root/drivers/net/ethernet/intel/iavf/iavf_txrx.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. iavf_compute_pad
  2. iavf_skb_pad
  3. iavf_test_staterr
  4. iavf_txd_use_count
  5. ring_uses_build_skb
  6. set_ring_build_skb_enabled
  7. clear_ring_build_skb_enabled
  8. iavf_rx_pg_order
  9. iavf_xmit_descriptor_count
  10. iavf_maybe_stop_tx
  11. iavf_chk_linearize
  12. txring_txq

   1 /* SPDX-License-Identifier: GPL-2.0 */
   2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
   3 
   4 #ifndef _IAVF_TXRX_H_
   5 #define _IAVF_TXRX_H_
   6 
   7 /* Interrupt Throttling and Rate Limiting Goodies */
   8 #define IAVF_DEFAULT_IRQ_WORK      256
   9 
  10 /* The datasheet for the X710 and XL710 indicate that the maximum value for
  11  * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec
  12  * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing
  13  * the register value which is divided by 2 lets use the actual values and
  14  * avoid an excessive amount of translation.
  15  */
  16 #define IAVF_ITR_DYNAMIC        0x8000  /* use top bit as a flag */
  17 #define IAVF_ITR_MASK           0x1FFE  /* mask for ITR register value */
  18 #define IAVF_MIN_ITR                 2  /* reg uses 2 usec resolution */
  19 #define IAVF_ITR_100K               10  /* all values below must be even */
  20 #define IAVF_ITR_50K                20
  21 #define IAVF_ITR_20K                50
  22 #define IAVF_ITR_18K                60
  23 #define IAVF_ITR_8K                122
  24 #define IAVF_MAX_ITR              8160  /* maximum value as per datasheet */
  25 #define ITR_TO_REG(setting) ((setting) & ~IAVF_ITR_DYNAMIC)
  26 #define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~IAVF_ITR_MASK)
  27 #define ITR_IS_DYNAMIC(setting) (!!((setting) & IAVF_ITR_DYNAMIC))
  28 
  29 #define IAVF_ITR_RX_DEF         (IAVF_ITR_20K | IAVF_ITR_DYNAMIC)
  30 #define IAVF_ITR_TX_DEF         (IAVF_ITR_20K | IAVF_ITR_DYNAMIC)
  31 
  32 /* 0x40 is the enable bit for interrupt rate limiting, and must be set if
  33  * the value of the rate limit is non-zero
  34  */
  35 #define INTRL_ENA                  BIT(6)
  36 #define IAVF_MAX_INTRL             0x3B    /* reg uses 4 usec resolution */
  37 #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
  38 #define INTRL_USEC_TO_REG(set) ((set) ? ((set) >> 2) | INTRL_ENA : 0)
  39 #define IAVF_INTRL_8K              125     /* 8000 ints/sec */
  40 #define IAVF_INTRL_62K             16      /* 62500 ints/sec */
  41 #define IAVF_INTRL_83K             12      /* 83333 ints/sec */
  42 
  43 #define IAVF_QUEUE_END_OF_LIST 0x7FF
  44 
  45 /* this enum matches hardware bits and is meant to be used by DYN_CTLN
  46  * registers and QINT registers or more generally anywhere in the manual
  47  * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
  48  * register but instead is a special value meaning "don't update" ITR0/1/2.
