root/drivers/net/ethernet/intel/e1000e/80003es2lan.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. e1000_init_phy_params_80003es2lan
  2. e1000_init_nvm_params_80003es2lan
  3. e1000_init_mac_params_80003es2lan
  4. e1000_get_variants_80003es2lan
  5. e1000_acquire_phy_80003es2lan
  6. e1000_release_phy_80003es2lan
  7. e1000_acquire_mac_csr_80003es2lan
  8. e1000_release_mac_csr_80003es2lan
  9. e1000_acquire_nvm_80003es2lan
  10. e1000_release_nvm_80003es2lan
  11. e1000_acquire_swfw_sync_80003es2lan
  12. e1000_release_swfw_sync_80003es2lan
  13. e1000_read_phy_reg_gg82563_80003es2lan
  14. e1000_write_phy_reg_gg82563_80003es2lan
  15. e1000_write_nvm_80003es2lan
  16. e1000_get_cfg_done_80003es2lan
  17. e1000_phy_force_speed_duplex_80003es2lan
  18. e1000_get_cable_length_80003es2lan
  19. e1000_get_link_up_info_80003es2lan
  20. e1000_reset_hw_80003es2lan
  21. e1000_init_hw_80003es2lan
  22. e1000_initialize_hw_bits_80003es2lan
  23. e1000_copper_link_setup_gg82563_80003es2lan
  24. e1000_setup_copper_link_80003es2lan
  25. e1000_cfg_on_link_up_80003es2lan
  26. e1000_cfg_kmrn_10_100_80003es2lan
  27. e1000_cfg_kmrn_1000_80003es2lan
  28. e1000_read_kmrn_reg_80003es2lan
  29. e1000_write_kmrn_reg_80003es2lan
  30. e1000_read_mac_addr_80003es2lan
  31. e1000_power_down_phy_copper_80003es2lan
  32. e1000_clear_hw_cntrs_80003es2lan

   1 // SPDX-License-Identifier: GPL-2.0
   2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
   3 
   4 /* 80003ES2LAN Gigabit Ethernet Controller (Copper)
   5  * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
   6  */
   7 
   8 #include "e1000.h"
   9 
  10 /* A table for the GG82563 cable length where the range is defined
  11  * with a lower bound at "index" and the upper bound at
  12  * "index + 5".
  13  */
  14 static const u16 e1000_gg82563_cable_length_table[] = {
  15         0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF
  16 };
  17 
  18 #define GG82563_CABLE_LENGTH_TABLE_SIZE \
  19                 ARRAY_SIZE(e1000_gg82563_cable_length_table)
  20 
  21 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
  22 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
  23 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
  24 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
  25 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
  26 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
  27 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
  28 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
  29                                            u16 *data);
  30 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
  31                                             u16 data);
  32 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
  33 
  34 /**
  35  *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
  36  *  @hw: pointer to the HW structure
  37  **/
  38 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
  39 {
  40         struct e1000_phy_info *phy = &hw->phy;
  41         s32 ret_val;
  42 
  43         if (hw->phy.media_type != e1000_media_type_copper) {
  44                 phy->type = e1000_phy_none;
  45                 return 0;
  46         } else {
  47                 phy->ops.power_up = e1000_power_up_phy_copper;
  48                 phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
  49         }
  50 
  51         phy->addr = 1;
  52         phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
  53         phy->reset_delay_us = 100;
  54         phy->type = e1000_phy_gg82563;
  55 
  56         /* This can only be done after all function pointers are setup. */
  57         ret_val = e1000e_get_phy_id(hw);
  58 
  59         /* Verify phy id */
  60         if (phy->id != GG82563_E_PHY_ID)
  61                 return -E1000_ERR_PHY;
  62 
  63         return ret_val;
  64 }
  65 
  66 /**
  67  *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
  68  *  @hw: pointer to the HW structure
  69  **/
  70 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
  71 {
  72         struct e1000_nvm_info *nvm = &hw->nvm;
  73         u32 eecd = er32(EECD);
  74         u16 size;
  75 
  76         nvm->opcode_bits = 8;
  77         nvm->delay_usec = 1;
  78         switch (nvm->override) {
  79         case e1000_nvm_override_spi_large:
  80                 nvm->page_size = 32;
  81                 nvm->address_bits = 16;
  82                 break;
  83         case e1000_nvm_override_spi_small:
  84                 nvm->page_size = 8;
  85                 nvm->address_bits = 8;
  86                 break;
  87         default:
  88                 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
  89                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
  90                 break;
  91         }
  92 
  93         nvm->type = e1000_nvm_eeprom_spi;
  94 
  95         size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
  96                      E1000_EECD_SIZE_EX_SHIFT);
  97 
  98         /* Added to a constant, "size" becomes the left-shift value
  99          * for setting word_size.
