  * @adapter: board private structure
3573  *
3574  * Outgoing time stamping can be enabled and disabled. Play nice and
3575  * disable it when requested, although it shouldn't cause any overhead
3576  * when no packet needs it. At most one packet in the queue may be
3577  * marked for time stamping, otherwise it would be impossible to tell
3578  * for sure to which packet the hardware time stamp belongs.
3579  *
3580  * Incoming time stamping has to be configured via the hardware filters.
3581  * Not all combinations are supported, in particular event type has to be
3582  * specified. Matching the kind of event packet is not supported, with the
3583  * exception of "all V2 events regardless of level 2 or 4".
3584  **/
3585 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3586                                   struct hwtstamp_config *config)
3587 {
3588         struct e1000_hw *hw = &adapter->hw;
3589         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3590         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3591         u32 rxmtrl = 0;
3592         u16 rxudp = 0;
3593         bool is_l4 = false;
3594         bool is_l2 = false;
3595         u32 regval;
3596 
3597         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3598                 return -EINVAL;
3599 
3600         /* flags reserved for future extensions - must be zero */
3601         if (config->flags)
3602                 return -EINVAL;
3603 
3604         switch (config->tx_type) {
3605         case HWTSTAMP_TX_OFF:
3606                 tsync_tx_ctl = 0;
3607                 break;
3608         case HWTSTAMP_TX_ON:
3609                 break;
3610         default:
3611                 return -ERANGE;
3612         }
3613 
3614         switch (config->rx_filter) {
3615         case HWTSTAMP_FILTER_NONE:
3616                 tsync_rx_ctl = 0;
3617                 break;
3618         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3619                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3620                 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3621                 is_l4 = true;
3622                 break;
3623         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3624                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3625                 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3626                 is_l4 = true;
3627                 break;
3628         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3629                 /* Also time stamps V2 L2 Path Delay Request/Response */
3630                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3631                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3632                 is_l2 = true;
3633                 break;
3634         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3635                 /* Also time stamps V2 L2 Path Delay Request/Response. */
3636                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3637                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3638                 is_l2 = true;
3639                 break;
3640         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3641                 /* Hardware cannot filter just V2 L4 Sync messages;
3642                  * fall-through to V2 (both L2 and L4) Sync.
3643                  */
3644         case HWTSTAMP_FILTER_PTP_V2_SYNC:
3645                 /* Also time stamps V2 Path Delay Request/Response. */
3646                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3647                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3648                 is_l2 = true;
3649                 is_l4 = true;
3650                 break;
3651         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3652                 /* Hardware cannot filter just V2 L4 Delay Request messages;
3653                  * fall-through to V2 (both L2 and L4) Delay Request.
3654                  */
3655         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3656                 /* Also time stamps V2 Path Delay Request/Response. */
3657                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3658                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3659                 is_l2 = true;
3660                 is_l4 = true;
3661                 break;
3662         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3663         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3664                 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3665                  * fall-through to all V2 (both L2 and L4) Events.
3666                  */
3667         case HWTSTAMP_FILTER_PTP_V2_EVENT:
3668                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3669                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3670                 is_l2 = true;
3671                 is_l4 = true;
3672                 break;
3673         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3674                 /* For V1, the hardware can only filter Sync messages or
3675                  * Delay Request messages but not both so fall-through to
3676                  * time stamp all packets.
3677                  */
3678         case HWTSTAMP_FILTER_NTP_ALL:
3679         case HWTSTAMP_FILTER_ALL:
3680                 is_l2 = true;
3681                 is_l4 = true;
3682                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3683                 config->rx_filter = HWTSTAMP_FILTER_ALL;
3684                 break;
3685         default:
3686                 return -ERANGE;
3687         }
3688 
3689         adapter->hwtstamp_config = *config;
3690 
3691         /* enable/disable Tx h/w time stamping */
3692         regval = er32(TSYNCTXCTL);
3693         regval &= ~E1000_TSYNCTXCTL_ENABLED;
3694         regval |= tsync_tx_ctl;
3695         ew32(TSYNCTXCTL, regval);
3696         if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3697             (regval & E1000_TSYNCTXCTL_ENABLED)) {
3698                 e_err("Timesync Tx Control register not set as expected\n");
3699                 return -EAGAIN;
3700         }
3701 
3702         /* enable/disable Rx h/w time stamping */
3703         regval = er32(TSYNCRXCTL);
3704         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3705         regval |= tsync_rx_ctl;
3706         ew32(TSYNCRXCTL, regval);
3707         if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3708                                  E1000_TSYNCRXCTL_TYPE_MASK)) !=
3709             (regval & (E1000_TSYNCRXCTL_ENABLED |
3710                        E1000_TSYNCRXCTL_TYPE_MASK))) {
3711                 e_err("Timesync Rx Control register not set as expected\n");
3712                 return -EAGAIN;
3713         }
3714 
3715         /* L2: define ethertype filter for time stamped packets */
3716         if (is_l2)
3717                 rxmtrl |= ETH_P_1588;
3718 
3719         /* define which PTP packets get time stamped */
3720         ew32(RXMTRL, rxmtrl);
3721 
3722         /* Filter by destination port */
3723         if (is_l4) {
3724                 rxudp = PTP_EV_PORT;
3725                 cpu_to_be16s(&rxudp);
3726         }
3727         ew32(RXUDP, rxudp);
3728 
3729         e1e_flush();
3730 
3731         /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3732         er32(RXSTMPH);
3733         er32(TXSTMPH);
3734 
3735         return 0;
3736 }
3737 
3738 /**
3739  * e1000_configure - configure the hardware for Rx and Tx
3740  * @adapter: private board structure
3741  **/
3742 static void e1000_configure(struct e1000_adapter *adapter)
3743 {
3744         struct e1000_ring *rx_ring = adapter->rx_ring;
3745 
3746         e1000e_set_rx_mode(adapter->netdev);
3747 
3748         e1000_restore_vlan(adapter);
3749         e1000_init_manageability_pt(adapter);
3750 
3751         e1000_configure_tx(adapter);
3752 
3753         if (adapter->netdev->features & NETIF_F_RXHASH)
3754                 e1000e_setup_rss_hash(adapter);
3755         e1000_setup_rctl(adapter);
3756         e1000_configure_rx(adapter);
3757         adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3758 }
3759 
3760 /**
3761  * e1000e_power_up_phy - restore link in case the phy was powered down
3762  * @adapter: address of board private structure
3763  *
3764  * The phy may be powered down to save power and turn off link when the
3765  * driver is unloaded and wake on lan is not enabled (among others)
3766  * *** this routine MUST be followed by a call to e1000e_reset ***
3767  **/
3768 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3769 {
3770         if (adapter->hw.phy.ops.power_up)
3771                 adapter->hw.phy.ops.power_up(&adapter->hw);
3772 
3773         adapter->hw.mac.ops.setup_link(&adapter->hw);
3774 }
3775 
3776 /**
3777  * e1000_power_down_phy - Power down the PHY
3778  *
3779  * Power down the PHY so no link is implied when interface is down.
3780  * The PHY cannot be powered down if management or WoL is active.
3781  */
3782 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3783 {
3784         if (adapter->hw.phy.ops.power_down)
3785                 adapter->hw.phy.ops.power_down(&adapter->hw);
3786 }
3787 
3788 /**
3789  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3790  *
3791  * We want to clear all pending descriptors from the TX ring.
3792  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3793  * the data of the next descriptor. We don't care about the data we are about
3794  * to reset the HW.
3795  */
3796 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3797 {
3798         struct e1000_hw *hw = &adapter->hw;
3799         struct e1000_ring *tx_ring = adapter->tx_ring;
3800         struct e1000_tx_desc *tx_desc = NULL;
3801         u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3802         u16 size = 512;
3803 
3804         tctl = er32(TCTL);
3805         ew32(TCTL, tctl | E1000_TCTL_EN);
3806         tdt = er32(TDT(0));
3807         BUG_ON(tdt != tx_ring->next_to_use);
3808         tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3809         tx_desc->buffer_addr = tx_ring->dma;
3810 
3811         tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3812         tx_desc->upper.data = 0;
3813         /* flush descriptors to memory before notifying the HW */
3814         wmb();
3815         tx_ring->next_to_use++;
3816         if (tx_ring->next_to_use == tx_ring->count)
3817                 tx_ring->next_to_use = 0;
3818         ew32(TDT(0), tx_ring->next_to_use);
3819         usleep_range(200, 250);
3820 }
3821 
3822 /**
3823  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3824  *
3825  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3826  */
3827 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3828 {
3829         u32 rctl, rxdctl;
3830         struct e1000_hw *hw = &adapter->hw;
3831 
3832         rctl = er32(RCTL);
3833         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3834         e1e_flush();
3835         usleep_range(100, 150);
3836 
3837         rxdctl = er32(RXDCTL(0));
3838         /* zero the lower 14 bits (prefetch and host thresholds) */
3839         rxdctl &= 0xffffc000;
3840 
3841         /* update thresholds: prefetch threshold to 31, host threshold to 1
3842          * and make sure the granularity is "descriptors" and not "cache lines"
3843          */
3844         rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3845 
3846         ew32(RXDCTL(0), rxdctl);
3847         /* momentarily enable the RX ring for the changes to take effect */
3848         ew32(RCTL, rctl | E1000_RCTL_EN);
3849         e1e_flush();
3850         usleep_range(100, 150);
3851         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3852 }
3853 
3854 /**
3855  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3856  *
3857  * In i219, the descriptor rings must be emptied before resetting the HW
3858  * or before changing the device state to D3 during runtime (runtime PM).
3859  *
3860  * Failure to do this will cause the HW to enter a unit hang state which can
3861  * only be released by PCI reset on the device
3862  *
3863  */
3864 
3865 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3866 {
3867         u16 hang_state;
3868         u32 fext_nvm11, tdlen;
3869         struct e1000_hw *hw = &adapter->hw;
3870 
3871         /* First, disable MULR fix in FEXTNVM11 */
3872         fext_nvm11 = er32(FEXTNVM11);
3873         fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3874         ew32(FEXTNVM11, fext_nvm11);
3875         /* do nothing if we're not in faulty state, or if the queue is empty */
3876         tdlen = er32(TDLEN(0));
3877         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3878                              &hang_state);
3879         if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3880                 return;
3881         e1000_flush_tx_ring(adapter);
3882         /* recheck, maybe the fault is caused by the rx ring */
3883         pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3884                              &hang_state);
3885         if (hang_state & FLUSH_DESC_REQUIRED)
3886                 e1000_flush_rx_ring(adapter);
3887 }
3888 
3889 /**
3890  * e1000e_systim_reset - reset the timesync registers after a hardware reset
3891  * @adapter: board private structure
3892  *
3893  * When the MAC is reset, all hardware bits for timesync will be reset to the
3894  * default values. This function will restore the settings last in place.
3895  * Since the clock SYSTIME registers are reset, we will simply restore the
3896  * cyclecounter to the kernel real clock time.
3897  **/
3898 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3899 {
3900         struct ptp_clock_info *info = &adapter->ptp_clock_info;
3901         struct e1000_hw *hw = &adapter->hw;
3902         unsigned long flags;
3903         u32 timinca;
3904         s32 ret_val;
3905 
3906         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3907                 return;
3908 
3909         if (info->adjfreq) {
3910                 /* restore the previous ptp frequency delta */
3911                 ret_val = info->adjfreq(info, adapter->ptp_delta);
3912         } else {
3913                 /* set the default base frequency if no adjustment possible */
3914                 ret_val = e1000e_get_base_timinca(adapter, &timinca);
3915                 if (!ret_val)
3916                         ew32(TIMINCA, timinca);
3917         }
3918 
3919         if (ret_val) {
3920                 dev_warn(&adapter->pdev->dev,
3921                          "Failed to restore TIMINCA clock rate delta: %d\n",
3922                          ret_val);
3923                 return;
3924         }
3925 
3926         /* reset the systim ns time counter */
3927         spin_lock_irqsave(&adapter->systim_lock, flags);
3928         timecounter_init(&adapter->tc, &adapter->cc,
3929                          ktime_to_ns(ktime_get_real()));
3930         spin_unlock_irqrestore(&adapter->systim_lock, flags);
3931 
3932         /* restore the previous hwtstamp configuration settings */
3933         e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3934 }
3935 
3936 /**
3937  * e1000e_reset - bring the hardware into a known good state
3938  *
3939  * This function boots the hardware and enables some settings that
3940  * require a configuration cycle of the hardware - those cannot be
3941  * set/changed during runtime. After reset the device needs to be
3942  * properly configured for Rx, Tx etc.
3943  */
3944 void e1000e_reset(struct e1000_adapter *adapter)
3945 {
3946         struct e1000_mac_info *mac = &adapter->hw.mac;
3947         struct e1000_fc_info *fc = &adapter->hw.fc;
3948         struct e1000_hw *hw = &adapter->hw;
3949         u32 tx_space, min_tx_space, min_rx_space;
3950         u32 pba = adapter->pba;
3951         u16 hwm;
3952 
3953         /* reset Packet Buffer Allocation to default */
3954         ew32(PBA, pba);
3955 
3956         if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3957                 /* To maintain wire speed transmits, the Tx FIFO should be
3958                  * large enough to accommodate two full transmit packets,
3959                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3960                  * the Rx FIFO should be large enough to accommodate at least
3961                  * one full receive packet and is similarly rounded up and
3962                  * expressed in KB.
3963                  */
3964                 pba = er32(PBA);
3965                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3966                 tx_space = pba >> 16;
3967                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3968                 pba &= 0xffff;
3969                 /* the Tx fifo also stores 16 bytes of information about the Tx
3970                  * but don't include ethernet FCS because hardware appends it
3971                  */
3972                 min_tx_space = (adapter->max_frame_size +
3973                                 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3974                 min_tx_space = ALIGN(min_tx_space, 1024);
3975                 min_tx_space >>= 10;
3976                 /* software strips receive CRC, so leave room for it */
3977                 min_rx_space = adapter->max_frame_size;
3978                 min_rx_space = ALIGN(min_rx_space, 1024);
3979                 min_rx_space >>= 10;
3980 
3981                 /* If current Tx allocation is less than the min Tx FIFO size,
3982                  * and the min Tx FIFO size is less than the current Rx FIFO
3983                  * allocation, take space away from current Rx allocation
3984                  */
3985                 if ((tx_space < min_tx_space) &&
3986                     ((min_tx_space - tx_space) < pba)) {
3987                         pba -= min_tx_space - tx_space;
3988 
3989                         /* if short on Rx space, Rx wins and must trump Tx
3990                          * adjustment
3991                          */
3992                         if (pba < min_rx_space)
3993                                 pba = min_rx_space;
3994                 }
3995 
3996                 ew32(PBA, pba);
3997         }
3998 
3999         /* flow control settings
4000          *
4001          * The high water mark must be low enough to fit one full frame
4002          * (or the size used for early receive) above it in the Rx FIFO.
4003          * Set it to the lower of:
4004          * - 90% of the Rx FIFO size, and
4005          * - the full Rx FIFO size minus one full frame
4006          */
4007         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4008                 fc->pause_time = 0xFFFF;
4009         else
4010                 fc->pause_time = E1000_FC_PAUSE_TIME;
4011         fc->send_xon = true;
4012         fc->current_mode = fc->requested_mode;
4013 
4014         switch (hw->mac.type) {
4015         case e1000_ich9lan:
4016         case e1000_ich10lan:
4017                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4018                         pba = 14;
4019                         ew32(PBA, pba);
4020                         fc->high_water = 0x2800;
4021                         fc->low_water = fc->high_water - 8;
4022                         break;
4023                 }
4024                 /* fall-through */
4025         default:
4026                 hwm = min(((pba << 10) * 9 / 10),
4027                           ((pba << 10) - adapter->max_frame_size));
4028 
4029                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
4030                 fc->low_water = fc->high_water - 8;
4031                 break;
4032         case e1000_pchlan:
4033                 /* Workaround PCH LOM adapter hangs with certain network
4034                  * loads.  If hangs persist, try disabling Tx flow control.
4035                  */
4036                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4037                         fc->high_water = 0x3500;
4038                         fc->low_water = 0x1500;
4039                 } else {
4040                         fc->high_water = 0x5000;
4041                         fc->low_water = 0x3000;
4042                 }
4043                 fc->refresh_time = 0x1000;
4044                 break;
4045         case e1000_pch2lan:
4046         case e1000_pch_lpt:
4047         case e1000_pch_spt:
4048         case e1000_pch_cnp:
4049                 fc->refresh_time = 0xFFFF;
4050                 fc->pause_time = 0xFFFF;
4051 
4052                 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4053                         fc->high_water = 0x05C20;
4054                         fc->low_water = 0x05048;
4055                         break;
4056                 }
4057 
4058                 pba = 14;
4059                 ew32(PBA, pba);
4060                 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4061                 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4062                 break;
4063         }
4064 
4065         /* Alignment of Tx data is on an arbitrary byte boundary with the
4066          * maximum size per Tx descriptor limited only to the transmit
4067          * allocation of the packet buffer minus 96 bytes with an upper
4068          * limit of 24KB due to receive synchronization limitations.