  49  */
  50 enum iavf_dyn_idx_t {
  51         IAVF_IDX_ITR0 = 0,
  52         IAVF_IDX_ITR1 = 1,
  53         IAVF_IDX_ITR2 = 2,
  54         IAVF_ITR_NONE = 3       /* ITR_NONE must not be used as an index */
  55 };
  56 
  57 /* these are indexes into ITRN registers */
  58 #define IAVF_RX_ITR    IAVF_IDX_ITR0
  59 #define IAVF_TX_ITR    IAVF_IDX_ITR1
  60 #define IAVF_PE_ITR    IAVF_IDX_ITR2
  61 
  62 /* Supported RSS offloads */
  63 #define IAVF_DEFAULT_RSS_HENA ( \
  64         BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_UDP) | \
  65         BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
  66         BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_TCP) | \
  67         BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
  68         BIT_ULL(IAVF_FILTER_PCTYPE_FRAG_IPV4) | \
  69         BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_UDP) | \
  70         BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_TCP) | \
  71         BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
  72         BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
  73         BIT_ULL(IAVF_FILTER_PCTYPE_FRAG_IPV6) | \
  74         BIT_ULL(IAVF_FILTER_PCTYPE_L2_PAYLOAD))
  75 
  76 #define IAVF_DEFAULT_RSS_HENA_EXPANDED (IAVF_DEFAULT_RSS_HENA | \
  77         BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
  78         BIT_ULL(IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
  79         BIT_ULL(IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
  80         BIT_ULL(IAVF_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
  81         BIT_ULL(IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
  82         BIT_ULL(IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
  83 
  84 /* Supported Rx Buffer Sizes (a multiple of 128) */
  85 #define IAVF_RXBUFFER_256   256
  86 #define IAVF_RXBUFFER_1536  1536  /* 128B aligned standard Ethernet frame */
  87 #define IAVF_RXBUFFER_2048  2048
  88 #define IAVF_RXBUFFER_3072  3072  /* Used for large frames w/ padding */
  89 #define IAVF_MAX_RXBUFFER   9728  /* largest size for single descriptor */
  90 
  91 /* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
  92  * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
  93  * this adds up to 512 bytes of extra data meaning the smallest allocation
  94  * we could have is 1K.
  95  * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
  96  * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
  97  */
  98 #define IAVF_RX_HDR_SIZE IAVF_RXBUFFER_256
  99 #define IAVF_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
 100 #define iavf_rx_desc iavf_32byte_rx_desc
 101 
 102 #define IAVF_RX_DMA_ATTR \
 103         (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
 104 
 105 /* Attempt to maximize the headroom available for incoming frames.  We
 106  * use a 2K buffer for receives and need 1536/1534 to store the data for
 107  * the frame.  This leaves us with 512 bytes of room.  From that we need
 108  * to deduct the space needed for the shared info and the padding needed
 109  * to IP align the frame.
 110  *
 111  * Note: For cache line sizes 256 or larger this value is going to end
 112  *       up negative.  In these cases we should fall back to the legacy
 113  *       receive path.
 114  */
 115 #if (PAGE_SIZE < 8192)
 116 #define IAVF_2K_TOO_SMALL_WITH_PADDING \
 117 ((NET_SKB_PAD + IAVF_RXBUFFER_1536) > SKB_WITH_OVERHEAD(IAVF_RXBUFFER_2048))
 118 
 119 static inline int iavf_compute_pad(int rx_buf_len)
 120 {
 121         int page_size, pad_size;
 122 
 123         page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
 124         pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len;
 125 
 126         return pad_size;
 127 }
 128 
 129 static inline int iavf_skb_pad(void)
 130 {
 131         int rx_buf_len;
 132 
 133         /* If a 2K buffer cannot handle a standard Ethernet frame then
 134          * optimize padding for a 3K buffer instead of a 1.5K buffer.
 135          *
 136          * For a 3K buffer we need to add enough padding to allow for
 137          * tailroom due to NET_IP_ALIGN possibly shifting us out of
 138          * cache-line alignment.
 139          */
 140         if (IAVF_2K_TOO_SMALL_WITH_PADDING)
 141                 rx_buf_len = IAVF_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
 142         else
 143                 rx_buf_len = IAVF_RXBUFFER_1536;
 144 
 145         /* if needed make room for NET_IP_ALIGN */
 146         rx_buf_len -= NET_IP_ALIGN;
 147 
 148         return iavf_compute_pad(rx_buf_len);
 149 }
 150 
 151 #define IAVF_SKB_PAD iavf_skb_pad()
 152 #else
 153 #define IAVF_2K_TOO_SMALL_WITH_PADDING false
 154 #define IAVF_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
 155 #endif
 156 
 157 /**
 158  * iavf_test_staterr - tests bits in Rx descriptor status and error fields
 159  * @rx_desc: pointer to receive descriptor (in le64 format)
 160  * @stat_err_bits: value to mask
 161  *
 162  * This function does some fast chicanery in order to return the
 163  * value of the mask which is really only used for boolean tests.