 100          */
 101         size += NVM_WORD_SIZE_BASE_SHIFT;
 102 
 103         /* EEPROM access above 16k is unsupported */
 104         if (size > 14)
 105                 size = 14;
 106         nvm->word_size = BIT(size);
 107 
 108         return 0;
 109 }
 110 
 111 /**
 112  *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
 113  *  @hw: pointer to the HW structure
 114  **/
 115 static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
 116 {
 117         struct e1000_mac_info *mac = &hw->mac;
 118 
 119         /* Set media type and media-dependent function pointers */
 120         switch (hw->adapter->pdev->device) {
 121         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
 122                 hw->phy.media_type = e1000_media_type_internal_serdes;
 123                 mac->ops.check_for_link = e1000e_check_for_serdes_link;
 124                 mac->ops.setup_physical_interface =
 125                     e1000e_setup_fiber_serdes_link;
 126                 break;
 127         default:
 128                 hw->phy.media_type = e1000_media_type_copper;
 129                 mac->ops.check_for_link = e1000e_check_for_copper_link;
 130                 mac->ops.setup_physical_interface =
 131                     e1000_setup_copper_link_80003es2lan;
 132                 break;
 133         }
 134 
 135         /* Set mta register count */
 136         mac->mta_reg_count = 128;
 137         /* Set rar entry count */
 138         mac->rar_entry_count = E1000_RAR_ENTRIES;
 139         /* FWSM register */
 140         mac->has_fwsm = true;
 141         /* ARC supported; valid only if manageability features are enabled. */
 142         mac->arc_subsystem_valid = !!(er32(FWSM) & E1000_FWSM_MODE_MASK);
 143         /* Adaptive IFS not supported */
 144         mac->adaptive_ifs = false;
 145 
 146         /* set lan id for port to determine which phy lock to use */
 147         hw->mac.ops.set_lan_id(hw);
 148 
 149         return 0;
 150 }
 151 
 152 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
 153 {
 154         struct e1000_hw *hw = &adapter->hw;
 155         s32 rc;
 156 
 157         rc = e1000_init_mac_params_80003es2lan(hw);
 158         if (rc)
 159                 return rc;
 160 
 161         rc = e1000_init_nvm_params_80003es2lan(hw);
 162         if (rc)
 163                 return rc;
 164 
 165         rc = e1000_init_phy_params_80003es2lan(hw);
 166         if (rc)
 167                 return rc;
 168 
 169         return 0;
 170 }
 171 
 172 /**
 173  *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
 174  *  @hw: pointer to the HW structure
 175  *
 176  *  A wrapper to acquire access rights to the correct PHY.
 177  **/
 178 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
 179 {
 180         u16 mask;
 181 
 182         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
 183         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
 184 }
 185 
 186 /**
 187  *  e1000_release_phy_80003es2lan - Release rights to access PHY
 188  *  @hw: pointer to the HW structure
 189  *
 190  *  A wrapper to release access rights to the correct PHY.
 191  **/
 192 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
 193 {
 194         u16 mask;
 195 
 196         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
 197         e1000_release_swfw_sync_80003es2lan(hw, mask);
 198 }
 199 
 200 /**
 201  *  e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
 202  *  @hw: pointer to the HW structure
 203  *
 204  *  Acquire the semaphore to access the Kumeran interface.
 205  *
 206  **/
 207 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
 208 {
 209         u16 mask;
 210 
 211         mask = E1000_SWFW_CSR_SM;
 212 
 213         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
 214 }
 215 
 216 /**
 217  *  e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
 218  *  @hw: pointer to the HW structure
 219  *
 220  *  Release the semaphore used to access the Kumeran interface
 221  **/
 222 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
 223 {
 224         u16 mask;
 225 
 226         mask = E1000_SWFW_CSR_SM;
 227 
 228         e1000_release_swfw_sync_80003es2lan(hw, mask);
 229 }
 230 
 231 /**
 232  *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
 233  *  @hw: pointer to the HW structure
 234  *
 235  *  Acquire the semaphore to access the EEPROM.
 236  **/
 237 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
 238 {
 239         s32 ret_val;
 240 
 241         ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 242         if (ret_val)
 243                 return ret_val;
 244 
 245         ret_val = e1000e_acquire_nvm(hw);
 246 
 247         if (ret_val)
 248                 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 249 
 250         return ret_val;
 251 }
 252 
 253 /**
 254  *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
 255  *  @hw: pointer to the HW structure
 256  *
 257  *  Release the semaphore used to access the EEPROM.
 258  **/
 259 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
 260 {
 261         e1000e_release_nvm(hw);
 262         e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 263 }
 264 
 265 /**
 266  *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
 267  *  @hw: pointer to the HW structure
 268  *  @mask: specifies which semaphore to acquire
 269  *
 270  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 271  *  will also specify which port we're acquiring the lock for.
 272  **/
 273 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
 274 {
 275         u32 swfw_sync;
 276         u32 swmask = mask;
 277         u32 fwmask = mask << 16;
 278         s32 i = 0;
 279         s32 timeout = 50;
 280 
 281         while (i < timeout) {
 282                 if (e1000e_get_hw_semaphore(hw))
 283                         return -E1000_ERR_SWFW_SYNC;
 284 
 285                 swfw_sync = er32(SW_FW_SYNC);
 286                 if (!(swfw_sync & (fwmask | swmask)))
 287                         break;
 288 
 289                 /* Firmware currently using resource (fwmask)
 290                  * or other software thread using resource (swmask)
 291                  */
 292                 e1000e_put_hw_semaphore(hw);
 293                 mdelay(5);
 294                 i++;
 295         }
 296 
 297         if (i == timeout) {
 298                 e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
 299                 return -E1000_ERR_SWFW_SYNC;
 300         }
 301 
 302         swfw_sync |= swmask;
 303         ew32(SW_FW_SYNC, swfw_sync);
 304 
 305         e1000e_put_hw_semaphore(hw);
 306 
 307         return 0;
 308 }
 309 
 310 /**
 311  *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
 312  *  @hw: pointer to the HW structure
 313  *  @mask: specifies which semaphore to acquire
 314  *
 315  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 316  *  will also specify which port we're releasing the lock for.