4069          */
4070         adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4071                                        24 << 10);
4072 
4073         /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4074          * fit in receive buffer.
4075          */
4076         if (adapter->itr_setting & 0x3) {
4077                 if ((adapter->max_frame_size * 2) > (pba << 10)) {
4078                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4079                                 dev_info(&adapter->pdev->dev,
4080                                          "Interrupt Throttle Rate off\n");
4081                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
4082                                 e1000e_write_itr(adapter, 0);
4083                         }
4084                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4085                         dev_info(&adapter->pdev->dev,
4086                                  "Interrupt Throttle Rate on\n");
4087                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4088                         adapter->itr = 20000;
4089                         e1000e_write_itr(adapter, adapter->itr);
4090                 }
4091         }
4092 
4093         if (hw->mac.type >= e1000_pch_spt)
4094                 e1000_flush_desc_rings(adapter);
4095         /* Allow time for pending master requests to run */
4096         mac->ops.reset_hw(hw);
4097 
4098         /* For parts with AMT enabled, let the firmware know
4099          * that the network interface is in control
4100          */
4101         if (adapter->flags & FLAG_HAS_AMT)
4102                 e1000e_get_hw_control(adapter);
4103 
4104         ew32(WUC, 0);
4105 
4106         if (mac->ops.init_hw(hw))
4107                 e_err("Hardware Error\n");
4108 
4109         e1000_update_mng_vlan(adapter);
4110 
4111         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4112         ew32(VET, ETH_P_8021Q);
4113 
4114         e1000e_reset_adaptive(hw);
4115 
4116         /* restore systim and hwtstamp settings */
4117         e1000e_systim_reset(adapter);
4118 
4119         /* Set EEE advertisement as appropriate */
4120         if (adapter->flags2 & FLAG2_HAS_EEE) {
4121                 s32 ret_val;
4122                 u16 adv_addr;
4123 
4124                 switch (hw->phy.type) {
4125                 case e1000_phy_82579:
4126                         adv_addr = I82579_EEE_ADVERTISEMENT;
4127                         break;
4128                 case e1000_phy_i217:
4129                         adv_addr = I217_EEE_ADVERTISEMENT;
4130                         break;
4131                 default:
4132                         dev_err(&adapter->pdev->dev,
4133                                 "Invalid PHY type setting EEE advertisement\n");
4134                         return;
4135                 }
4136 
4137                 ret_val = hw->phy.ops.acquire(hw);
4138                 if (ret_val) {
4139                         dev_err(&adapter->pdev->dev,
4140                                 "EEE advertisement - unable to acquire PHY\n");
4141                         return;
4142                 }
4143 
4144                 e1000_write_emi_reg_locked(hw, adv_addr,
4145                                            hw->dev_spec.ich8lan.eee_disable ?
4146                                            0 : adapter->eee_advert);
4147 
4148                 hw->phy.ops.release(hw);
4149         }
4150 
4151         if (!netif_running(adapter->netdev) &&
4152             !test_bit(__E1000_TESTING, &adapter->state))
4153                 e1000_power_down_phy(adapter);
4154 
4155         e1000_get_phy_info(hw);
4156 
4157         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4158             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4159                 u16 phy_data = 0;
4160                 /* speed up time to link by disabling smart power down, ignore
4161                  * the return value of this function because there is nothing
4162                  * different we would do if it failed
4163                  */
4164                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4165                 phy_data &= ~IGP02E1000_PM_SPD;
4166                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4167         }
4168         if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4169                 u32 reg;
4170 
4171                 /* Fextnvm7 @ 0xe4[2] = 1 */
4172                 reg = er32(FEXTNVM7);
4173                 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4174                 ew32(FEXTNVM7, reg);
4175                 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4176                 reg = er32(FEXTNVM9);
4177                 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4178                        E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4179                 ew32(FEXTNVM9, reg);
4180         }
4181 
4182 }
4183 
4184 /**
4185  * e1000e_trigger_lsc - trigger an LSC interrupt
4186  * @adapter: 
4187  *
4188  * Fire a link status change interrupt to start the watchdog.
4189  **/
4190 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4191 {
4192         struct e1000_hw *hw = &adapter->hw;
4193 
4194         if (adapter->msix_entries)
4195                 ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4196         else
4197                 ew32(ICS, E1000_ICS_LSC);
4198 }
4199 
4200 void e1000e_up(struct e1000_adapter *adapter)
4201 {
4202         /* hardware has been reset, we need to reload some things */
4203         e1000_configure(adapter);
4204 
4205         clear_bit(__E1000_DOWN, &adapter->state);
4206 
4207         if (adapter->msix_entries)
4208                 e1000_configure_msix(adapter);
4209         e1000_irq_enable(adapter);
4210 
4211         /* Tx queue started by watchdog timer when link is up */
4212 
4213         e1000e_trigger_lsc(adapter);
4214 }
4215 
4216 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4217 {
4218         struct e1000_hw *hw = &adapter->hw;
4219 
4220         if (!(adapter->flags2 & FLAG2_DMA_BURST))
4221                 return;
4222 
4223         /* flush pending descriptor writebacks to memory */
4224         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4225         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4226 
4227         /* execute the writes immediately */
4228         e1e_flush();
4229 
4230         /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4231          * write is successful
4232          */
4233         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4234         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4235 
4236         /* execute the writes immediately */
4237         e1e_flush();
4238 }
4239 
4240 static void e1000e_update_stats(struct e1000_adapter *adapter);
4241 
4242 /**
4243  * e1000e_down - quiesce the device and optionally reset the hardware
4244  * @adapter: board private structure
4245  * @reset: boolean flag to reset the hardware or not
4246  */
4247 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4248 {
4249         struct net_device *netdev = adapter->netdev;
4250         struct e1000_hw *hw = &adapter->hw;
4251         u32 tctl, rctl;
4252 
4253         /* signal that we're down so the interrupt handler does not
4254          * reschedule our watchdog timer
4255          */
4256         set_bit(__E1000_DOWN, &adapter->state);
4257 
4258         netif_carrier_off(netdev);
4259 
4260         /* disable receives in the hardware */
4261         rctl = er32(RCTL);
4262         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4263                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4264         /* flush and sleep below */
4265 
4266         netif_stop_queue(netdev);
4267 
4268         /* disable transmits in the hardware */
4269         tctl = er32(TCTL);
4270         tctl &= ~E1000_TCTL_EN;
4271         ew32(TCTL, tctl);
4272 
4273         /* flush both disables and wait for them to finish */
4274         e1e_flush();
4275         usleep_range(10000, 11000);
4276 
4277         e1000_irq_disable(adapter);
4278 
4279         napi_synchronize(&adapter->napi);
4280 
4281         del_timer_sync(&adapter->watchdog_timer);
4282         del_timer_sync(&adapter->phy_info_timer);
4283 
4284         spin_lock(&adapter->stats64_lock);
4285         e1000e_update_stats(adapter);
4286         spin_unlock(&adapter->stats64_lock);
4287 
4288         e1000e_flush_descriptors(adapter);
4289 
4290         adapter->link_speed = 0;
4291         adapter->link_duplex = 0;
4292 
4293         /* Disable Si errata workaround on PCHx for jumbo frame flow */
4294         if ((hw->mac.type >= e1000_pch2lan) &&
4295             (adapter->netdev->mtu > ETH_DATA_LEN) &&
4296             e1000_lv_jumbo_workaround_ich8lan(hw, false))
4297                 e_dbg("failed to disable jumbo frame workaround mode\n");
4298 
4299         if (!pci_channel_offline(adapter->pdev)) {
4300                 if (reset)
4301                         e1000e_reset(adapter);
4302                 else if (hw->mac.type >= e1000_pch_spt)
4303                         e1000_flush_desc_rings(adapter);
4304         }
4305         e1000_clean_tx_ring(adapter->tx_ring);
4306         e1000_clean_rx_ring(adapter->rx_ring);
4307 }
4308 
4309 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4310 {
4311         might_sleep();
4312         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4313                 usleep_range(1000, 1100);
4314         e1000e_down(adapter, true);
4315         e1000e_up(adapter);
4316         clear_bit(__E1000_RESETTING, &adapter->state);
4317 }
4318 
4319 /**
4320  * e1000e_sanitize_systim - sanitize raw cycle counter reads
4321  * @hw: pointer to the HW structure
4322  * @systim: PHC time value read, sanitized and returned
4323  * @sts: structure to hold system time before and after reading SYSTIML,
4324  * may be NULL
4325  *
4326  * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4327  * check to see that the time is incrementing at a reasonable
4328  * rate and is a multiple of incvalue.
4329  **/
4330 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4331                                   struct ptp_system_timestamp *sts)
4332 {
4333         u64 time_delta, rem, temp;
4334         u64 systim_next;
4335         u32 incvalue;
4336         int i;
4337 
4338         incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4339         for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4340                 /* latch SYSTIMH on read of SYSTIML */
4341                 ptp_read_system_prets(sts);
4342                 systim_next = (u64)er32(SYSTIML);
4343                 ptp_read_system_postts(sts);
4344                 systim_next |= (u64)er32(SYSTIMH) << 32;
4345 
4346                 time_delta = systim_next - systim;
4347                 temp = time_delta;
4348                 /* VMWare users have seen incvalue of zero, don't div / 0 */
4349                 rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4350 
4351                 systim = systim_next;
4352 
4353                 if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4354                         break;
4355         }
4356 
4357         return systim;
4358 }
4359 
4360 /**
4361  * e1000e_read_systim - read SYSTIM register
4362  * @adapter: board private structure
4363  * @sts: structure which will contain system time before and after reading
4364  * SYSTIML, may be NULL
4365  **/
4366 u64 e1000e_read_systim(struct e1000_adapter *adapter,
4367                        struct ptp_system_timestamp *sts)
4368 {
4369         struct e1000_hw *hw = &adapter->hw;
4370         u32 systimel, systimel_2, systimeh;
4371         u64 systim;
4372         /* SYSTIMH latching upon SYSTIML read does not work well.
4373          * This means that if SYSTIML overflows after we read it but before
4374          * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4375          * will experience a huge non linear increment in the systime value
4376          * to fix that we test for overflow and if true, we re-read systime.
4377          */
4378         ptp_read_system_prets(sts);
4379         systimel = er32(SYSTIML);
4380         ptp_read_system_postts(sts);
4381         systimeh = er32(SYSTIMH);
4382         /* Is systimel is so large that overflow is possible? */
4383         if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4384                 ptp_read_system_prets(sts);
4385                 systimel_2 = er32(SYSTIML);
4386                 ptp_read_system_postts(sts);
4387                 if (systimel > systimel_2) {
4388                         /* There was an overflow, read again SYSTIMH, and use
4389                          * systimel_2
4390                          */
4391                         systimeh = er32(SYSTIMH);
4392                         systimel = systimel_2;
4393                 }
4394         }
4395         systim = (u64)systimel;
4396         systim |= (u64)systimeh << 32;
4397 
4398         if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4399                 systim = e1000e_sanitize_systim(hw, systim, sts);
4400 
4401         return systim;
4402 }
4403 
4404 /**
4405  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4406  * @cc: cyclecounter structure
4407  **/
4408 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4409 {
4410         struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4411                                                      cc);
4412 
4413         return e1000e_read_systim(adapter, NULL);
4414 }
4415 
4416 /**
4417  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4418  * @adapter: board private structure to initialize
4419  *
4420  * e1000_sw_init initializes the Adapter private data structure.
4421  * Fields are initialized based on PCI device information and
4422  * OS network device settings (MTU size).
4423  **/
4424 static int e1000_sw_init(struct e1000_adapter *adapter)
4425 {
4426         struct net_device *netdev = adapter->netdev;
4427 
4428         adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4429         adapter->rx_ps_bsize0 = 128;
4430         adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4431         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4432         adapter->tx_ring_count = E1000_DEFAULT_TXD;
4433         adapter->rx_ring_count = E1000_DEFAULT_RXD;
4434 
4435         spin_lock_init(&adapter->stats64_lock);
4436 
4437         e1000e_set_interrupt_capability(adapter);
4438 
4439         if (e1000_alloc_queues(adapter))
4440                 return -ENOMEM;
4441 
4442         /* Setup hardware time stamping cyclecounter */
4443         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4444                 adapter->cc.read = e1000e_cyclecounter_read;
4445                 adapter->cc.mask = CYCLECOUNTER_MASK(64);
4446                 adapter->cc.mult = 1;
4447                 /* cc.shift set in e1000e_get_base_tininca() */
4448 
4449                 spin_lock_init(&adapter->systim_lock);
4450                 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4451         }
4452 
4453         /* Explicitly disable IRQ since the NIC can be in any state. */
4454         e1000_irq_disable(adapter);
4455 
4456         set_bit(__E1000_DOWN, &adapter->state);
4457         return 0;
4458 }
4459 
4460 /**
4461  * e1000_intr_msi_test - Interrupt Handler
4462  * @irq: interrupt number
4463  * @data: pointer to a network interface device structure
4464  **/
4465 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4466 {
4467         struct net_device *netdev = data;
4468         struct e1000_adapter *adapter = netdev_priv(netdev);
4469         struct e1000_hw *hw = &adapter->hw;
4470         u32 icr = er32(ICR);
4471 
4472         e_dbg("icr is %08X\n", icr);
4473         if (icr & E1000_ICR_RXSEQ) {
4474                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4475                 /* Force memory writes to complete before acknowledging the
4476                  * interrupt is handled.
4477                  */
4478                 wmb();
4479         }
4480 
4481         return IRQ_HANDLED;
4482 }
4483 
4484 /**
4485  * e1000_test_msi_interrupt - Returns 0 for successful test
4486  * @adapter: board private struct
4487  *
4488  * code flow taken from tg3.c
4489  **/
4490 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4491 {
4492         struct net_device *netdev = adapter->netdev;
4493         struct e1000_hw *hw = &adapter->hw;
4494         int err;
4495 
4496         /* poll_enable hasn't been called yet, so don't need disable */
4497         /* clear any pending events */
4498         er32(ICR);
4499 
4500         /* free the real vector and request a test handler */
4501         e1000_free_irq(adapter);
4502         e1000e_reset_interrupt_capability(adapter);
4503 
4504         /* Assume that the test fails, if it succeeds then the test
4505          * MSI irq handler will unset this flag
4506          */
4507         adapter->flags |= FLAG_MSI_TEST_FAILED;
4508 
4509         err = pci_enable_msi(adapter->pdev);
4510         if (err)
4511                 goto msi_test_failed;
4512 
4513         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4514                           netdev->name, netdev);
4515         if (err) {
4516                 pci_disable_msi(adapter->pdev);
4517                 goto msi_test_failed;
4518         }
4519 
4520         /* Force memory writes to complete before enabling and firing an
4521          * interrupt.
4522          */
4523         wmb();
4524 
4525         e1000_irq_enable(adapter);
4526 
4527         /* fire an unusual interrupt on the test handler */
4528         ew32(ICS, E1000_ICS_RXSEQ);
4529         e1e_flush();
4530         msleep(100);
4531 
4532         e1000_irq_disable(adapter);
4533 
4534         rmb();                  /* read flags after interrupt has been fired */
4535 
4536         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4537                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4538                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4539         } else {
4540                 e_dbg("MSI interrupt test succeeded!\n");
4541         }
4542 
4543         free_irq(adapter->pdev->irq, netdev);
4544         pci_disable_msi(adapter->pdev);
4545 
4546 msi_test_failed:
4547         e1000e_set_interrupt_capability(adapter);
4548         return e1000_request_irq(adapter);
4549 }
4550 
4551 /**
4552  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4553  * @adapter: board private struct
4554  *
4555  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4556  **/
4557 static int e1000_test_msi(struct e1000_adapter *adapter)
4558 {
4559         int err;
4560         u16 pci_cmd;
4561 
4562         if (!(adapter->flags & FLAG_MSI_ENABLED))
4563                 return 0;
4564 
4565         /* disable SERR in case the MSI write causes a master abort */
4566         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4567         if (pci_cmd & PCI_COMMAND_SERR)
4568                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4569                                       pci_cmd & ~PCI_COMMAND_SERR);
4570 
4571         err = e1000_test_msi_interrupt(adapter);
4572 
4573         /* re-enable SERR */
4574         if (pci_cmd & PCI_COMMAND_SERR) {
4575                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4576                 pci_cmd |= PCI_COMMAND_SERR;
4577                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4578         }
4579 
4580         return err;
4581 }
4582 
4583 /**
4584  * e1000e_open - Called when a network interface is made active
4585  * @netdev: network interface device structure
4586  *
4587  * Returns 0 on success, negative value on failure
4588  *
4589  * The open entry point is called when a network interface is made
4590  * active by the system (IFF_UP).  At this point all resources needed
4591  * for transmit and receive operations are allocated, the interrupt
4592  * handler is registered with the OS, the watchdog timer is started,
4593  * and the stack is notified that the interface is ready.
