root/drivers/net/ethernet/intel/iavf/iavf_main.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. iavf_allocate_dma_mem_d
  2. iavf_free_dma_mem_d
  3. iavf_allocate_virt_mem_d
  4. iavf_free_virt_mem_d
  5. iavf_schedule_reset
  6. iavf_tx_timeout
  7. iavf_misc_irq_disable
  8. iavf_misc_irq_enable
  9. iavf_irq_disable
  10. iavf_irq_enable_queues
  11. iavf_irq_enable
  12. iavf_msix_aq
  13. iavf_msix_clean_rings
  14. iavf_map_vector_to_rxq
  15. iavf_map_vector_to_txq
  16. iavf_map_rings_to_vectors
  17. iavf_irq_affinity_notify
  18. iavf_irq_affinity_release
  19. iavf_request_traffic_irqs
  20. iavf_request_misc_irq
  21. iavf_free_traffic_irqs
  22. iavf_free_misc_irq
  23. iavf_configure_tx
  24. iavf_configure_rx
  25. iavf_find_vlan
  26. iavf_add_vlan
  27. iavf_del_vlan
  28. iavf_vlan_rx_add_vid
  29. iavf_vlan_rx_kill_vid
  30. iavf_find_filter
  31. iavf_add_filter
  32. iavf_set_mac
  33. iavf_addr_sync
  34. iavf_addr_unsync
  35. iavf_set_rx_mode
  36. iavf_napi_enable_all
  37. iavf_napi_disable_all
  38. iavf_configure
  39. iavf_up_complete
  40. iavf_down
  41. iavf_acquire_msix_vectors
  42. iavf_free_queues
  43. iavf_alloc_queues
  44. iavf_set_interrupt_capability
  45. iavf_config_rss_aq
  46. iavf_config_rss_reg
  47. iavf_config_rss
  48. iavf_fill_rss_lut
  49. iavf_init_rss
  50. iavf_alloc_q_vectors
  51. iavf_free_q_vectors
  52. iavf_reset_interrupt_capability
  53. iavf_init_interrupt_scheme
  54. iavf_free_rss
  55. iavf_reinit_interrupt_scheme
  56. iavf_process_aq_command
  57. iavf_startup
  58. iavf_init_version_check
  59. iavf_init_get_resources
  60. iavf_watchdog_task
  61. iavf_disable_vf
  62. iavf_reset_task
  63. iavf_adminq_task
  64. iavf_client_task
  65. iavf_free_all_tx_resources
  66. iavf_setup_all_tx_resources
  67. iavf_setup_all_rx_resources
  68. iavf_free_all_rx_resources
  69. iavf_validate_tx_bandwidth
  70. iavf_validate_ch_config
  71. iavf_del_all_cloud_filters
  72. __iavf_setup_tc
  73. iavf_parse_cls_flower
  74. iavf_handle_tclass
  75. iavf_configure_clsflower
  76. iavf_find_cf
  77. iavf_delete_clsflower
  78. iavf_setup_tc_cls_flower
  79. iavf_setup_tc_block_cb
  80. iavf_setup_tc
  81. iavf_open
  82. iavf_close
  83. iavf_change_mtu
  84. iavf_set_features
  85. iavf_features_check
  86. iavf_fix_features
  87. iavf_check_reset_complete
  88. iavf_process_config
  89. iavf_init_task
  90. iavf_shutdown
  91. iavf_probe
  92. iavf_suspend
  93. iavf_resume
  94. iavf_remove
  95. iavf_init_module
  96. iavf_exit_module

   1 // SPDX-License-Identifier: GPL-2.0
   2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
   3 
   4 #include "iavf.h"
   5 #include "iavf_prototype.h"
   6 #include "iavf_client.h"
   7 /* All iavf tracepoints are defined by the include below, which must
   8  * be included exactly once across the whole kernel with
   9  * CREATE_TRACE_POINTS defined
  10  */
  11 #define CREATE_TRACE_POINTS
  12 #include "iavf_trace.h"
  13 
  14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
  15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
  16 static int iavf_close(struct net_device *netdev);
  17 static int iavf_init_get_resources(struct iavf_adapter *adapter);
  18 static int iavf_check_reset_complete(struct iavf_hw *hw);
  19 
  20 char iavf_driver_name[] = "iavf";
  21 static const char iavf_driver_string[] =
  22         "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
  23 
  24 #define DRV_KERN "-k"
  25 
  26 #define DRV_VERSION_MAJOR 3
  27 #define DRV_VERSION_MINOR 2
  28 #define DRV_VERSION_BUILD 3
  29 #define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \
  30              __stringify(DRV_VERSION_MINOR) "." \
  31              __stringify(DRV_VERSION_BUILD) \
  32              DRV_KERN
  33 const char iavf_driver_version[] = DRV_VERSION;
  34 static const char iavf_copyright[] =
  35         "Copyright (c) 2013 - 2018 Intel Corporation.";
  36 
  37 /* iavf_pci_tbl - PCI Device ID Table
  38  *
  39  * Wildcard entries (PCI_ANY_ID) should come last
  40  * Last entry must be all 0s
  41  *
  42  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
  43  *   Class, Class Mask, private data (not used) }
  44  */
  45 static const struct pci_device_id iavf_pci_tbl[] = {
  46         {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
  47         {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
  48         {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
  49         {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
  50         /* required last entry */
  51         {0, }
  52 };
  53 
  54 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
  55 
  56 MODULE_ALIAS("i40evf");
  57 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  58 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
  59 MODULE_LICENSE("GPL v2");
  60 MODULE_VERSION(DRV_VERSION);
  61 
  62 static const struct net_device_ops iavf_netdev_ops;
  63 struct workqueue_struct *iavf_wq;
  64 
  65 /**
  66  * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
  67  * @hw:   pointer to the HW structure
  68  * @mem:  ptr to mem struct to fill out
  69  * @size: size of memory requested
  70  * @alignment: what to align the allocation to
  71  **/
  72 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
  73                                          struct iavf_dma_mem *mem,
  74                                          u64 size, u32 alignment)
  75 {
  76         struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
  77 
  78         if (!mem)
  79                 return IAVF_ERR_PARAM;
  80 
  81         mem->size = ALIGN(size, alignment);
  82         mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
  83                                      (dma_addr_t *)&mem->pa, GFP_KERNEL);
  84         if (mem->va)
  85                 return 0;
  86         else
  87                 return IAVF_ERR_NO_MEMORY;
  88 }
  89 
  90 /**
  91  * iavf_free_dma_mem_d - OS specific memory free for shared code
  92  * @hw:   pointer to the HW structure
  93  * @mem:  ptr to mem struct to free
  94  **/
  95 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
  96                                      struct iavf_dma_mem *mem)
  97 {
  98         struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
  99 
 100         if (!mem || !mem->va)
 101                 return IAVF_ERR_PARAM;
 102         dma_free_coherent(&adapter->pdev->dev, mem->size,
 103                           mem->va, (dma_addr_t)mem->pa);
 104         return 0;
 105 }
 106 
 107 /**
 108  * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
 109  * @hw:   pointer to the HW structure
 110  * @mem:  ptr to mem struct to fill out
 111  * @size: size of memory requested
 112  **/
 113 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
 114                                           struct iavf_virt_mem *mem, u32 size)
 115 {
 116         if (!mem)
 117                 return IAVF_ERR_PARAM;
 118 
 119         mem->size = size;
 120         mem->va = kzalloc(size, GFP_KERNEL);
 121 
 122         if (mem->va)
 123                 return 0;
 124         else
 125                 return IAVF_ERR_NO_MEMORY;
 126 }
 127 
 128 /**
 129  * iavf_free_virt_mem_d - OS specific memory free for shared code
 130  * @hw:   pointer to the HW structure
 131  * @mem:  ptr to mem struct to free
 132  **/
 133 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
 134                                       struct iavf_virt_mem *mem)
 135 {
 136         if (!mem)
 137                 return IAVF_ERR_PARAM;
 138 
 139         /* it's ok to kfree a NULL pointer */
 140         kfree(mem->va);
 141 
 142         return 0;
 143 }
 144 
 145 /**
 146  * iavf_schedule_reset - Set the flags and schedule a reset event
 147  * @adapter: board private structure
 148  **/
 149 void iavf_schedule_reset(struct iavf_adapter *adapter)
 150 {
 151         if (!(adapter->flags &
 152               (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
 153                 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
 154                 queue_work(iavf_wq, &adapter->reset_task);
 155         }
 156 }
 157 
 158 /**
 159  * iavf_tx_timeout - Respond to a Tx Hang
 160  * @netdev: network interface device structure
 161  **/
 162 static void iavf_tx_timeout(struct net_device *netdev)
 163 {
 164         struct iavf_adapter *adapter = netdev_priv(netdev);
 165 
 166         adapter->tx_timeout_count++;
 167         iavf_schedule_reset(adapter);
 168 }
 169 
 170 /**
 171  * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
 172  * @adapter: board private structure
 173  **/
 174 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
 175 {
 176         struct iavf_hw *hw = &adapter->hw;
 177 
 178         if (!adapter->msix_entries)
 179                 return;
 180 
 181         wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
 182 
 183         iavf_flush(hw);
 184 
 185         synchronize_irq(adapter->msix_entries[0].vector);
 186 }
 187 
 188 /**
 189  * iavf_misc_irq_enable - Enable default interrupt generation settings
 190  * @adapter: board private structure
 191  **/
 192 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
 193 {
 194         struct iavf_hw *hw = &adapter->hw;
 195 
 196         wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
 197                                        IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
 198         wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
 199 
 200         iavf_flush(hw);
 201 }
 202 
 203 /**
 204  * iavf_irq_disable - Mask off interrupt generation on the NIC
 205  * @adapter: board private structure
 206  **/
 207 static void iavf_irq_disable(struct iavf_adapter *adapter)
 208 {
 209         int i;
 210         struct iavf_hw *hw = &adapter->hw;
 211 
 212         if (!adapter->msix_entries)
 213                 return;
 214 
 215         for (i = 1; i < adapter->num_msix_vectors; i++) {
 216                 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
 217                 synchronize_irq(adapter->msix_entries[i].vector);
 218         }
 219         iavf_flush(hw);
 220 }
 221 
 222 /**
 223  * iavf_irq_enable_queues - Enable interrupt for specified queues
 224  * @adapter: board private structure
 225  * @mask: bitmap of queues to enable
 226  **/
 227 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
 228 {
 229         struct iavf_hw *hw = &adapter->hw;
 230         int i;
 231 
 232         for (i = 1; i < adapter->num_msix_vectors; i++) {
 233                 if (mask & BIT(i - 1)) {
 234                         wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
 235                              IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
 236                              IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
 237                 }
 238         }
 239 }
 240 
 241 /**
 242  * iavf_irq_enable - Enable default interrupt generation settings
 243  * @adapter: board private structure
 244  * @flush: boolean value whether to run rd32()
 245  **/
 246 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
 247 {
 248         struct iavf_hw *hw = &adapter->hw;
 249 
 250         iavf_misc_irq_enable(adapter);
 251         iavf_irq_enable_queues(adapter, ~0);
 252 
 253         if (flush)
 254                 iavf_flush(hw);
 255 }
 256 
 257 /**
 258  * iavf_msix_aq - Interrupt handler for vector 0
 259  * @irq: interrupt number
 260  * @data: pointer to netdev
 261  **/
 262 static irqreturn_t iavf_msix_aq(int irq, void *data)
 263 {
 264         struct net_device *netdev = data;
 265         struct iavf_adapter *adapter = netdev_priv(netdev);
 266         struct iavf_hw *hw = &adapter->hw;
 267 
 268         /* handle non-queue interrupts, these reads clear the registers */
 269         rd32(hw, IAVF_VFINT_ICR01);
 270         rd32(hw, IAVF_VFINT_ICR0_ENA1);
 271 
 272         /* schedule work on the private workqueue */
 273         queue_work(iavf_wq, &adapter->adminq_task);
 274 
 275         return IRQ_HANDLED;
 276 }
 277 
 278 /**
 279  * iavf_msix_clean_rings - MSIX mode Interrupt Handler
 280  * @irq: interrupt number
 281  * @data: pointer to a q_vector
 282  **/
 283 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
 284 {
 285         struct iavf_q_vector *q_vector = data;
 286 
 287         if (!q_vector->tx.ring && !q_vector->rx.ring)
 288                 return IRQ_HANDLED;
 289 
 290         napi_schedule_irqoff(&q_vector->napi);
 291 
 292         return IRQ_HANDLED;
 293 }
 294 
 295 /**
 296  * iavf_map_vector_to_rxq - associate irqs with rx queues
 297  * @adapter: board private structure
 298  * @v_idx: interrupt number
 299  * @r_idx: queue number
 300  **/
 301 static void
 302 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
 303 {
 304         struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
 305         struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
 306         struct iavf_hw *hw = &adapter->hw;
 307 
 308         rx_ring->q_vector = q_vector;
 309         rx_ring->next = q_vector->rx.ring;
 310         rx_ring->vsi = &adapter->vsi;
 311         q_vector->rx.ring = rx_ring;
 312         q_vector->rx.count++;
 313         q_vector->rx.next_update = jiffies + 1;
 314         q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
 315         q_vector->ring_mask |= BIT(r_idx);
 316         wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
 317              q_vector->rx.current_itr >> 1);
 318         q_vector->rx.current_itr = q_vector->rx.target_itr;
 319 }
 320 
 321 /**
 322  * iavf_map_vector_to_txq - associate irqs with tx queues
 323  * @adapter: board private structure
 324  * @v_idx: interrupt number
 325  * @t_idx: queue number
 326  **/
 327 static void
 328 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
 329 {
 330         struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
 331         struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
 332         struct iavf_hw *hw = &adapter->hw;
 333 
 334         tx_ring->q_vector = q_vector;
 335         tx_ring->next = q_vector->tx.ring;
 336         tx_ring->vsi = &adapter->vsi;
 337         q_vector->tx.ring = tx_ring;
 338         q_vector->tx.count++;
 339         q_vector->tx.next_update = jiffies + 1;
 340         q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
 341         q_vector->num_ringpairs++;
 342         wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
 343              q_vector->tx.target_itr >> 1);
 344         q_vector->tx.current_itr = q_vector->tx.target_itr;
 345 }
 346 
 347 /**
 348  * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
 349  * @adapter: board private structure to initialize
 350  *
 351  * This function maps descriptor rings to the queue-specific vectors
 352  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
 353  * one vector per ring/queue, but on a constrained vector budget, we
 354  * group the rings as "efficiently" as possible.  You would add new
 355  * mapping configurations in here.
 356  **/
 357 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
 358 {
 359         int rings_remaining = adapter->num_active_queues;
 360         int ridx = 0, vidx = 0;
 361         int q_vectors;
 362 
 363         q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 364 
 365         for (; ridx < rings_remaining; ridx++) {
 366                 iavf_map_vector_to_rxq(adapter, vidx, ridx);
 367                 iavf_map_vector_to_txq(adapter, vidx, ridx);
 368 
 369                 /* In the case where we have more queues than vectors, continue
 370                  * round-robin on vectors until all queues are mapped.
 371                  */
 372                 if (++vidx >= q_vectors)
 373                         vidx = 0;
 374         }
 375 
 376         adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
 377 }
 378 
 379 /**
 380  * iavf_irq_affinity_notify - Callback for affinity changes
 381  * @notify: context as to what irq was changed
 382  * @mask: the new affinity mask
 383  *
 384  * This is a callback function used by the irq_set_affinity_notifier function
 385  * so that we may register to receive changes to the irq affinity masks.
 386  **/
 387 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
 388                                      const cpumask_t *mask)
 389 {
 390         struct iavf_q_vector *q_vector =
 391                 container_of(notify, struct iavf_q_vector, affinity_notify);
 392 
 393         cpumask_copy(&q_vector->affinity_mask, mask);
 394 }
 395 
 396 /**
 397  * iavf_irq_affinity_release - Callback for affinity notifier release
 398  * @ref: internal core kernel usage
 399  *
 400  * This is a callback function used by the irq_set_affinity_notifier function
 401  * to inform the current notification subscriber that they will no longer
 402  * receive notifications.
 403  **/
 404 static void iavf_irq_affinity_release(struct kref *ref) {}
 405 
 406 /**
 407  * iavf_request_traffic_irqs - Initialize MSI-X interrupts
 408  * @adapter: board private structure
 409  * @basename: device basename
 410  *
 411  * Allocates MSI-X vectors for tx and rx handling, and requests
 412  * interrupts from the kernel.