 317  **/
 318 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
 319 {
 320         u32 swfw_sync;
 321 
 322         while (e1000e_get_hw_semaphore(hw) != 0)
 323                 ; /* Empty */
 324 
 325         swfw_sync = er32(SW_FW_SYNC);
 326         swfw_sync &= ~mask;
 327         ew32(SW_FW_SYNC, swfw_sync);
 328 
 329         e1000e_put_hw_semaphore(hw);
 330 }
 331 
 332 /**
 333  *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
 334  *  @hw: pointer to the HW structure
 335  *  @offset: offset of the register to read
 336  *  @data: pointer to the data returned from the operation
 337  *
 338  *  Read the GG82563 PHY register.
 339  **/
 340 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
 341                                                   u32 offset, u16 *data)
 342 {
 343         s32 ret_val;
 344         u32 page_select;
 345         u16 temp;
 346 
 347         ret_val = e1000_acquire_phy_80003es2lan(hw);
 348         if (ret_val)
 349                 return ret_val;
 350 
 351         /* Select Configuration Page */
 352         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
 353                 page_select = GG82563_PHY_PAGE_SELECT;
 354         } else {
 355                 /* Use Alternative Page Select register to access
 356                  * registers 30 and 31
 357                  */
 358                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
 359         }
 360 
 361         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
 362         ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
 363         if (ret_val) {
 364                 e1000_release_phy_80003es2lan(hw);
 365                 return ret_val;
 366         }
 367 
 368         if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
 369                 /* The "ready" bit in the MDIC register may be incorrectly set
 370                  * before the device has completed the "Page Select" MDI
 371                  * transaction.  So we wait 200us after each MDI command...
 372                  */
 373                 usleep_range(200, 400);
 374 
 375                 /* ...and verify the command was successful. */
 376                 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
 377 
 378                 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
 379                         e1000_release_phy_80003es2lan(hw);
 380                         return -E1000_ERR_PHY;
 381                 }
 382 
 383                 usleep_range(200, 400);
 384 
 385                 ret_val = e1000e_read_phy_reg_mdic(hw,
 386                                                    MAX_PHY_REG_ADDRESS & offset,
 387                                                    data);
 388 
 389                 usleep_range(200, 400);
 390         } else {
 391                 ret_val = e1000e_read_phy_reg_mdic(hw,
 392                                                    MAX_PHY_REG_ADDRESS & offset,
 393                                                    data);
 394         }
 395 
 396         e1000_release_phy_80003es2lan(hw);
 397 
 398         return ret_val;
 399 }
 400 
 401 /**
 402  *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
 403  *  @hw: pointer to the HW structure
 404  *  @offset: offset of the register to read
 405  *  @data: value to write to the register
 406  *
 407  *  Write to the GG82563 PHY register.
 408  **/
 409 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
 410                                                    u32 offset, u16 data)
 411 {
 412         s32 ret_val;
 413         u32 page_select;
 414         u16 temp;
 415 
 416         ret_val = e1000_acquire_phy_80003es2lan(hw);
 417         if (ret_val)
 418                 return ret_val;
 419 
 420         /* Select Configuration Page */
 421         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
 422                 page_select = GG82563_PHY_PAGE_SELECT;
 423         } else {
 424                 /* Use Alternative Page Select register to access
 425                  * registers 30 and 31
 426                  */
 427                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
 428         }
 429 
 430         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
 431         ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
 432         if (ret_val) {
 433                 e1000_release_phy_80003es2lan(hw);
 434                 return ret_val;
 435         }
 436 
 437         if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
 438                 /* The "ready" bit in the MDIC register may be incorrectly set
 439                  * before the device has completed the "Page Select" MDI
 440                  * transaction.  So we wait 200us after each MDI command...
 441                  */
 442                 usleep_range(200, 400);
 443 
 444                 /* ...and verify the command was successful. */
 445                 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
 446 
 447                 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
 448                         e1000_release_phy_80003es2lan(hw);
 449                         return -E1000_ERR_PHY;
 450                 }
 451 
 452                 usleep_range(200, 400);
 453 
 454                 ret_val = e1000e_write_phy_reg_mdic(hw,
 455                                                     MAX_PHY_REG_ADDRESS &
 456                                                     offset, data);
 457 
 458                 usleep_range(200, 400);
 459         } else {
 460                 ret_val = e1000e_write_phy_reg_mdic(hw,
 461                                                     MAX_PHY_REG_ADDRESS &
 462                                                     offset, data);
 463         }
 464 
 465         e1000_release_phy_80003es2lan(hw);
 466 
 467         return ret_val;
 468 }
 469 
 470 /**
 471  *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
 472  *  @hw: pointer to the HW structure
 473  *  @offset: offset of the register to read
 474  *  @words: number of words to write
 475  *  @data: buffer of data to write to the NVM
 476  *
 477  *  Write "words" of data to the ESB2 NVM.
 478  **/
 479 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
 480                                        u16 words, u16 *data)
 481 {
 482         return e1000e_write_nvm_spi(hw, offset, words, data);
 483 }
 484 
 485 /**
 486  *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
 487  *  @hw: pointer to the HW structure
 488  *
 489  *  Wait a specific amount of time for manageability processes to complete.
 490  *  This is a function pointer entry point called by the phy module.
 491  **/
 492 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
 493 {
 494         s32 timeout = PHY_CFG_TIMEOUT;
 495         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
 496 
 497         if (hw->bus.func == 1)
 498                 mask = E1000_NVM_CFG_DONE_PORT_1;
 499 
 500         while (timeout) {
 501                 if (er32(EEMNGCTL) & mask)
 502                         break;
 503                 usleep_range(1000, 2000);
 504                 timeout--;
 505         }
 506         if (!timeout) {
 507                 e_dbg("MNG configuration cycle has not completed.\n");
 508                 return -E1000_ERR_RESET;
 509         }
 510 
 511         return 0;
 512 }
 513 
 514 /**
 515  *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
 516  *  @hw: pointer to the HW structure
 517  *
 518  *  Force the speed and duplex settings onto the PHY.  This is a
 519  *  function pointer entry point called by the phy module.