4594  **/
4595 int e1000e_open(struct net_device *netdev)
4596 {
4597         struct e1000_adapter *adapter = netdev_priv(netdev);
4598         struct e1000_hw *hw = &adapter->hw;
4599         struct pci_dev *pdev = adapter->pdev;
4600         int err;
4601 
4602         /* disallow open during test */
4603         if (test_bit(__E1000_TESTING, &adapter->state))
4604                 return -EBUSY;
4605 
4606         pm_runtime_get_sync(&pdev->dev);
4607 
4608         netif_carrier_off(netdev);
4609         netif_stop_queue(netdev);
4610 
4611         /* allocate transmit descriptors */
4612         err = e1000e_setup_tx_resources(adapter->tx_ring);
4613         if (err)
4614                 goto err_setup_tx;
4615 
4616         /* allocate receive descriptors */
4617         err = e1000e_setup_rx_resources(adapter->rx_ring);
4618         if (err)
4619                 goto err_setup_rx;
4620 
4621         /* If AMT is enabled, let the firmware know that the network
4622          * interface is now open and reset the part to a known state.
4623          */
4624         if (adapter->flags & FLAG_HAS_AMT) {
4625                 e1000e_get_hw_control(adapter);
4626                 e1000e_reset(adapter);
4627         }
4628 
4629         e1000e_power_up_phy(adapter);
4630 
4631         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4632         if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4633                 e1000_update_mng_vlan(adapter);
4634 
4635         /* DMA latency requirement to workaround jumbo issue */
4636         pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4637                            PM_QOS_DEFAULT_VALUE);
4638 
4639         /* before we allocate an interrupt, we must be ready to handle it.
4640          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4641          * as soon as we call pci_request_irq, so we have to setup our
4642          * clean_rx handler before we do so.
4643          */
4644         e1000_configure(adapter);
4645 
4646         err = e1000_request_irq(adapter);
4647         if (err)
4648                 goto err_req_irq;
4649 
4650         /* Work around PCIe errata with MSI interrupts causing some chipsets to
4651          * ignore e1000e MSI messages, which means we need to test our MSI
4652          * interrupt now
4653          */
4654         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4655                 err = e1000_test_msi(adapter);
4656                 if (err) {
4657                         e_err("Interrupt allocation failed\n");
4658                         goto err_req_irq;
4659                 }
4660         }
4661 
4662         /* From here on the code is the same as e1000e_up() */
4663         clear_bit(__E1000_DOWN, &adapter->state);
4664 
4665         napi_enable(&adapter->napi);
4666 
4667         e1000_irq_enable(adapter);
4668 
4669         adapter->tx_hang_recheck = false;
4670 
4671         hw->mac.get_link_status = true;
4672         pm_runtime_put(&pdev->dev);
4673 
4674         e1000e_trigger_lsc(adapter);
4675 
4676         return 0;
4677 
4678 err_req_irq:
4679         pm_qos_remove_request(&adapter->pm_qos_req);
4680         e1000e_release_hw_control(adapter);
4681         e1000_power_down_phy(adapter);
4682         e1000e_free_rx_resources(adapter->rx_ring);
4683 err_setup_rx:
4684         e1000e_free_tx_resources(adapter->tx_ring);
4685 err_setup_tx:
4686         e1000e_reset(adapter);
4687         pm_runtime_put_sync(&pdev->dev);
4688 
4689         return err;
4690 }
4691 
4692 /**
4693  * e1000e_close - Disables a network interface
4694  * @netdev: network interface device structure
4695  *
4696  * Returns 0, this is not allowed to fail
4697  *
4698  * The close entry point is called when an interface is de-activated
4699  * by the OS.  The hardware is still under the drivers control, but
4700  * needs to be disabled.  A global MAC reset is issued to stop the
4701  * hardware, and all transmit and receive resources are freed.
4702  **/
4703 int e1000e_close(struct net_device *netdev)
4704 {
4705         struct e1000_adapter *adapter = netdev_priv(netdev);
4706         struct pci_dev *pdev = adapter->pdev;
4707         int count = E1000_CHECK_RESET_COUNT;
4708 
4709         while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4710                 usleep_range(10000, 11000);
4711 
4712         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4713 
4714         pm_runtime_get_sync(&pdev->dev);
4715 
4716         if (netif_device_present(netdev)) {
4717                 e1000e_down(adapter, true);
4718                 e1000_free_irq(adapter);
4719 
4720                 /* Link status message must follow this format */
4721                 pr_info("%s NIC Link is Down\n", netdev->name);
4722         }
4723 
4724         napi_disable(&adapter->napi);
4725 
4726         e1000e_free_tx_resources(adapter->tx_ring);
4727         e1000e_free_rx_resources(adapter->rx_ring);
4728 
4729         /* kill manageability vlan ID if supported, but not if a vlan with
4730          * the same ID is registered on the host OS (let 8021q kill it)
4731          */
4732         if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4733                 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4734                                        adapter->mng_vlan_id);
4735 
4736         /* If AMT is enabled, let the firmware know that the network
4737          * interface is now closed
4738          */
4739         if ((adapter->flags & FLAG_HAS_AMT) &&
4740             !test_bit(__E1000_TESTING, &adapter->state))
4741                 e1000e_release_hw_control(adapter);
4742 
4743         pm_qos_remove_request(&adapter->pm_qos_req);
4744 
4745         pm_runtime_put_sync(&pdev->dev);
4746 
4747         return 0;
4748 }
4749 
4750 /**
4751  * e1000_set_mac - Change the Ethernet Address of the NIC
4752  * @netdev: network interface device structure
4753  * @p: pointer to an address structure
4754  *
4755  * Returns 0 on success, negative on failure
4756  **/
4757 static int e1000_set_mac(struct net_device *netdev, void *p)
4758 {
4759         struct e1000_adapter *adapter = netdev_priv(netdev);
4760         struct e1000_hw *hw = &adapter->hw;
4761         struct sockaddr *addr = p;
4762 
4763         if (!is_valid_ether_addr(addr->sa_data))
4764                 return -EADDRNOTAVAIL;
4765 
4766         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4767         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4768 
4769         hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4770 
4771         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4772                 /* activate the work around */
4773                 e1000e_set_laa_state_82571(&adapter->hw, 1);
4774 
4775                 /* Hold a copy of the LAA in RAR[14] This is done so that
4776                  * between the time RAR[0] gets clobbered  and the time it
4777                  * gets fixed (in e1000_watchdog), the actual LAA is in one
4778                  * of the RARs and no incoming packets directed to this port
4779                  * are dropped. Eventually the LAA will be in RAR[0] and
4780                  * RAR[14]
4781                  */
4782                 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4783                                     adapter->hw.mac.rar_entry_count - 1);
4784         }
4785 
4786         return 0;
4787 }
4788 
4789 /**
4790  * e1000e_update_phy_task - work thread to update phy
4791  * @work: pointer to our work struct
4792  *
4793  * this worker thread exists because we must acquire a
4794  * semaphore to read the phy, which we could msleep while
4795  * waiting for it, and we can't msleep in a timer.
4796  **/
4797 static void e1000e_update_phy_task(struct work_struct *work)
4798 {
4799         struct e1000_adapter *adapter = container_of(work,
4800                                                      struct e1000_adapter,
4801                                                      update_phy_task);
4802         struct e1000_hw *hw = &adapter->hw;
4803 
4804         if (test_bit(__E1000_DOWN, &adapter->state))
4805                 return;
4806 
4807         e1000_get_phy_info(hw);
4808 
4809         /* Enable EEE on 82579 after link up */
4810         if (hw->phy.type >= e1000_phy_82579)
4811                 e1000_set_eee_pchlan(hw);
4812 }
4813 
4814 /**
4815  * e1000_update_phy_info - timre call-back to update PHY info
4816  * @data: pointer to adapter cast into an unsigned long
4817  *
4818  * Need to wait a few seconds after link up to get diagnostic information from
4819  * the phy
4820  **/
4821 static void e1000_update_phy_info(struct timer_list *t)
4822 {
4823         struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4824 
4825         if (test_bit(__E1000_DOWN, &adapter->state))
4826                 return;
4827 
4828         schedule_work(&adapter->update_phy_task);
4829 }
4830 
4831 /**
4832  * e1000e_update_phy_stats - Update the PHY statistics counters
4833  * @adapter: board private structure
4834  *
4835  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4836  **/
4837 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4838 {
4839         struct e1000_hw *hw = &adapter->hw;
4840         s32 ret_val;
4841         u16 phy_data;
4842 
4843         ret_val = hw->phy.ops.acquire(hw);
4844         if (ret_val)
4845                 return;
4846 
4847         /* A page set is expensive so check if already on desired page.
4848          * If not, set to the page with the PHY status registers.
4849          */
4850         hw->phy.addr = 1;
4851         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4852                                            &phy_data);
4853         if (ret_val)
4854                 goto release;
4855         if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4856                 ret_val = hw->phy.ops.set_page(hw,
4857                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4858                 if (ret_val)
4859                         goto release;
4860         }
4861 
4862         /* Single Collision Count */
4863         hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4864         ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4865         if (!ret_val)
4866                 adapter->stats.scc += phy_data;
4867 
4868         /* Excessive Collision Count */
4869         hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4870         ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4871         if (!ret_val)
4872                 adapter->stats.ecol += phy_data;
4873 
4874         /* Multiple Collision Count */
4875         hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4876         ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4877         if (!ret_val)
4878                 adapter->stats.mcc += phy_data;
4879 
4880         /* Late Collision Count */
4881         hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4882         ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4883         if (!ret_val)
4884                 adapter->stats.latecol += phy_data;
4885 
4886         /* Collision Count - also used for adaptive IFS */
4887         hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4888         ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4889         if (!ret_val)
4890                 hw->mac.collision_delta = phy_data;
4891 
4892         /* Defer Count */
4893         hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4894         ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4895         if (!ret_val)
4896                 adapter->stats.dc += phy_data;
4897 
4898         /* Transmit with no CRS */
4899         hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4900         ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4901         if (!ret_val)
4902                 adapter->stats.tncrs += phy_data;
4903 
4904 release:
4905         hw->phy.ops.release(hw);
4906 }
4907 
4908 /**
4909  * e1000e_update_stats - Update the board statistics counters
4910  * @adapter: board private structure
4911  **/
4912 static void e1000e_update_stats(struct e1000_adapter *adapter)
4913 {
4914         struct net_device *netdev = adapter->netdev;
4915         struct e1000_hw *hw = &adapter->hw;
4916         struct pci_dev *pdev = adapter->pdev;
4917 
4918         /* Prevent stats update while adapter is being reset, or if the pci
4919          * connection is down.
4920          */
4921         if (adapter->link_speed == 0)
4922                 return;
4923         if (pci_channel_offline(pdev))
4924                 return;
4925 
4926         adapter->stats.crcerrs += er32(CRCERRS);
4927         adapter->stats.gprc += er32(GPRC);
4928         adapter->stats.gorc += er32(GORCL);
4929         er32(GORCH);            /* Clear gorc */
4930         adapter->stats.bprc += er32(BPRC);
4931         adapter->stats.mprc += er32(MPRC);
4932         adapter->stats.roc += er32(ROC);
4933 
4934         adapter->stats.mpc += er32(MPC);
4935 
4936         /* Half-duplex statistics */
4937         if (adapter->link_duplex == HALF_DUPLEX) {
4938                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4939                         e1000e_update_phy_stats(adapter);
4940                 } else {
4941                         adapter->stats.scc += er32(SCC);
4942                         adapter->stats.ecol += er32(ECOL);
4943                         adapter->stats.mcc += er32(MCC);
4944                         adapter->stats.latecol += er32(LATECOL);
4945                         adapter->stats.dc += er32(DC);
4946 
4947                         hw->mac.collision_delta = er32(COLC);
4948 
4949                         if ((hw->mac.type != e1000_82574) &&
4950                             (hw->mac.type != e1000_82583))
4951                                 adapter->stats.tncrs += er32(TNCRS);
4952                 }
4953                 adapter->stats.colc += hw->mac.collision_delta;
4954         }
4955 
4956         adapter->stats.xonrxc += er32(XONRXC);
4957         adapter->stats.xontxc += er32(XONTXC);
4958         adapter->stats.xoffrxc += er32(XOFFRXC);
4959         adapter->stats.xofftxc += er32(XOFFTXC);
4960         adapter->stats.gptc += er32(GPTC);
4961         adapter->stats.gotc += er32(GOTCL);
4962         er32(GOTCH);            /* Clear gotc */
4963         adapter->stats.rnbc += er32(RNBC);
4964         adapter->stats.ruc += er32(RUC);
4965 
4966         adapter->stats.mptc += er32(MPTC);
4967         adapter->stats.bptc += er32(BPTC);
4968 
4969         /* used for adaptive IFS */
4970 
4971         hw->mac.tx_packet_delta = er32(TPT);
4972         adapter->stats.tpt += hw->mac.tx_packet_delta;
4973 
4974         adapter->stats.algnerrc += er32(ALGNERRC);
4975         adapter->stats.rxerrc += er32(RXERRC);
4976         adapter->stats.cexterr += er32(CEXTERR);
4977         adapter->stats.tsctc += er32(TSCTC);
4978         adapter->stats.tsctfc += er32(TSCTFC);
4979 
4980         /* Fill out the OS statistics structure */
4981         netdev->stats.multicast = adapter->stats.mprc;
4982         netdev->stats.collisions = adapter->stats.colc;
4983 
4984         /* Rx Errors */
4985 
4986         /* RLEC on some newer hardware can be incorrect so build
4987          * our own version based on RUC and ROC
4988          */
4989         netdev->stats.rx_errors = adapter->stats.rxerrc +
4990             adapter->stats.crcerrs + adapter->stats.algnerrc +
4991             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4992         netdev->stats.rx_length_errors = adapter->stats.ruc +
4993             adapter->stats.roc;
4994         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4995         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4996         netdev->stats.rx_missed_errors = adapter->stats.mpc;
4997 
4998         /* Tx Errors */
4999         netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5000         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5001         netdev->stats.tx_window_errors = adapter->stats.latecol;
5002         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5003 
5004         /* Tx Dropped needs to be maintained elsewhere */
5005 
5006         /* Management Stats */
5007         adapter->stats.mgptc += er32(MGTPTC);
5008         adapter->stats.mgprc += er32(MGTPRC);
5009         adapter->stats.mgpdc += er32(MGTPDC);
5010 
5011         /* Correctable ECC Errors */
5012         if (hw->mac.type >= e1000_pch_lpt) {
5013                 u32 pbeccsts = er32(PBECCSTS);
5014 
5015                 adapter->corr_errors +=
5016                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5017                 adapter->uncorr_errors +=
5018                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5019                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5020         }
5021 }
5022 
5023 /**
5024  * e1000_phy_read_status - Update the PHY register status snapshot
5025  * @adapter: board private structure
5026  **/
5027 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5028 {
5029         struct e1000_hw *hw = &adapter->hw;
5030         struct e1000_phy_regs *phy = &adapter->phy_regs;
5031 
5032         if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5033             (er32(STATUS) & E1000_STATUS_LU) &&
5034             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5035                 int ret_val;
5036 
5037                 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5038                 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5039                 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5040                 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5041                 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5042                 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5043                 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5044                 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5045                 if (ret_val)
5046                         e_warn("Error reading PHY register\n");
5047         } else {
5048                 /* Do not read PHY registers if link is not up
5049                  * Set values to typical power-on defaults
5050                  */
5051                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5052                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5053                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5054                              BMSR_ERCAP);
5055                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5056                                   ADVERTISE_ALL | ADVERTISE_CSMA);
5057                 phy->lpa = 0;
5058                 phy->expansion = EXPANSION_ENABLENPAGE;
5059                 phy->ctrl1000 = ADVERTISE_1000FULL;
5060                 phy->stat1000 = 0;
5061                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5062         }
5063 }
5064 
5065 static void e1000_print_link_info(struct e1000_adapter *adapter)
5066 {
5067         struct e1000_hw *hw = &adapter->hw;
5068         u32 ctrl = er32(CTRL);
5069 
5070         /* Link status message must follow this format for user tools */
5071         pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5072                 adapter->netdev->name, adapter->link_speed,
5073                 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5074                 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5075                 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5076                 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5077 }
5078 
5079 static bool e1000e_has_link(struct e1000_adapter *adapter)
5080 {
5081         struct e1000_hw *hw = &adapter->hw;
5082         bool link_active = false;
5083         s32 ret_val = 0;
5084 
5085         /* get_link_status is set on LSC (link status) interrupt or
5086          * Rx sequence error interrupt.  get_link_status will stay
5087          * true until the check_for_link establishes link
5088          * for copper adapters ONLY
5089          */
5090         switch (hw->phy.media_type) {
5091         case e1000_media_type_copper:
5092                 if (hw->mac.get_link_status) {
5093                         ret_val = hw->mac.ops.check_for_link(hw);
5094                         link_active = !hw->mac.get_link_status;
5095                 } else {
5096                         link_active = true;
5097                 }
5098                 break;
5099         case e1000_media_type_fiber:
5100                 ret_val = hw->mac.ops.check_for_link(hw);
5101                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5102                 break;
5103         case e1000_media_type_internal_serdes:
5104                 ret_val = hw->mac.ops.check_for_link(hw);
5105                 link_active = hw->mac.serdes_has_link;
5106                 break;
5107         default:
5108         case e1000_media_type_unknown:
5109                 break;
5110         }
5111 
5112         if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5113             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5114                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5115                 e_info("Gigabit has been disabled, downgrading speed\n");
5116         }
5117 
5118         return link_active;
5119 }
5120 
5121 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5122 {
5123         /* make sure the receive unit is started */
5124         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5125             (adapter->flags & FLAG_RESTART_NOW)) {
5126                 struct e1000_hw *hw = &adapter->hw;
5127                 u32 rctl = er32(RCTL);
5128 
5129                 ew32(RCTL, rctl | E1000_RCTL_EN);
5130                 adapter->flags &= ~FLAG_RESTART_NOW;
5131         }
5132 }
5133 
5134 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5135 {
5136         struct e1000_hw *hw = &adapter->hw;
5137 
5138         /* With 82574 controllers, PHY needs to be checked periodically
5139          * for hung state and reset, if two calls return true
5140          */
5141         if (e1000_check_phy_82574(hw))
5142                 adapter->phy_hang_count++;
5143         else
5144                 adapter->phy_hang_count = 0;
5145 
5146         if (adapter->phy_hang_count > 1) {
5147                 adapter->phy_hang_count = 0;
5148                 e_dbg("PHY appears hung - resetting\n");
5149                 schedule_work(&adapter->reset_task);
5150         }
5151 }
5152 
5153 /**
5154  * e1000_watchdog - Timer Call-back
5155  * @data: pointer to adapter cast into an unsigned long
5156  **/
5157 static void e1000_watchdog(struct timer_list *t)
5158 {
5159         struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5160 
5161         /* Do the rest outside of interrupt context */
5162         schedule_work(&adapter->watchdog_task);
5163 
5164         /* TODO: make this use queue_delayed_work() */
5165 }
5166 
5167 static void e1000_watchdog_task(struct work_struct *work)
5168 {
5169         struct e1000_adapter *adapter = container_of(work,
5170                                                      struct e1000_adapter,
5171                                                      watchdog_task);
5172         struct net_device *netdev = adapter->netdev;
5173         struct e1000_mac_info *mac = &adapter->hw.mac;
5174         struct e1000_phy_info *phy = &adapter->hw.phy;
5175         struct e1000_ring *tx_ring = adapter->tx_ring;
5176         u32 dmoff_exit_timeout = 100, tries = 0;
5177         struct e1000_hw *hw = &adapter->hw;
5178         u32 link, tctl, pcim_state;
5179 
5180         if (test_bit(__E1000_DOWN, &adapter->state))