 413  **/
 414 static int
 415 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
 416 {
 417         unsigned int vector, q_vectors;
 418         unsigned int rx_int_idx = 0, tx_int_idx = 0;
 419         int irq_num, err;
 420         int cpu;
 421 
 422         iavf_irq_disable(adapter);
 423         /* Decrement for Other and TCP Timer vectors */
 424         q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 425 
 426         for (vector = 0; vector < q_vectors; vector++) {
 427                 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
 428 
 429                 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 430 
 431                 if (q_vector->tx.ring && q_vector->rx.ring) {
 432                         snprintf(q_vector->name, sizeof(q_vector->name),
 433                                  "iavf-%s-TxRx-%d", basename, rx_int_idx++);
 434                         tx_int_idx++;
 435                 } else if (q_vector->rx.ring) {
 436                         snprintf(q_vector->name, sizeof(q_vector->name),
 437                                  "iavf-%s-rx-%d", basename, rx_int_idx++);
 438                 } else if (q_vector->tx.ring) {
 439                         snprintf(q_vector->name, sizeof(q_vector->name),
 440                                  "iavf-%s-tx-%d", basename, tx_int_idx++);
 441                 } else {
 442                         /* skip this unused q_vector */
 443                         continue;
 444                 }
 445                 err = request_irq(irq_num,
 446                                   iavf_msix_clean_rings,
 447                                   0,
 448                                   q_vector->name,
 449                                   q_vector);
 450                 if (err) {
 451                         dev_info(&adapter->pdev->dev,
 452                                  "Request_irq failed, error: %d\n", err);
 453                         goto free_queue_irqs;
 454                 }
 455                 /* register for affinity change notifications */
 456                 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
 457                 q_vector->affinity_notify.release =
 458                                                    iavf_irq_affinity_release;
 459                 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
 460                 /* Spread the IRQ affinity hints across online CPUs. Note that
 461                  * get_cpu_mask returns a mask with a permanent lifetime so
 462                  * it's safe to use as a hint for irq_set_affinity_hint.
 463                  */
 464                 cpu = cpumask_local_spread(q_vector->v_idx, -1);
 465                 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
 466         }
 467 
 468         return 0;
 469 
 470 free_queue_irqs:
 471         while (vector) {
 472                 vector--;
 473                 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 474                 irq_set_affinity_notifier(irq_num, NULL);
 475                 irq_set_affinity_hint(irq_num, NULL);
 476                 free_irq(irq_num, &adapter->q_vectors[vector]);
 477         }
 478         return err;
 479 }
 480 
 481 /**
 482  * iavf_request_misc_irq - Initialize MSI-X interrupts
 483  * @adapter: board private structure
 484  *
 485  * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
 486  * vector is only for the admin queue, and stays active even when the netdev
 487  * is closed.
 488  **/
 489 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
 490 {
 491         struct net_device *netdev = adapter->netdev;
 492         int err;
 493 
 494         snprintf(adapter->misc_vector_name,
 495                  sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
 496                  dev_name(&adapter->pdev->dev));
 497         err = request_irq(adapter->msix_entries[0].vector,
 498                           &iavf_msix_aq, 0,
 499                           adapter->misc_vector_name, netdev);
 500         if (err) {
 501                 dev_err(&adapter->pdev->dev,
 502                         "request_irq for %s failed: %d\n",
 503                         adapter->misc_vector_name, err);
 504                 free_irq(adapter->msix_entries[0].vector, netdev);
 505         }
 506         return err;
 507 }
 508 
 509 /**
 510  * iavf_free_traffic_irqs - Free MSI-X interrupts
 511  * @adapter: board private structure
 512  *
 513  * Frees all MSI-X vectors other than 0.
 514  **/
 515 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
 516 {
 517         int vector, irq_num, q_vectors;
 518 
 519         if (!adapter->msix_entries)
 520                 return;
 521 
 522         q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 523 
 524         for (vector = 0; vector < q_vectors; vector++) {
 525                 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
 526                 irq_set_affinity_notifier(irq_num, NULL);
 527                 irq_set_affinity_hint(irq_num, NULL);
 528                 free_irq(irq_num, &adapter->q_vectors[vector]);
 529         }
 530 }
 531 
 532 /**
 533  * iavf_free_misc_irq - Free MSI-X miscellaneous vector
 534  * @adapter: board private structure
 535  *
 536  * Frees MSI-X vector 0.
 537  **/
 538 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
 539 {
 540         struct net_device *netdev = adapter->netdev;
 541 
 542         if (!adapter->msix_entries)
 543                 return;
 544 
 545         free_irq(adapter->msix_entries[0].vector, netdev);
 546 }
 547 
 548 /**
 549  * iavf_configure_tx - Configure Transmit Unit after Reset
 550  * @adapter: board private structure
 551  *
 552  * Configure the Tx unit of the MAC after a reset.
 553  **/
 554 static void iavf_configure_tx(struct iavf_adapter *adapter)
 555 {
 556         struct iavf_hw *hw = &adapter->hw;
 557         int i;
 558 
 559         for (i = 0; i < adapter->num_active_queues; i++)
 560                 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
 561 }
 562 
 563 /**
 564  * iavf_configure_rx - Configure Receive Unit after Reset
 565  * @adapter: board private structure
 566  *
 567  * Configure the Rx unit of the MAC after a reset.
 568  **/
 569 static void iavf_configure_rx(struct iavf_adapter *adapter)
 570 {
 571         unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
 572         struct iavf_hw *hw = &adapter->hw;
 573         int i;
 574 
 575         /* Legacy Rx will always default to a 2048 buffer size. */
 576 #if (PAGE_SIZE < 8192)
 577         if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
 578                 struct net_device *netdev = adapter->netdev;
 579 
 580                 /* For jumbo frames on systems with 4K pages we have to use
 581                  * an order 1 page, so we might as well increase the size
 582                  * of our Rx buffer to make better use of the available space
 583                  */
 584                 rx_buf_len = IAVF_RXBUFFER_3072;
 585 
 586                 /* We use a 1536 buffer size for configurations with
 587                  * standard Ethernet mtu.  On x86 this gives us enough room
 588                  * for shared info and 192 bytes of padding.
 589                  */
 590                 if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
 591                     (netdev->mtu <= ETH_DATA_LEN))
 592                         rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
 593         }
 594 #endif
 595 
 596         for (i = 0; i < adapter->num_active_queues; i++) {
 597                 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
 598                 adapter->rx_rings[i].rx_buf_len = rx_buf_len;
 599 
 600                 if (adapter->flags & IAVF_FLAG_LEGACY_RX)
 601                         clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
 602                 else
 603                         set_ring_build_skb_enabled(&adapter->rx_rings[i]);
 604         }
 605 }
 606 
 607 /**
 608  * iavf_find_vlan - Search filter list for specific vlan filter
 609  * @adapter: board private structure
 610  * @vlan: vlan tag
 611  *
 612  * Returns ptr to the filter object or NULL. Must be called while holding the
 613  * mac_vlan_list_lock.
 614  **/
 615 static struct
 616 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan)
 617 {
 618         struct iavf_vlan_filter *f;
 619 
 620         list_for_each_entry(f, &adapter->vlan_filter_list, list) {
 621                 if (vlan == f->vlan)
 622                         return f;
 623         }
 624         return NULL;
 625 }
 626 
 627 /**
 628  * iavf_add_vlan - Add a vlan filter to the list
 629  * @adapter: board private structure
 630  * @vlan: VLAN tag
 631  *
 632  * Returns ptr to the filter object or NULL when no memory available.
 633  **/
 634 static struct
 635 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan)
 636 {
 637         struct iavf_vlan_filter *f = NULL;
 638 
 639         spin_lock_bh(&adapter->mac_vlan_list_lock);
 640 
 641         f = iavf_find_vlan(adapter, vlan);
 642         if (!f) {
 643                 f = kzalloc(sizeof(*f), GFP_ATOMIC);
 644                 if (!f)
 645                         goto clearout;
 646 
 647                 f->vlan = vlan;
 648 
 649                 list_add_tail(&f->list, &adapter->vlan_filter_list);
 650                 f->add = true;
 651                 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
 652         }
 653 
 654 clearout:
 655         spin_unlock_bh(&adapter->mac_vlan_list_lock);
 656         return f;
 657 }
 658 
 659 /**
 660  * iavf_del_vlan - Remove a vlan filter from the list
 661  * @adapter: board private structure
 662  * @vlan: VLAN tag
 663  **/
 664 static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan)
 665 {
 666         struct iavf_vlan_filter *f;
 667 
 668         spin_lock_bh(&adapter->mac_vlan_list_lock);
 669 
 670         f = iavf_find_vlan(adapter, vlan);
 671         if (f) {
 672                 f->remove = true;
 673                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
 674         }
 675 
 676         spin_unlock_bh(&adapter->mac_vlan_list_lock);
 677 }
 678 
 679 /**
 680  * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
 681  * @netdev: network device struct
 682  * @proto: unused protocol data
 683  * @vid: VLAN tag
 684  **/
 685 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
 686                                 __always_unused __be16 proto, u16 vid)
 687 {
 688         struct iavf_adapter *adapter = netdev_priv(netdev);
 689 
 690         if (!VLAN_ALLOWED(adapter))
 691                 return -EIO;
 692         if (iavf_add_vlan(adapter, vid) == NULL)
 693                 return -ENOMEM;
 694         return 0;
 695 }
 696 
 697 /**
 698  * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
 699  * @netdev: network device struct
 700  * @proto: unused protocol data
 701  * @vid: VLAN tag
 702  **/
 703 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
 704                                  __always_unused __be16 proto, u16 vid)
 705 {
 706         struct iavf_adapter *adapter = netdev_priv(netdev);
 707 
 708         if (VLAN_ALLOWED(adapter)) {
 709                 iavf_del_vlan(adapter, vid);
 710                 return 0;
 711         }
 712         return -EIO;
 713 }
 714 
 715 /**
 716  * iavf_find_filter - Search filter list for specific mac filter
 717  * @adapter: board private structure
 718  * @macaddr: the MAC address
 719  *
 720  * Returns ptr to the filter object or NULL. Must be called while holding the
 721  * mac_vlan_list_lock.
 722  **/
 723 static struct
 724 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
 725                                   const u8 *macaddr)
 726 {
 727         struct iavf_mac_filter *f;
 728 
 729         if (!macaddr)
 730                 return NULL;
 731 
 732         list_for_each_entry(f, &adapter->mac_filter_list, list) {
 733                 if (ether_addr_equal(macaddr, f->macaddr))
 734                         return f;
 735         }
 736         return NULL;
 737 }
 738 
 739 /**
 740  * iavf_add_filter - Add a mac filter to the filter list
 741  * @adapter: board private structure
 742  * @macaddr: the MAC address
 743  *
 744  * Returns ptr to the filter object or NULL when no memory available.
 745  **/
 746 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
 747                                         const u8 *macaddr)
 748 {
 749         struct iavf_mac_filter *f;
 750 
 751         if (!macaddr)
 752                 return NULL;
 753 
 754         f = iavf_find_filter(adapter, macaddr);
 755         if (!f) {
 756                 f = kzalloc(sizeof(*f), GFP_ATOMIC);
 757                 if (!f)
 758                         return f;
 759 
 760                 ether_addr_copy(f->macaddr, macaddr);
 761 
 762                 list_add_tail(&f->list, &adapter->mac_filter_list);
 763                 f->add = true;
 764                 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
 765         } else {
 766                 f->remove = false;
 767         }
 768 
 769         return f;
 770 }
 771 
 772 /**
 773  * iavf_set_mac - NDO callback to set port mac address
 774  * @netdev: network interface device structure
 775  * @p: pointer to an address structure
 776  *
 777  * Returns 0 on success, negative on failure
 778  **/
 779 static int iavf_set_mac(struct net_device *netdev, void *p)
 780 {
 781         struct iavf_adapter *adapter = netdev_priv(netdev);
 782         struct iavf_hw *hw = &adapter->hw;
 783         struct iavf_mac_filter *f;
 784         struct sockaddr *addr = p;
 785 
 786         if (!is_valid_ether_addr(addr->sa_data))
 787                 return -EADDRNOTAVAIL;
 788 
 789         if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
 790                 return 0;
 791 
 792         spin_lock_bh(&adapter->mac_vlan_list_lock);
 793 
 794         f = iavf_find_filter(adapter, hw->mac.addr);
 795         if (f) {
 796                 f->remove = true;
 797                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
 798         }
 799 
 800         f = iavf_add_filter(adapter, addr->sa_data);
 801 
 802         spin_unlock_bh(&adapter->mac_vlan_list_lock);
 803 
 804         if (f) {
 805                 ether_addr_copy(hw->mac.addr, addr->sa_data);
 806         }
 807 
 808         return (f == NULL) ? -ENOMEM : 0;
 809 }
 810 
 811 /**
 812  * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
 813  * @netdev: the netdevice
 814  * @addr: address to add
 815  *
 816  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
 817  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
 818  */
 819 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
 820 {
 821         struct iavf_adapter *adapter = netdev_priv(netdev);
 822 
 823         if (iavf_add_filter(adapter, addr))
 824                 return 0;
 825         else
 826                 return -ENOMEM;
 827 }
 828 
 829 /**
 830  * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
 831  * @netdev: the netdevice
 832  * @addr: address to add
 833  *
 834  * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
 835  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
 836  */
 837 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
 838 {
 839         struct iavf_adapter *adapter = netdev_priv(netdev);
 840         struct iavf_mac_filter *f;
 841 
 842         /* Under some circumstances, we might receive a request to delete
 843          * our own device address from our uc list. Because we store the
 844          * device address in the VSI's MAC/VLAN filter list, we need to ignore
 845          * such requests and not delete our device address from this list.
 846          */
 847         if (ether_addr_equal(addr, netdev->dev_addr))
 848                 return 0;
 849 
 850         f = iavf_find_filter(adapter, addr);
 851         if (f) {
 852                 f->remove = true;
 853                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
 854         }
 855         return 0;
 856 }
 857 
 858 /**
 859  * iavf_set_rx_mode - NDO callback to set the netdev filters
 860  * @netdev: network interface device structure
 861  **/
 862 static void iavf_set_rx_mode(struct net_device *netdev)
 863 {
 864         struct iavf_adapter *adapter = netdev_priv(netdev);
 865 
 866         spin_lock_bh(&adapter->mac_vlan_list_lock);
 867         __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
 868         __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
 869         spin_unlock_bh(&adapter->mac_vlan_list_lock);
 870 
 871         if (netdev->flags & IFF_PROMISC &&
 872             !(adapter->flags & IAVF_FLAG_PROMISC_ON))
 873                 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
 874         else if (!(netdev->flags & IFF_PROMISC) &&
 875                  adapter->flags & IAVF_FLAG_PROMISC_ON)
 876                 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
 877 
 878         if (netdev->flags & IFF_ALLMULTI &&
 879             !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
 880                 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
 881         else if (!(netdev->flags & IFF_ALLMULTI) &&
 882                  adapter->flags & IAVF_FLAG_ALLMULTI_ON)
 883                 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
 884 }
 885 
 886 /**
 887  * iavf_napi_enable_all - enable NAPI on all queue vectors
 888  * @adapter: board private structure
 889  **/
 890 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
 891 {
 892         int q_idx;
 893         struct iavf_q_vector *q_vector;
 894         int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 895 
 896         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
 897                 struct napi_struct *napi;
 898 
 899                 q_vector = &adapter->q_vectors[q_idx];
 900                 napi = &q_vector->napi;
 901                 napi_enable(napi);
 902         }
 903 }
 904 
 905 /**
 906  * iavf_napi_disable_all - disable NAPI on all queue vectors
 907  * @adapter: board private structure
 908  **/
 909 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
 910 {
 911         int q_idx;
 912         struct iavf_q_vector *q_vector;
 913         int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
 914 
 915         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
 916                 q_vector = &adapter->q_vectors[q_idx];
 917                 napi_disable(&q_vector->napi);
 918         }
 919 }
 920 
 921 /**
 922  * iavf_configure - set up transmit and receive data structures
 923  * @adapter: board private structure
 924  **/
 925 static void iavf_configure(struct iavf_adapter *adapter)
 926 {
 927         struct net_device *netdev = adapter->netdev;
 928         int i;
 929 
 930         iavf_set_rx_mode(netdev);
 931 
 932         iavf_configure_tx(adapter);
 933         iavf_configure_rx(adapter);
 934         adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
 935 
 936         for (i = 0; i < adapter->num_active_queues; i++) {
 937                 struct iavf_ring *ring = &adapter->rx_rings[i];
 938 
 939                 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
 940         }
 941 }
 942 
 943 /**
 944  * iavf_up_complete - Finish the last steps of bringing up a connection
 945  * @adapter: board private structure
 946  *
 947  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
 948  **/
 949 static void iavf_up_complete(struct iavf_adapter *adapter)
 950 {
 951         adapter->state = __IAVF_RUNNING;
 952         clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
 953 
 954         iavf_napi_enable_all(adapter);
 955 
 956         adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
 957         if (CLIENT_ENABLED(adapter))
 958                 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
 959         mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
 960 }
 961 
 962 /**
 963  * iavf_down - Shutdown the connection processing
 964  * @adapter: board private structure
 965  *
 966  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
 967  **/
 968 void iavf_down(struct iavf_adapter *adapter)
 969 {
 970         struct net_device *netdev = adapter->netdev;
 971         struct iavf_vlan_filter *vlf;
 972         struct iavf_mac_filter *f;
 973         struct iavf_cloud_filter *cf;
 974 
 975         if (adapter->state <= __IAVF_DOWN_PENDING)
 976                 return;
 977 
 978         netif_carrier_off(netdev);
 979         netif_tx_disable(netdev);
 980         adapter->link_up = false;
 981         iavf_napi_disable_all(adapter);
 982         iavf_irq_disable(adapter);
 983 
 984         spin_lock_bh(&adapter->mac_vlan_list_lock);
 985 
 986         /* clear the sync flag on all filters */
 987         __dev_uc_unsync(adapter->netdev, NULL);
 988         __dev_mc_unsync(adapter->netdev, NULL);
 989 
 990         /* remove all MAC filters */
 991         list_for_each_entry(f, &adapter->mac_filter_list, list) {
 992                 f->remove = true;
 993         }
 994 
 995         /* remove all VLAN filters */
 996         list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
 997                 vlf->remove = true;
 998         }
 999 
1000         spin_unlock_bh(&adapter->mac_vlan_list_lock);
1001 
1002         /* remove all cloud filters */
1003         spin_lock_bh(&adapter->cloud_filter_list_lock);
1004         list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
1005                 cf->del = true;
1006         }
1007         spin_unlock_bh(&adapter->cloud_filter_list_lock);
1008 
1009         if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
1010             adapter->state != __IAVF_RESETTING) {
1011                 /* cancel any current operation */
1012                 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1013                 /* Schedule operations to close down the HW. Don't wait
1014                  * here for this to complete. The watchdog is still running
1015                  * and it will take care of this.