 520  **/
 521 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
 522 {
 523         s32 ret_val;
 524         u16 phy_data;
 525         bool link;
 526 
 527         /* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
 528          * forced whenever speed and duplex are forced.
 529          */
 530         ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 531         if (ret_val)
 532                 return ret_val;
 533 
 534         phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
 535         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
 536         if (ret_val)
 537                 return ret_val;
 538 
 539         e_dbg("GG82563 PSCR: %X\n", phy_data);
 540 
 541         ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
 542         if (ret_val)
 543                 return ret_val;
 544 
 545         e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
 546 
 547         /* Reset the phy to commit changes. */
 548         phy_data |= BMCR_RESET;
 549 
 550         ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
 551         if (ret_val)
 552                 return ret_val;
 553 
 554         udelay(1);
 555 
 556         if (hw->phy.autoneg_wait_to_complete) {
 557                 e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");
 558 
 559                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
 560                                                       100000, &link);
 561                 if (ret_val)
 562                         return ret_val;
 563 
 564                 if (!link) {
 565                         /* We didn't get link.
 566                          * Reset the DSP and cross our fingers.
 567                          */
 568                         ret_val = e1000e_phy_reset_dsp(hw);
 569                         if (ret_val)
 570                                 return ret_val;
 571                 }
 572 
 573                 /* Try once more */
 574                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
 575                                                       100000, &link);
 576                 if (ret_val)
 577                         return ret_val;
 578         }
 579 
 580         ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
 581         if (ret_val)
 582                 return ret_val;
 583 
 584         /* Resetting the phy means we need to verify the TX_CLK corresponds
 585          * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
 586          */
 587         phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
 588         if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
 589                 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
 590         else
 591                 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
 592 
 593         /* In addition, we must re-enable CRS on Tx for both half and full
 594          * duplex.
 595          */
 596         phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
 597         ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
 598 
 599         return ret_val;
 600 }
 601 
 602 /**
 603  *  e1000_get_cable_length_80003es2lan - Set approximate cable length
 604  *  @hw: pointer to the HW structure
 605  *
 606  *  Find the approximate cable length as measured by the GG82563 PHY.
 607  *  This is a function pointer entry point called by the phy module.
 608  **/
 609 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
 610 {
 611         struct e1000_phy_info *phy = &hw->phy;
 612         s32 ret_val;
 613         u16 phy_data, index;
 614 
 615         ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
 616         if (ret_val)
 617                 return ret_val;
 618 
 619         index = phy_data & GG82563_DSPD_CABLE_LENGTH;
 620 
 621         if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
 622                 return -E1000_ERR_PHY;
 623 
 624         phy->min_cable_length = e1000_gg82563_cable_length_table[index];
 625         phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
 626 
 627         phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
 628 
 629         return 0;
 630 }
 631 
 632 /**
 633  *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
 634  *  @hw: pointer to the HW structure
 635  *  @speed: pointer to speed buffer
 636  *  @duplex: pointer to duplex buffer
 637  *
 638  *  Retrieve the current speed and duplex configuration.
 639  **/
 640 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
 641                                               u16 *duplex)
 642 {
 643         s32 ret_val;
 644 
 645         if (hw->phy.media_type == e1000_media_type_copper) {
 646                 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
 647                 hw->phy.ops.cfg_on_link_up(hw);
 648         } else {
 649                 ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
 650                                                                    speed,
 651                                                                    duplex);
 652         }
 653 
 654         return ret_val;
 655 }
 656 
 657 /**
 658  *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
 659  *  @hw: pointer to the HW structure
 660  *
 661  *  Perform a global reset to the ESB2 controller.
 662  **/
 663 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
 664 {
 665         u32 ctrl;
 666         s32 ret_val;
 667         u16 kum_reg_data;
 668 
 669         /* Prevent the PCI-E bus from sticking if there is no TLP connection
 670          * on the last TLP read/write transaction when MAC is reset.