5181                 return;
5182 
5183         link = e1000e_has_link(adapter);
5184         if ((netif_carrier_ok(netdev)) && link) {
5185                 /* Cancel scheduled suspend requests. */
5186                 pm_runtime_resume(netdev->dev.parent);
5187 
5188                 e1000e_enable_receives(adapter);
5189                 goto link_up;
5190         }
5191 
5192         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5193             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5194                 e1000_update_mng_vlan(adapter);
5195 
5196         if (link) {
5197                 if (!netif_carrier_ok(netdev)) {
5198                         bool txb2b = true;
5199 
5200                         /* Cancel scheduled suspend requests. */
5201                         pm_runtime_resume(netdev->dev.parent);
5202 
5203                         /* Checking if MAC is in DMoff state*/
5204                         pcim_state = er32(STATUS);
5205                         while (pcim_state & E1000_STATUS_PCIM_STATE) {
5206                                 if (tries++ == dmoff_exit_timeout) {
5207                                         e_dbg("Error in exiting dmoff\n");
5208                                         break;
5209                                 }
5210                                 usleep_range(10000, 20000);
5211                                 pcim_state = er32(STATUS);
5212 
5213                                 /* Checking if MAC exited DMoff state */
5214                                 if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5215                                         e1000_phy_hw_reset(&adapter->hw);
5216                         }
5217 
5218                         /* update snapshot of PHY registers on LSC */
5219                         e1000_phy_read_status(adapter);
5220                         mac->ops.get_link_up_info(&adapter->hw,
5221                                                   &adapter->link_speed,
5222                                                   &adapter->link_duplex);
5223                         e1000_print_link_info(adapter);
5224 
5225                         /* check if SmartSpeed worked */
5226                         e1000e_check_downshift(hw);
5227                         if (phy->speed_downgraded)
5228                                 netdev_warn(netdev,
5229                                             "Link Speed was downgraded by SmartSpeed\n");
5230 
5231                         /* On supported PHYs, check for duplex mismatch only
5232                          * if link has autonegotiated at 10/100 half
5233                          */
5234                         if ((hw->phy.type == e1000_phy_igp_3 ||
5235                              hw->phy.type == e1000_phy_bm) &&
5236                             hw->mac.autoneg &&
5237                             (adapter->link_speed == SPEED_10 ||
5238                              adapter->link_speed == SPEED_100) &&
5239                             (adapter->link_duplex == HALF_DUPLEX)) {
5240                                 u16 autoneg_exp;
5241 
5242                                 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5243 
5244                                 if (!(autoneg_exp & EXPANSION_NWAY))
5245                                         e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5246                         }
5247 
5248                         /* adjust timeout factor according to speed/duplex */
5249                         adapter->tx_timeout_factor = 1;
5250                         switch (adapter->link_speed) {
5251                         case SPEED_10:
5252                                 txb2b = false;
5253                                 adapter->tx_timeout_factor = 16;
5254                                 break;
5255                         case SPEED_100:
5256                                 txb2b = false;
5257                                 adapter->tx_timeout_factor = 10;
5258                                 break;
5259                         }
5260 
5261                         /* workaround: re-program speed mode bit after
5262                          * link-up event
5263                          */
5264                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5265                             !txb2b) {
5266                                 u32 tarc0;
5267 
5268                                 tarc0 = er32(TARC(0));
5269                                 tarc0 &= ~SPEED_MODE_BIT;
5270                                 ew32(TARC(0), tarc0);
5271                         }
5272 
5273                         /* disable TSO for pcie and 10/100 speeds, to avoid
5274                          * some hardware issues
5275                          */
5276                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
5277                                 switch (adapter->link_speed) {
5278                                 case SPEED_10:
5279                                 case SPEED_100:
5280                                         e_info("10/100 speed: disabling TSO\n");
5281                                         netdev->features &= ~NETIF_F_TSO;
5282                                         netdev->features &= ~NETIF_F_TSO6;
5283                                         break;
5284                                 case SPEED_1000:
5285                                         netdev->features |= NETIF_F_TSO;
5286                                         netdev->features |= NETIF_F_TSO6;
5287                                         break;
5288                                 default:
5289                                         /* oops */
5290                                         break;
5291                                 }
5292                         }
5293 
5294                         /* enable transmits in the hardware, need to do this
5295                          * after setting TARC(0)
5296                          */
5297                         tctl = er32(TCTL);
5298                         tctl |= E1000_TCTL_EN;
5299                         ew32(TCTL, tctl);
5300 
5301                         /* Perform any post-link-up configuration before
5302                          * reporting link up.
5303                          */
5304                         if (phy->ops.cfg_on_link_up)
5305                                 phy->ops.cfg_on_link_up(hw);
5306 
5307                         netif_wake_queue(netdev);
5308                         netif_carrier_on(netdev);
5309 
5310                         if (!test_bit(__E1000_DOWN, &adapter->state))
5311                                 mod_timer(&adapter->phy_info_timer,
5312                                           round_jiffies(jiffies + 2 * HZ));
5313                 }
5314         } else {
5315                 if (netif_carrier_ok(netdev)) {
5316                         adapter->link_speed = 0;
5317                         adapter->link_duplex = 0;
5318                         /* Link status message must follow this format */
5319                         pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5320                         netif_carrier_off(netdev);
5321                         netif_stop_queue(netdev);
5322                         if (!test_bit(__E1000_DOWN, &adapter->state))
5323                                 mod_timer(&adapter->phy_info_timer,
5324                                           round_jiffies(jiffies + 2 * HZ));
5325 
5326                         /* 8000ES2LAN requires a Rx packet buffer work-around
5327                          * on link down event; reset the controller to flush
5328                          * the Rx packet buffer.
5329                          */
5330                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5331                                 adapter->flags |= FLAG_RESTART_NOW;
5332                         else
5333                                 pm_schedule_suspend(netdev->dev.parent,
5334                                                     LINK_TIMEOUT);
5335                 }
5336         }
5337 
5338 link_up:
5339         spin_lock(&adapter->stats64_lock);
5340         e1000e_update_stats(adapter);
5341 
5342         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5343         adapter->tpt_old = adapter->stats.tpt;
5344         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5345         adapter->colc_old = adapter->stats.colc;
5346 
5347         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5348         adapter->gorc_old = adapter->stats.gorc;
5349         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5350         adapter->gotc_old = adapter->stats.gotc;
5351         spin_unlock(&adapter->stats64_lock);
5352 
5353         /* If the link is lost the controller stops DMA, but
5354          * if there is queued Tx work it cannot be done.  So
5355          * reset the controller to flush the Tx packet buffers.
5356          */
5357         if (!netif_carrier_ok(netdev) &&
5358             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5359                 adapter->flags |= FLAG_RESTART_NOW;
5360 
5361         /* If reset is necessary, do it outside of interrupt context. */
5362         if (adapter->flags & FLAG_RESTART_NOW) {
5363                 schedule_work(&adapter->reset_task);
5364                 /* return immediately since reset is imminent */
5365                 return;
5366         }
5367 
5368         e1000e_update_adaptive(&adapter->hw);
5369 
5370         /* Simple mode for Interrupt Throttle Rate (ITR) */
5371         if (adapter->itr_setting == 4) {
5372                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5373                  * Total asymmetrical Tx or Rx gets ITR=8000;
5374                  * everyone else is between 2000-8000.
5375                  */
5376                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5377                 u32 dif = (adapter->gotc > adapter->gorc ?
5378                            adapter->gotc - adapter->gorc :
5379                            adapter->gorc - adapter->gotc) / 10000;
5380                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5381 
5382                 e1000e_write_itr(adapter, itr);
5383         }
5384 
5385         /* Cause software interrupt to ensure Rx ring is cleaned */
5386         if (adapter->msix_entries)
5387                 ew32(ICS, adapter->rx_ring->ims_val);
5388         else
5389                 ew32(ICS, E1000_ICS_RXDMT0);
5390 
5391         /* flush pending descriptors to memory before detecting Tx hang */
5392         e1000e_flush_descriptors(adapter);
5393 
5394         /* Force detection of hung controller every watchdog period */
5395         adapter->detect_tx_hung = true;
5396 
5397         /* With 82571 controllers, LAA may be overwritten due to controller
5398          * reset from the other port. Set the appropriate LAA in RAR[0]
5399          */
5400         if (e1000e_get_laa_state_82571(hw))
5401                 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5402 
5403         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5404                 e1000e_check_82574_phy_workaround(adapter);
5405 
5406         /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5407         if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5408                 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5409                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5410                         er32(RXSTMPH);
5411                         adapter->rx_hwtstamp_cleared++;
5412                 } else {
5413                         adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5414                 }
5415         }
5416 
5417         /* Reset the timer */
5418         if (!test_bit(__E1000_DOWN, &adapter->state))
5419                 mod_timer(&adapter->watchdog_timer,
5420                           round_jiffies(jiffies + 2 * HZ));
5421 }
5422 
5423 #define E1000_TX_FLAGS_CSUM             0x00000001
5424 #define E1000_TX_FLAGS_VLAN             0x00000002
5425 #define E1000_TX_FLAGS_TSO              0x00000004
5426 #define E1000_TX_FLAGS_IPV4             0x00000008
5427 #define E1000_TX_FLAGS_NO_FCS           0x00000010
5428 #define E1000_TX_FLAGS_HWTSTAMP         0x00000020
5429 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
5430 #define E1000_TX_FLAGS_VLAN_SHIFT       16
5431 
5432 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5433                      __be16 protocol)
5434 {
5435         struct e1000_context_desc *context_desc;
5436         struct e1000_buffer *buffer_info;
5437         unsigned int i;
5438         u32 cmd_length = 0;
5439         u16 ipcse = 0, mss;
5440         u8 ipcss, ipcso, tucss, tucso, hdr_len;
5441         int err;
5442 
5443         if (!skb_is_gso(skb))
5444                 return 0;
5445 
5446         err = skb_cow_head(skb, 0);
5447         if (err < 0)
5448                 return err;
5449 
5450         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5451         mss = skb_shinfo(skb)->gso_size;
5452         if (protocol == htons(ETH_P_IP)) {
5453                 struct iphdr *iph = ip_hdr(skb);
5454                 iph->tot_len = 0;
5455                 iph->check = 0;
5456                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5457                                                          0, IPPROTO_TCP, 0);
5458                 cmd_length = E1000_TXD_CMD_IP;
5459                 ipcse = skb_transport_offset(skb) - 1;
5460         } else if (skb_is_gso_v6(skb)) {
5461                 ipv6_hdr(skb)->payload_len = 0;
5462                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5463                                                        &ipv6_hdr(skb)->daddr,
5464                                                        0, IPPROTO_TCP, 0);
5465                 ipcse = 0;
5466         }
5467         ipcss = skb_network_offset(skb);
5468         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5469         tucss = skb_transport_offset(skb);
5470         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5471 
5472         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5473                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5474 
5475         i = tx_ring->next_to_use;
5476         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5477         buffer_info = &tx_ring->buffer_info[i];
5478 
5479         context_desc->lower_setup.ip_fields.ipcss = ipcss;
5480         context_desc->lower_setup.ip_fields.ipcso = ipcso;
5481         context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5482         context_desc->upper_setup.tcp_fields.tucss = tucss;
5483         context_desc->upper_setup.tcp_fields.tucso = tucso;
5484         context_desc->upper_setup.tcp_fields.tucse = 0;
5485         context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5486         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5487         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5488 
5489         buffer_info->time_stamp = jiffies;
5490         buffer_info->next_to_watch = i;
5491 
5492         i++;
5493         if (i == tx_ring->count)
5494                 i = 0;
5495         tx_ring->next_to_use = i;
5496 
5497         return 1;
5498 }
5499 
5500 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5501                           __be16 protocol)
5502 {
5503         struct e1000_adapter *adapter = tx_ring->adapter;
5504         struct e1000_context_desc *context_desc;
5505         struct e1000_buffer *buffer_info;
5506         unsigned int i;
5507         u8 css;
5508         u32 cmd_len = E1000_TXD_CMD_DEXT;
5509 
5510         if (skb->ip_summed != CHECKSUM_PARTIAL)
5511                 return false;
5512 
5513         switch (protocol) {
5514         case cpu_to_be16(ETH_P_IP):
5515                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5516                         cmd_len |= E1000_TXD_CMD_TCP;
5517                 break;
5518         case cpu_to_be16(ETH_P_IPV6):
5519                 /* XXX not handling all IPV6 headers */
5520                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5521                         cmd_len |= E1000_TXD_CMD_TCP;
5522                 break;
5523         default:
5524                 if (unlikely(net_ratelimit()))
5525                         e_warn("checksum_partial proto=%x!\n",
5526                                be16_to_cpu(protocol));
5527                 break;
5528         }
5529 
5530         css = skb_checksum_start_offset(skb);
5531 
5532         i = tx_ring->next_to_use;
5533         buffer_info = &tx_ring->buffer_info[i];
5534         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5535 
5536         context_desc->lower_setup.ip_config = 0;
5537         context_desc->upper_setup.tcp_fields.tucss = css;
5538         context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5539         context_desc->upper_setup.tcp_fields.tucse = 0;
5540         context_desc->tcp_seg_setup.data = 0;
5541         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5542 
5543         buffer_info->time_stamp = jiffies;
5544         buffer_info->next_to_watch = i;
5545 
5546         i++;
5547         if (i == tx_ring->count)
5548                 i = 0;
5549         tx_ring->next_to_use = i;
5550 
5551         return true;
5552 }
5553 
5554 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5555                         unsigned int first, unsigned int max_per_txd,
5556                         unsigned int nr_frags)
5557 {
5558         struct e1000_adapter *adapter = tx_ring->adapter;
5559         struct pci_dev *pdev = adapter->pdev;
5560         struct e1000_buffer *buffer_info;
5561         unsigned int len = skb_headlen(skb);
5562         unsigned int offset = 0, size, count = 0, i;
5563         unsigned int f, bytecount, segs;
5564 
5565         i = tx_ring->next_to_use;
5566 
5567         while (len) {
5568                 buffer_info = &tx_ring->buffer_info[i];
5569                 size = min(len, max_per_txd);
5570 
5571                 buffer_info->length = size;
5572                 buffer_info->time_stamp = jiffies;
5573                 buffer_info->next_to_watch = i;
5574                 buffer_info->dma = dma_map_single(&pdev->dev,
5575                                                   skb->data + offset,
5576                                                   size, DMA_TO_DEVICE);
5577                 buffer_info->mapped_as_page = false;
5578                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5579                         goto dma_error;
5580 
5581                 len -= size;
5582                 offset += size;
5583                 count++;
5584 
5585                 if (len) {
5586                         i++;
5587                         if (i == tx_ring->count)
5588                                 i = 0;
5589                 }
5590         }
5591 
5592         for (f = 0; f < nr_frags; f++) {
5593                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5594 
5595                 len = skb_frag_size(frag);
5596                 offset = 0;
5597 
5598                 while (len) {
5599                         i++;
5600                         if (i == tx_ring->count)
5601                                 i = 0;
5602 
5603                         buffer_info = &tx_ring->buffer_info[i];
5604                         size = min(len, max_per_txd);
5605 
5606                         buffer_info->length = size;
5607                         buffer_info->time_stamp = jiffies;
5608                         buffer_info->next_to_watch = i;
5609                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5610                                                             offset, size,
5611                                                             DMA_TO_DEVICE);
5612                         buffer_info->mapped_as_page = true;
5613                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5614                                 goto dma_error;
5615 
5616                         len -= size;
5617                         offset += size;
5618                         count++;
5619                 }
5620         }
5621 
5622         segs = skb_shinfo(skb)->gso_segs ? : 1;
5623         /* multiply data chunks by size of headers */
5624         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5625 
5626         tx_ring->buffer_info[i].skb = skb;
5627         tx_ring->buffer_info[i].segs = segs;
5628         tx_ring->buffer_info[i].bytecount = bytecount;
5629         tx_ring->buffer_info[first].next_to_watch = i;
5630 
5631         return count;
5632 
5633 dma_error:
5634         dev_err(&pdev->dev, "Tx DMA map failed\n");
5635         buffer_info->dma = 0;
5636         if (count)
5637                 count--;
5638 
5639         while (count--) {
5640                 if (i == 0)
5641                         i += tx_ring->count;
5642                 i--;
5643                 buffer_info = &tx_ring->buffer_info[i];
5644                 e1000_put_txbuf(tx_ring, buffer_info, true);
5645         }
5646 
5647         return 0;
5648 }
5649 
5650 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5651 {
5652         struct e1000_adapter *adapter = tx_ring->adapter;
5653         struct e1000_tx_desc *tx_desc = NULL;
5654         struct e1000_buffer *buffer_info;
5655         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5656         unsigned int i;
5657 
5658         if (tx_flags & E1000_TX_FLAGS_TSO) {
5659                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5660                     E1000_TXD_CMD_TSE;
5661                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5662 
5663                 if (tx_flags & E1000_TX_FLAGS_IPV4)
5664                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5665         }
5666 
5667         if (tx_flags & E1000_TX_FLAGS_CSUM) {
5668                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5669                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5670         }
5671 
5672         if (tx_flags & E1000_TX_FLAGS_VLAN) {
5673                 txd_lower |= E1000_TXD_CMD_VLE;
5674                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5675         }
5676 
5677         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5678                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5679 
5680         if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5681                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5682                 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5683         }
5684 
5685         i = tx_ring->next_to_use;
5686 
5687         do {
5688                 buffer_info = &tx_ring->buffer_info[i];
5689                 tx_desc = E1000_TX_DESC(*tx_ring, i);
5690                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5691                 tx_desc->lower.data = cpu_to_le32(txd_lower |
5692                                                   buffer_info->length);
5693                 tx_desc->upper.data = cpu_to_le32(txd_upper);
5694 
5695                 i++;
5696                 if (i == tx_ring->count)
5697                         i = 0;
5698         } while (--count > 0);
5699 
5700         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5701 
5702         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5703         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5704                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5705 
5706         /* Force memory writes to complete before letting h/w
5707          * know there are new descriptors to fetch.  (Only
5708          * applicable for weak-ordered memory model archs,
5709          * such as IA-64).