1016                  */
1017                 adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1018                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1019                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1020                 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1021         }
1022 
1023         mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1024 }
1025 
1026 /**
1027  * iavf_acquire_msix_vectors - Setup the MSIX capability
1028  * @adapter: board private structure
1029  * @vectors: number of vectors to request
1030  *
1031  * Work with the OS to set up the MSIX vectors needed.
1032  *
1033  * Returns 0 on success, negative on failure
1034  **/
1035 static int
1036 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1037 {
1038         int err, vector_threshold;
1039 
1040         /* We'll want at least 3 (vector_threshold):
1041          * 0) Other (Admin Queue and link, mostly)
1042          * 1) TxQ[0] Cleanup
1043          * 2) RxQ[0] Cleanup
1044          */
1045         vector_threshold = MIN_MSIX_COUNT;
1046 
1047         /* The more we get, the more we will assign to Tx/Rx Cleanup
1048          * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1049          * Right now, we simply care about how many we'll get; we'll
1050          * set them up later while requesting irq's.
1051          */
1052         err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1053                                     vector_threshold, vectors);
1054         if (err < 0) {
1055                 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1056                 kfree(adapter->msix_entries);
1057                 adapter->msix_entries = NULL;
1058                 return err;
1059         }
1060 
1061         /* Adjust for only the vectors we'll use, which is minimum
1062          * of max_msix_q_vectors + NONQ_VECS, or the number of
1063          * vectors we were allocated.
1064          */
1065         adapter->num_msix_vectors = err;
1066         return 0;
1067 }
1068 
1069 /**
1070  * iavf_free_queues - Free memory for all rings
1071  * @adapter: board private structure to initialize
1072  *
1073  * Free all of the memory associated with queue pairs.
1074  **/
1075 static void iavf_free_queues(struct iavf_adapter *adapter)
1076 {
1077         if (!adapter->vsi_res)
1078                 return;
1079         adapter->num_active_queues = 0;
1080         kfree(adapter->tx_rings);
1081         adapter->tx_rings = NULL;
1082         kfree(adapter->rx_rings);
1083         adapter->rx_rings = NULL;
1084 }
1085 
1086 /**
1087  * iavf_alloc_queues - Allocate memory for all rings
1088  * @adapter: board private structure to initialize
1089  *
1090  * We allocate one ring per queue at run-time since we don't know the
1091  * number of queues at compile-time.  The polling_netdev array is
1092  * intended for Multiqueue, but should work fine with a single queue.
1093  **/
1094 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1095 {
1096         int i, num_active_queues;
1097 
1098         /* If we're in reset reallocating queues we don't actually know yet for
1099          * certain the PF gave us the number of queues we asked for but we'll
1100          * assume it did.  Once basic reset is finished we'll confirm once we
1101          * start negotiating config with PF.
1102          */
1103         if (adapter->num_req_queues)
1104                 num_active_queues = adapter->num_req_queues;
1105         else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1106                  adapter->num_tc)
1107                 num_active_queues = adapter->ch_config.total_qps;
1108         else
1109                 num_active_queues = min_t(int,
1110                                           adapter->vsi_res->num_queue_pairs,
1111                                           (int)(num_online_cpus()));
1112 
1113 
1114         adapter->tx_rings = kcalloc(num_active_queues,
1115                                     sizeof(struct iavf_ring), GFP_KERNEL);
1116         if (!adapter->tx_rings)
1117                 goto err_out;
1118         adapter->rx_rings = kcalloc(num_active_queues,
1119                                     sizeof(struct iavf_ring), GFP_KERNEL);
1120         if (!adapter->rx_rings)
1121                 goto err_out;
1122 
1123         for (i = 0; i < num_active_queues; i++) {
1124                 struct iavf_ring *tx_ring;
1125                 struct iavf_ring *rx_ring;
1126 
1127                 tx_ring = &adapter->tx_rings[i];
1128 
1129                 tx_ring->queue_index = i;
1130                 tx_ring->netdev = adapter->netdev;
1131                 tx_ring->dev = &adapter->pdev->dev;
1132                 tx_ring->count = adapter->tx_desc_count;
1133                 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1134                 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1135                         tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1136 
1137                 rx_ring = &adapter->rx_rings[i];
1138                 rx_ring->queue_index = i;
1139                 rx_ring->netdev = adapter->netdev;
1140                 rx_ring->dev = &adapter->pdev->dev;
1141                 rx_ring->count = adapter->rx_desc_count;
1142                 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1143         }
1144 
1145         adapter->num_active_queues = num_active_queues;
1146 
1147         return 0;
1148 
1149 err_out:
1150         iavf_free_queues(adapter);
1151         return -ENOMEM;
1152 }
1153 
1154 /**
1155  * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1156  * @adapter: board private structure to initialize
1157  *
1158  * Attempt to configure the interrupts using the best available
1159  * capabilities of the hardware and the kernel.
1160  **/
1161 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1162 {
1163         int vector, v_budget;
1164         int pairs = 0;
1165         int err = 0;
1166 
1167         if (!adapter->vsi_res) {
1168                 err = -EIO;
1169                 goto out;
1170         }
1171         pairs = adapter->num_active_queues;
1172 
1173         /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1174          * us much good if we have more vectors than CPUs. However, we already
1175          * limit the total number of queues by the number of CPUs so we do not
1176          * need any further limiting here.
1177          */
1178         v_budget = min_t(int, pairs + NONQ_VECS,
1179                          (int)adapter->vf_res->max_vectors);
1180 
1181         adapter->msix_entries = kcalloc(v_budget,
1182                                         sizeof(struct msix_entry), GFP_KERNEL);
1183         if (!adapter->msix_entries) {
1184                 err = -ENOMEM;
1185                 goto out;
1186         }
1187 
1188         for (vector = 0; vector < v_budget; vector++)
1189                 adapter->msix_entries[vector].entry = vector;
1190 
1191         err = iavf_acquire_msix_vectors(adapter, v_budget);
1192 
1193 out:
1194         netif_set_real_num_rx_queues(adapter->netdev, pairs);
1195         netif_set_real_num_tx_queues(adapter->netdev, pairs);
1196         return err;
1197 }
1198 
1199 /**
1200  * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1201  * @adapter: board private structure
1202  *
1203  * Return 0 on success, negative on failure
1204  **/
1205 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1206 {
1207         struct iavf_aqc_get_set_rss_key_data *rss_key =
1208                 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1209         struct iavf_hw *hw = &adapter->hw;
1210         int ret = 0;
1211 
1212         if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1213                 /* bail because we already have a command pending */
1214                 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1215                         adapter->current_op);
1216                 return -EBUSY;
1217         }
1218 
1219         ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1220         if (ret) {
1221                 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1222                         iavf_stat_str(hw, ret),
1223                         iavf_aq_str(hw, hw->aq.asq_last_status));
1224                 return ret;
1225 
1226         }
1227 
1228         ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1229                                   adapter->rss_lut, adapter->rss_lut_size);
1230         if (ret) {
1231                 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1232                         iavf_stat_str(hw, ret),
1233                         iavf_aq_str(hw, hw->aq.asq_last_status));
1234         }
1235 
1236         return ret;
1237 
1238 }
1239 
1240 /**
1241  * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1242  * @adapter: board private structure
1243  *
1244  * Returns 0 on success, negative on failure
1245  **/
1246 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1247 {
1248         struct iavf_hw *hw = &adapter->hw;
1249         u32 *dw;
1250         u16 i;
1251 
1252         dw = (u32 *)adapter->rss_key;
1253         for (i = 0; i <= adapter->rss_key_size / 4; i++)
1254                 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1255 
1256         dw = (u32 *)adapter->rss_lut;
1257         for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1258                 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1259 
1260         iavf_flush(hw);
1261 
1262         return 0;
1263 }
1264 
1265 /**
1266  * iavf_config_rss - Configure RSS keys and lut
1267  * @adapter: board private structure
1268  *
1269  * Returns 0 on success, negative on failure
1270  **/
1271 int iavf_config_rss(struct iavf_adapter *adapter)
1272 {
1273 
1274         if (RSS_PF(adapter)) {
1275                 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1276                                         IAVF_FLAG_AQ_SET_RSS_KEY;
1277                 return 0;
1278         } else if (RSS_AQ(adapter)) {
1279                 return iavf_config_rss_aq(adapter);
1280         } else {
1281                 return iavf_config_rss_reg(adapter);
1282         }
1283 }
1284 
1285 /**
1286  * iavf_fill_rss_lut - Fill the lut with default values
1287  * @adapter: board private structure
1288  **/
1289 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1290 {
1291         u16 i;
1292 
1293         for (i = 0; i < adapter->rss_lut_size; i++)
1294                 adapter->rss_lut[i] = i % adapter->num_active_queues;
1295 }
1296 
1297 /**
1298  * iavf_init_rss - Prepare for RSS
1299  * @adapter: board private structure
1300  *
1301  * Return 0 on success, negative on failure
1302  **/
1303 static int iavf_init_rss(struct iavf_adapter *adapter)
1304 {
1305         struct iavf_hw *hw = &adapter->hw;
1306         int ret;
1307 
1308         if (!RSS_PF(adapter)) {
1309                 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1310                 if (adapter->vf_res->vf_cap_flags &
1311                     VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1312                         adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1313                 else
1314                         adapter->hena = IAVF_DEFAULT_RSS_HENA;
1315 
1316                 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1317                 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1318         }
1319 
1320         iavf_fill_rss_lut(adapter);
1321         netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1322         ret = iavf_config_rss(adapter);
1323 
1324         return ret;
1325 }
1326 
1327 /**
1328  * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1329  * @adapter: board private structure to initialize
1330  *
1331  * We allocate one q_vector per queue interrupt.  If allocation fails we
1332  * return -ENOMEM.
1333  **/
1334 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1335 {
1336         int q_idx = 0, num_q_vectors;
1337         struct iavf_q_vector *q_vector;
1338 
1339         num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1340         adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1341                                      GFP_KERNEL);
1342         if (!adapter->q_vectors)
1343                 return -ENOMEM;
1344 
1345         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1346                 q_vector = &adapter->q_vectors[q_idx];
1347                 q_vector->adapter = adapter;
1348                 q_vector->vsi = &adapter->vsi;
1349                 q_vector->v_idx = q_idx;
1350                 q_vector->reg_idx = q_idx;
1351                 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1352                 netif_napi_add(adapter->netdev, &q_vector->napi,
1353                                iavf_napi_poll, NAPI_POLL_WEIGHT);
1354         }
1355 
1356         return 0;
1357 }
1358 
1359 /**
1360  * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1361  * @adapter: board private structure to initialize
1362  *
1363  * This function frees the memory allocated to the q_vectors.  In addition if
1364  * NAPI is enabled it will delete any references to the NAPI struct prior
1365  * to freeing the q_vector.
1366  **/
1367 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1368 {
1369         int q_idx, num_q_vectors;
1370         int napi_vectors;
1371 
1372         if (!adapter->q_vectors)
1373                 return;
1374 
1375         num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1376         napi_vectors = adapter->num_active_queues;
1377 
1378         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1379                 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1380 
1381                 if (q_idx < napi_vectors)
1382                         netif_napi_del(&q_vector->napi);
1383         }
1384         kfree(adapter->q_vectors);
1385         adapter->q_vectors = NULL;
1386 }
1387 
1388 /**
1389  * iavf_reset_interrupt_capability - Reset MSIX setup
1390  * @adapter: board private structure
1391  *
1392  **/
1393 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1394 {
1395         if (!adapter->msix_entries)
1396                 return;
1397 
1398         pci_disable_msix(adapter->pdev);
1399         kfree(adapter->msix_entries);
1400         adapter->msix_entries = NULL;
1401 }
1402 
1403 /**
1404  * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1405  * @adapter: board private structure to initialize
1406  *
1407  **/
1408 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1409 {
1410         int err;
1411 
1412         err = iavf_alloc_queues(adapter);
1413         if (err) {
1414                 dev_err(&adapter->pdev->dev,
1415                         "Unable to allocate memory for queues\n");
1416                 goto err_alloc_queues;
1417         }
1418 
1419         rtnl_lock();
1420         err = iavf_set_interrupt_capability(adapter);
1421         rtnl_unlock();
1422         if (err) {
1423                 dev_err(&adapter->pdev->dev,
1424                         "Unable to setup interrupt capabilities\n");
1425                 goto err_set_interrupt;
1426         }
1427 
1428         err = iavf_alloc_q_vectors(adapter);
1429         if (err) {
1430                 dev_err(&adapter->pdev->dev,
1431                         "Unable to allocate memory for queue vectors\n");
1432                 goto err_alloc_q_vectors;
1433         }
1434 
1435         /* If we've made it so far while ADq flag being ON, then we haven't
1436          * bailed out anywhere in middle. And ADq isn't just enabled but actual
1437          * resources have been allocated in the reset path.
1438          * Now we can truly claim that ADq is enabled.
1439          */
1440         if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1441             adapter->num_tc)
1442                 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1443                          adapter->num_tc);
1444 
1445         dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1446                  (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1447                  adapter->num_active_queues);
1448 
1449         return 0;
1450 err_alloc_q_vectors:
1451         iavf_reset_interrupt_capability(adapter);
1452 err_set_interrupt:
1453         iavf_free_queues(adapter);
1454 err_alloc_queues:
1455         return err;
1456 }
1457 
1458 /**
1459  * iavf_free_rss - Free memory used by RSS structs
1460  * @adapter: board private structure
1461  **/
1462 static void iavf_free_rss(struct iavf_adapter *adapter)
1463 {
1464         kfree(adapter->rss_key);
1465         adapter->rss_key = NULL;
1466 
1467         kfree(adapter->rss_lut);
1468         adapter->rss_lut = NULL;
1469 }
1470 
1471 /**
1472  * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1473  * @adapter: board private structure
1474  *
1475  * Returns 0 on success, negative on failure
1476  **/
1477 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1478 {
1479         struct net_device *netdev = adapter->netdev;
1480         int err;
1481 
1482         if (netif_running(netdev))
1483                 iavf_free_traffic_irqs(adapter);
1484         iavf_free_misc_irq(adapter);
1485         iavf_reset_interrupt_capability(adapter);
1486         iavf_free_q_vectors(adapter);
1487         iavf_free_queues(adapter);
1488 
1489         err =  iavf_init_interrupt_scheme(adapter);
1490         if (err)
1491                 goto err;
1492 
1493         netif_tx_stop_all_queues(netdev);
1494 
1495         err = iavf_request_misc_irq(adapter);
1496         if (err)
1497                 goto err;
1498 
1499         set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1500 
1501         iavf_map_rings_to_vectors(adapter);
1502 
1503         if (RSS_AQ(adapter))
1504                 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1505         else
1506                 err = iavf_init_rss(adapter);
1507 err:
1508         return err;
1509 }
1510 
1511 /**
1512  * iavf_process_aq_command - process aq_required flags
1513  * and sends aq command
1514  * @adapter: pointer to iavf adapter structure
1515  *
1516  * Returns 0 on success
1517  * Returns error code if no command was sent
1518  * or error code if the command failed.