 164  * The status_error_len doesn't need to be shifted because it begins
 165  * at offset zero.
 166  */
 167 static inline bool iavf_test_staterr(union iavf_rx_desc *rx_desc,
 168                                      const u64 stat_err_bits)
 169 {
 170         return !!(rx_desc->wb.qword1.status_error_len &
 171                   cpu_to_le64(stat_err_bits));
 172 }
 173 
 174 /* How many Rx Buffers do we bundle into one write to the hardware ? */
 175 #define IAVF_RX_INCREMENT(r, i) \
 176         do {                                    \
 177                 (i)++;                          \
 178                 if ((i) == (r)->count)          \
 179                         i = 0;                  \
 180                 r->next_to_clean = i;           \
 181         } while (0)
 182 
 183 #define IAVF_RX_NEXT_DESC(r, i, n)              \
 184         do {                                    \
 185                 (i)++;                          \
 186                 if ((i) == (r)->count)          \
 187                         i = 0;                  \
 188                 (n) = IAVF_RX_DESC((r), (i));   \
 189         } while (0)
 190 
 191 #define IAVF_RX_NEXT_DESC_PREFETCH(r, i, n)             \
 192         do {                                            \
 193                 IAVF_RX_NEXT_DESC((r), (i), (n));       \
 194                 prefetch((n));                          \
 195         } while (0)
 196 
 197 #define IAVF_MAX_BUFFER_TXD     8
 198 #define IAVF_MIN_TX_LEN         17
 199 
 200 /* The size limit for a transmit buffer in a descriptor is (16K - 1).
 201  * In order to align with the read requests we will align the value to
 202  * the nearest 4K which represents our maximum read request size.
 203  */
 204 #define IAVF_MAX_READ_REQ_SIZE          4096
 205 #define IAVF_MAX_DATA_PER_TXD           (16 * 1024 - 1)
 206 #define IAVF_MAX_DATA_PER_TXD_ALIGNED \
 207         (IAVF_MAX_DATA_PER_TXD & ~(IAVF_MAX_READ_REQ_SIZE - 1))
 208 
 209 /**
 210  * iavf_txd_use_count  - estimate the number of descriptors needed for Tx
 211  * @size: transmit request size in bytes
 212  *
 213  * Due to hardware alignment restrictions (4K alignment), we need to
 214  * assume that we can have no more than 12K of data per descriptor, even
 215  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
 216  * Thus, we need to divide by 12K. But division is slow! Instead,
 217  * we decompose the operation into shifts and one relatively cheap
 218  * multiply operation.
 219  *
 220  * To divide by 12K, we first divide by 4K, then divide by 3:
 221  *     To divide by 4K, shift right by 12 bits
 222  *     To divide by 3, multiply by 85, then divide by 256
 223  *     (Divide by 256 is done by shifting right by 8 bits)
 224  * Finally, we add one to round up. Because 256 isn't an exact multiple of
 225  * 3, we'll underestimate near each multiple of 12K. This is actually more
 226  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
 227  * segment.  For our purposes this is accurate out to 1M which is orders of
 228  * magnitude greater than our largest possible GSO size.