5710          */
5711         wmb();
5712 
5713         tx_ring->next_to_use = i;
5714 }
5715 
5716 #define MINIMUM_DHCP_PACKET_SIZE 282
5717 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5718                                     struct sk_buff *skb)
5719 {
5720         struct e1000_hw *hw = &adapter->hw;
5721         u16 length, offset;
5722 
5723         if (skb_vlan_tag_present(skb) &&
5724             !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5725               (adapter->hw.mng_cookie.status &
5726                E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5727                 return 0;
5728 
5729         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5730                 return 0;
5731 
5732         if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5733                 return 0;
5734 
5735         {
5736                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5737                 struct udphdr *udp;
5738 
5739                 if (ip->protocol != IPPROTO_UDP)
5740                         return 0;
5741 
5742                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5743                 if (ntohs(udp->dest) != 67)
5744                         return 0;
5745 
5746                 offset = (u8 *)udp + 8 - skb->data;
5747                 length = skb->len - offset;
5748                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5749         }
5750 
5751         return 0;
5752 }
5753 
5754 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5755 {
5756         struct e1000_adapter *adapter = tx_ring->adapter;
5757 
5758         netif_stop_queue(adapter->netdev);
5759         /* Herbert's original patch had:
5760          *  smp_mb__after_netif_stop_queue();
5761          * but since that doesn't exist yet, just open code it.
5762          */
5763         smp_mb();
5764 
5765         /* We need to check again in a case another CPU has just
5766          * made room available.
5767          */
5768         if (e1000_desc_unused(tx_ring) < size)
5769                 return -EBUSY;
5770 
5771         /* A reprieve! */
5772         netif_start_queue(adapter->netdev);
5773         ++adapter->restart_queue;
5774         return 0;
5775 }
5776 
5777 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5778 {
5779         BUG_ON(size > tx_ring->count);
5780 
5781         if (e1000_desc_unused(tx_ring) >= size)
5782                 return 0;
5783         return __e1000_maybe_stop_tx(tx_ring, size);
5784 }
5785 
5786 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5787                                     struct net_device *netdev)
5788 {
5789         struct e1000_adapter *adapter = netdev_priv(netdev);
5790         struct e1000_ring *tx_ring = adapter->tx_ring;
5791         unsigned int first;
5792         unsigned int tx_flags = 0;
5793         unsigned int len = skb_headlen(skb);
5794         unsigned int nr_frags;
5795         unsigned int mss;
5796         int count = 0;
5797         int tso;
5798         unsigned int f;
5799         __be16 protocol = vlan_get_protocol(skb);
5800 
5801         if (test_bit(__E1000_DOWN, &adapter->state)) {
5802                 dev_kfree_skb_any(skb);
5803                 return NETDEV_TX_OK;
5804         }
5805 
5806         if (skb->len <= 0) {
5807                 dev_kfree_skb_any(skb);
5808                 return NETDEV_TX_OK;
5809         }
5810 
5811         /* The minimum packet size with TCTL.PSP set is 17 bytes so
5812          * pad skb in order to meet this minimum size requirement
5813          */
5814         if (skb_put_padto(skb, 17))
5815                 return NETDEV_TX_OK;
5816 
5817         mss = skb_shinfo(skb)->gso_size;
5818         if (mss) {
5819                 u8 hdr_len;
5820 
5821                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5822                  * points to just header, pull a few bytes of payload from
5823                  * frags into skb->data
5824                  */
5825                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5826                 /* we do this workaround for ES2LAN, but it is un-necessary,
5827                  * avoiding it could save a lot of cycles
5828                  */
5829                 if (skb->data_len && (hdr_len == len)) {
5830                         unsigned int pull_size;
5831 
5832                         pull_size = min_t(unsigned int, 4, skb->data_len);
5833                         if (!__pskb_pull_tail(skb, pull_size)) {
5834                                 e_err("__pskb_pull_tail failed.\n");
5835                                 dev_kfree_skb_any(skb);
5836                                 return NETDEV_TX_OK;
5837                         }
5838                         len = skb_headlen(skb);
5839                 }
5840         }
5841 
5842         /* reserve a descriptor for the offload context */
5843         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5844                 count++;
5845         count++;
5846 
5847         count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5848 
5849         nr_frags = skb_shinfo(skb)->nr_frags;
5850         for (f = 0; f < nr_frags; f++)
5851                 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5852                                       adapter->tx_fifo_limit);
5853 
5854         if (adapter->hw.mac.tx_pkt_filtering)
5855                 e1000_transfer_dhcp_info(adapter, skb);
5856 
5857         /* need: count + 2 desc gap to keep tail from touching
5858          * head, otherwise try next time
5859          */
5860         if (e1000_maybe_stop_tx(tx_ring, count + 2))
5861                 return NETDEV_TX_BUSY;
5862 
5863         if (skb_vlan_tag_present(skb)) {
5864                 tx_flags |= E1000_TX_FLAGS_VLAN;
5865                 tx_flags |= (skb_vlan_tag_get(skb) <<
5866                              E1000_TX_FLAGS_VLAN_SHIFT);
5867         }
5868 
5869         first = tx_ring->next_to_use;
5870 
5871         tso = e1000_tso(tx_ring, skb, protocol);
5872         if (tso < 0) {
5873                 dev_kfree_skb_any(skb);
5874                 return NETDEV_TX_OK;
5875         }
5876 
5877         if (tso)
5878                 tx_flags |= E1000_TX_FLAGS_TSO;
5879         else if (e1000_tx_csum(tx_ring, skb, protocol))
5880                 tx_flags |= E1000_TX_FLAGS_CSUM;
5881 
5882         /* Old method was to assume IPv4 packet by default if TSO was enabled.
5883          * 82571 hardware supports TSO capabilities for IPv6 as well...
5884          * no longer assume, we must.
5885          */
5886         if (protocol == htons(ETH_P_IP))
5887                 tx_flags |= E1000_TX_FLAGS_IPV4;
5888 
5889         if (unlikely(skb->no_fcs))
5890                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5891 
5892         /* if count is 0 then mapping error has occurred */
5893         count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5894                              nr_frags);
5895         if (count) {
5896                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5897                     (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5898                         if (!adapter->tx_hwtstamp_skb) {
5899                                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5900                                 tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5901                                 adapter->tx_hwtstamp_skb = skb_get(skb);
5902                                 adapter->tx_hwtstamp_start = jiffies;
5903                                 schedule_work(&adapter->tx_hwtstamp_work);
5904                         } else {
5905                                 adapter->tx_hwtstamp_skipped++;
5906                         }
5907                 }
5908 
5909                 skb_tx_timestamp(skb);
5910 
5911                 netdev_sent_queue(netdev, skb->len);
5912                 e1000_tx_queue(tx_ring, tx_flags, count);
5913                 /* Make sure there is space in the ring for the next send. */
5914                 e1000_maybe_stop_tx(tx_ring,
5915                                     (MAX_SKB_FRAGS *
5916                                      DIV_ROUND_UP(PAGE_SIZE,
5917                                                   adapter->tx_fifo_limit) + 2));
5918 
5919                 if (!netdev_xmit_more() ||
5920                     netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5921                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5922                                 e1000e_update_tdt_wa(tx_ring,
5923                                                      tx_ring->next_to_use);
5924                         else
5925                                 writel(tx_ring->next_to_use, tx_ring->tail);
5926                 }
5927         } else {
5928                 dev_kfree_skb_any(skb);
5929                 tx_ring->buffer_info[first].time_stamp = 0;
5930                 tx_ring->next_to_use = first;
5931         }
5932 
5933         return NETDEV_TX_OK;
5934 }
5935 
5936 /**
5937  * e1000_tx_timeout - Respond to a Tx Hang
5938  * @netdev: network interface device structure
5939  **/
5940 static void e1000_tx_timeout(struct net_device *netdev)
5941 {
5942         struct e1000_adapter *adapter = netdev_priv(netdev);
5943 
5944         /* Do the reset outside of interrupt context */
5945         adapter->tx_timeout_count++;
5946         schedule_work(&adapter->reset_task);
5947 }
5948 
5949 static void e1000_reset_task(struct work_struct *work)
5950 {
5951         struct e1000_adapter *adapter;
5952         adapter = container_of(work, struct e1000_adapter, reset_task);
5953 
5954         /* don't run the task if already down */
5955         if (test_bit(__E1000_DOWN, &adapter->state))
5956                 return;
5957 
5958         if (!(adapter->flags & FLAG_RESTART_NOW)) {
5959                 e1000e_dump(adapter);
5960                 e_err("Reset adapter unexpectedly\n");
5961         }
5962         e1000e_reinit_locked(adapter);
5963 }
5964 
5965 /**
5966  * e1000_get_stats64 - Get System Network Statistics
5967  * @netdev: network interface device structure
5968  * @stats: rtnl_link_stats64 pointer
5969  *
5970  * Returns the address of the device statistics structure.
5971  **/
5972 void e1000e_get_stats64(struct net_device *netdev,
5973                         struct rtnl_link_stats64 *stats)
5974 {
5975         struct e1000_adapter *adapter = netdev_priv(netdev);
5976 
5977         spin_lock(&adapter->stats64_lock);
5978         e1000e_update_stats(adapter);
5979         /* Fill out the OS statistics structure */
5980         stats->rx_bytes = adapter->stats.gorc;
5981         stats->rx_packets = adapter->stats.gprc;
5982         stats->tx_bytes = adapter->stats.gotc;
5983         stats->tx_packets = adapter->stats.gptc;
5984         stats->multicast = adapter->stats.mprc;
5985         stats->collisions = adapter->stats.colc;
5986 
5987         /* Rx Errors */
5988 
5989         /* RLEC on some newer hardware can be incorrect so build
5990          * our own version based on RUC and ROC
5991          */
5992         stats->rx_errors = adapter->stats.rxerrc +
5993             adapter->stats.crcerrs + adapter->stats.algnerrc +
5994             adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5995         stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5996         stats->rx_crc_errors = adapter->stats.crcerrs;
5997         stats->rx_frame_errors = adapter->stats.algnerrc;
5998         stats->rx_missed_errors = adapter->stats.mpc;
5999 
6000         /* Tx Errors */
6001         stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
6002         stats->tx_aborted_errors = adapter->stats.ecol;
6003         stats->tx_window_errors = adapter->stats.latecol;
6004         stats->tx_carrier_errors = adapter->stats.tncrs;
6005 
6006         /* Tx Dropped needs to be maintained elsewhere */
6007 
6008         spin_unlock(&adapter->stats64_lock);
6009 }
6010 
6011 /**
6012  * e1000_change_mtu - Change the Maximum Transfer Unit
6013  * @netdev: network interface device structure
6014  * @new_mtu: new value for maximum frame size
6015  *
6016  * Returns 0 on success, negative on failure
6017  **/
6018 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6019 {
6020         struct e1000_adapter *adapter = netdev_priv(netdev);
6021         int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6022 
6023         /* Jumbo frame support */
6024         if ((new_mtu > ETH_DATA_LEN) &&
6025             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6026                 e_err("Jumbo Frames not supported.\n");
6027                 return -EINVAL;
6028         }
6029 
6030         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6031         if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6032             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6033             (new_mtu > ETH_DATA_LEN)) {
6034                 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6035                 return -EINVAL;
6036         }
6037 
6038         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6039                 usleep_range(1000, 1100);
6040         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6041         adapter->max_frame_size = max_frame;
6042         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
6043         netdev->mtu = new_mtu;
6044 
6045         pm_runtime_get_sync(netdev->dev.parent);
6046 
6047         if (netif_running(netdev))
6048                 e1000e_down(adapter, true);
6049 
6050         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6051          * means we reserve 2 more, this pushes us to allocate from the next
6052          * larger slab size.