1519  **/
1520 static int iavf_process_aq_command(struct iavf_adapter *adapter)
1521 {
1522         if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1523                 return iavf_send_vf_config_msg(adapter);
1524         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1525                 iavf_disable_queues(adapter);
1526                 return 0;
1527         }
1528 
1529         if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1530                 iavf_map_queues(adapter);
1531                 return 0;
1532         }
1533 
1534         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1535                 iavf_add_ether_addrs(adapter);
1536                 return 0;
1537         }
1538 
1539         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1540                 iavf_add_vlans(adapter);
1541                 return 0;
1542         }
1543 
1544         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1545                 iavf_del_ether_addrs(adapter);
1546                 return 0;
1547         }
1548 
1549         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1550                 iavf_del_vlans(adapter);
1551                 return 0;
1552         }
1553 
1554         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1555                 iavf_enable_vlan_stripping(adapter);
1556                 return 0;
1557         }
1558 
1559         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1560                 iavf_disable_vlan_stripping(adapter);
1561                 return 0;
1562         }
1563 
1564         if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1565                 iavf_configure_queues(adapter);
1566                 return 0;
1567         }
1568 
1569         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1570                 iavf_enable_queues(adapter);
1571                 return 0;
1572         }
1573 
1574         if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1575                 /* This message goes straight to the firmware, not the
1576                  * PF, so we don't have to set current_op as we will
1577                  * not get a response through the ARQ.
1578                  */
1579                 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1580                 return 0;
1581         }
1582         if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1583                 iavf_get_hena(adapter);
1584                 return 0;
1585         }
1586         if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1587                 iavf_set_hena(adapter);
1588                 return 0;
1589         }
1590         if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1591                 iavf_set_rss_key(adapter);
1592                 return 0;
1593         }
1594         if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1595                 iavf_set_rss_lut(adapter);
1596                 return 0;
1597         }
1598 
1599         if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1600                 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1601                                        FLAG_VF_MULTICAST_PROMISC);
1602                 return 0;
1603         }
1604 
1605         if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1606                 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1607                 return 0;
1608         }
1609 
1610         if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) &&
1611             (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1612                 iavf_set_promiscuous(adapter, 0);
1613                 return 0;
1614         }
1615 
1616         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1617                 iavf_enable_channels(adapter);
1618                 return 0;
1619         }
1620 
1621         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1622                 iavf_disable_channels(adapter);
1623                 return 0;
1624         }
1625         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1626                 iavf_add_cloud_filter(adapter);
1627                 return 0;
1628         }
1629 
1630         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1631                 iavf_del_cloud_filter(adapter);
1632                 return 0;
1633         }
1634         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1635                 iavf_del_cloud_filter(adapter);
1636                 return 0;
1637         }
1638         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1639                 iavf_add_cloud_filter(adapter);
1640                 return 0;
1641         }
1642         return -EAGAIN;
1643 }
1644 
1645 /**
1646  * iavf_startup - first step of driver startup
1647  * @adapter: board private structure
1648  *
1649  * Function process __IAVF_STARTUP driver state.
1650  * When success the state is changed to __IAVF_INIT_VERSION_CHECK
1651  * when fails it returns -EAGAIN
1652  **/
1653 static int iavf_startup(struct iavf_adapter *adapter)
1654 {
1655         struct pci_dev *pdev = adapter->pdev;
1656         struct iavf_hw *hw = &adapter->hw;
1657         int err;
1658 
1659         WARN_ON(adapter->state != __IAVF_STARTUP);
1660 
1661         /* driver loaded, probe complete */
1662         adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1663         adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1664         err = iavf_set_mac_type(hw);
1665         if (err) {
1666                 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
1667                 goto err;
1668         }
1669 
1670         err = iavf_check_reset_complete(hw);
1671         if (err) {
1672                 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
1673                          err);
1674                 goto err;
1675         }
1676         hw->aq.num_arq_entries = IAVF_AQ_LEN;
1677         hw->aq.num_asq_entries = IAVF_AQ_LEN;
1678         hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1679         hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1680 
1681         err = iavf_init_adminq(hw);
1682         if (err) {
1683                 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
1684                 goto err;
1685         }
1686         err = iavf_send_api_ver(adapter);
1687         if (err) {
1688                 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
1689                 iavf_shutdown_adminq(hw);
1690                 goto err;
1691         }
1692         adapter->state = __IAVF_INIT_VERSION_CHECK;
1693 err:
1694         return err;
1695 }
1696 
1697 /**
1698  * iavf_init_version_check - second step of driver startup
1699  * @adapter: board private structure
1700  *
1701  * Function process __IAVF_INIT_VERSION_CHECK driver state.
1702  * When success the state is changed to __IAVF_INIT_GET_RESOURCES
1703  * when fails it returns -EAGAIN
1704  **/
1705 static int iavf_init_version_check(struct iavf_adapter *adapter)
1706 {
1707         struct pci_dev *pdev = adapter->pdev;
1708         struct iavf_hw *hw = &adapter->hw;
1709         int err = -EAGAIN;
1710 
1711         WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
1712 
1713         if (!iavf_asq_done(hw)) {
1714                 dev_err(&pdev->dev, "Admin queue command never completed\n");
1715                 iavf_shutdown_adminq(hw);
1716                 adapter->state = __IAVF_STARTUP;
1717                 goto err;
1718         }
1719 
1720         /* aq msg sent, awaiting reply */
1721         err = iavf_verify_api_ver(adapter);
1722         if (err) {
1723                 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
1724                         err = iavf_send_api_ver(adapter);
1725                 else
1726                         dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
1727                                 adapter->pf_version.major,
1728                                 adapter->pf_version.minor,
1729                                 VIRTCHNL_VERSION_MAJOR,
1730                                 VIRTCHNL_VERSION_MINOR);
1731                 goto err;
1732         }
1733         err = iavf_send_vf_config_msg(adapter);
1734         if (err) {
1735                 dev_err(&pdev->dev, "Unable to send config request (%d)\n",
1736                         err);
1737                 goto err;
1738         }
1739         adapter->state = __IAVF_INIT_GET_RESOURCES;
1740 
1741 err:
1742         return err;
1743 }
1744 
1745 /**
1746  * iavf_init_get_resources - third step of driver startup
1747  * @adapter: board private structure
1748  *
1749  * Function process __IAVF_INIT_GET_RESOURCES driver state and
1750  * finishes driver initialization procedure.
1751  * When success the state is changed to __IAVF_DOWN
1752  * when fails it returns -EAGAIN
1753  **/
1754 static int iavf_init_get_resources(struct iavf_adapter *adapter)
1755 {
1756         struct net_device *netdev = adapter->netdev;
1757         struct pci_dev *pdev = adapter->pdev;
1758         struct iavf_hw *hw = &adapter->hw;
1759         int err = 0, bufsz;
1760 
1761         WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
1762         /* aq msg sent, awaiting reply */
1763         if (!adapter->vf_res) {
1764                 bufsz = sizeof(struct virtchnl_vf_resource) +
1765                         (IAVF_MAX_VF_VSI *
1766                         sizeof(struct virtchnl_vsi_resource));
1767                 adapter->vf_res = kzalloc(bufsz, GFP_KERNEL);
1768                 if (!adapter->vf_res)
1769                         goto err;
1770         }
1771         err = iavf_get_vf_config(adapter);
1772         if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
1773                 err = iavf_send_vf_config_msg(adapter);
1774                 goto err;
1775         } else if (err == IAVF_ERR_PARAM) {
1776                 /* We only get ERR_PARAM if the device is in a very bad
1777                  * state or if we've been disabled for previous bad
1778                  * behavior. Either way, we're done now.
1779                  */
1780                 iavf_shutdown_adminq(hw);
1781                 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
1782                 return 0;
1783         }
1784         if (err) {
1785                 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
1786                 goto err_alloc;
1787         }
1788 
1789         if (iavf_process_config(adapter))
1790                 goto err_alloc;
1791         adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1792 
1793         adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
1794 
1795         netdev->netdev_ops = &iavf_netdev_ops;
1796         iavf_set_ethtool_ops(netdev);
1797         netdev->watchdog_timeo = 5 * HZ;
1798 
1799         /* MTU range: 68 - 9710 */
1800         netdev->min_mtu = ETH_MIN_MTU;
1801         netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
1802 
1803         if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
1804                 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
1805                          adapter->hw.mac.addr);
1806                 eth_hw_addr_random(netdev);
1807                 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
1808         } else {
1809                 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
1810                 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
1811         }
1812 
1813         adapter->tx_desc_count = IAVF_DEFAULT_TXD;
1814         adapter->rx_desc_count = IAVF_DEFAULT_RXD;
1815         err = iavf_init_interrupt_scheme(adapter);
1816         if (err)
1817                 goto err_sw_init;
1818         iavf_map_rings_to_vectors(adapter);
1819         if (adapter->vf_res->vf_cap_flags &
1820                 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1821                 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
1822 
1823         err = iavf_request_misc_irq(adapter);
1824         if (err)
1825                 goto err_sw_init;
1826 
1827         netif_carrier_off(netdev);
1828         adapter->link_up = false;
1829 
1830         /* set the semaphore to prevent any callbacks after device registration
1831          * up to time when state of driver will be set to __IAVF_DOWN
1832          */
1833         rtnl_lock();
1834         if (!adapter->netdev_registered) {
1835                 err = register_netdevice(netdev);
1836                 if (err) {
1837                         rtnl_unlock();
1838                         goto err_register;
1839                 }
1840         }
1841 
1842         adapter->netdev_registered = true;
1843 
1844         netif_tx_stop_all_queues(netdev);
1845         if (CLIENT_ALLOWED(adapter)) {
1846                 err = iavf_lan_add_device(adapter);
1847                 if (err) {
1848                         rtnl_unlock();
1849                         dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
1850                                  err);
1851                 }
1852         }
1853         dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
1854         if (netdev->features & NETIF_F_GRO)
1855                 dev_info(&pdev->dev, "GRO is enabled\n");
1856 
1857         adapter->state = __IAVF_DOWN;
1858         set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1859         rtnl_unlock();
1860 
1861         iavf_misc_irq_enable(adapter);
1862         wake_up(&adapter->down_waitqueue);
1863 
1864         adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
1865         adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
1866         if (!adapter->rss_key || !adapter->rss_lut)
1867                 goto err_mem;
1868         if (RSS_AQ(adapter))
1869                 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1870         else
1871                 iavf_init_rss(adapter);
1872 
1873         return err;
1874 err_mem:
1875         iavf_free_rss(adapter);
1876 err_register:
1877         iavf_free_misc_irq(adapter);
1878 err_sw_init:
1879         iavf_reset_interrupt_capability(adapter);
1880 err_alloc:
1881         kfree(adapter->vf_res);
1882         adapter->vf_res = NULL;
1883 err:
1884         return err;
1885 }
1886 
1887 /**
1888  * iavf_watchdog_task - Periodic call-back task
1889  * @work: pointer to work_struct
1890  **/
1891 static void iavf_watchdog_task(struct work_struct *work)
1892 {
1893         struct iavf_adapter *adapter = container_of(work,
1894                                                     struct iavf_adapter,
1895                                                     watchdog_task.work);
1896         struct iavf_hw *hw = &adapter->hw;
1897         u32 reg_val;
1898 
1899         if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section))
1900                 goto restart_watchdog;
1901 
1902         if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1903                 adapter->state = __IAVF_COMM_FAILED;
1904 
1905         switch (adapter->state) {
1906         case __IAVF_COMM_FAILED:
1907                 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
1908                           IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1909                 if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
1910                     reg_val == VIRTCHNL_VFR_COMPLETED) {
1911                         /* A chance for redemption! */
1912                         dev_err(&adapter->pdev->dev,
1913                                 "Hardware came out of reset. Attempting reinit.\n");
1914                         adapter->state = __IAVF_STARTUP;
1915                         adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1916                         queue_delayed_work(iavf_wq, &adapter->init_task, 10);
1917                         clear_bit(__IAVF_IN_CRITICAL_TASK,
1918                                   &adapter->crit_section);
1919                         /* Don't reschedule the watchdog, since we've restarted
1920                          * the init task. When init_task contacts the PF and
1921                          * gets everything set up again, it'll restart the
1922                          * watchdog for us. Down, boy. Sit. Stay. Woof.
1923                          */
1924                         return;
1925                 }
1926                 adapter->aq_required = 0;
1927                 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1928                 clear_bit(__IAVF_IN_CRITICAL_TASK,
1929                           &adapter->crit_section);
1930                 queue_delayed_work(iavf_wq,
1931                                    &adapter->watchdog_task,
1932                                    msecs_to_jiffies(10));
1933                 goto watchdog_done;
1934         case __IAVF_RESETTING:
1935                 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1936                 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1937                 return;
1938         case __IAVF_DOWN:
1939         case __IAVF_DOWN_PENDING:
1940         case __IAVF_TESTING:
1941         case __IAVF_RUNNING:
1942                 if (adapter->current_op) {
1943                         if (!iavf_asq_done(hw)) {
1944                                 dev_dbg(&adapter->pdev->dev,
1945                                         "Admin queue timeout\n");
1946                                 iavf_send_api_ver(adapter);
1947                         }
1948                 } else {
1949                         if (!iavf_process_aq_command(adapter) &&
1950                             adapter->state == __IAVF_RUNNING)
1951                                 iavf_request_stats(adapter);
1952                 }
1953                 break;
1954         case __IAVF_REMOVE:
1955                 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1956                 return;
1957         default:
1958                 goto restart_watchdog;
1959         }
1960 
1961                 /* check for hw reset */
1962         reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
1963         if (!reg_val) {
1964                 adapter->state = __IAVF_RESETTING;
1965                 adapter->flags |= IAVF_FLAG_RESET_PENDING;
1966                 adapter->aq_required = 0;
1967                 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1968                 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
1969                 queue_work(iavf_wq, &adapter->reset_task);
1970                 goto watchdog_done;
1971         }
1972 
1973         schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
1974 watchdog_done:
1975         if (adapter->state == __IAVF_RUNNING ||
1976             adapter->state == __IAVF_COMM_FAILED)
1977                 iavf_detect_recover_hung(&adapter->vsi);
1978         clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1979 restart_watchdog:
1980         if (adapter->aq_required)
1981                 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
1982                                    msecs_to_jiffies(20));
1983         else
1984                 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1985         queue_work(iavf_wq, &adapter->adminq_task);
1986 }
1987 
1988 static void iavf_disable_vf(struct iavf_adapter *adapter)
1989 {
1990         struct iavf_mac_filter *f, *ftmp;
1991         struct iavf_vlan_filter *fv, *fvtmp;
1992         struct iavf_cloud_filter *cf, *cftmp;
1993 
1994         adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
1995 
1996         /* We don't use netif_running() because it may be true prior to
1997          * ndo_open() returning, so we can't assume it means all our open
1998          * tasks have finished, since we're not holding the rtnl_lock here.