 671          */
 672         ret_val = e1000e_disable_pcie_master(hw);
 673         if (ret_val)
 674                 e_dbg("PCI-E Master disable polling has failed.\n");
 675 
 676         e_dbg("Masking off all interrupts\n");
 677         ew32(IMC, 0xffffffff);
 678 
 679         ew32(RCTL, 0);
 680         ew32(TCTL, E1000_TCTL_PSP);
 681         e1e_flush();
 682 
 683         usleep_range(10000, 11000);
 684 
 685         ctrl = er32(CTRL);
 686 
 687         ret_val = e1000_acquire_phy_80003es2lan(hw);
 688         if (ret_val)
 689                 return ret_val;
 690 
 691         e_dbg("Issuing a global reset to MAC\n");
 692         ew32(CTRL, ctrl | E1000_CTRL_RST);
 693         e1000_release_phy_80003es2lan(hw);
 694 
 695         /* Disable IBIST slave mode (far-end loopback) */
 696         ret_val =
 697             e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 698                                             &kum_reg_data);
 699         if (!ret_val) {
 700                 kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
 701                 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
 702                                                  E1000_KMRNCTRLSTA_INBAND_PARAM,
 703                                                  kum_reg_data);
 704                 if (ret_val)
 705                         e_dbg("Error disabling far-end loopback\n");
 706         } else {
 707                 e_dbg("Error disabling far-end loopback\n");
 708         }
 709 
 710         ret_val = e1000e_get_auto_rd_done(hw);
 711         if (ret_val)
 712                 /* We don't want to continue accessing MAC registers. */
 713                 return ret_val;
 714 
 715         /* Clear any pending interrupt events. */
 716         ew32(IMC, 0xffffffff);
 717         er32(ICR);
 718 
 719         return e1000_check_alt_mac_addr_generic(hw);
 720 }
 721 
 722 /**
 723  *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
 724  *  @hw: pointer to the HW structure
 725  *
 726  *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
 727  **/
 728 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
 729 {
 730         struct e1000_mac_info *mac = &hw->mac;
 731         u32 reg_data;
 732         s32 ret_val;
 733         u16 kum_reg_data;
 734         u16 i;
 735 
 736         e1000_initialize_hw_bits_80003es2lan(hw);
 737 
 738         /* Initialize identification LED */
 739         ret_val = mac->ops.id_led_init(hw);
 740         /* An error is not fatal and we should not stop init due to this */
 741         if (ret_val)
 742                 e_dbg("Error initializing identification LED\n");
 743 
 744         /* Disabling VLAN filtering */
 745         e_dbg("Initializing the IEEE VLAN\n");
 746         mac->ops.clear_vfta(hw);
 747 
 748         /* Setup the receive address. */
 749         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
 750 
 751         /* Zero out the Multicast HASH table */
 752         e_dbg("Zeroing the MTA\n");
 753         for (i = 0; i < mac->mta_reg_count; i++)
 754                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
 755 
 756         /* Setup link and flow control */
 757         ret_val = mac->ops.setup_link(hw);
 758         if (ret_val)
 759                 return ret_val;
 760 
 761         /* Disable IBIST slave mode (far-end loopback) */
 762         ret_val =
 763             e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 764                                             &kum_reg_data);
 765         if (!ret_val) {
 766                 kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
 767                 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
 768                                                  E1000_KMRNCTRLSTA_INBAND_PARAM,
 769                                                  kum_reg_data);
 770                 if (ret_val)
 771                         e_dbg("Error disabling far-end loopback\n");
 772         } else {
 773                 e_dbg("Error disabling far-end loopback\n");
 774         }
 775 
 776         /* Set the transmit descriptor write-back policy */
 777         reg_data = er32(TXDCTL(0));
 778         reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
 779                     E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
 780         ew32(TXDCTL(0), reg_data);
 781 
 782         /* ...for both queues. */
 783         reg_data = er32(TXDCTL(1));
 784         reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
 785                     E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
 786         ew32(TXDCTL(1), reg_data);
 787 
 788         /* Enable retransmit on late collisions */
 789         reg_data = er32(TCTL);
 790         reg_data |= E1000_TCTL_RTLC;
 791         ew32(TCTL, reg_data);
 792 
 793         /* Configure Gigabit Carry Extend Padding */
 794         reg_data = er32(TCTL_EXT);
 795         reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
 796         reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
 797         ew32(TCTL_EXT, reg_data);
 798 
 799         /* Configure Transmit Inter-Packet Gap */
 800         reg_data = er32(TIPG);
 801         reg_data &= ~E1000_TIPG_IPGT_MASK;
 802         reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
 803         ew32(TIPG, reg_data);
 804 
 805         reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
 806         reg_data &= ~0x00100000;
 807         E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
 808 
 809         /* default to true to enable the MDIC W/A */
 810         hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
 811 
 812         ret_val =
 813             e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
 814                                             E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
 815         if (!ret_val) {
 816                 if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
 817                     E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
 818                         hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
 819         }
 820 
 821         /* Clear all of the statistics registers (clear on read).  It is
 822          * important that we do this after we have tried to establish link
 823          * because the symbol error count will increment wildly if there
 824          * is no link.
 825          */
 826         e1000_clear_hw_cntrs_80003es2lan(hw);
 827 
 828         return ret_val;
 829 }
 830 
 831 /**
 832  *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
 833  *  @hw: pointer to the HW structure
 834  *
 835  *  Initializes required hardware-dependent bits needed for normal operation.
 836  **/
 837 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
 838 {
 839         u32 reg;
 840 
 841         /* Transmit Descriptor Control 0 */
 842         reg = er32(TXDCTL(0));
 843         reg |= BIT(22);
 844         ew32(TXDCTL(0), reg);
 845 
 846         /* Transmit Descriptor Control 1 */
 847         reg = er32(TXDCTL(1));
 848         reg |= BIT(22);
 849         ew32(TXDCTL(1), reg);
 850 
 851         /* Transmit Arbitration Control 0 */
 852         reg = er32(TARC(0));
 853         reg &= ~(0xF << 27);    /* 30:27 */
 854         if (hw->phy.media_type != e1000_media_type_copper)
 855                 reg &= ~BIT(20);
 856         ew32(TARC(0), reg);
 857 
 858         /* Transmit Arbitration Control 1 */
 859         reg = er32(TARC(1));
 860         if (er32(TCTL) & E1000_TCTL_MULR)
 861                 reg &= ~BIT(28);
 862         else
 863                 reg |= BIT(28);
 864         ew32(TARC(1), reg);
 865 
 866         /* Disable IPv6 extension header parsing because some malformed
 867          * IPv6 headers can hang the Rx.