6053          * i.e. RXBUFFER_2048 --> size-4096 slab
6054          * However with the new *_jumbo_rx* routines, jumbo receives will use
6055          * fragmented skbs
6056          */
6057 
6058         if (max_frame <= 2048)
6059                 adapter->rx_buffer_len = 2048;
6060         else
6061                 adapter->rx_buffer_len = 4096;
6062 
6063         /* adjust allocation if LPE protects us, and we aren't using SBP */
6064         if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6065                 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6066 
6067         if (netif_running(netdev))
6068                 e1000e_up(adapter);
6069         else
6070                 e1000e_reset(adapter);
6071 
6072         pm_runtime_put_sync(netdev->dev.parent);
6073 
6074         clear_bit(__E1000_RESETTING, &adapter->state);
6075 
6076         return 0;
6077 }
6078 
6079 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6080                            int cmd)
6081 {
6082         struct e1000_adapter *adapter = netdev_priv(netdev);
6083         struct mii_ioctl_data *data = if_mii(ifr);
6084 
6085         if (adapter->hw.phy.media_type != e1000_media_type_copper)
6086                 return -EOPNOTSUPP;
6087 
6088         switch (cmd) {
6089         case SIOCGMIIPHY:
6090                 data->phy_id = adapter->hw.phy.addr;
6091                 break;
6092         case SIOCGMIIREG:
6093                 e1000_phy_read_status(adapter);
6094 
6095                 switch (data->reg_num & 0x1F) {
6096                 case MII_BMCR:
6097                         data->val_out = adapter->phy_regs.bmcr;
6098                         break;
6099                 case MII_BMSR:
6100                         data->val_out = adapter->phy_regs.bmsr;
6101                         break;
6102                 case MII_PHYSID1:
6103                         data->val_out = (adapter->hw.phy.id >> 16);
6104                         break;
6105                 case MII_PHYSID2:
6106                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
6107                         break;
6108                 case MII_ADVERTISE:
6109                         data->val_out = adapter->phy_regs.advertise;
6110                         break;
6111                 case MII_LPA:
6112                         data->val_out = adapter->phy_regs.lpa;
6113                         break;
6114                 case MII_EXPANSION:
6115                         data->val_out = adapter->phy_regs.expansion;
6116                         break;
6117                 case MII_CTRL1000:
6118                         data->val_out = adapter->phy_regs.ctrl1000;
6119                         break;
6120                 case MII_STAT1000:
6121                         data->val_out = adapter->phy_regs.stat1000;
6122                         break;
6123                 case MII_ESTATUS:
6124                         data->val_out = adapter->phy_regs.estatus;
6125                         break;
6126                 default:
6127                         return -EIO;
6128                 }
6129                 break;
6130         case SIOCSMIIREG:
6131         default:
6132                 return -EOPNOTSUPP;
6133         }
6134         return 0;
6135 }
6136 
6137 /**
6138  * e1000e_hwtstamp_ioctl - control hardware time stamping
6139  * @netdev: network interface device structure
6140  * @ifreq: interface request
6141  *
6142  * Outgoing time stamping can be enabled and disabled. Play nice and
6143  * disable it when requested, although it shouldn't cause any overhead
6144  * when no packet needs it. At most one packet in the queue may be
6145  * marked for time stamping, otherwise it would be impossible to tell
6146  * for sure to which packet the hardware time stamp belongs.
6147  *
6148  * Incoming time stamping has to be configured via the hardware filters.
6149  * Not all combinations are supported, in particular event type has to be
6150  * specified. Matching the kind of event packet is not supported, with the
6151  * exception of "all V2 events regardless of level 2 or 4".
6152  **/
6153 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6154 {
6155         struct e1000_adapter *adapter = netdev_priv(netdev);
6156         struct hwtstamp_config config;
6157         int ret_val;
6158 
6159         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6160                 return -EFAULT;
6161 
6162         ret_val = e1000e_config_hwtstamp(adapter, &config);
6163         if (ret_val)
6164                 return ret_val;
6165 
6166         switch (config.rx_filter) {
6167         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6168         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6169         case HWTSTAMP_FILTER_PTP_V2_SYNC:
6170         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6171         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6172         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6173                 /* With V2 type filters which specify a Sync or Delay Request,
6174                  * Path Delay Request/Response messages are also time stamped
6175                  * by hardware so notify the caller the requested packets plus
6176                  * some others are time stamped.
6177                  */
6178                 config.rx_filter = HWTSTAMP_FILTER_SOME;
6179                 break;
6180         default:
6181                 break;
6182         }
6183 
6184         return copy_to_user(ifr->ifr_data, &config,
6185                             sizeof(config)) ? -EFAULT : 0;
6186 }
6187 
6188 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6189 {
6190         struct e1000_adapter *adapter = netdev_priv(netdev);
6191 
6192         return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6193                             sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6194 }
6195 
6196 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6197 {
6198         switch (cmd) {
6199         case SIOCGMIIPHY:
6200         case SIOCGMIIREG:
6201         case SIOCSMIIREG:
6202                 return e1000_mii_ioctl(netdev, ifr, cmd);
6203         case SIOCSHWTSTAMP:
6204                 return e1000e_hwtstamp_set(netdev, ifr);
6205         case SIOCGHWTSTAMP:
6206                 return e1000e_hwtstamp_get(netdev, ifr);
6207         default:
6208                 return -EOPNOTSUPP;
6209         }
6210 }
6211 
6212 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6213 {
6214         struct e1000_hw *hw = &adapter->hw;
6215         u32 i, mac_reg, wuc;
6216         u16 phy_reg, wuc_enable;
6217         int retval;
6218 
6219         /* copy MAC RARs to PHY RARs */
6220         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6221 
6222         retval = hw->phy.ops.acquire(hw);
6223         if (retval) {
6224                 e_err("Could not acquire PHY\n");
6225                 return retval;
6226         }
6227 
6228         /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6229         retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6230         if (retval)
6231                 goto release;
6232 
6233         /* copy MAC MTA to PHY MTA - only needed for pchlan */
6234         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6235                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6236                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6237                                            (u16)(mac_reg & 0xFFFF));
6238                 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6239                                            (u16)((mac_reg >> 16) & 0xFFFF));
6240         }
6241 
6242         /* configure PHY Rx Control register */
6243         hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6244         mac_reg = er32(RCTL);
6245         if (mac_reg & E1000_RCTL_UPE)
6246                 phy_reg |= BM_RCTL_UPE;
6247         if (mac_reg & E1000_RCTL_MPE)
6248                 phy_reg |= BM_RCTL_MPE;
6249         phy_reg &= ~(BM_RCTL_MO_MASK);
6250         if (mac_reg & E1000_RCTL_MO_3)
6251                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6252                             << BM_RCTL_MO_SHIFT);
6253         if (mac_reg & E1000_RCTL_BAM)
6254                 phy_reg |= BM_RCTL_BAM;
6255         if (mac_reg & E1000_RCTL_PMCF)
6256                 phy_reg |= BM_RCTL_PMCF;
6257         mac_reg = er32(CTRL);
6258         if (mac_reg & E1000_CTRL_RFCE)
6259                 phy_reg |= BM_RCTL_RFCE;
6260         hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6261 
6262         wuc = E1000_WUC_PME_EN;
6263         if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6264                 wuc |= E1000_WUC_APME;
6265 
6266         /* enable PHY wakeup in MAC register */
6267         ew32(WUFC, wufc);
6268         ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6269                    E1000_WUC_PME_STATUS | wuc));
6270 
6271         /* configure and enable PHY wakeup in PHY registers */
6272         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6273         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6274 
6275         /* activate PHY wakeup */
6276         wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6277         retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6278         if (retval)
6279                 e_err("Could not set PHY Host Wakeup bit\n");
6280 release:
6281         hw->phy.ops.release(hw);
6282 
6283         return retval;
6284 }
6285 
6286 static void e1000e_flush_lpic(struct pci_dev *pdev)
6287 {
6288         struct net_device *netdev = pci_get_drvdata(pdev);
6289         struct e1000_adapter *adapter = netdev_priv(netdev);
6290         struct e1000_hw *hw = &adapter->hw;
6291         u32 ret_val;
6292 
6293         pm_runtime_get_sync(netdev->dev.parent);
6294 
6295         ret_val = hw->phy.ops.acquire(hw);
6296         if (ret_val)
6297                 goto fl_out;
6298 
6299         pr_info("EEE TX LPI TIMER: %08X\n",
6300                 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6301 
6302         hw->phy.ops.release(hw);
6303 
6304 fl_out:
6305         pm_runtime_put_sync(netdev->dev.parent);
6306 }
6307 
6308 static int e1000e_pm_freeze(struct device *dev)
6309 {
6310         struct net_device *netdev = dev_get_drvdata(dev);
6311         struct e1000_adapter *adapter = netdev_priv(netdev);
6312         bool present;
6313 
6314         rtnl_lock();
6315 
6316         present = netif_device_present(netdev);
6317         netif_device_detach(netdev);
6318 
6319         if (present && netif_running(netdev)) {
6320                 int count = E1000_CHECK_RESET_COUNT;
6321 
6322                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6323                         usleep_range(10000, 11000);
6324 
6325                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6326 
6327                 /* Quiesce the device without resetting the hardware */
6328                 e1000e_down(adapter, false);
6329                 e1000_free_irq(adapter);
6330         }
6331         rtnl_unlock();
6332 
6333         e1000e_reset_interrupt_capability(adapter);
6334 
6335         /* Allow time for pending master requests to run */
6336         e1000e_disable_pcie_master(&adapter->hw);
6337 
6338         return 0;
6339 }
6340 
6341 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6342 {
6343         struct net_device *netdev = pci_get_drvdata(pdev);
6344         struct e1000_adapter *adapter = netdev_priv(netdev);
6345         struct e1000_hw *hw = &adapter->hw;
6346         u32 ctrl, ctrl_ext, rctl, status;
6347         /* Runtime suspend should only enable wakeup for link changes */
6348         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6349         int retval = 0;
6350 
6351         status = er32(STATUS);
6352         if (status & E1000_STATUS_LU)
6353                 wufc &= ~E1000_WUFC_LNKC;
6354 
6355         if (wufc) {
6356                 e1000_setup_rctl(adapter);
6357                 e1000e_set_rx_mode(netdev);
6358 
6359                 /* turn on all-multi mode if wake on multicast is enabled */
6360                 if (wufc & E1000_WUFC_MC) {
6361                         rctl = er32(RCTL);
6362                         rctl |= E1000_RCTL_MPE;
6363                         ew32(RCTL, rctl);
6364                 }
6365 
6366                 ctrl = er32(CTRL);
6367                 ctrl |= E1000_CTRL_ADVD3WUC;
6368                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6369                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6370                 ew32(CTRL, ctrl);
6371 
6372                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6373                     adapter->hw.phy.media_type ==
6374                     e1000_media_type_internal_serdes) {
6375                         /* keep the laser running in D3 */
6376                         ctrl_ext = er32(CTRL_EXT);
6377                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6378                         ew32(CTRL_EXT, ctrl_ext);
6379                 }
6380 
6381                 if (!runtime)
6382                         e1000e_power_up_phy(adapter);
6383 
6384                 if (adapter->flags & FLAG_IS_ICH)
6385                         e1000_suspend_workarounds_ich8lan(&adapter->hw);
6386 
6387                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6388                         /* enable wakeup by the PHY */
6389                         retval = e1000_init_phy_wakeup(adapter, wufc);
6390                         if (retval)
6391                                 return retval;
6392                 } else {
6393                         /* enable wakeup by the MAC */
6394                         ew32(WUFC, wufc);
6395                         ew32(WUC, E1000_WUC_PME_EN);
6396                 }
6397         } else {
6398                 ew32(WUC, 0);
6399                 ew32(WUFC, 0);
6400 
6401                 e1000_power_down_phy(adapter);
6402         }
6403 
6404         if (adapter->hw.phy.type == e1000_phy_igp_3) {
6405                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6406         } else if (hw->mac.type >= e1000_pch_lpt) {
6407                 if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6408                         /* ULP does not support wake from unicast, multicast
6409                          * or broadcast.
6410                          */
6411                         retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6412 
6413                 if (retval)
6414                         return retval;
6415         }
6416 
6417         /* Ensure that the appropriate bits are set in LPI_CTRL
6418          * for EEE in Sx
6419          */
6420         if ((hw->phy.type >= e1000_phy_i217) &&
6421             adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6422                 u16 lpi_ctrl = 0;
6423 
6424                 retval = hw->phy.ops.acquire(hw);
6425                 if (!retval) {
6426                         retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6427                                                  &lpi_ctrl);
6428                         if (!retval) {
6429                                 if (adapter->eee_advert &
6430                                     hw->dev_spec.ich8lan.eee_lp_ability &
6431                                     I82579_EEE_100_SUPPORTED)
6432                                         lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6433                                 if (adapter->eee_advert &
6434                                     hw->dev_spec.ich8lan.eee_lp_ability &
6435                                     I82579_EEE_1000_SUPPORTED)
6436                                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6437 
6438                                 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6439                                                          lpi_ctrl);
6440                         }
6441                 }
6442                 hw->phy.ops.release(hw);
6443         }
6444 
6445         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6446          * would have already happened in close and is redundant.
6447          */
6448         e1000e_release_hw_control(adapter);
6449 
6450         pci_clear_master(pdev);
6451 
6452         /* The pci-e switch on some quad port adapters will report a
6453          * correctable error when the MAC transitions from D0 to D3.  To
6454          * prevent this we need to mask off the correctable errors on the
6455          * downstream port of the pci-e switch.
6456          *
6457          * We don't have the associated upstream bridge while assigning
6458          * the PCI device into guest. For example, the KVM on power is
6459          * one of the cases.
6460          */
6461         if (adapter->flags & FLAG_IS_QUAD_PORT) {
6462                 struct pci_dev *us_dev = pdev->bus->self;
6463                 u16 devctl;
6464 
6465                 if (!us_dev)
6466                         return 0;
6467 
6468                 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6469                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6470                                            (devctl & ~PCI_EXP_DEVCTL_CERE));
6471 
6472                 pci_save_state(pdev);
6473                 pci_prepare_to_sleep(pdev);
6474 
6475                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6476         }
6477 
6478         return 0;
6479 }
6480 
6481 /**
6482  * __e1000e_disable_aspm - Disable ASPM states
6483  * @pdev: pointer to PCI device struct
6484  * @state: bit-mask of ASPM states to disable
6485  * @locked: indication if this context holds pci_bus_sem locked.
6486  *
6487  * Some devices *must* have certain ASPM states disabled per hardware errata.
6488  **/
6489 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6490 {
6491         struct pci_dev *parent = pdev->bus->self;
6492         u16 aspm_dis_mask = 0;
6493         u16 pdev_aspmc, parent_aspmc;
6494 
6495         switch (state) {
6496         case PCIE_LINK_STATE_L0S:
6497         case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6498                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6499                 /* fall-through - can't have L1 without L0s */
6500         case PCIE_LINK_STATE_L1:
6501                 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6502                 break;
6503         default:
6504                 return;
6505         }
6506 
6507         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6508         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6509 
6510         if (parent) {
6511                 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6512                                           &parent_aspmc);
6513                 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6514         }
6515 
6516         /* Nothing to do if the ASPM states to be disabled already are */
6517         if (!(pdev_aspmc & aspm_dis_mask) &&
6518             (!parent || !(parent_aspmc & aspm_dis_mask)))
6519                 return;
6520 
6521         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6522                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6523                  "L0s" : "",
6524                  (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6525                  "L1" : "");
6526 
6527 #ifdef CONFIG_PCIEASPM
6528         if (locked)
6529                 pci_disable_link_state_locked(pdev, state);
6530         else
6531                 pci_disable_link_state(pdev, state);
6532 
6533         /* Double-check ASPM control.  If not disabled by the above, the
6534          * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6535          * not enabled); override by writing PCI config space directly.
6536          */
6537         pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6538         pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6539 
6540         if (!(aspm_dis_mask & pdev_aspmc))
6541                 return;
6542 #endif
6543 
6544         /* Both device and parent should have the same ASPM setting.
6545          * Disable ASPM in downstream component first and then upstream.
6546          */
6547         pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6548 
6549         if (parent)
6550                 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6551                                            aspm_dis_mask);
6552 }
6553 
6554 /**
6555  * e1000e_disable_aspm - Disable ASPM states.
6556  * @pdev: pointer to PCI device struct
6557  * @state: bit-mask of ASPM states to disable
6558  *
6559  * This function acquires the pci_bus_sem!
6560  * Some devices *must* have certain ASPM states disabled per hardware errata.
6561  **/
6562 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6563 {
6564         __e1000e_disable_aspm(pdev, state, 0);
6565 }
6566 
6567 /**
6568  * e1000e_disable_aspm_locked   Disable ASPM states.
6569  * @pdev: pointer to PCI device struct
6570  * @state: bit-mask of ASPM states to disable
6571  *
6572  * This function must be called with pci_bus_sem acquired!
6573  * Some devices *must* have certain ASPM states disabled per hardware errata.