1999          */
2000         if (adapter->state == __IAVF_RUNNING) {
2001                 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2002                 netif_carrier_off(adapter->netdev);
2003                 netif_tx_disable(adapter->netdev);
2004                 adapter->link_up = false;
2005                 iavf_napi_disable_all(adapter);
2006                 iavf_irq_disable(adapter);
2007                 iavf_free_traffic_irqs(adapter);
2008                 iavf_free_all_tx_resources(adapter);
2009                 iavf_free_all_rx_resources(adapter);
2010         }
2011 
2012         spin_lock_bh(&adapter->mac_vlan_list_lock);
2013 
2014         /* Delete all of the filters */
2015         list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2016                 list_del(&f->list);
2017                 kfree(f);
2018         }
2019 
2020         list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2021                 list_del(&fv->list);
2022                 kfree(fv);
2023         }
2024 
2025         spin_unlock_bh(&adapter->mac_vlan_list_lock);
2026 
2027         spin_lock_bh(&adapter->cloud_filter_list_lock);
2028         list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2029                 list_del(&cf->list);
2030                 kfree(cf);
2031                 adapter->num_cloud_filters--;
2032         }
2033         spin_unlock_bh(&adapter->cloud_filter_list_lock);
2034 
2035         iavf_free_misc_irq(adapter);
2036         iavf_reset_interrupt_capability(adapter);
2037         iavf_free_queues(adapter);
2038         iavf_free_q_vectors(adapter);
2039         kfree(adapter->vf_res);
2040         iavf_shutdown_adminq(&adapter->hw);
2041         adapter->netdev->flags &= ~IFF_UP;
2042         clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2043         adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2044         adapter->state = __IAVF_DOWN;
2045         wake_up(&adapter->down_waitqueue);
2046         dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2047 }
2048 
2049 #define IAVF_RESET_WAIT_MS 10
2050 #define IAVF_RESET_WAIT_COUNT 500
2051 /**
2052  * iavf_reset_task - Call-back task to handle hardware reset
2053  * @work: pointer to work_struct
2054  *
2055  * During reset we need to shut down and reinitialize the admin queue
2056  * before we can use it to communicate with the PF again. We also clear
2057  * and reinit the rings because that context is lost as well.
2058  **/
2059 static void iavf_reset_task(struct work_struct *work)
2060 {
2061         struct iavf_adapter *adapter = container_of(work,
2062                                                       struct iavf_adapter,
2063                                                       reset_task);
2064         struct virtchnl_vf_resource *vfres = adapter->vf_res;
2065         struct net_device *netdev = adapter->netdev;
2066         struct iavf_hw *hw = &adapter->hw;
2067         struct iavf_mac_filter *f, *ftmp;
2068         struct iavf_vlan_filter *vlf;
2069         struct iavf_cloud_filter *cf;
2070         u32 reg_val;
2071         int i = 0, err;
2072         bool running;
2073 
2074         /* When device is being removed it doesn't make sense to run the reset
2075          * task, just return in such a case.
2076          */
2077         if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2078                 return;
2079 
2080         while (test_and_set_bit(__IAVF_IN_CLIENT_TASK,
2081                                 &adapter->crit_section))
2082                 usleep_range(500, 1000);
2083         if (CLIENT_ENABLED(adapter)) {
2084                 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2085                                     IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2086                                     IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2087                                     IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2088                 cancel_delayed_work_sync(&adapter->client_task);
2089                 iavf_notify_client_close(&adapter->vsi, true);
2090         }
2091         iavf_misc_irq_disable(adapter);
2092         if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2093                 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2094                 /* Restart the AQ here. If we have been reset but didn't
2095                  * detect it, or if the PF had to reinit, our AQ will be hosed.
2096                  */
2097                 iavf_shutdown_adminq(hw);
2098                 iavf_init_adminq(hw);
2099                 iavf_request_reset(adapter);
2100         }
2101         adapter->flags |= IAVF_FLAG_RESET_PENDING;
2102 
2103         /* poll until we see the reset actually happen */
2104         for (i = 0; i < IAVF_RESET_WAIT_COUNT; i++) {
2105                 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2106                           IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2107                 if (!reg_val)
2108                         break;
2109                 usleep_range(5000, 10000);
2110         }
2111         if (i == IAVF_RESET_WAIT_COUNT) {
2112                 dev_info(&adapter->pdev->dev, "Never saw reset\n");
2113                 goto continue_reset; /* act like the reset happened */
2114         }
2115 
2116         /* wait until the reset is complete and the PF is responding to us */
2117         for (i = 0; i < IAVF_RESET_WAIT_COUNT; i++) {
2118                 /* sleep first to make sure a minimum wait time is met */
2119                 msleep(IAVF_RESET_WAIT_MS);
2120 
2121                 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2122                           IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2123                 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2124                         break;
2125         }
2126 
2127         pci_set_master(adapter->pdev);
2128 
2129         if (i == IAVF_RESET_WAIT_COUNT) {
2130                 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2131                         reg_val);
2132                 iavf_disable_vf(adapter);
2133                 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2134                 return; /* Do not attempt to reinit. It's dead, Jim. */
2135         }
2136 
2137 continue_reset:
2138         /* We don't use netif_running() because it may be true prior to
2139          * ndo_open() returning, so we can't assume it means all our open
2140          * tasks have finished, since we're not holding the rtnl_lock here.
2141          */
2142         running = ((adapter->state == __IAVF_RUNNING) ||
2143                    (adapter->state == __IAVF_RESETTING));
2144 
2145         if (running) {
2146                 netif_carrier_off(netdev);
2147                 netif_tx_stop_all_queues(netdev);
2148                 adapter->link_up = false;
2149                 iavf_napi_disable_all(adapter);
2150         }
2151         iavf_irq_disable(adapter);
2152 
2153         adapter->state = __IAVF_RESETTING;
2154         adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2155 
2156         /* free the Tx/Rx rings and descriptors, might be better to just
2157          * re-use them sometime in the future
2158          */
2159         iavf_free_all_rx_resources(adapter);
2160         iavf_free_all_tx_resources(adapter);
2161 
2162         adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2163         /* kill and reinit the admin queue */
2164         iavf_shutdown_adminq(hw);
2165         adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2166         err = iavf_init_adminq(hw);
2167         if (err)
2168                 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2169                          err);
2170         adapter->aq_required = 0;
2171 
2172         if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2173                 err = iavf_reinit_interrupt_scheme(adapter);
2174                 if (err)
2175                         goto reset_err;
2176         }
2177 
2178         adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2179         adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2180 
2181         spin_lock_bh(&adapter->mac_vlan_list_lock);
2182 
2183         /* Delete filter for the current MAC address, it could have
2184          * been changed by the PF via administratively set MAC.
2185          * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
2186          */
2187         list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2188                 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
2189                         list_del(&f->list);
2190                         kfree(f);
2191                 }
2192         }
2193         /* re-add all MAC filters */
2194         list_for_each_entry(f, &adapter->mac_filter_list, list) {
2195                 f->add = true;
2196         }
2197         /* re-add all VLAN filters */
2198         list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
2199                 vlf->add = true;
2200         }
2201 
2202         spin_unlock_bh(&adapter->mac_vlan_list_lock);
2203 
2204         /* check if TCs are running and re-add all cloud filters */
2205         spin_lock_bh(&adapter->cloud_filter_list_lock);
2206         if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2207             adapter->num_tc) {
2208                 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2209                         cf->add = true;
2210                 }
2211         }
2212         spin_unlock_bh(&adapter->cloud_filter_list_lock);
2213 
2214         adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2215         adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
2216         adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2217         iavf_misc_irq_enable(adapter);
2218 
2219         mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2220 
2221         /* We were running when the reset started, so we need to restore some
2222          * state here.
2223          */
2224         if (running) {
2225                 /* allocate transmit descriptors */
2226                 err = iavf_setup_all_tx_resources(adapter);
2227                 if (err)
2228                         goto reset_err;
2229 
2230                 /* allocate receive descriptors */
2231                 err = iavf_setup_all_rx_resources(adapter);
2232                 if (err)
2233                         goto reset_err;
2234 
2235                 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2236                         err = iavf_request_traffic_irqs(adapter, netdev->name);
2237                         if (err)
2238                                 goto reset_err;
2239 
2240                         adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2241                 }
2242 
2243                 iavf_configure(adapter);
2244 
2245                 iavf_up_complete(adapter);
2246 
2247                 iavf_irq_enable(adapter, true);
2248         } else {
2249                 adapter->state = __IAVF_DOWN;
2250                 wake_up(&adapter->down_waitqueue);
2251         }
2252         clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2253         clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2254 
2255         return;
2256 reset_err:
2257         clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2258         clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2259         dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2260         iavf_close(netdev);
2261 }
2262 
2263 /**
2264  * iavf_adminq_task - worker thread to clean the admin queue
2265  * @work: pointer to work_struct containing our data
2266  **/
2267 static void iavf_adminq_task(struct work_struct *work)
2268 {
2269         struct iavf_adapter *adapter =
2270                 container_of(work, struct iavf_adapter, adminq_task);
2271         struct iavf_hw *hw = &adapter->hw;
2272         struct iavf_arq_event_info event;
2273         enum virtchnl_ops v_op;
2274         enum iavf_status ret, v_ret;
2275         u32 val, oldval;
2276         u16 pending;
2277 
2278         if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2279                 goto out;
2280 
2281         event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2282         event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2283         if (!event.msg_buf)
2284                 goto out;
2285 
2286         do {
2287                 ret = iavf_clean_arq_element(hw, &event, &pending);
2288                 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2289                 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2290 
2291                 if (ret || !v_op)
2292                         break; /* No event to process or error cleaning ARQ */
2293 
2294                 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2295                                          event.msg_len);
2296                 if (pending != 0)
2297                         memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2298         } while (pending);
2299 
2300         if ((adapter->flags &
2301              (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2302             adapter->state == __IAVF_RESETTING)
2303                 goto freedom;
2304 
2305         /* check for error indications */
2306         val = rd32(hw, hw->aq.arq.len);
2307         if (val == 0xdeadbeef) /* indicates device in reset */
2308                 goto freedom;
2309         oldval = val;
2310         if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2311                 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2312                 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2313         }
2314         if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2315                 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2316                 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2317         }
2318         if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2319                 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2320                 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2321         }
2322         if (oldval != val)
2323                 wr32(hw, hw->aq.arq.len, val);
2324 
2325         val = rd32(hw, hw->aq.asq.len);
2326         oldval = val;
2327         if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2328                 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2329                 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2330         }
2331         if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2332                 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2333                 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2334         }
2335         if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2336                 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2337                 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2338         }
2339         if (oldval != val)
2340                 wr32(hw, hw->aq.asq.len, val);
2341 
2342 freedom:
2343         kfree(event.msg_buf);
2344 out:
2345         /* re-enable Admin queue interrupt cause */
2346         iavf_misc_irq_enable(adapter);
2347 }
2348 
2349 /**
2350  * iavf_client_task - worker thread to perform client work
2351  * @work: pointer to work_struct containing our data
2352  *
2353  * This task handles client interactions. Because client calls can be
2354  * reentrant, we can't handle them in the watchdog.
2355  **/
2356 static void iavf_client_task(struct work_struct *work)
2357 {
2358         struct iavf_adapter *adapter =
2359                 container_of(work, struct iavf_adapter, client_task.work);
2360 
2361         /* If we can't get the client bit, just give up. We'll be rescheduled
2362          * later.
2363          */
2364 
2365         if (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section))
2366                 return;
2367 
2368         if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2369                 iavf_client_subtask(adapter);
2370                 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2371                 goto out;
2372         }
2373         if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2374                 iavf_notify_client_l2_params(&adapter->vsi);
2375                 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2376                 goto out;
2377         }
2378         if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2379                 iavf_notify_client_close(&adapter->vsi, false);
2380                 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2381                 goto out;
2382         }
2383         if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2384                 iavf_notify_client_open(&adapter->vsi);
2385                 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2386         }
2387 out:
2388         clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2389 }
2390 
2391 /**
2392  * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2393  * @adapter: board private structure
2394  *
2395  * Free all transmit software resources
2396  **/
2397 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2398 {
2399         int i;
2400 
2401         if (!adapter->tx_rings)
2402                 return;
2403 
2404         for (i = 0; i < adapter->num_active_queues; i++)
2405                 if (adapter->tx_rings[i].desc)
2406                         iavf_free_tx_resources(&adapter->tx_rings[i]);
2407 }
2408 
2409 /**
2410  * iavf_setup_all_tx_resources - allocate all queues Tx resources
2411  * @adapter: board private structure
2412  *
2413  * If this function returns with an error, then it's possible one or
2414  * more of the rings is populated (while the rest are not).  It is the
2415  * callers duty to clean those orphaned rings.
2416  *
2417  * Return 0 on success, negative on failure
2418  **/
2419 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2420 {
2421         int i, err = 0;
2422 
2423         for (i = 0; i < adapter->num_active_queues; i++) {
2424                 adapter->tx_rings[i].count = adapter->tx_desc_count;
2425                 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2426                 if (!err)
2427                         continue;
2428                 dev_err(&adapter->pdev->dev,
2429                         "Allocation for Tx Queue %u failed\n", i);
2430                 break;
2431         }
2432 
2433         return err;
2434 }
2435 
2436 /**
2437  * iavf_setup_all_rx_resources - allocate all queues Rx resources
2438  * @adapter: board private structure
2439  *
2440  * If this function returns with an error, then it's possible one or
2441  * more of the rings is populated (while the rest are not).  It is the
2442  * callers duty to clean those orphaned rings.
2443  *
2444  * Return 0 on success, negative on failure
2445  **/
2446 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2447 {
2448         int i, err = 0;
2449 
2450         for (i = 0; i < adapter->num_active_queues; i++) {
2451                 adapter->rx_rings[i].count = adapter->rx_desc_count;
2452                 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
2453                 if (!err)
2454                         continue;
2455                 dev_err(&adapter->pdev->dev,
2456                         "Allocation for Rx Queue %u failed\n", i);
2457                 break;
2458         }
2459         return err;
2460 }
2461 
2462 /**
2463  * iavf_free_all_rx_resources - Free Rx Resources for All Queues
2464  * @adapter: board private structure
2465  *
2466  * Free all receive software resources
2467  **/
2468 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
2469 {
2470         int i;
2471 
2472         if (!adapter->rx_rings)
2473                 return;
2474 
2475         for (i = 0; i < adapter->num_active_queues; i++)
2476                 if (adapter->rx_rings[i].desc)
2477                         iavf_free_rx_resources(&adapter->rx_rings[i]);
2478 }
2479 
2480 /**
2481  * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
2482  * @adapter: board private structure
2483  * @max_tx_rate: max Tx bw for a tc
2484  **/
2485 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
2486                                       u64 max_tx_rate)
2487 {
2488         int speed = 0, ret = 0;
2489 
2490         switch (adapter->link_speed) {
2491         case IAVF_LINK_SPEED_40GB:
2492                 speed = 40000;
2493                 break;
2494         case IAVF_LINK_SPEED_25GB:
2495                 speed = 25000;
2496                 break;
2497         case IAVF_LINK_SPEED_20GB:
2498                 speed = 20000;
2499                 break;
2500         case IAVF_LINK_SPEED_10GB:
2501                 speed = 10000;
2502                 break;
2503         case IAVF_LINK_SPEED_1GB:
2504                 speed = 1000;
2505                 break;
2506         case IAVF_LINK_SPEED_100MB:
2507                 speed = 100;
2508                 break;
2509         default:
2510                 break;
2511         }
2512 
2513         if (max_tx_rate > speed) {
2514                 dev_err(&adapter->pdev->dev,
2515                         "Invalid tx rate specified\n");
2516                 ret = -EINVAL;
2517         }
2518 
2519         return ret;
2520 }
2521 
2522 /**
2523  * iavf_validate_channel_config - validate queue mapping info
2524  * @adapter: board private structure
2525  * @mqprio_qopt: queue parameters
2526  *
2527  * This function validates if the config provided by the user to
2528  * configure queue channels is valid or not. Returns 0 on a valid
2529  * config.
2530  **/
2531 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
2532                                    struct tc_mqprio_qopt_offload *mqprio_qopt)
2533 {
2534         u64 total_max_rate = 0;
2535         int i, num_qps = 0;
2536         u64 tx_rate = 0;
2537         int ret = 0;
2538 
2539         if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
2540             mqprio_qopt->qopt.num_tc < 1)
2541                 return -EINVAL;
2542 
2543         for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
2544                 if (!mqprio_qopt->qopt.count[i] ||
2545                     mqprio_qopt->qopt.offset[i] != num_qps)
2546                         return -EINVAL;
2547                 if (mqprio_qopt->min_rate[i]) {
2548                         dev_err(&adapter->pdev->dev,
2549                                 "Invalid min tx rate (greater than 0) specified\n");
2550                         return -EINVAL;
2551                 }
2552                 /*convert to Mbps */
2553                 tx_rate = div_u64(mqprio_qopt->max_rate[i],
2554                                   IAVF_MBPS_DIVISOR);
2555                 total_max_rate += tx_rate;
2556                 num_qps += mqprio_qopt->qopt.count[i];
2557         }
2558         if (num_qps > IAVF_MAX_REQ_QUEUES)
2559                 return -EINVAL;
2560 
2561         ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
2562         return ret;
2563 }
2564 
2565 /**
2566  * iavf_del_all_cloud_filters - delete all cloud filters
2567  * on the traffic classes
2568  **/
2569 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
2570 {
2571         struct iavf_cloud_filter *cf, *cftmp;
2572 
2573         spin_lock_bh(&adapter->cloud_filter_list_lock);
2574         list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
2575                                  list) {
2576                 list_del(&cf->list);
2577                 kfree(cf);
2578                 adapter->num_cloud_filters--;
2579         }
2580         spin_unlock_bh(&adapter->cloud_filter_list_lock);
2581 }
2582 
2583 /**
2584  * __iavf_setup_tc - configure multiple traffic classes
2585  * @netdev: network interface device structure
2586  * @type_date: tc offload data
2587  *
2588  * This function processes the config information provided by the
2589  * user to configure traffic classes/queue channels and packages the
2590  * information to request the PF to setup traffic classes.