 229  *
 230  * This would then be implemented as:
 231  *     return (((size >> 12) * 85) >> 8) + 1;
 232  *
 233  * Since multiplication and division are commutative, we can reorder
 234  * operations into:
 235  *     return ((size * 85) >> 20) + 1;
 236  */
 237 static inline unsigned int iavf_txd_use_count(unsigned int size)
 238 {
 239         return ((size * 85) >> 20) + 1;
 240 }
 241 
 242 /* Tx Descriptors needed, worst case */
 243 #define DESC_NEEDED (MAX_SKB_FRAGS + 6)
 244 #define IAVF_MIN_DESC_PENDING   4
 245 
 246 #define IAVF_TX_FLAGS_HW_VLAN           BIT(1)
 247 #define IAVF_TX_FLAGS_SW_VLAN           BIT(2)
 248 #define IAVF_TX_FLAGS_TSO               BIT(3)
 249 #define IAVF_TX_FLAGS_IPV4              BIT(4)
 250 #define IAVF_TX_FLAGS_IPV6              BIT(5)
 251 #define IAVF_TX_FLAGS_FCCRC             BIT(6)
 252 #define IAVF_TX_FLAGS_FSO               BIT(7)
 253 #define IAVF_TX_FLAGS_FD_SB             BIT(9)
 254 #define IAVF_TX_FLAGS_VXLAN_TUNNEL      BIT(10)
 255 #define IAVF_TX_FLAGS_VLAN_MASK         0xffff0000
 256 #define IAVF_TX_FLAGS_VLAN_PRIO_MASK    0xe0000000
 257 #define IAVF_TX_FLAGS_VLAN_PRIO_SHIFT   29
 258 #define IAVF_TX_FLAGS_VLAN_SHIFT        16
 259 
 260 struct iavf_tx_buffer {
 261         struct iavf_tx_desc *next_to_watch;
 262         union {
 263                 struct sk_buff *skb;
 264                 void *raw_buf;
 265         };
 266         unsigned int bytecount;
 267         unsigned short gso_segs;
 268 
 269         DEFINE_DMA_UNMAP_ADDR(dma);
 270         DEFINE_DMA_UNMAP_LEN(len);
 271         u32 tx_flags;
 272 };
 273 
 274 struct iavf_rx_buffer {
 275         dma_addr_t dma;
 276         struct page *page;
 277 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
 278         __u32 page_offset;
 279 #else
 280         __u16 page_offset;
 281 #endif
 282         __u16 pagecnt_bias;
 283 };
 284 
 285 struct iavf_queue_stats {
 286         u64 packets;
 287         u64 bytes;
 288 };
 289 
 290 struct iavf_tx_queue_stats {
 291         u64 restart_queue;
 292         u64 tx_busy;
 293         u64 tx_done_old;
 294         u64 tx_linearize;
 295         u64 tx_force_wb;
 296         int prev_pkt_ctr;
 297         u64 tx_lost_interrupt;
 298 };
 299 
 300 struct iavf_rx_queue_stats {
 301         u64 non_eop_descs;
 302         u64 alloc_page_failed;
 303         u64 alloc_buff_failed;
 304         u64 page_reuse_count;
 305         u64 realloc_count;
 306 };
 307 
 308 enum iavf_ring_state_t {
 309         __IAVF_TX_FDIR_INIT_DONE,
 310         __IAVF_TX_XPS_INIT_DONE,
 311         __IAVF_RING_STATE_NBITS /* must be last */
 312 };
 313 
 314 /* some useful defines for virtchannel interface, which
 315  * is the only remaining user of header split
 316  */
 317 #define IAVF_RX_DTYPE_NO_SPLIT      0
 318 #define IAVF_RX_DTYPE_HEADER_SPLIT  1
 319 #define IAVF_RX_DTYPE_SPLIT_ALWAYS  2
 320 #define IAVF_RX_SPLIT_L2      0x1
 321 #define IAVF_RX_SPLIT_IP      0x2
 322 #define IAVF_RX_SPLIT_TCP_UDP 0x4
 323 #define IAVF_RX_SPLIT_SCTP    0x8
 324 
 325 /* struct that defines a descriptor ring, associated with a VSI */
 326 struct iavf_ring {
 327         struct iavf_ring *next;         /* pointer to next ring in q_vector */
 328         void *desc;                     /* Descriptor ring memory */
 329         struct device *dev;             /* Used for DMA mapping */
 330         struct net_device *netdev;      /* netdev ring maps to */
 331         union {
 332                 struct iavf_tx_buffer *tx_bi;
 333                 struct iavf_rx_buffer *rx_bi;
 334         };
 335         DECLARE_BITMAP(state, __IAVF_RING_STATE_NBITS);
 336         u16 queue_index;                /* Queue number of ring */
 337         u8 dcb_tc;                      /* Traffic class of ring */
 338         u8 __iomem *tail;
 339 
 340         /* high bit set means dynamic, use accessors routines to read/write.