 868          */
 869         reg = er32(RFCTL);
 870         reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
 871         ew32(RFCTL, reg);
 872 }
 873 
 874 /**
 875  *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
 876  *  @hw: pointer to the HW structure
 877  *
 878  *  Setup some GG82563 PHY registers for obtaining link
 879  **/
 880 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
 881 {
 882         struct e1000_phy_info *phy = &hw->phy;
 883         s32 ret_val;
 884         u32 reg;
 885         u16 data;
 886 
 887         ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
 888         if (ret_val)
 889                 return ret_val;
 890 
 891         data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
 892         /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
 893         data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
 894 
 895         ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
 896         if (ret_val)
 897                 return ret_val;
 898 
 899         /* Options:
 900          *   MDI/MDI-X = 0 (default)
 901          *   0 - Auto for all speeds
 902          *   1 - MDI mode
 903          *   2 - MDI-X mode
 904          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 905          */
 906         ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
 907         if (ret_val)
 908                 return ret_val;
 909 
 910         data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
 911 
 912         switch (phy->mdix) {
 913         case 1:
 914                 data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
 915                 break;
 916         case 2:
 917                 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
 918                 break;
 919         case 0:
 920         default:
 921                 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
 922                 break;
 923         }
 924 
 925         /* Options:
 926          *   disable_polarity_correction = 0 (default)
 927          *       Automatic Correction for Reversed Cable Polarity
 928          *   0 - Disabled
 929          *   1 - Enabled
 930          */
 931         data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
 932         if (phy->disable_polarity_correction)
 933                 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
 934 
 935         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
 936         if (ret_val)
 937                 return ret_val;
 938 
 939         /* SW Reset the PHY so all changes take effect */
 940         ret_val = hw->phy.ops.commit(hw);
 941         if (ret_val) {
 942                 e_dbg("Error Resetting the PHY\n");
 943                 return ret_val;
 944         }
 945 
 946         /* Bypass Rx and Tx FIFO's */
 947         reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
 948         data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
 949                 E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
 950         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
 951         if (ret_val)
 952                 return ret_val;
 953 
 954         reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
 955         ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
 956         if (ret_val)
 957                 return ret_val;
 958         data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
 959         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
 960         if (ret_val)
 961                 return ret_val;
 962 
 963         ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
 964         if (ret_val)
 965                 return ret_val;
 966 
 967         data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
 968         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
 969         if (ret_val)
 970                 return ret_val;
 971 
 972         reg = er32(CTRL_EXT);
 973         reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
 974         ew32(CTRL_EXT, reg);
 975 
 976         ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
 977         if (ret_val)
 978                 return ret_val;
 979 
 980         /* Do not init these registers when the HW is in IAMT mode, since the
 981          * firmware will have already initialized them.  We only initialize
 982          * them if the HW is not in IAMT mode.
 983          */
 984         if (!hw->mac.ops.check_mng_mode(hw)) {
 985                 /* Enable Electrical Idle on the PHY */
 986                 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
 987                 ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
 988                 if (ret_val)
 989                         return ret_val;
 990 
 991                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
 992                 if (ret_val)
 993                         return ret_val;
 994 
 995                 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
 996                 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
 997                 if (ret_val)
 998                         return ret_val;
 999         }
1000 
1001         /* Workaround: Disable padding in Kumeran interface in the MAC
1002          * and in the PHY to avoid CRC errors.
1003          */
1004         ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1005         if (ret_val)
1006                 return ret_val;
1007 
1008         data |= GG82563_ICR_DIS_PADDING;
1009         ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1010         if (ret_val)
1011                 return ret_val;
1012 
1013         return 0;
1014 }
1015 
1016 /**
1017  *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1018  *  @hw: pointer to the HW structure
1019  *
1020  *  Essentially a wrapper for setting up all things "copper" related.
1021  *  This is a function pointer entry point called by the mac module.
1022  **/
1023 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1024 {
1025         u32 ctrl;
1026         s32 ret_val;
1027         u16 reg_data;
1028 
1029         ctrl = er32(CTRL);
1030         ctrl |= E1000_CTRL_SLU;
1031         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1032         ew32(CTRL, ctrl);
1033 
1034         /* Set the mac to wait the maximum time between each
1035          * iteration and increase the max iterations when
1036          * polling the phy; this fixes erroneous timeouts at 10Mbps.
1037          */
1038         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1039                                                    0xFFFF);
1040         if (ret_val)
1041                 return ret_val;
1042         ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1043                                                   &reg_data);
1044         if (ret_val)
1045                 return ret_val;
1046         reg_data |= 0x3F;
1047         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1048                                                    reg_data);
1049         if (ret_val)
1050                 return ret_val;
1051         ret_val =
1052             e1000_read_kmrn_reg_80003es2lan(hw,
1053                                             E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1054                                             &reg_data);
1055         if (ret_val)
1056                 return ret_val;
1057         reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1058         ret_val =
1059             e1000_write_kmrn_reg_80003es2lan(hw,
1060                                              E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1061                                              reg_data);
1062         if (ret_val)
1063                 return ret_val;
1064 
1065         ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1066         if (ret_val)
1067                 return ret_val;
1068 
1069         return e1000e_setup_copper_link(hw);
1070 }
1071 
1072 /**
1073  *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1074  *  @hw: pointer to the HW structure
1075  *  @duplex: current duplex setting
1076  *
1077  *  Configure the KMRN interface by applying last minute quirks for
1078  *  10/100 operation.