6574  **/
6575 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6576 {
6577         __e1000e_disable_aspm(pdev, state, 1);
6578 }
6579 
6580 static int e1000e_pm_thaw(struct device *dev)
6581 {
6582         struct net_device *netdev = dev_get_drvdata(dev);
6583         struct e1000_adapter *adapter = netdev_priv(netdev);
6584         int rc = 0;
6585 
6586         e1000e_set_interrupt_capability(adapter);
6587 
6588         rtnl_lock();
6589         if (netif_running(netdev)) {
6590                 rc = e1000_request_irq(adapter);
6591                 if (rc)
6592                         goto err_irq;
6593 
6594                 e1000e_up(adapter);
6595         }
6596 
6597         netif_device_attach(netdev);
6598 err_irq:
6599         rtnl_unlock();
6600 
6601         return rc;
6602 }
6603 
6604 #ifdef CONFIG_PM
6605 static int __e1000_resume(struct pci_dev *pdev)
6606 {
6607         struct net_device *netdev = pci_get_drvdata(pdev);
6608         struct e1000_adapter *adapter = netdev_priv(netdev);
6609         struct e1000_hw *hw = &adapter->hw;
6610         u16 aspm_disable_flag = 0;
6611 
6612         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6613                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6614         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6615                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6616         if (aspm_disable_flag)
6617                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6618 
6619         pci_set_master(pdev);
6620 
6621         if (hw->mac.type >= e1000_pch2lan)
6622                 e1000_resume_workarounds_pchlan(&adapter->hw);
6623 
6624         e1000e_power_up_phy(adapter);
6625 
6626         /* report the system wakeup cause from S3/S4 */
6627         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6628                 u16 phy_data;
6629 
6630                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6631                 if (phy_data) {
6632                         e_info("PHY Wakeup cause - %s\n",
6633                                phy_data & E1000_WUS_EX ? "Unicast Packet" :
6634                                phy_data & E1000_WUS_MC ? "Multicast Packet" :
6635                                phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6636                                phy_data & E1000_WUS_MAG ? "Magic Packet" :
6637                                phy_data & E1000_WUS_LNKC ?
6638                                "Link Status Change" : "other");
6639                 }
6640                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6641         } else {
6642                 u32 wus = er32(WUS);
6643 
6644                 if (wus) {
6645                         e_info("MAC Wakeup cause - %s\n",
6646                                wus & E1000_WUS_EX ? "Unicast Packet" :
6647                                wus & E1000_WUS_MC ? "Multicast Packet" :
6648                                wus & E1000_WUS_BC ? "Broadcast Packet" :
6649                                wus & E1000_WUS_MAG ? "Magic Packet" :
6650                                wus & E1000_WUS_LNKC ? "Link Status Change" :
6651                                "other");
6652                 }
6653                 ew32(WUS, ~0);
6654         }
6655 
6656         e1000e_reset(adapter);
6657 
6658         e1000_init_manageability_pt(adapter);
6659 
6660         /* If the controller has AMT, do not set DRV_LOAD until the interface
6661          * is up.  For all other cases, let the f/w know that the h/w is now
6662          * under the control of the driver.
6663          */
6664         if (!(adapter->flags & FLAG_HAS_AMT))
6665                 e1000e_get_hw_control(adapter);
6666 
6667         return 0;
6668 }
6669 
6670 #ifdef CONFIG_PM_SLEEP
6671 static int e1000e_pm_suspend(struct device *dev)
6672 {
6673         struct pci_dev *pdev = to_pci_dev(dev);
6674         int rc;
6675 
6676         e1000e_flush_lpic(pdev);
6677 
6678         e1000e_pm_freeze(dev);
6679 
6680         rc = __e1000_shutdown(pdev, false);
6681         if (rc)
6682                 e1000e_pm_thaw(dev);
6683 
6684         return rc;
6685 }
6686 
6687 static int e1000e_pm_resume(struct device *dev)
6688 {
6689         struct pci_dev *pdev = to_pci_dev(dev);
6690         int rc;
6691 
6692         rc = __e1000_resume(pdev);
6693         if (rc)
6694                 return rc;
6695 
6696         return e1000e_pm_thaw(dev);
6697 }
6698 #endif /* CONFIG_PM_SLEEP */
6699 
6700 static int e1000e_pm_runtime_idle(struct device *dev)
6701 {
6702         struct net_device *netdev = dev_get_drvdata(dev);
6703         struct e1000_adapter *adapter = netdev_priv(netdev);
6704         u16 eee_lp;
6705 
6706         eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6707 
6708         if (!e1000e_has_link(adapter)) {
6709                 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6710                 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6711         }
6712 
6713         return -EBUSY;
6714 }
6715 
6716 static int e1000e_pm_runtime_resume(struct device *dev)
6717 {
6718         struct pci_dev *pdev = to_pci_dev(dev);
6719         struct net_device *netdev = pci_get_drvdata(pdev);
6720         struct e1000_adapter *adapter = netdev_priv(netdev);
6721         int rc;
6722 
6723         rc = __e1000_resume(pdev);
6724         if (rc)
6725                 return rc;
6726 
6727         if (netdev->flags & IFF_UP)
6728                 e1000e_up(adapter);
6729 
6730         return rc;
6731 }
6732 
6733 static int e1000e_pm_runtime_suspend(struct device *dev)
6734 {
6735         struct pci_dev *pdev = to_pci_dev(dev);
6736         struct net_device *netdev = pci_get_drvdata(pdev);
6737         struct e1000_adapter *adapter = netdev_priv(netdev);
6738 
6739         if (netdev->flags & IFF_UP) {
6740                 int count = E1000_CHECK_RESET_COUNT;
6741 
6742                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6743                         usleep_range(10000, 11000);
6744 
6745                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6746 
6747                 /* Down the device without resetting the hardware */
6748                 e1000e_down(adapter, false);
6749         }
6750 
6751         if (__e1000_shutdown(pdev, true)) {
6752                 e1000e_pm_runtime_resume(dev);
6753                 return -EBUSY;
6754         }
6755 
6756         return 0;
6757 }
6758 #endif /* CONFIG_PM */
6759 
6760 static void e1000_shutdown(struct pci_dev *pdev)
6761 {
6762         e1000e_flush_lpic(pdev);
6763 
6764         e1000e_pm_freeze(&pdev->dev);
6765 
6766         __e1000_shutdown(pdev, false);
6767 }
6768 
6769 #ifdef CONFIG_NET_POLL_CONTROLLER
6770 
6771 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6772 {
6773         struct net_device *netdev = data;
6774         struct e1000_adapter *adapter = netdev_priv(netdev);
6775 
6776         if (adapter->msix_entries) {
6777                 int vector, msix_irq;
6778 
6779                 vector = 0;
6780                 msix_irq = adapter->msix_entries[vector].vector;
6781                 if (disable_hardirq(msix_irq))
6782                         e1000_intr_msix_rx(msix_irq, netdev);
6783                 enable_irq(msix_irq);
6784 
6785                 vector++;
6786                 msix_irq = adapter->msix_entries[vector].vector;
6787                 if (disable_hardirq(msix_irq))
6788                         e1000_intr_msix_tx(msix_irq, netdev);
6789                 enable_irq(msix_irq);
6790 
6791                 vector++;
6792                 msix_irq = adapter->msix_entries[vector].vector;
6793                 if (disable_hardirq(msix_irq))
6794                         e1000_msix_other(msix_irq, netdev);
6795                 enable_irq(msix_irq);
6796         }
6797 
6798         return IRQ_HANDLED;
6799 }
6800 
6801 /**
6802  * e1000_netpoll
6803  * @netdev: network interface device structure
6804  *
6805  * Polling 'interrupt' - used by things like netconsole to send skbs
6806  * without having to re-enable interrupts. It's not called while
6807  * the interrupt routine is executing.
6808  */
6809 static void e1000_netpoll(struct net_device *netdev)
6810 {
6811         struct e1000_adapter *adapter = netdev_priv(netdev);
6812 
6813         switch (adapter->int_mode) {
6814         case E1000E_INT_MODE_MSIX:
6815                 e1000_intr_msix(adapter->pdev->irq, netdev);
6816                 break;
6817         case E1000E_INT_MODE_MSI:
6818                 if (disable_hardirq(adapter->pdev->irq))
6819                         e1000_intr_msi(adapter->pdev->irq, netdev);
6820                 enable_irq(adapter->pdev->irq);
6821                 break;
6822         default:                /* E1000E_INT_MODE_LEGACY */
6823                 if (disable_hardirq(adapter->pdev->irq))
6824                         e1000_intr(adapter->pdev->irq, netdev);
6825                 enable_irq(adapter->pdev->irq);
6826                 break;
6827         }
6828 }
6829 #endif
6830 
6831 /**
6832  * e1000_io_error_detected - called when PCI error is detected
6833  * @pdev: Pointer to PCI device
6834  * @state: The current pci connection state
6835  *
6836  * This function is called after a PCI bus error affecting
6837  * this device has been detected.
6838  */
6839 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6840                                                 pci_channel_state_t state)
6841 {
6842         e1000e_pm_freeze(&pdev->dev);
6843 
6844         if (state == pci_channel_io_perm_failure)
6845                 return PCI_ERS_RESULT_DISCONNECT;
6846 
6847         pci_disable_device(pdev);
6848 
6849         /* Request a slot slot reset. */
6850         return PCI_ERS_RESULT_NEED_RESET;
6851 }
6852 
6853 /**
6854  * e1000_io_slot_reset - called after the pci bus has been reset.
6855  * @pdev: Pointer to PCI device
6856  *
6857  * Restart the card from scratch, as if from a cold-boot. Implementation
6858  * resembles the first-half of the e1000e_pm_resume routine.
6859  */
6860 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6861 {
6862         struct net_device *netdev = pci_get_drvdata(pdev);
6863         struct e1000_adapter *adapter = netdev_priv(netdev);
6864         struct e1000_hw *hw = &adapter->hw;
6865         u16 aspm_disable_flag = 0;
6866         int err;
6867         pci_ers_result_t result;
6868 
6869         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6870                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6871         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6872                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6873         if (aspm_disable_flag)
6874                 e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
6875 
6876         err = pci_enable_device_mem(pdev);
6877         if (err) {
6878                 dev_err(&pdev->dev,
6879                         "Cannot re-enable PCI device after reset.\n");
6880                 result = PCI_ERS_RESULT_DISCONNECT;
6881         } else {
6882                 pdev->state_saved = true;
6883                 pci_restore_state(pdev);
6884                 pci_set_master(pdev);
6885 
6886                 pci_enable_wake(pdev, PCI_D3hot, 0);
6887                 pci_enable_wake(pdev, PCI_D3cold, 0);
6888 
6889                 e1000e_reset(adapter);
6890                 ew32(WUS, ~0);
6891                 result = PCI_ERS_RESULT_RECOVERED;
6892         }
6893 
6894         return result;
6895 }
6896 
6897 /**
6898  * e1000_io_resume - called when traffic can start flowing again.
6899  * @pdev: Pointer to PCI device
6900  *
6901  * This callback is called when the error recovery driver tells us that
6902  * its OK to resume normal operation. Implementation resembles the
6903  * second-half of the e1000e_pm_resume routine.
6904  */
6905 static void e1000_io_resume(struct pci_dev *pdev)
6906 {
6907         struct net_device *netdev = pci_get_drvdata(pdev);
6908         struct e1000_adapter *adapter = netdev_priv(netdev);
6909 
6910         e1000_init_manageability_pt(adapter);
6911 
6912         e1000e_pm_thaw(&pdev->dev);
6913 
6914         /* If the controller has AMT, do not set DRV_LOAD until the interface
6915          * is up.  For all other cases, let the f/w know that the h/w is now
6916          * under the control of the driver.
6917          */
6918         if (!(adapter->flags & FLAG_HAS_AMT))
6919                 e1000e_get_hw_control(adapter);
6920 }
6921 
6922 static void e1000_print_device_info(struct e1000_adapter *adapter)
6923 {
6924         struct e1000_hw *hw = &adapter->hw;
6925         struct net_device *netdev = adapter->netdev;
6926         u32 ret_val;
6927         u8 pba_str[E1000_PBANUM_LENGTH];
6928 
6929         /* print bus type/speed/width info */
6930         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6931                /* bus width */
6932                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6933                 "Width x1"),
6934                /* MAC address */
6935                netdev->dev_addr);
6936         e_info("Intel(R) PRO/%s Network Connection\n",
6937                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6938         ret_val = e1000_read_pba_string_generic(hw, pba_str,
6939                                                 E1000_PBANUM_LENGTH);
6940         if (ret_val)
6941                 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6942         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6943                hw->mac.type, hw->phy.type, pba_str);
6944 }
6945 
6946 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6947 {
6948         struct e1000_hw *hw = &adapter->hw;
6949         int ret_val;
6950         u16 buf = 0;
6951 
6952         if (hw->mac.type != e1000_82573)
6953                 return;
6954 
6955         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6956         le16_to_cpus(&buf);
6957         if (!ret_val && (!(buf & BIT(0)))) {
6958                 /* Deep Smart Power Down (DSPD) */
6959                 dev_warn(&adapter->pdev->dev,
6960                          "Warning: detected DSPD enabled in EEPROM\n");
6961         }
6962 }
6963 
6964 static netdev_features_t e1000_fix_features(struct net_device *netdev,
6965                                             netdev_features_t features)
6966 {
6967         struct e1000_adapter *adapter = netdev_priv(netdev);
6968         struct e1000_hw *hw = &adapter->hw;
6969 
6970         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6971         if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
6972                 features &= ~NETIF_F_RXFCS;
6973 
6974         /* Since there is no support for separate Rx/Tx vlan accel
6975          * enable/disable make sure Tx flag is always in same state as Rx.
6976          */
6977         if (features & NETIF_F_HW_VLAN_CTAG_RX)
6978                 features |= NETIF_F_HW_VLAN_CTAG_TX;
6979         else
6980                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
6981 
6982         return features;
6983 }
6984 
6985 static int e1000_set_features(struct net_device *netdev,
6986                               netdev_features_t features)
6987 {
6988         struct e1000_adapter *adapter = netdev_priv(netdev);
6989         netdev_features_t changed = features ^ netdev->features;
6990 
6991         if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6992                 adapter->flags |= FLAG_TSO_FORCE;
6993 
6994         if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6995                          NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6996                          NETIF_F_RXALL)))
6997                 return 0;
6998 
6999         if (changed & NETIF_F_RXFCS) {
7000                 if (features & NETIF_F_RXFCS) {
7001                         adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7002                 } else {
7003                         /* We need to take it back to defaults, which might mean
7004                          * stripping is still disabled at the adapter level.
7005                          */
7006                         if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7007                                 adapter->flags2 |= FLAG2_CRC_STRIPPING;
7008                         else
7009                                 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7010                 }
7011         }
7012 
7013         netdev->features = features;
7014 
7015         if (netif_running(netdev))
7016                 e1000e_reinit_locked(adapter);
7017         else
7018                 e1000e_reset(adapter);
7019 
7020         return 1;
7021 }
7022 
7023 static const struct net_device_ops e1000e_netdev_ops = {
7024         .ndo_open               = e1000e_open,
7025         .ndo_stop               = e1000e_close,
7026         .ndo_start_xmit         = e1000_xmit_frame,
7027         .ndo_get_stats64        = e1000e_get_stats64,
7028         .ndo_set_rx_mode        = e1000e_set_rx_mode,
7029         .ndo_set_mac_address    = e1000_set_mac,
7030         .ndo_change_mtu         = e1000_change_mtu,
7031         .ndo_do_ioctl           = e1000_ioctl,
7032         .ndo_tx_timeout         = e1000_tx_timeout,
7033         .ndo_validate_addr      = eth_validate_addr,
7034 
7035         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
7036         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
7037 #ifdef CONFIG_NET_POLL_CONTROLLER
7038         .ndo_poll_controller    = e1000_netpoll,
7039 #endif
7040         .ndo_set_features = e1000_set_features,
7041         .ndo_fix_features = e1000_fix_features,
7042         .ndo_features_check     = passthru_features_check,
7043 };
7044 
7045 /**
7046  * e1000_probe - Device Initialization Routine
7047  * @pdev: PCI device information struct
7048  * @ent: entry in e1000_pci_tbl
7049  *
7050  * Returns 0 on success, negative on failure
7051  *
7052  * e1000_probe initializes an adapter identified by a pci_dev structure.
7053  * The OS initialization, configuring of the adapter private structure,
7054  * and a hardware reset occur.