2591  *
2592  * Returns 0 on success.
2593  **/
2594 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
2595 {
2596         struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2597         struct iavf_adapter *adapter = netdev_priv(netdev);
2598         struct virtchnl_vf_resource *vfres = adapter->vf_res;
2599         u8 num_tc = 0, total_qps = 0;
2600         int ret = 0, netdev_tc = 0;
2601         u64 max_tx_rate;
2602         u16 mode;
2603         int i;
2604 
2605         num_tc = mqprio_qopt->qopt.num_tc;
2606         mode = mqprio_qopt->mode;
2607 
2608         /* delete queue_channel */
2609         if (!mqprio_qopt->qopt.hw) {
2610                 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
2611                         /* reset the tc configuration */
2612                         netdev_reset_tc(netdev);
2613                         adapter->num_tc = 0;
2614                         netif_tx_stop_all_queues(netdev);
2615                         netif_tx_disable(netdev);
2616                         iavf_del_all_cloud_filters(adapter);
2617                         adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
2618                         goto exit;
2619                 } else {
2620                         return -EINVAL;
2621                 }
2622         }
2623 
2624         /* add queue channel */
2625         if (mode == TC_MQPRIO_MODE_CHANNEL) {
2626                 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
2627                         dev_err(&adapter->pdev->dev, "ADq not supported\n");
2628                         return -EOPNOTSUPP;
2629                 }
2630                 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
2631                         dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
2632                         return -EINVAL;
2633                 }
2634 
2635                 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
2636                 if (ret)
2637                         return ret;
2638                 /* Return if same TC config is requested */
2639                 if (adapter->num_tc == num_tc)
2640                         return 0;
2641                 adapter->num_tc = num_tc;
2642 
2643                 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2644                         if (i < num_tc) {
2645                                 adapter->ch_config.ch_info[i].count =
2646                                         mqprio_qopt->qopt.count[i];
2647                                 adapter->ch_config.ch_info[i].offset =
2648                                         mqprio_qopt->qopt.offset[i];
2649                                 total_qps += mqprio_qopt->qopt.count[i];
2650                                 max_tx_rate = mqprio_qopt->max_rate[i];
2651                                 /* convert to Mbps */
2652                                 max_tx_rate = div_u64(max_tx_rate,
2653                                                       IAVF_MBPS_DIVISOR);
2654                                 adapter->ch_config.ch_info[i].max_tx_rate =
2655                                         max_tx_rate;
2656                         } else {
2657                                 adapter->ch_config.ch_info[i].count = 1;
2658                                 adapter->ch_config.ch_info[i].offset = 0;
2659                         }
2660                 }
2661                 adapter->ch_config.total_qps = total_qps;
2662                 netif_tx_stop_all_queues(netdev);
2663                 netif_tx_disable(netdev);
2664                 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
2665                 netdev_reset_tc(netdev);
2666                 /* Report the tc mapping up the stack */
2667                 netdev_set_num_tc(adapter->netdev, num_tc);
2668                 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2669                         u16 qcount = mqprio_qopt->qopt.count[i];
2670                         u16 qoffset = mqprio_qopt->qopt.offset[i];
2671 
2672                         if (i < num_tc)
2673                                 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
2674                                                     qoffset);
2675                 }
2676         }
2677 exit:
2678         return ret;
2679 }
2680 
2681 /**
2682  * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
2683  * @adapter: board private structure
2684  * @cls_flower: pointer to struct flow_cls_offload
2685  * @filter: pointer to cloud filter structure
2686  */
2687 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
2688                                  struct flow_cls_offload *f,
2689                                  struct iavf_cloud_filter *filter)
2690 {
2691         struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2692         struct flow_dissector *dissector = rule->match.dissector;
2693         u16 n_proto_mask = 0;
2694         u16 n_proto_key = 0;
2695         u8 field_flags = 0;
2696         u16 addr_type = 0;
2697         u16 n_proto = 0;
2698         int i = 0;
2699         struct virtchnl_filter *vf = &filter->f;
2700 
2701         if (dissector->used_keys &
2702             ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2703               BIT(FLOW_DISSECTOR_KEY_BASIC) |
2704               BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2705               BIT(FLOW_DISSECTOR_KEY_VLAN) |
2706               BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
2707               BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
2708               BIT(FLOW_DISSECTOR_KEY_PORTS) |
2709               BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
2710                 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
2711                         dissector->used_keys);
2712                 return -EOPNOTSUPP;
2713         }
2714 
2715         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
2716                 struct flow_match_enc_keyid match;
2717 
2718                 flow_rule_match_enc_keyid(rule, &match);
2719                 if (match.mask->keyid != 0)
2720                         field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
2721         }
2722 
2723         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2724                 struct flow_match_basic match;
2725 
2726                 flow_rule_match_basic(rule, &match);
2727                 n_proto_key = ntohs(match.key->n_proto);
2728                 n_proto_mask = ntohs(match.mask->n_proto);
2729 
2730                 if (n_proto_key == ETH_P_ALL) {
2731                         n_proto_key = 0;
2732                         n_proto_mask = 0;
2733                 }
2734                 n_proto = n_proto_key & n_proto_mask;
2735                 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
2736                         return -EINVAL;
2737                 if (n_proto == ETH_P_IPV6) {
2738                         /* specify flow type as TCP IPv6 */
2739                         vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
2740                 }
2741 
2742                 if (match.key->ip_proto != IPPROTO_TCP) {
2743                         dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
2744                         return -EINVAL;
2745                 }
2746         }
2747 
2748         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2749                 struct flow_match_eth_addrs match;
2750 
2751                 flow_rule_match_eth_addrs(rule, &match);
2752 
2753                 /* use is_broadcast and is_zero to check for all 0xf or 0 */
2754                 if (!is_zero_ether_addr(match.mask->dst)) {
2755                         if (is_broadcast_ether_addr(match.mask->dst)) {
2756                                 field_flags |= IAVF_CLOUD_FIELD_OMAC;
2757                         } else {
2758                                 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
2759                                         match.mask->dst);
2760                                 return IAVF_ERR_CONFIG;
2761                         }
2762                 }
2763 
2764                 if (!is_zero_ether_addr(match.mask->src)) {
2765                         if (is_broadcast_ether_addr(match.mask->src)) {
2766                                 field_flags |= IAVF_CLOUD_FIELD_IMAC;
2767                         } else {
2768                                 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
2769                                         match.mask->src);
2770                                 return IAVF_ERR_CONFIG;
2771                         }
2772                 }
2773 
2774                 if (!is_zero_ether_addr(match.key->dst))
2775                         if (is_valid_ether_addr(match.key->dst) ||
2776                             is_multicast_ether_addr(match.key->dst)) {
2777                                 /* set the mask if a valid dst_mac address */
2778                                 for (i = 0; i < ETH_ALEN; i++)
2779                                         vf->mask.tcp_spec.dst_mac[i] |= 0xff;
2780                                 ether_addr_copy(vf->data.tcp_spec.dst_mac,
2781                                                 match.key->dst);
2782                         }
2783 
2784                 if (!is_zero_ether_addr(match.key->src))
2785                         if (is_valid_ether_addr(match.key->src) ||
2786                             is_multicast_ether_addr(match.key->src)) {
2787                                 /* set the mask if a valid dst_mac address */
2788                                 for (i = 0; i < ETH_ALEN; i++)
2789                                         vf->mask.tcp_spec.src_mac[i] |= 0xff;
2790                                 ether_addr_copy(vf->data.tcp_spec.src_mac,
2791                                                 match.key->src);
2792                 }
2793         }
2794 
2795         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2796                 struct flow_match_vlan match;
2797 
2798                 flow_rule_match_vlan(rule, &match);
2799                 if (match.mask->vlan_id) {
2800                         if (match.mask->vlan_id == VLAN_VID_MASK) {
2801                                 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
2802                         } else {
2803                                 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
2804                                         match.mask->vlan_id);
2805                                 return IAVF_ERR_CONFIG;
2806                         }
2807                 }
2808                 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
2809                 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
2810         }
2811 
2812         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
2813                 struct flow_match_control match;
2814 
2815                 flow_rule_match_control(rule, &match);
2816                 addr_type = match.key->addr_type;
2817         }
2818 
2819         if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
2820                 struct flow_match_ipv4_addrs match;
2821 
2822                 flow_rule_match_ipv4_addrs(rule, &match);
2823                 if (match.mask->dst) {
2824                         if (match.mask->dst == cpu_to_be32(0xffffffff)) {
2825                                 field_flags |= IAVF_CLOUD_FIELD_IIP;
2826                         } else {
2827                                 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
2828                                         be32_to_cpu(match.mask->dst));
2829                                 return IAVF_ERR_CONFIG;
2830                         }
2831                 }
2832 
2833                 if (match.mask->src) {
2834                         if (match.mask->src == cpu_to_be32(0xffffffff)) {
2835                                 field_flags |= IAVF_CLOUD_FIELD_IIP;
2836                         } else {
2837                                 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
2838                                         be32_to_cpu(match.mask->dst));
2839                                 return IAVF_ERR_CONFIG;
2840                         }
2841                 }
2842 
2843                 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
2844                         dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
2845                         return IAVF_ERR_CONFIG;
2846                 }
2847                 if (match.key->dst) {
2848                         vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
2849                         vf->data.tcp_spec.dst_ip[0] = match.key->dst;
2850                 }
2851                 if (match.key->src) {
2852                         vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
2853                         vf->data.tcp_spec.src_ip[0] = match.key->src;
2854                 }
2855         }
2856 
2857         if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
2858                 struct flow_match_ipv6_addrs match;
2859 
2860                 flow_rule_match_ipv6_addrs(rule, &match);
2861 
2862                 /* validate mask, make sure it is not IPV6_ADDR_ANY */
2863                 if (ipv6_addr_any(&match.mask->dst)) {
2864                         dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
2865                                 IPV6_ADDR_ANY);
2866                         return IAVF_ERR_CONFIG;
2867                 }
2868 
2869                 /* src and dest IPv6 address should not be LOOPBACK
2870                  * (0:0:0:0:0:0:0:1) which can be represented as ::1
2871                  */
2872                 if (ipv6_addr_loopback(&match.key->dst) ||
2873                     ipv6_addr_loopback(&match.key->src)) {
2874                         dev_err(&adapter->pdev->dev,
2875                                 "ipv6 addr should not be loopback\n");
2876                         return IAVF_ERR_CONFIG;
2877                 }
2878                 if (!ipv6_addr_any(&match.mask->dst) ||
2879                     !ipv6_addr_any(&match.mask->src))
2880                         field_flags |= IAVF_CLOUD_FIELD_IIP;
2881 
2882                 for (i = 0; i < 4; i++)
2883                         vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
2884                 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
2885                        sizeof(vf->data.tcp_spec.dst_ip));
2886                 for (i = 0; i < 4; i++)
2887                         vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
2888                 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
2889                        sizeof(vf->data.tcp_spec.src_ip));
2890         }
2891         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
2892                 struct flow_match_ports match;
2893 
2894                 flow_rule_match_ports(rule, &match);
2895                 if (match.mask->src) {
2896                         if (match.mask->src == cpu_to_be16(0xffff)) {
2897                                 field_flags |= IAVF_CLOUD_FIELD_IIP;
2898                         } else {
2899                                 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
2900                                         be16_to_cpu(match.mask->src));
2901                                 return IAVF_ERR_CONFIG;
2902                         }
2903                 }
2904 
2905                 if (match.mask->dst) {
2906                         if (match.mask->dst == cpu_to_be16(0xffff)) {
2907                                 field_flags |= IAVF_CLOUD_FIELD_IIP;
2908                         } else {
2909                                 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
2910                                         be16_to_cpu(match.mask->dst));
2911                                 return IAVF_ERR_CONFIG;
2912                         }
2913                 }
2914                 if (match.key->dst) {
2915                         vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
2916                         vf->data.tcp_spec.dst_port = match.key->dst;
2917                 }
2918 
2919                 if (match.key->src) {
2920                         vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
2921                         vf->data.tcp_spec.src_port = match.key->src;
2922                 }
2923         }
2924         vf->field_flags = field_flags;
2925 
2926         return 0;
2927 }
2928 
2929 /**
2930  * iavf_handle_tclass - Forward to a traffic class on the device
2931  * @adapter: board private structure
2932  * @tc: traffic class index on the device
2933  * @filter: pointer to cloud filter structure
2934  */
2935 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
2936                               struct iavf_cloud_filter *filter)
2937 {
2938         if (tc == 0)
2939                 return 0;
2940         if (tc < adapter->num_tc) {
2941                 if (!filter->f.data.tcp_spec.dst_port) {
2942                         dev_err(&adapter->pdev->dev,
2943                                 "Specify destination port to redirect to traffic class other than TC0\n");
2944                         return -EINVAL;
2945                 }
2946         }
2947         /* redirect to a traffic class on the same device */
2948         filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
2949         filter->f.action_meta = tc;
2950         return 0;
2951 }
2952 
2953 /**
2954  * iavf_configure_clsflower - Add tc flower filters
2955  * @adapter: board private structure
2956  * @cls_flower: Pointer to struct flow_cls_offload
2957  */
2958 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
2959                                     struct flow_cls_offload *cls_flower)
2960 {
2961         int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2962         struct iavf_cloud_filter *filter = NULL;
2963         int err = -EINVAL, count = 50;
2964 
2965         if (tc < 0) {
2966                 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
2967                 return -EINVAL;
2968         }
2969 
2970         filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2971         if (!filter)
2972                 return -ENOMEM;
2973 
2974         while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
2975                                 &adapter->crit_section)) {
2976                 if (--count == 0)
2977                         goto err;
2978                 udelay(1);
2979         }
2980 
2981         filter->cookie = cls_flower->cookie;
2982 
2983         /* set the mask to all zeroes to begin with */
2984         memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
2985         /* start out with flow type and eth type IPv4 to begin with */
2986         filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
2987         err = iavf_parse_cls_flower(adapter, cls_flower, filter);
2988         if (err < 0)
2989                 goto err;
2990 
2991         err = iavf_handle_tclass(adapter, tc, filter);
2992         if (err < 0)
2993                 goto err;
2994 
2995         /* add filter to the list */
2996         spin_lock_bh(&adapter->cloud_filter_list_lock);
2997         list_add_tail(&filter->list, &adapter->cloud_filter_list);
2998         adapter->num_cloud_filters++;
2999         filter->add = true;
3000         adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3001         spin_unlock_bh(&adapter->cloud_filter_list_lock);
3002 err:
3003         if (err)
3004                 kfree(filter);
3005 
3006         clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3007         return err;
3008 }
3009 
3010 /* iavf_find_cf - Find the cloud filter in the list
3011  * @adapter: Board private structure
3012  * @cookie: filter specific cookie
3013  *
3014  * Returns ptr to the filter object or NULL. Must be called while holding the
3015  * cloud_filter_list_lock.