 341          * hardware only supports 2us resolution for the ITR registers.
 342          * these values always store the USER setting, and must be converted
 343          * before programming to a register.
 344          */
 345         u16 itr_setting;
 346 
 347         u16 count;                      /* Number of descriptors */
 348         u16 reg_idx;                    /* HW register index of the ring */
 349         u16 rx_buf_len;
 350 
 351         /* used in interrupt processing */
 352         u16 next_to_use;
 353         u16 next_to_clean;
 354 
 355         u8 atr_sample_rate;
 356         u8 atr_count;
 357 
 358         bool ring_active;               /* is ring online or not */
 359         bool arm_wb;            /* do something to arm write back */
 360         u8 packet_stride;
 361 
 362         u16 flags;
 363 #define IAVF_TXR_FLAGS_WB_ON_ITR                BIT(0)
 364 #define IAVF_RXR_FLAGS_BUILD_SKB_ENABLED        BIT(1)
 365 
 366         /* stats structs */
 367         struct iavf_queue_stats stats;
 368         struct u64_stats_sync syncp;
 369         union {
 370                 struct iavf_tx_queue_stats tx_stats;
 371                 struct iavf_rx_queue_stats rx_stats;
 372         };
 373 
 374         unsigned int size;              /* length of descriptor ring in bytes */
 375         dma_addr_t dma;                 /* physical address of ring */
 376 
 377         struct iavf_vsi *vsi;           /* Backreference to associated VSI */
 378         struct iavf_q_vector *q_vector; /* Backreference to associated vector */
 379 
 380         struct rcu_head rcu;            /* to avoid race on free */
 381         u16 next_to_alloc;
 382         struct sk_buff *skb;            /* When iavf_clean_rx_ring_irq() must
 383                                          * return before it sees the EOP for
 384                                          * the current packet, we save that skb
 385                                          * here and resume receiving this
 386                                          * packet the next time
 387                                          * iavf_clean_rx_ring_irq() is called
 388                                          * for this ring.
 389                                          */
 390 } ____cacheline_internodealigned_in_smp;
 391 
 392 static inline bool ring_uses_build_skb(struct iavf_ring *ring)
 393 {
 394         return !!(ring->flags & IAVF_RXR_FLAGS_BUILD_SKB_ENABLED);
 395 }
 396 
 397 static inline void set_ring_build_skb_enabled(struct iavf_ring *ring)
 398 {
 399         ring->flags |= IAVF_RXR_FLAGS_BUILD_SKB_ENABLED;
 400 }
 401 
 402 static inline void clear_ring_build_skb_enabled(struct iavf_ring *ring)
 403 {
 404         ring->flags &= ~IAVF_RXR_FLAGS_BUILD_SKB_ENABLED;
 405 }
 406 
 407 #define IAVF_ITR_ADAPTIVE_MIN_INC       0x0002
 408 #define IAVF_ITR_ADAPTIVE_MIN_USECS     0x0002
 409 #define IAVF_ITR_ADAPTIVE_MAX_USECS     0x007e
 410 #define IAVF_ITR_ADAPTIVE_LATENCY       0x8000
 411 #define IAVF_ITR_ADAPTIVE_BULK          0x0000
 412 #define ITR_IS_BULK(x) (!((x) & IAVF_ITR_ADAPTIVE_LATENCY))
 413 
 414 struct iavf_ring_container {
 415         struct iavf_ring *ring;         /* pointer to linked list of ring(s) */
 416         unsigned long next_update;      /* jiffies value of next update */
 417         unsigned int total_bytes;       /* total bytes processed this int */
 418         unsigned int total_packets;     /* total packets processed this int */
 419         u16 count;
 420         u16 target_itr;                 /* target ITR setting for ring(s) */
 421         u16 current_itr;                /* current ITR setting for ring(s) */
 422 };
 423 
 424 /* iterator for handling rings in ring container */
 425 #define iavf_for_each_ring(pos, head) \