7055  **/
7056 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7057 {
7058         struct net_device *netdev;
7059         struct e1000_adapter *adapter;
7060         struct e1000_hw *hw;
7061         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7062         resource_size_t mmio_start, mmio_len;
7063         resource_size_t flash_start, flash_len;
7064         static int cards_found;
7065         u16 aspm_disable_flag = 0;
7066         int bars, i, err, pci_using_dac;
7067         u16 eeprom_data = 0;
7068         u16 eeprom_apme_mask = E1000_EEPROM_APME;
7069         s32 ret_val = 0;
7070 
7071         if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7072                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7073         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7074                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7075         if (aspm_disable_flag)
7076                 e1000e_disable_aspm(pdev, aspm_disable_flag);
7077 
7078         err = pci_enable_device_mem(pdev);
7079         if (err)
7080                 return err;
7081 
7082         pci_using_dac = 0;
7083         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7084         if (!err) {
7085                 pci_using_dac = 1;
7086         } else {
7087                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7088                 if (err) {
7089                         dev_err(&pdev->dev,
7090                                 "No usable DMA configuration, aborting\n");
7091                         goto err_dma;
7092                 }
7093         }
7094 
7095         bars = pci_select_bars(pdev, IORESOURCE_MEM);
7096         err = pci_request_selected_regions_exclusive(pdev, bars,
7097                                                      e1000e_driver_name);
7098         if (err)
7099                 goto err_pci_reg;
7100 
7101         /* AER (Advanced Error Reporting) hooks */
7102         pci_enable_pcie_error_reporting(pdev);
7103 
7104         pci_set_master(pdev);
7105         /* PCI config space info */
7106         err = pci_save_state(pdev);
7107         if (err)
7108                 goto err_alloc_etherdev;
7109 
7110         err = -ENOMEM;
7111         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7112         if (!netdev)
7113                 goto err_alloc_etherdev;
7114 
7115         SET_NETDEV_DEV(netdev, &pdev->dev);
7116 
7117         netdev->irq = pdev->irq;
7118 
7119         pci_set_drvdata(pdev, netdev);
7120         adapter = netdev_priv(netdev);
7121         hw = &adapter->hw;
7122         adapter->netdev = netdev;
7123         adapter->pdev = pdev;
7124         adapter->ei = ei;
7125         adapter->pba = ei->pba;
7126         adapter->flags = ei->flags;
7127         adapter->flags2 = ei->flags2;
7128         adapter->hw.adapter = adapter;
7129         adapter->hw.mac.type = ei->mac;
7130         adapter->max_hw_frame_size = ei->max_hw_frame_size;
7131         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7132 
7133         mmio_start = pci_resource_start(pdev, 0);
7134         mmio_len = pci_resource_len(pdev, 0);
7135 
7136         err = -EIO;
7137         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7138         if (!adapter->hw.hw_addr)
7139                 goto err_ioremap;
7140 
7141         if ((adapter->flags & FLAG_HAS_FLASH) &&
7142             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7143             (hw->mac.type < e1000_pch_spt)) {
7144                 flash_start = pci_resource_start(pdev, 1);
7145                 flash_len = pci_resource_len(pdev, 1);
7146                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
7147                 if (!adapter->hw.flash_address)
7148                         goto err_flashmap;
7149         }
7150 
7151         /* Set default EEE advertisement */
7152         if (adapter->flags2 & FLAG2_HAS_EEE)
7153                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7154 
7155         /* construct the net_device struct */
7156         netdev->netdev_ops = &e1000e_netdev_ops;
7157         e1000e_set_ethtool_ops(netdev);
7158         netdev->watchdog_timeo = 5 * HZ;
7159         netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7160         strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7161 
7162         netdev->mem_start = mmio_start;
7163         netdev->mem_end = mmio_start + mmio_len;
7164 
7165         adapter->bd_number = cards_found++;
7166 
7167         e1000e_check_options(adapter);
7168 
7169         /* setup adapter struct */
7170         err = e1000_sw_init(adapter);
7171         if (err)
7172                 goto err_sw_init;
7173 
7174         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7175         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7176         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7177 
7178         err = ei->get_variants(adapter);
7179         if (err)
7180                 goto err_hw_init;
7181 
7182         if ((adapter->flags & FLAG_IS_ICH) &&
7183             (adapter->flags & FLAG_READ_ONLY_NVM) &&
7184             (hw->mac.type < e1000_pch_spt))
7185                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7186 
7187         hw->mac.ops.get_bus_info(&adapter->hw);
7188 
7189         adapter->hw.phy.autoneg_wait_to_complete = 0;
7190 
7191         /* Copper options */
7192         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7193                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7194                 adapter->hw.phy.disable_polarity_correction = 0;
7195                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
7196         }
7197 
7198         if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7199                 dev_info(&pdev->dev,
7200                          "PHY reset is blocked due to SOL/IDER session.\n");
7201 
7202         /* Set initial default active device features */
7203         netdev->features = (NETIF_F_SG |
7204                             NETIF_F_HW_VLAN_CTAG_RX |
7205                             NETIF_F_HW_VLAN_CTAG_TX |
7206                             NETIF_F_TSO |
7207                             NETIF_F_TSO6 |
7208                             NETIF_F_RXHASH |
7209                             NETIF_F_RXCSUM |
7210                             NETIF_F_HW_CSUM);
7211 
7212         /* Set user-changeable features (subset of all device features) */
7213         netdev->hw_features = netdev->features;
7214         netdev->hw_features |= NETIF_F_RXFCS;
7215         netdev->priv_flags |= IFF_SUPP_NOFCS;
7216         netdev->hw_features |= NETIF_F_RXALL;
7217 
7218         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7219                 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7220 
7221         netdev->vlan_features |= (NETIF_F_SG |
7222                                   NETIF_F_TSO |
7223                                   NETIF_F_TSO6 |
7224                                   NETIF_F_HW_CSUM);
7225 
7226         netdev->priv_flags |= IFF_UNICAST_FLT;
7227 
7228         if (pci_using_dac) {
7229                 netdev->features |= NETIF_F_HIGHDMA;
7230                 netdev->vlan_features |= NETIF_F_HIGHDMA;
7231         }
7232 
7233         /* MTU range: 68 - max_hw_frame_size */
7234         netdev->min_mtu = ETH_MIN_MTU;
7235         netdev->max_mtu = adapter->max_hw_frame_size -
7236                           (VLAN_ETH_HLEN + ETH_FCS_LEN);
7237 
7238         if (e1000e_enable_mng_pass_thru(&adapter->hw))
7239                 adapter->flags |= FLAG_MNG_PT_ENABLED;
7240 
7241         /* before reading the NVM, reset the controller to
7242          * put the device in a known good starting state
7243          */
7244         adapter->hw.mac.ops.reset_hw(&adapter->hw);
7245 
7246         /* systems with ASPM and others may see the checksum fail on the first
7247          * attempt. Let's give it a few tries
7248          */
7249         for (i = 0;; i++) {
7250                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7251                         break;
7252                 if (i == 2) {
7253                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7254                         err = -EIO;
7255                         goto err_eeprom;
7256                 }
7257         }
7258 
7259         e1000_eeprom_checks(adapter);
7260 
7261         /* copy the MAC address */
7262         if (e1000e_read_mac_addr(&adapter->hw))
7263                 dev_err(&pdev->dev,
7264                         "NVM Read Error while reading MAC address\n");
7265 
7266         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7267 
7268         if (!is_valid_ether_addr(netdev->dev_addr)) {
7269                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7270                         netdev->dev_addr);
7271                 err = -EIO;
7272                 goto err_eeprom;
7273         }
7274 
7275         timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7276         timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7277 
7278         INIT_WORK(&adapter->reset_task, e1000_reset_task);
7279         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7280         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7281         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7282         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7283 
7284         /* Initialize link parameters. User can change them with ethtool */
7285         adapter->hw.mac.autoneg = 1;
7286         adapter->fc_autoneg = true;
7287         adapter->hw.fc.requested_mode = e1000_fc_default;
7288         adapter->hw.fc.current_mode = e1000_fc_default;
7289         adapter->hw.phy.autoneg_advertised = 0x2f;
7290 
7291         /* Initial Wake on LAN setting - If APM wake is enabled in
7292          * the EEPROM, enable the ACPI Magic Packet filter
7293          */
7294         if (adapter->flags & FLAG_APME_IN_WUC) {
7295                 /* APME bit in EEPROM is mapped to WUC.APME */
7296                 eeprom_data = er32(WUC);
7297                 eeprom_apme_mask = E1000_WUC_APME;
7298                 if ((hw->mac.type > e1000_ich10lan) &&
7299                     (eeprom_data & E1000_WUC_PHY_WAKE))
7300                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7301         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7302                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7303                     (adapter->hw.bus.func == 1))
7304                         ret_val = e1000_read_nvm(&adapter->hw,
7305                                               NVM_INIT_CONTROL3_PORT_B,
7306                                               1, &eeprom_data);
7307                 else
7308                         ret_val = e1000_read_nvm(&adapter->hw,
7309                                               NVM_INIT_CONTROL3_PORT_A,
7310                                               1, &eeprom_data);
7311         }
7312 
7313         /* fetch WoL from EEPROM */
7314         if (ret_val)
7315                 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7316         else if (eeprom_data & eeprom_apme_mask)
7317                 adapter->eeprom_wol |= E1000_WUFC_MAG;
7318 
7319         /* now that we have the eeprom settings, apply the special cases
7320          * where the eeprom may be wrong or the board simply won't support
7321          * wake on lan on a particular port
7322          */
7323         if (!(adapter->flags & FLAG_HAS_WOL))
7324                 adapter->eeprom_wol = 0;
7325 
7326         /* initialize the wol settings based on the eeprom settings */
7327         adapter->wol = adapter->eeprom_wol;
7328 
7329         /* make sure adapter isn't asleep if manageability is enabled */
7330         if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7331             (hw->mac.ops.check_mng_mode(hw)))
7332                 device_wakeup_enable(&pdev->dev);
7333 
7334         /* save off EEPROM version number */
7335         ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7336 
7337         if (ret_val) {
7338                 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7339                 adapter->eeprom_vers = 0;
7340         }
7341 
7342         /* init PTP hardware clock */
7343         e1000e_ptp_init(adapter);
7344 
7345         /* reset the hardware with the new settings */
7346         e1000e_reset(adapter);
7347 
7348         /* If the controller has AMT, do not set DRV_LOAD until the interface
7349          * is up.  For all other cases, let the f/w know that the h/w is now
7350          * under the control of the driver.
7351          */
7352         if (!(adapter->flags & FLAG_HAS_AMT))
7353                 e1000e_get_hw_control(adapter);
7354 
7355         strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7356         err = register_netdev(netdev);
7357         if (err)
7358                 goto err_register;
7359 
7360         /* carrier off reporting is important to ethtool even BEFORE open */
7361         netif_carrier_off(netdev);
7362 
7363         e1000_print_device_info(adapter);
7364 
7365         dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NEVER_SKIP);
7366 
7367         if (pci_dev_run_wake(pdev) && hw->mac.type < e1000_pch_cnp)
7368                 pm_runtime_put_noidle(&pdev->dev);
7369 
7370         return 0;
7371 
7372 err_register:
7373         if (!(adapter->flags & FLAG_HAS_AMT))
7374                 e1000e_release_hw_control(adapter);
7375 err_eeprom:
7376         if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7377                 e1000_phy_hw_reset(&adapter->hw);
7378 err_hw_init:
7379         kfree(adapter->tx_ring);
7380         kfree(adapter->rx_ring);
7381 err_sw_init:
7382         if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7383                 iounmap(adapter->hw.flash_address);
7384         e1000e_reset_interrupt_capability(adapter);
7385 err_flashmap:
7386         iounmap(adapter->hw.hw_addr);
7387 err_ioremap:
7388         free_netdev(netdev);
7389 err_alloc_etherdev:
7390         pci_release_mem_regions(pdev);
7391 err_pci_reg:
7392 err_dma:
7393         pci_disable_device(pdev);
7394         return err;
7395 }
7396 
7397 /**
7398  * e1000_remove - Device Removal Routine
7399  * @pdev: PCI device information struct
7400  *
7401  * e1000_remove is called by the PCI subsystem to alert the driver
7402  * that it should release a PCI device.  The could be caused by a
7403  * Hot-Plug event, or because the driver is going to be removed from
7404  * memory.
7405  **/
7406 static void e1000_remove(struct pci_dev *pdev)
7407 {
7408         struct net_device *netdev = pci_get_drvdata(pdev);
7409         struct e1000_adapter *adapter = netdev_priv(netdev);
7410 
7411         e1000e_ptp_remove(adapter);
7412 
7413         /* The timers may be rescheduled, so explicitly disable them
7414          * from being rescheduled.
7415          */
7416         set_bit(__E1000_DOWN, &adapter->state);
7417         del_timer_sync(&adapter->watchdog_timer);
7418         del_timer_sync(&adapter->phy_info_timer);
7419 
7420         cancel_work_sync(&adapter->reset_task);
7421         cancel_work_sync(&adapter->watchdog_task);
7422         cancel_work_sync(&adapter->downshift_task);
7423         cancel_work_sync(&adapter->update_phy_task);
7424         cancel_work_sync(&adapter->print_hang_task);
7425 
7426         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7427                 cancel_work_sync(&adapter->tx_hwtstamp_work);
7428                 if (adapter->tx_hwtstamp_skb) {
7429                         dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7430                         adapter->tx_hwtstamp_skb = NULL;
7431                 }
7432         }
7433 
7434         unregister_netdev(netdev);
7435 
7436         if (pci_dev_run_wake(pdev))
7437                 pm_runtime_get_noresume(&pdev->dev);
7438 
7439         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7440          * would have already happened in close and is redundant.
7441          */
7442         e1000e_release_hw_control(adapter);
7443 
7444         e1000e_reset_interrupt_capability(adapter);
7445         kfree(adapter->tx_ring);
7446         kfree(adapter->rx_ring);
7447 
7448         iounmap(adapter->hw.hw_addr);
7449         if ((adapter->hw.flash_address) &&
7450             (adapter->hw.mac.type < e1000_pch_spt))
7451                 iounmap(adapter->hw.flash_address);
7452         pci_release_mem_regions(pdev);
7453 
7454         free_netdev(netdev);
7455 
7456         /* AER disable */
7457         pci_disable_pcie_error_reporting(pdev);
7458 
7459         pci_disable_device(pdev);
7460 }
7461 
7462 /* PCI Error Recovery (ERS) */
7463 static const struct pci_error_handlers e1000_err_handler = {
7464         .error_detected = e1000_io_error_detected,
7465         .slot_reset = e1000_io_slot_reset,
7466         .resume = e1000_io_resume,
7467 };
7468 
7469 static const struct pci_device_id e1000_pci_tbl[] = {
7470         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7471         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7472         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7473         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7474           board_82571 },
7475         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7476         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7477         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7478         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7479         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7480 
7481         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7482         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7483         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7484         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7485 
7486         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7487         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7488         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7489 
7490         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7491         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7492         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7493 
7494         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7495           board_80003es2lan },
7496         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7497           board_80003es2lan },
7498         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7499           board_80003es2lan },
7500         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7501           board_80003es2lan },
7502 
7503         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7504         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7505         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7506         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7507         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7508         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7509         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7510         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7511 
7512         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7513         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7514         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7515         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7516         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7517         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7518         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7519         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7520         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7521 
7522         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7523         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7524         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7525 
7526         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7527         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7528         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7529 
7530         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7531         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7532         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7533         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7534 
7535         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7536         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7537 
7538         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7539         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7540         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7541         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7542         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7543         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7544         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7545         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7546         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7547         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7548         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7549         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7550         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7551         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7552         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7553         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7554         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7555         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7556         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7557         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7558         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7559         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7560         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7561         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7562         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7563 
7564         { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7565 };
7566 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7567 
7568 static const struct dev_pm_ops e1000_pm_ops = {
7569 #ifdef CONFIG_PM_SLEEP
7570         .suspend        = e1000e_pm_suspend,
7571         .resume         = e1000e_pm_resume,
7572         .freeze         = e1000e_pm_freeze,
7573         .thaw           = e1000e_pm_thaw,
7574         .poweroff       = e1000e_pm_suspend,
7575         .restore        = e1000e_pm_resume,
7576 #endif
7577         SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7578                            e1000e_pm_runtime_idle)
7579 };
7580 
7581 /* PCI Device API Driver */
7582 static struct pci_driver e1000_driver = {
7583         .name     = e1000e_driver_name,
7584         .id_table = e1000_pci_tbl,
7585         .probe    = e1000_probe,
7586         .remove   = e1000_remove,
7587         .driver   = {
7588                 .pm = &e1000_pm_ops,
7589         },
7590         .shutdown = e1000_shutdown,
7591         .err_handler = &e1000_err_handler
7592 };
7593 
7594 /**
7595  * e1000_init_module - Driver Registration Routine
7596  *
7597  * e1000_init_module is the first routine called when the driver is
7598  * loaded. All it does is register with the PCI subsystem.
7599  **/
7600 static int __init e1000_init_module(void)
7601 {
7602         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7603                 e1000e_driver_version);
7604         pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7605 
7606         return pci_register_driver(&e1000_driver);
7607 }
7608 module_init(e1000_init_module);
7609 
7610 /**
7611  * e1000_exit_module - Driver Exit Cleanup Routine
7612  *
7613  * e1000_exit_module is called just before the driver is removed
7614  * from memory.
7615  **/
7616 static void __exit e1000_exit_module(void)
7617 {
7618         pci_unregister_driver(&e1000_driver);
7619 }
7620 module_exit(e1000_exit_module);
7621 
7622 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7623 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7624 MODULE_LICENSE("GPL v2");
7625 MODULE_VERSION(DRV_VERSION);
7626 
7627 /* netdev.c */

/* [<][>][^][v][top][bottom][index][help] */