1079  **/
1080 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1081 {
1082         s32 ret_val = 0;
1083         u16 speed;
1084         u16 duplex;
1085 
1086         if (hw->phy.media_type == e1000_media_type_copper) {
1087                 ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1088                                                              &duplex);
1089                 if (ret_val)
1090                         return ret_val;
1091 
1092                 if (speed == SPEED_1000)
1093                         ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1094                 else
1095                         ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1096         }
1097 
1098         return ret_val;
1099 }
1100 
1101 /**
1102  *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1103  *  @hw: pointer to the HW structure
1104  *  @duplex: current duplex setting
1105  *
1106  *  Configure the KMRN interface by applying last minute quirks for
1107  *  10/100 operation.
1108  **/
1109 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1110 {
1111         s32 ret_val;
1112         u32 tipg;
1113         u32 i = 0;
1114         u16 reg_data, reg_data2;
1115 
1116         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1117         ret_val =
1118             e1000_write_kmrn_reg_80003es2lan(hw,
1119                                              E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1120                                              reg_data);
1121         if (ret_val)
1122                 return ret_val;
1123 
1124         /* Configure Transmit Inter-Packet Gap */
1125         tipg = er32(TIPG);
1126         tipg &= ~E1000_TIPG_IPGT_MASK;
1127         tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1128         ew32(TIPG, tipg);
1129 
1130         do {
1131                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1132                 if (ret_val)
1133                         return ret_val;
1134 
1135                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1136                 if (ret_val)
1137                         return ret_val;
1138                 i++;
1139         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1140 
1141         if (duplex == HALF_DUPLEX)
1142                 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1143         else
1144                 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1145 
1146         return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1147 }
1148 
1149 /**
1150  *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1151  *  @hw: pointer to the HW structure
1152  *
1153  *  Configure the KMRN interface by applying last minute quirks for
1154  *  gigabit operation.
1155  **/
1156 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1157 {
1158         s32 ret_val;
1159         u16 reg_data, reg_data2;
1160         u32 tipg;
1161         u32 i = 0;
1162 
1163         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1164         ret_val =
1165             e1000_write_kmrn_reg_80003es2lan(hw,
1166                                              E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1167                                              reg_data);
1168         if (ret_val)
1169                 return ret_val;
1170 
1171         /* Configure Transmit Inter-Packet Gap */
1172         tipg = er32(TIPG);
1173         tipg &= ~E1000_TIPG_IPGT_MASK;
1174         tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1175         ew32(TIPG, tipg);
1176 
1177         do {
1178                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1179                 if (ret_val)
1180                         return ret_val;
1181 
1182                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1183                 if (ret_val)
1184                         return ret_val;
1185                 i++;
1186         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1187 
1188         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1189 
1190         return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1191 }
1192 
1193 /**
1194  *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1195  *  @hw: pointer to the HW structure
1196  *  @offset: register offset to be read
1197  *  @data: pointer to the read data
1198  *
1199  *  Acquire semaphore, then read the PHY register at offset
1200  *  using the kumeran interface.  The information retrieved is stored in data.
1201  *  Release the semaphore before exiting.
1202  **/
1203 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1204                                            u16 *data)
1205 {
1206         u32 kmrnctrlsta;
1207         s32 ret_val;
1208 
1209         ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1210         if (ret_val)
1211                 return ret_val;
1212 
1213         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1214                        E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1215         ew32(KMRNCTRLSTA, kmrnctrlsta);
1216         e1e_flush();
1217 
1218         udelay(2);
1219 
1220         kmrnctrlsta = er32(KMRNCTRLSTA);
1221         *data = (u16)kmrnctrlsta;
1222 
1223         e1000_release_mac_csr_80003es2lan(hw);
1224 
1225         return ret_val;
1226 }
1227 
1228 /**
1229  *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1230  *  @hw: pointer to the HW structure
1231  *  @offset: register offset to write to
1232  *  @data: data to write at register offset
1233  *
1234  *  Acquire semaphore, then write the data to PHY register
1235  *  at the offset using the kumeran interface.  Release semaphore
1236  *  before exiting.
1237  **/
1238 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1239                                             u16 data)
1240 {
1241         u32 kmrnctrlsta;
1242         s32 ret_val;
1243 
1244         ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1245         if (ret_val)
1246                 return ret_val;
1247 
1248         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1249                        E1000_KMRNCTRLSTA_OFFSET) | data;
1250         ew32(KMRNCTRLSTA, kmrnctrlsta);
1251         e1e_flush();
1252 
1253         udelay(2);
1254 
1255         e1000_release_mac_csr_80003es2lan(hw);
1256 
1257         return ret_val;
1258 }
1259 
1260 /**
1261  *  e1000_read_mac_addr_80003es2lan - Read device MAC address
1262  *  @hw: pointer to the HW structure
1263  **/
1264 static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1265 {
1266         s32 ret_val;
1267 
1268         /* If there's an alternate MAC address place it in RAR0
1269          * so that it will override the Si installed default perm
1270          * address.
1271          */
1272         ret_val = e1000_check_alt_mac_addr_generic(hw);
1273         if (ret_val)
1274                 return ret_val;
1275 
1276         return e1000_read_mac_addr_generic(hw);
1277 }
1278 
1279 /**
1280  * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1281  * @hw: pointer to the HW structure
1282  *
1283  * In the case of a PHY power down to save power, or to turn off link during a
1284  * driver unload, or wake on lan is not enabled, remove the link.
1285  **/
1286 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1287 {
1288         /* If the management interface is not enabled, then power down */
1289         if (!(hw->mac.ops.check_mng_mode(hw) ||
1290               hw->phy.ops.check_reset_block(hw)))
1291                 e1000_power_down_phy_copper(hw);
1292 }
1293 
1294 /**
1295  *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1296  *  @hw: pointer to the HW structure
1297  *
1298  *  Clears the hardware counters by reading the counter registers.