3016  */
3017 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3018                                               unsigned long *cookie)
3019 {
3020         struct iavf_cloud_filter *filter = NULL;
3021 
3022         if (!cookie)
3023                 return NULL;
3024 
3025         list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3026                 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3027                         return filter;
3028         }
3029         return NULL;
3030 }
3031 
3032 /**
3033  * iavf_delete_clsflower - Remove tc flower filters
3034  * @adapter: board private structure
3035  * @cls_flower: Pointer to struct flow_cls_offload
3036  */
3037 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3038                                  struct flow_cls_offload *cls_flower)
3039 {
3040         struct iavf_cloud_filter *filter = NULL;
3041         int err = 0;
3042 
3043         spin_lock_bh(&adapter->cloud_filter_list_lock);
3044         filter = iavf_find_cf(adapter, &cls_flower->cookie);
3045         if (filter) {
3046                 filter->del = true;
3047                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3048         } else {
3049                 err = -EINVAL;
3050         }
3051         spin_unlock_bh(&adapter->cloud_filter_list_lock);
3052 
3053         return err;
3054 }
3055 
3056 /**
3057  * iavf_setup_tc_cls_flower - flower classifier offloads
3058  * @netdev: net device to configure
3059  * @type_data: offload data
3060  */
3061 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3062                                     struct flow_cls_offload *cls_flower)
3063 {
3064         if (cls_flower->common.chain_index)
3065                 return -EOPNOTSUPP;
3066 
3067         switch (cls_flower->command) {
3068         case FLOW_CLS_REPLACE:
3069                 return iavf_configure_clsflower(adapter, cls_flower);
3070         case FLOW_CLS_DESTROY:
3071                 return iavf_delete_clsflower(adapter, cls_flower);
3072         case FLOW_CLS_STATS:
3073                 return -EOPNOTSUPP;
3074         default:
3075                 return -EOPNOTSUPP;
3076         }
3077 }
3078 
3079 /**
3080  * iavf_setup_tc_block_cb - block callback for tc
3081  * @type: type of offload
3082  * @type_data: offload data
3083  * @cb_priv:
3084  *
3085  * This function is the block callback for traffic classes
3086  **/
3087 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3088                                   void *cb_priv)
3089 {
3090         switch (type) {
3091         case TC_SETUP_CLSFLOWER:
3092                 return iavf_setup_tc_cls_flower(cb_priv, type_data);
3093         default:
3094                 return -EOPNOTSUPP;
3095         }
3096 }
3097 
3098 static LIST_HEAD(iavf_block_cb_list);
3099 
3100 /**
3101  * iavf_setup_tc - configure multiple traffic classes
3102  * @netdev: network interface device structure
3103  * @type: type of offload
3104  * @type_date: tc offload data
3105  *
3106  * This function is the callback to ndo_setup_tc in the
3107  * netdev_ops.
3108  *
3109  * Returns 0 on success
3110  **/
3111 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3112                          void *type_data)
3113 {
3114         struct iavf_adapter *adapter = netdev_priv(netdev);
3115 
3116         switch (type) {
3117         case TC_SETUP_QDISC_MQPRIO:
3118                 return __iavf_setup_tc(netdev, type_data);
3119         case TC_SETUP_BLOCK:
3120                 return flow_block_cb_setup_simple(type_data,
3121                                                   &iavf_block_cb_list,
3122                                                   iavf_setup_tc_block_cb,
3123                                                   adapter, adapter, true);
3124         default:
3125                 return -EOPNOTSUPP;
3126         }
3127 }
3128 
3129 /**
3130  * iavf_open - Called when a network interface is made active
3131  * @netdev: network interface device structure
3132  *
3133  * Returns 0 on success, negative value on failure
3134  *
3135  * The open entry point is called when a network interface is made
3136  * active by the system (IFF_UP).  At this point all resources needed
3137  * for transmit and receive operations are allocated, the interrupt
3138  * handler is registered with the OS, the watchdog is started,
3139  * and the stack is notified that the interface is ready.
3140  **/
3141 static int iavf_open(struct net_device *netdev)
3142 {
3143         struct iavf_adapter *adapter = netdev_priv(netdev);
3144         int err;
3145 
3146         if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3147                 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3148                 return -EIO;
3149         }
3150 
3151         while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3152                                 &adapter->crit_section))
3153                 usleep_range(500, 1000);
3154 
3155         if (adapter->state != __IAVF_DOWN) {
3156                 err = -EBUSY;
3157                 goto err_unlock;
3158         }
3159 
3160         /* allocate transmit descriptors */
3161         err = iavf_setup_all_tx_resources(adapter);
3162         if (err)
3163                 goto err_setup_tx;
3164 
3165         /* allocate receive descriptors */
3166         err = iavf_setup_all_rx_resources(adapter);
3167         if (err)
3168                 goto err_setup_rx;
3169 
3170         /* clear any pending interrupts, may auto mask */
3171         err = iavf_request_traffic_irqs(adapter, netdev->name);
3172         if (err)
3173                 goto err_req_irq;
3174 
3175         spin_lock_bh(&adapter->mac_vlan_list_lock);
3176 
3177         iavf_add_filter(adapter, adapter->hw.mac.addr);
3178 
3179         spin_unlock_bh(&adapter->mac_vlan_list_lock);
3180 
3181         iavf_configure(adapter);
3182 
3183         iavf_up_complete(adapter);
3184 
3185         iavf_irq_enable(adapter, true);
3186 
3187         clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3188 
3189         return 0;
3190 
3191 err_req_irq:
3192         iavf_down(adapter);
3193         iavf_free_traffic_irqs(adapter);
3194 err_setup_rx:
3195         iavf_free_all_rx_resources(adapter);
3196 err_setup_tx:
3197         iavf_free_all_tx_resources(adapter);
3198 err_unlock:
3199         clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3200 
3201         return err;
3202 }
3203 
3204 /**
3205  * iavf_close - Disables a network interface
3206  * @netdev: network interface device structure
3207  *
3208  * Returns 0, this is not allowed to fail
3209  *
3210  * The close entry point is called when an interface is de-activated
3211  * by the OS.  The hardware is still under the drivers control, but
3212  * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
3213  * are freed, along with all transmit and receive resources.
3214  **/
3215 static int iavf_close(struct net_device *netdev)
3216 {
3217         struct iavf_adapter *adapter = netdev_priv(netdev);
3218         int status;
3219 
3220         if (adapter->state <= __IAVF_DOWN_PENDING)
3221                 return 0;
3222 
3223         while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3224                                 &adapter->crit_section))
3225                 usleep_range(500, 1000);
3226 
3227         set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3228         if (CLIENT_ENABLED(adapter))
3229                 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3230 
3231         iavf_down(adapter);
3232         adapter->state = __IAVF_DOWN_PENDING;
3233         iavf_free_traffic_irqs(adapter);
3234 
3235         clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3236 
3237         /* We explicitly don't free resources here because the hardware is
3238          * still active and can DMA into memory. Resources are cleared in
3239          * iavf_virtchnl_completion() after we get confirmation from the PF
3240          * driver that the rings have been stopped.
3241          *
3242          * Also, we wait for state to transition to __IAVF_DOWN before
3243          * returning. State change occurs in iavf_virtchnl_completion() after
3244          * VF resources are released (which occurs after PF driver processes and
3245          * responds to admin queue commands).
3246          */
3247 
3248         status = wait_event_timeout(adapter->down_waitqueue,
3249                                     adapter->state == __IAVF_DOWN,
3250                                     msecs_to_jiffies(500));
3251         if (!status)
3252                 netdev_warn(netdev, "Device resources not yet released\n");
3253         return 0;
3254 }
3255 
3256 /**
3257  * iavf_change_mtu - Change the Maximum Transfer Unit
3258  * @netdev: network interface device structure
3259  * @new_mtu: new value for maximum frame size
3260  *
3261  * Returns 0 on success, negative on failure
3262  **/
3263 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3264 {
3265         struct iavf_adapter *adapter = netdev_priv(netdev);
3266 
3267         netdev->mtu = new_mtu;
3268         if (CLIENT_ENABLED(adapter)) {
3269                 iavf_notify_client_l2_params(&adapter->vsi);
3270                 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3271         }
3272         adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3273         queue_work(iavf_wq, &adapter->reset_task);
3274 
3275         return 0;
3276 }
3277 
3278 /**
3279  * iavf_set_features - set the netdev feature flags
3280  * @netdev: ptr to the netdev being adjusted
3281  * @features: the feature set that the stack is suggesting
3282  * Note: expects to be called while under rtnl_lock()
3283  **/
3284 static int iavf_set_features(struct net_device *netdev,
3285                              netdev_features_t features)
3286 {
3287         struct iavf_adapter *adapter = netdev_priv(netdev);
3288 
3289         /* Don't allow changing VLAN_RX flag when adapter is not capable
3290          * of VLAN offload
3291          */
3292         if (!VLAN_ALLOWED(adapter)) {
3293                 if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX)
3294                         return -EINVAL;
3295         } else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) {
3296                 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3297                         adapter->aq_required |=
3298                                 IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
3299                 else
3300                         adapter->aq_required |=
3301                                 IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
3302         }
3303 
3304         return 0;
3305 }
3306 
3307 /**
3308  * iavf_features_check - Validate encapsulated packet conforms to limits
3309  * @skb: skb buff
3310  * @dev: This physical port's netdev
3311  * @features: Offload features that the stack believes apply
3312  **/
3313 static netdev_features_t iavf_features_check(struct sk_buff *skb,
3314                                              struct net_device *dev,
3315                                              netdev_features_t features)
3316 {
3317         size_t len;
3318 
3319         /* No point in doing any of this if neither checksum nor GSO are
3320          * being requested for this frame.  We can rule out both by just
3321          * checking for CHECKSUM_PARTIAL
3322          */
3323         if (skb->ip_summed != CHECKSUM_PARTIAL)
3324                 return features;
3325 
3326         /* We cannot support GSO if the MSS is going to be less than
3327          * 64 bytes.  If it is then we need to drop support for GSO.
3328          */
3329         if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3330                 features &= ~NETIF_F_GSO_MASK;
3331 
3332         /* MACLEN can support at most 63 words */
3333         len = skb_network_header(skb) - skb->data;
3334         if (len & ~(63 * 2))
3335                 goto out_err;
3336 
3337         /* IPLEN and EIPLEN can support at most 127 dwords */
3338         len = skb_transport_header(skb) - skb_network_header(skb);
3339         if (len & ~(127 * 4))
3340                 goto out_err;
3341 
3342         if (skb->encapsulation) {
3343                 /* L4TUNLEN can support 127 words */
3344                 len = skb_inner_network_header(skb) - skb_transport_header(skb);
3345                 if (len & ~(127 * 2))
3346                         goto out_err;
3347 
3348                 /* IPLEN can support at most 127 dwords */
3349                 len = skb_inner_transport_header(skb) -
3350                       skb_inner_network_header(skb);
3351                 if (len & ~(127 * 4))
3352                         goto out_err;
3353         }
3354 
3355         /* No need to validate L4LEN as TCP is the only protocol with a
3356          * a flexible value and we support all possible values supported
3357          * by TCP, which is at most 15 dwords
3358          */
3359 
3360         return features;
3361 out_err:
3362         return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3363 }
3364 
3365 /**
3366  * iavf_fix_features - fix up the netdev feature bits
3367  * @netdev: our net device
3368  * @features: desired feature bits
3369  *
3370  * Returns fixed-up features bits
3371  **/
3372 static netdev_features_t iavf_fix_features(struct net_device *netdev,
3373                                            netdev_features_t features)
3374 {
3375         struct iavf_adapter *adapter = netdev_priv(netdev);
3376 
3377         if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
3378                 features &= ~(NETIF_F_HW_VLAN_CTAG_TX |
3379                               NETIF_F_HW_VLAN_CTAG_RX |
3380                               NETIF_F_HW_VLAN_CTAG_FILTER);
3381 
3382         return features;
3383 }
3384 
3385 static const struct net_device_ops iavf_netdev_ops = {
3386         .ndo_open               = iavf_open,
3387         .ndo_stop               = iavf_close,
3388         .ndo_start_xmit         = iavf_xmit_frame,
3389         .ndo_set_rx_mode        = iavf_set_rx_mode,
3390         .ndo_validate_addr      = eth_validate_addr,
3391         .ndo_set_mac_address    = iavf_set_mac,
3392         .ndo_change_mtu         = iavf_change_mtu,
3393         .ndo_tx_timeout         = iavf_tx_timeout,
3394         .ndo_vlan_rx_add_vid    = iavf_vlan_rx_add_vid,
3395         .ndo_vlan_rx_kill_vid   = iavf_vlan_rx_kill_vid,
3396         .ndo_features_check     = iavf_features_check,
3397         .ndo_fix_features       = iavf_fix_features,
3398         .ndo_set_features       = iavf_set_features,
3399         .ndo_setup_tc           = iavf_setup_tc,
3400 };
3401 
3402 /**
3403  * iavf_check_reset_complete - check that VF reset is complete
3404  * @hw: pointer to hw struct
3405  *
3406  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
3407  **/
3408 static int iavf_check_reset_complete(struct iavf_hw *hw)
3409 {
3410         u32 rstat;
3411         int i;
3412 
3413         for (i = 0; i < 100; i++) {
3414                 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
3415                              IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3416                 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
3417                     (rstat == VIRTCHNL_VFR_COMPLETED))
3418                         return 0;
3419                 usleep_range(10, 20);
3420         }
3421         return -EBUSY;
3422 }
3423 
3424 /**
3425  * iavf_process_config - Process the config information we got from the PF
3426  * @adapter: board private structure
3427  *
3428  * Verify that we have a valid config struct, and set up our netdev features
3429  * and our VSI struct.
3430  **/
3431 int iavf_process_config(struct iavf_adapter *adapter)
3432 {
3433         struct virtchnl_vf_resource *vfres = adapter->vf_res;
3434         int i, num_req_queues = adapter->num_req_queues;
3435         struct net_device *netdev = adapter->netdev;
3436         struct iavf_vsi *vsi = &adapter->vsi;
3437         netdev_features_t hw_enc_features;
3438         netdev_features_t hw_features;
3439 
3440         /* got VF config message back from PF, now we can parse it */
3441         for (i = 0; i < vfres->num_vsis; i++) {
3442                 if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
3443                         adapter->vsi_res = &vfres->vsi_res[i];
3444         }
3445         if (!adapter->vsi_res) {
3446                 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
3447                 return -ENODEV;
3448         }
3449 
3450         if (num_req_queues &&
3451             num_req_queues != adapter->vsi_res->num_queue_pairs) {
3452                 /* Problem.  The PF gave us fewer queues than what we had
3453                  * negotiated in our request.  Need a reset to see if we can't
3454                  * get back to a working state.
3455                  */
3456                 dev_err(&adapter->pdev->dev,
3457                         "Requested %d queues, but PF only gave us %d.\n",
3458                         num_req_queues,
3459                         adapter->vsi_res->num_queue_pairs);
3460                 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
3461                 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
3462                 iavf_schedule_reset(adapter);
3463                 return -ENODEV;
3464         }
3465         adapter->num_req_queues = 0;
3466 
3467         hw_enc_features = NETIF_F_SG                    |
3468                           NETIF_F_IP_CSUM               |
3469                           NETIF_F_IPV6_CSUM             |
3470                           NETIF_F_HIGHDMA               |
3471                           NETIF_F_SOFT_FEATURES |
3472                           NETIF_F_TSO                   |
3473                           NETIF_F_TSO_ECN               |
3474                           NETIF_F_TSO6                  |
3475                           NETIF_F_SCTP_CRC              |
3476                           NETIF_F_RXHASH                |
3477                           NETIF_F_RXCSUM                |
3478                           0;
3479 
3480         /* advertise to stack only if offloads for encapsulated packets is
3481          * supported
3482          */
3483         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
3484                 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL       |
3485                                    NETIF_F_GSO_GRE              |
3486                                    NETIF_F_GSO_GRE_CSUM         |
3487                                    NETIF_F_GSO_IPXIP4           |
3488                                    NETIF_F_GSO_IPXIP6           |
3489                                    NETIF_F_GSO_UDP_TUNNEL_CSUM  |
3490                                    NETIF_F_GSO_PARTIAL          |
3491                                    0;
3492 
3493                 if (!(vfres->vf_cap_flags &
3494                       VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
3495                         netdev->gso_partial_features |=
3496                                 NETIF_F_GSO_UDP_TUNNEL_CSUM;
3497 
3498                 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3499                 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
3500                 netdev->hw_enc_features |= hw_enc_features;
3501         }
3502         /* record features VLANs can make use of */
3503         netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
3504 
3505         /* Write features and hw_features separately to avoid polluting
3506          * with, or dropping, features that are set when we registered.
3507          */
3508         hw_features = hw_enc_features;
3509 
3510         /* Enable VLAN features if supported */
3511         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3512                 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3513                                 NETIF_F_HW_VLAN_CTAG_RX);
3514         /* Enable cloud filter if ADQ is supported */
3515         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
3516                 hw_features |= NETIF_F_HW_TC;
3517 
3518         netdev->hw_features |= hw_features;
3519 
3520         netdev->features |= hw_features;
3521 
3522         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3523                 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3524 
3525         netdev->priv_flags |= IFF_UNICAST_FLT;
3526 
3527         /* Do not turn on offloads when they are requested to be turned off.