 426         for (pos = (head).ring; pos != NULL; pos = pos->next)
 427 
 428 static inline unsigned int iavf_rx_pg_order(struct iavf_ring *ring)
 429 {
 430 #if (PAGE_SIZE < 8192)
 431         if (ring->rx_buf_len > (PAGE_SIZE / 2))
 432                 return 1;
 433 #endif
 434         return 0;
 435 }
 436 
 437 #define iavf_rx_pg_size(_ring) (PAGE_SIZE << iavf_rx_pg_order(_ring))
 438 
 439 bool iavf_alloc_rx_buffers(struct iavf_ring *rxr, u16 cleaned_count);
 440 netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
 441 void iavf_clean_tx_ring(struct iavf_ring *tx_ring);
 442 void iavf_clean_rx_ring(struct iavf_ring *rx_ring);
 443 int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring);
 444 int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring);
 445 void iavf_free_tx_resources(struct iavf_ring *tx_ring);
 446 void iavf_free_rx_resources(struct iavf_ring *rx_ring);
 447 int iavf_napi_poll(struct napi_struct *napi, int budget);
 448 void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector);
 449 u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw);
 450 void iavf_detect_recover_hung(struct iavf_vsi *vsi);
 451 int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size);
 452 bool __iavf_chk_linearize(struct sk_buff *skb);
 453 
 454 /**
 455  * iavf_xmit_descriptor_count - calculate number of Tx descriptors needed
 456  * @skb:     send buffer
 457  * @tx_ring: ring to send buffer on
 458  *
 459  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
 460  * there is not enough descriptors available in this ring since we need at least
 461  * one descriptor.
 462  **/
 463 static inline int iavf_xmit_descriptor_count(struct sk_buff *skb)
 464 {
 465         const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
 466         unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
 467         int count = 0, size = skb_headlen(skb);
 468 
 469         for (;;) {
 470                 count += iavf_txd_use_count(size);
 471 
 472                 if (!nr_frags--)
 473                         break;
 474 
 475                 size = skb_frag_size(frag++);
 476         }
 477 
 478         return count;
 479 }
 480 
 481 /**
 482  * iavf_maybe_stop_tx - 1st level check for Tx stop conditions
 483  * @tx_ring: the ring to be checked
 484  * @size:    the size buffer we want to assure is available
 485  *
 486  * Returns 0 if stop is not needed
 487  **/
 488 static inline int iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size)
 489 {
 490         if (likely(IAVF_DESC_UNUSED(tx_ring) >= size))
 491                 return 0;
 492         return __iavf_maybe_stop_tx(tx_ring, size);
 493 }
 494 
 495 /**
 496  * iavf_chk_linearize - Check if there are more than 8 fragments per packet
 497  * @skb:      send buffer
 498  * @count:    number of buffers used
 499  *
 500  * Note: Our HW can't scatter-gather more than 8 fragments to build
 501  * a packet on the wire and so we need to figure out the cases where we
 502  * need to linearize the skb.
 503  **/
 504 static inline bool iavf_chk_linearize(struct sk_buff *skb, int count)
 505 {
 506         /* Both TSO and single send will work if count is less than 8 */
 507         if (likely(count < IAVF_MAX_BUFFER_TXD))
 508                 return false;
 509 
 510         if (skb_is_gso(skb))
 511                 return __iavf_chk_linearize(skb);
 512 
 513         /* we can support up to 8 data buffers for a single send */
 514         return count != IAVF_MAX_BUFFER_TXD;
 515 }
 516 /**
 517  * @ring: Tx ring to find the netdev equivalent of
 518  **/
 519 static inline struct netdev_queue *txring_txq(const struct iavf_ring *ring)
 520 {
 521         return netdev_get_tx_queue(ring->netdev, ring->queue_index);
 522 }
 523 #endif /* _IAVF_TXRX_H_ */

/* [<][>][^][v][top][bottom][index][help] */