1299  **/
1300 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1301 {
1302         e1000e_clear_hw_cntrs_base(hw);
1303 
1304         er32(PRC64);
1305         er32(PRC127);
1306         er32(PRC255);
1307         er32(PRC511);
1308         er32(PRC1023);
1309         er32(PRC1522);
1310         er32(PTC64);
1311         er32(PTC127);
1312         er32(PTC255);
1313         er32(PTC511);
1314         er32(PTC1023);
1315         er32(PTC1522);
1316 
1317         er32(ALGNERRC);
1318         er32(RXERRC);
1319         er32(TNCRS);
1320         er32(CEXTERR);
1321         er32(TSCTC);
1322         er32(TSCTFC);
1323 
1324         er32(MGTPRC);
1325         er32(MGTPDC);
1326         er32(MGTPTC);
1327 
1328         er32(IAC);
1329         er32(ICRXOC);
1330 
1331         er32(ICRXPTC);
1332         er32(ICRXATC);
1333         er32(ICTXPTC);
1334         er32(ICTXATC);
1335         er32(ICTXQEC);
1336         er32(ICTXQMTC);
1337         er32(ICRXDMTC);
1338 }
1339 
1340 static const struct e1000_mac_operations es2_mac_ops = {
1341         .read_mac_addr          = e1000_read_mac_addr_80003es2lan,
1342         .id_led_init            = e1000e_id_led_init_generic,
1343         .blink_led              = e1000e_blink_led_generic,
1344         .check_mng_mode         = e1000e_check_mng_mode_generic,
1345         /* check_for_link dependent on media type */
1346         .cleanup_led            = e1000e_cleanup_led_generic,
1347         .clear_hw_cntrs         = e1000_clear_hw_cntrs_80003es2lan,
1348         .get_bus_info           = e1000e_get_bus_info_pcie,
1349         .set_lan_id             = e1000_set_lan_id_multi_port_pcie,
1350         .get_link_up_info       = e1000_get_link_up_info_80003es2lan,
1351         .led_on                 = e1000e_led_on_generic,
1352         .led_off                = e1000e_led_off_generic,
1353         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1354         .write_vfta             = e1000_write_vfta_generic,
1355         .clear_vfta             = e1000_clear_vfta_generic,
1356         .reset_hw               = e1000_reset_hw_80003es2lan,
1357         .init_hw                = e1000_init_hw_80003es2lan,
1358         .setup_link             = e1000e_setup_link_generic,
1359         /* setup_physical_interface dependent on media type */
1360         .setup_led              = e1000e_setup_led_generic,
1361         .config_collision_dist  = e1000e_config_collision_dist_generic,
1362         .rar_set                = e1000e_rar_set_generic,
1363         .rar_get_count          = e1000e_rar_get_count_generic,
1364 };
1365 
1366 static const struct e1000_phy_operations es2_phy_ops = {
1367         .acquire                = e1000_acquire_phy_80003es2lan,
1368         .check_polarity         = e1000_check_polarity_m88,
1369         .check_reset_block      = e1000e_check_reset_block_generic,
1370         .commit                 = e1000e_phy_sw_reset,
1371         .force_speed_duplex     = e1000_phy_force_speed_duplex_80003es2lan,
1372         .get_cfg_done           = e1000_get_cfg_done_80003es2lan,
1373         .get_cable_length       = e1000_get_cable_length_80003es2lan,
1374         .get_info               = e1000e_get_phy_info_m88,
1375         .read_reg               = e1000_read_phy_reg_gg82563_80003es2lan,
1376         .release                = e1000_release_phy_80003es2lan,
1377         .reset                  = e1000e_phy_hw_reset_generic,
1378         .set_d0_lplu_state      = NULL,
1379         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1380         .write_reg              = e1000_write_phy_reg_gg82563_80003es2lan,
1381         .cfg_on_link_up         = e1000_cfg_on_link_up_80003es2lan,
1382 };
1383 
1384 static const struct e1000_nvm_operations es2_nvm_ops = {
1385         .acquire                = e1000_acquire_nvm_80003es2lan,
1386         .read                   = e1000e_read_nvm_eerd,
1387         .release                = e1000_release_nvm_80003es2lan,
1388         .reload                 = e1000e_reload_nvm_generic,
1389         .update                 = e1000e_update_nvm_checksum_generic,
1390         .valid_led_default      = e1000e_valid_led_default,
1391         .validate               = e1000e_validate_nvm_checksum_generic,
1392         .write                  = e1000_write_nvm_80003es2lan,
1393 };
1394 
1395 const struct e1000_info e1000_es2_info = {
1396         .mac                    = e1000_80003es2lan,
1397         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1398                                   | FLAG_HAS_JUMBO_FRAMES
1399                                   | FLAG_HAS_WOL
1400                                   | FLAG_APME_IN_CTRL3
1401                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1402                                   | FLAG_RX_NEEDS_RESTART /* errata */
1403                                   | FLAG_TARC_SET_BIT_ZERO /* errata */
1404                                   | FLAG_APME_CHECK_PORT_B
1405                                   | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
1406         .flags2                 = FLAG2_DMA_BURST,
1407         .pba                    = 38,
1408         .max_hw_frame_size      = DEFAULT_JUMBO,
1409         .get_variants           = e1000_get_variants_80003es2lan,
1410         .mac_ops                = &es2_mac_ops,
1411         .phy_ops                = &es2_phy_ops,
1412         .nvm_ops                = &es2_nvm_ops,
1413 };

/* [<][>][^][v][top][bottom][index][help] */