3528          * TSO needs minimum 576 bytes to work correctly.
3529          */
3530         if (netdev->wanted_features) {
3531                 if (!(netdev->wanted_features & NETIF_F_TSO) ||
3532                     netdev->mtu < 576)
3533                         netdev->features &= ~NETIF_F_TSO;
3534                 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
3535                     netdev->mtu < 576)
3536                         netdev->features &= ~NETIF_F_TSO6;
3537                 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
3538                         netdev->features &= ~NETIF_F_TSO_ECN;
3539                 if (!(netdev->wanted_features & NETIF_F_GRO))
3540                         netdev->features &= ~NETIF_F_GRO;
3541                 if (!(netdev->wanted_features & NETIF_F_GSO))
3542                         netdev->features &= ~NETIF_F_GSO;
3543         }
3544 
3545         adapter->vsi.id = adapter->vsi_res->vsi_id;
3546 
3547         adapter->vsi.back = adapter;
3548         adapter->vsi.base_vector = 1;
3549         adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
3550         vsi->netdev = adapter->netdev;
3551         vsi->qs_handle = adapter->vsi_res->qset_handle;
3552         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
3553                 adapter->rss_key_size = vfres->rss_key_size;
3554                 adapter->rss_lut_size = vfres->rss_lut_size;
3555         } else {
3556                 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
3557                 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
3558         }
3559 
3560         return 0;
3561 }
3562 
3563 /**
3564  * iavf_init_task - worker thread to perform delayed initialization
3565  * @work: pointer to work_struct containing our data
3566  *
3567  * This task completes the work that was begun in probe. Due to the nature
3568  * of VF-PF communications, we may need to wait tens of milliseconds to get
3569  * responses back from the PF. Rather than busy-wait in probe and bog down the
3570  * whole system, we'll do it in a task so we can sleep.
3571  * This task only runs during driver init. Once we've established
3572  * communications with the PF driver and set up our netdev, the watchdog
3573  * takes over.
3574  **/
3575 static void iavf_init_task(struct work_struct *work)
3576 {
3577         struct iavf_adapter *adapter = container_of(work,
3578                                                     struct iavf_adapter,
3579                                                     init_task.work);
3580         struct iavf_hw *hw = &adapter->hw;
3581 
3582         switch (adapter->state) {
3583         case __IAVF_STARTUP:
3584                 if (iavf_startup(adapter) < 0)
3585                         goto init_failed;
3586                 break;
3587         case __IAVF_INIT_VERSION_CHECK:
3588                 if (iavf_init_version_check(adapter) < 0)
3589                         goto init_failed;
3590                 break;
3591         case __IAVF_INIT_GET_RESOURCES:
3592                 if (iavf_init_get_resources(adapter) < 0)
3593                         goto init_failed;
3594                 return;
3595         default:
3596                 goto init_failed;
3597         }
3598 
3599         queue_delayed_work(iavf_wq, &adapter->init_task,
3600                            msecs_to_jiffies(30));
3601         return;
3602 init_failed:
3603         if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
3604                 dev_err(&adapter->pdev->dev,
3605                         "Failed to communicate with PF; waiting before retry\n");
3606                 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
3607                 iavf_shutdown_adminq(hw);
3608                 adapter->state = __IAVF_STARTUP;
3609                 queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5);
3610                 return;
3611         }
3612         queue_delayed_work(iavf_wq, &adapter->init_task, HZ);
3613 }
3614 
3615 /**
3616  * iavf_shutdown - Shutdown the device in preparation for a reboot
3617  * @pdev: pci device structure
3618  **/
3619 static void iavf_shutdown(struct pci_dev *pdev)
3620 {
3621         struct net_device *netdev = pci_get_drvdata(pdev);
3622         struct iavf_adapter *adapter = netdev_priv(netdev);
3623 
3624         netif_device_detach(netdev);
3625 
3626         if (netif_running(netdev))
3627                 iavf_close(netdev);
3628 
3629         /* Prevent the watchdog from running. */
3630         adapter->state = __IAVF_REMOVE;
3631         adapter->aq_required = 0;
3632 
3633 #ifdef CONFIG_PM
3634         pci_save_state(pdev);
3635 
3636 #endif
3637         pci_disable_device(pdev);
3638 }
3639 
3640 /**
3641  * iavf_probe - Device Initialization Routine
3642  * @pdev: PCI device information struct
3643  * @ent: entry in iavf_pci_tbl
3644  *
3645  * Returns 0 on success, negative on failure
3646  *
3647  * iavf_probe initializes an adapter identified by a pci_dev structure.
3648  * The OS initialization, configuring of the adapter private structure,
3649  * and a hardware reset occur.
3650  **/
3651 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3652 {
3653         struct net_device *netdev;
3654         struct iavf_adapter *adapter = NULL;
3655         struct iavf_hw *hw = NULL;
3656         int err;
3657 
3658         err = pci_enable_device(pdev);
3659         if (err)
3660                 return err;
3661 
3662         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3663         if (err) {
3664                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3665                 if (err) {
3666                         dev_err(&pdev->dev,
3667                                 "DMA configuration failed: 0x%x\n", err);
3668                         goto err_dma;
3669                 }
3670         }
3671 
3672         err = pci_request_regions(pdev, iavf_driver_name);
3673         if (err) {
3674                 dev_err(&pdev->dev,
3675                         "pci_request_regions failed 0x%x\n", err);
3676                 goto err_pci_reg;
3677         }
3678 
3679         pci_enable_pcie_error_reporting(pdev);
3680 
3681         pci_set_master(pdev);
3682 
3683         netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
3684                                    IAVF_MAX_REQ_QUEUES);
3685         if (!netdev) {
3686                 err = -ENOMEM;
3687                 goto err_alloc_etherdev;
3688         }
3689 
3690         SET_NETDEV_DEV(netdev, &pdev->dev);
3691 
3692         pci_set_drvdata(pdev, netdev);
3693         adapter = netdev_priv(netdev);
3694 
3695         adapter->netdev = netdev;
3696         adapter->pdev = pdev;
3697 
3698         hw = &adapter->hw;
3699         hw->back = adapter;
3700 
3701         adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3702         adapter->state = __IAVF_STARTUP;
3703 
3704         /* Call save state here because it relies on the adapter struct. */
3705         pci_save_state(pdev);
3706 
3707         hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3708                               pci_resource_len(pdev, 0));
3709         if (!hw->hw_addr) {
3710                 err = -EIO;
3711                 goto err_ioremap;
3712         }
3713         hw->vendor_id = pdev->vendor;
3714         hw->device_id = pdev->device;
3715         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3716         hw->subsystem_vendor_id = pdev->subsystem_vendor;
3717         hw->subsystem_device_id = pdev->subsystem_device;
3718         hw->bus.device = PCI_SLOT(pdev->devfn);
3719         hw->bus.func = PCI_FUNC(pdev->devfn);
3720         hw->bus.bus_id = pdev->bus->number;
3721 
3722         /* set up the locks for the AQ, do this only once in probe
3723          * and destroy them only once in remove
3724          */
3725         mutex_init(&hw->aq.asq_mutex);
3726         mutex_init(&hw->aq.arq_mutex);
3727 
3728         spin_lock_init(&adapter->mac_vlan_list_lock);
3729         spin_lock_init(&adapter->cloud_filter_list_lock);
3730 
3731         INIT_LIST_HEAD(&adapter->mac_filter_list);
3732         INIT_LIST_HEAD(&adapter->vlan_filter_list);
3733         INIT_LIST_HEAD(&adapter->cloud_filter_list);
3734 
3735         INIT_WORK(&adapter->reset_task, iavf_reset_task);
3736         INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
3737         INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
3738         INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
3739         INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task);
3740         queue_delayed_work(iavf_wq, &adapter->init_task,
3741                            msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
3742 
3743         /* Setup the wait queue for indicating transition to down status */
3744         init_waitqueue_head(&adapter->down_waitqueue);
3745 
3746         return 0;
3747 
3748 err_ioremap:
3749         free_netdev(netdev);
3750 err_alloc_etherdev:
3751         pci_release_regions(pdev);
3752 err_pci_reg:
3753 err_dma:
3754         pci_disable_device(pdev);
3755         return err;
3756 }
3757 
3758 #ifdef CONFIG_PM
3759 /**
3760  * iavf_suspend - Power management suspend routine
3761  * @pdev: PCI device information struct
3762  * @state: unused
3763  *
3764  * Called when the system (VM) is entering sleep/suspend.
3765  **/
3766 static int iavf_suspend(struct pci_dev *pdev, pm_message_t state)
3767 {
3768         struct net_device *netdev = pci_get_drvdata(pdev);
3769         struct iavf_adapter *adapter = netdev_priv(netdev);
3770         int retval = 0;
3771 
3772         netif_device_detach(netdev);
3773 
3774         while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3775                                 &adapter->crit_section))
3776                 usleep_range(500, 1000);
3777 
3778         if (netif_running(netdev)) {
3779                 rtnl_lock();
3780                 iavf_down(adapter);
3781                 rtnl_unlock();
3782         }
3783         iavf_free_misc_irq(adapter);
3784         iavf_reset_interrupt_capability(adapter);
3785 
3786         clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3787 
3788         retval = pci_save_state(pdev);
3789         if (retval)
3790                 return retval;
3791 
3792         pci_disable_device(pdev);
3793 
3794         return 0;
3795 }
3796 
3797 /**
3798  * iavf_resume - Power management resume routine
3799  * @pdev: PCI device information struct
3800  *
3801  * Called when the system (VM) is resumed from sleep/suspend.
3802  **/
3803 static int iavf_resume(struct pci_dev *pdev)
3804 {
3805         struct iavf_adapter *adapter = pci_get_drvdata(pdev);
3806         struct net_device *netdev = adapter->netdev;
3807         u32 err;
3808 
3809         pci_set_power_state(pdev, PCI_D0);
3810         pci_restore_state(pdev);
3811         /* pci_restore_state clears dev->state_saved so call
3812          * pci_save_state to restore it.
3813          */
3814         pci_save_state(pdev);
3815 
3816         err = pci_enable_device_mem(pdev);
3817         if (err) {
3818                 dev_err(&pdev->dev, "Cannot enable PCI device from suspend.\n");
3819                 return err;
3820         }
3821         pci_set_master(pdev);
3822 
3823         rtnl_lock();
3824         err = iavf_set_interrupt_capability(adapter);
3825         if (err) {
3826                 rtnl_unlock();
3827                 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
3828                 return err;
3829         }
3830         err = iavf_request_misc_irq(adapter);
3831         rtnl_unlock();
3832         if (err) {
3833                 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
3834                 return err;
3835         }
3836 
3837         queue_work(iavf_wq, &adapter->reset_task);
3838 
3839         netif_device_attach(netdev);
3840 
3841         return err;
3842 }
3843 
3844 #endif /* CONFIG_PM */
3845 /**
3846  * iavf_remove - Device Removal Routine
3847  * @pdev: PCI device information struct
3848  *
3849  * iavf_remove is called by the PCI subsystem to alert the driver
3850  * that it should release a PCI device.  The could be caused by a
3851  * Hot-Plug event, or because the driver is going to be removed from
3852  * memory.
3853  **/
3854 static void iavf_remove(struct pci_dev *pdev)
3855 {
3856         struct net_device *netdev = pci_get_drvdata(pdev);
3857         struct iavf_adapter *adapter = netdev_priv(netdev);
3858         struct iavf_vlan_filter *vlf, *vlftmp;
3859         struct iavf_mac_filter *f, *ftmp;
3860         struct iavf_cloud_filter *cf, *cftmp;
3861         struct iavf_hw *hw = &adapter->hw;
3862         int err;
3863         /* Indicate we are in remove and not to run reset_task */
3864         set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
3865         cancel_delayed_work_sync(&adapter->init_task);
3866         cancel_work_sync(&adapter->reset_task);
3867         cancel_delayed_work_sync(&adapter->client_task);
3868         if (adapter->netdev_registered) {
3869                 unregister_netdev(netdev);
3870                 adapter->netdev_registered = false;
3871         }
3872         if (CLIENT_ALLOWED(adapter)) {
3873                 err = iavf_lan_del_device(adapter);
3874                 if (err)
3875                         dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
3876                                  err);
3877         }
3878 
3879         /* Shut down all the garbage mashers on the detention level */
3880         adapter->state = __IAVF_REMOVE;
3881         adapter->aq_required = 0;
3882         adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3883         iavf_request_reset(adapter);
3884         msleep(50);
3885         /* If the FW isn't responding, kick it once, but only once. */
3886         if (!iavf_asq_done(hw)) {
3887                 iavf_request_reset(adapter);
3888                 msleep(50);
3889         }
3890         iavf_free_all_tx_resources(adapter);
3891         iavf_free_all_rx_resources(adapter);
3892         iavf_misc_irq_disable(adapter);
3893         iavf_free_misc_irq(adapter);
3894         iavf_reset_interrupt_capability(adapter);
3895         iavf_free_q_vectors(adapter);
3896 
3897         cancel_delayed_work_sync(&adapter->watchdog_task);
3898 
3899         cancel_work_sync(&adapter->adminq_task);
3900 
3901         iavf_free_rss(adapter);
3902 
3903         if (hw->aq.asq.count)
3904                 iavf_shutdown_adminq(hw);
3905 
3906         /* destroy the locks only once, here */
3907         mutex_destroy(&hw->aq.arq_mutex);
3908         mutex_destroy(&hw->aq.asq_mutex);
3909 
3910         iounmap(hw->hw_addr);
3911         pci_release_regions(pdev);
3912         iavf_free_all_tx_resources(adapter);
3913         iavf_free_all_rx_resources(adapter);
3914         iavf_free_queues(adapter);
3915         kfree(adapter->vf_res);
3916         spin_lock_bh(&adapter->mac_vlan_list_lock);
3917         /* If we got removed before an up/down sequence, we've got a filter
3918          * hanging out there that we need to get rid of.
3919          */
3920         list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3921                 list_del(&f->list);
3922                 kfree(f);
3923         }
3924         list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
3925                                  list) {
3926                 list_del(&vlf->list);
3927                 kfree(vlf);
3928         }
3929 
3930         spin_unlock_bh(&adapter->mac_vlan_list_lock);
3931 
3932         spin_lock_bh(&adapter->cloud_filter_list_lock);
3933         list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
3934                 list_del(&cf->list);
3935                 kfree(cf);
3936         }
3937         spin_unlock_bh(&adapter->cloud_filter_list_lock);
3938 
3939         free_netdev(netdev);
3940 
3941         pci_disable_pcie_error_reporting(pdev);
3942 
3943         pci_disable_device(pdev);
3944 }
3945 
3946 static struct pci_driver iavf_driver = {
3947         .name     = iavf_driver_name,
3948         .id_table = iavf_pci_tbl,
3949         .probe    = iavf_probe,
3950         .remove   = iavf_remove,
3951 #ifdef CONFIG_PM
3952         .suspend  = iavf_suspend,
3953         .resume   = iavf_resume,
3954 #endif
3955         .shutdown = iavf_shutdown,
3956 };
3957 
3958 /**
3959  * iavf_init_module - Driver Registration Routine
3960  *
3961  * iavf_init_module is the first routine called when the driver is
3962  * loaded. All it does is register with the PCI subsystem.
3963  **/
3964 static int __init iavf_init_module(void)
3965 {
3966         int ret;
3967 
3968         pr_info("iavf: %s - version %s\n", iavf_driver_string,
3969                 iavf_driver_version);
3970 
3971         pr_info("%s\n", iavf_copyright);
3972 
3973         iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
3974                                   iavf_driver_name);
3975         if (!iavf_wq) {
3976                 pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
3977                 return -ENOMEM;
3978         }
3979         ret = pci_register_driver(&iavf_driver);
3980         return ret;
3981 }
3982 
3983 module_init(iavf_init_module);
3984 
3985 /**
3986  * iavf_exit_module - Driver Exit Cleanup Routine
3987  *
3988  * iavf_exit_module is called just before the driver is removed
3989  * from memory.
3990  **/
3991 static void __exit iavf_exit_module(void)
3992 {
3993         pci_unregister_driver(&iavf_driver);
3994         destroy_workqueue(iavf_wq);
3995 }
3996 
3997 module_exit(iavf_exit_module);
3998 
3999 /* iavf_main.c */

/* [<][>][^][v][top][bottom][index][help] */