This source file includes following definitions.
- e1000_get_link_ksettings
- e1000_set_link_ksettings
- e1000_get_link
- e1000_get_pauseparam
- e1000_set_pauseparam
- e1000_get_msglevel
- e1000_set_msglevel
- e1000_get_regs_len
- e1000_get_regs
- e1000_get_eeprom_len
- e1000_get_eeprom
- e1000_set_eeprom
- e1000_get_drvinfo
- e1000_get_ringparam
- e1000_set_ringparam
- reg_pattern_test
- reg_set_and_check
- e1000_reg_test
- e1000_eeprom_test
- e1000_test_intr
- e1000_intr_test
- e1000_free_desc_rings
- e1000_setup_desc_rings
- e1000_phy_disable_receiver
- e1000_phy_reset_clk_and_crs
- e1000_nonintegrated_phy_loopback
- e1000_integrated_phy_loopback
- e1000_set_phy_loopback
- e1000_setup_loopback_test
- e1000_loopback_cleanup
- e1000_create_lbtest_frame
- e1000_check_lbtest_frame
- e1000_run_loopback_test
- e1000_loopback_test
- e1000_link_test
- e1000_get_sset_count
- e1000_diag_test
- e1000_wol_exclusion
- e1000_get_wol
- e1000_set_wol
- e1000_set_phys_id
- e1000_get_coalesce
- e1000_set_coalesce
- e1000_nway_reset
- e1000_get_ethtool_stats
- e1000_get_strings
- e1000_set_ethtool_ops
1
2
3
4
5
6 #include "e1000.h"
7 #include <linux/jiffies.h>
8 #include <linux/uaccess.h>
9
10 enum {NETDEV_STATS, E1000_STATS};
11
12 struct e1000_stats {
13 char stat_string[ETH_GSTRING_LEN];
14 int type;
15 int sizeof_stat;
16 int stat_offset;
17 };
18
19 #define E1000_STAT(m) E1000_STATS, \
20 sizeof(((struct e1000_adapter *)0)->m), \
21 offsetof(struct e1000_adapter, m)
22 #define E1000_NETDEV_STAT(m) NETDEV_STATS, \
23 sizeof(((struct net_device *)0)->m), \
24 offsetof(struct net_device, m)
25
26 static const struct e1000_stats e1000_gstrings_stats[] = {
27 { "rx_packets", E1000_STAT(stats.gprc) },
28 { "tx_packets", E1000_STAT(stats.gptc) },
29 { "rx_bytes", E1000_STAT(stats.gorcl) },
30 { "tx_bytes", E1000_STAT(stats.gotcl) },
31 { "rx_broadcast", E1000_STAT(stats.bprc) },
32 { "tx_broadcast", E1000_STAT(stats.bptc) },
33 { "rx_multicast", E1000_STAT(stats.mprc) },
34 { "tx_multicast", E1000_STAT(stats.mptc) },
35 { "rx_errors", E1000_STAT(stats.rxerrc) },
36 { "tx_errors", E1000_STAT(stats.txerrc) },
37 { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
38 { "multicast", E1000_STAT(stats.mprc) },
39 { "collisions", E1000_STAT(stats.colc) },
40 { "rx_length_errors", E1000_STAT(stats.rlerrc) },
41 { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
42 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
43 { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
44 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
45 { "rx_missed_errors", E1000_STAT(stats.mpc) },
46 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
47 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
48 { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
49 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
50 { "tx_window_errors", E1000_STAT(stats.latecol) },
51 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
52 { "tx_deferred_ok", E1000_STAT(stats.dc) },
53 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
54 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
55 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
56 { "tx_restart_queue", E1000_STAT(restart_queue) },
57 { "rx_long_length_errors", E1000_STAT(stats.roc) },
58 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
59 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
60 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
61 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
62 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
63 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
64 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
65 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
66 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
67 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
68 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
69 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
70 { "tx_smbus", E1000_STAT(stats.mgptc) },
71 { "rx_smbus", E1000_STAT(stats.mgprc) },
72 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
73 };
74
75 #define E1000_QUEUE_STATS_LEN 0
76 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
77 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
78 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
79 "Register test (offline)", "Eeprom test (offline)",
80 "Interrupt test (offline)", "Loopback test (offline)",
81 "Link test (on/offline)"
82 };
83
84 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
85
86 static int e1000_get_link_ksettings(struct net_device *netdev,
87 struct ethtool_link_ksettings *cmd)
88 {
89 struct e1000_adapter *adapter = netdev_priv(netdev);
90 struct e1000_hw *hw = &adapter->hw;
91 u32 supported, advertising;
92
93 if (hw->media_type == e1000_media_type_copper) {
94 supported = (SUPPORTED_10baseT_Half |
95 SUPPORTED_10baseT_Full |
96 SUPPORTED_100baseT_Half |
97 SUPPORTED_100baseT_Full |
98 SUPPORTED_1000baseT_Full|
99 SUPPORTED_Autoneg |
100 SUPPORTED_TP);
101 advertising = ADVERTISED_TP;
102
103 if (hw->autoneg == 1) {
104 advertising |= ADVERTISED_Autoneg;
105
106 advertising |= hw->autoneg_advertised;
107 }
108
109 cmd->base.port = PORT_TP;
110 cmd->base.phy_address = hw->phy_addr;
111 } else {
112 supported = (SUPPORTED_1000baseT_Full |
113 SUPPORTED_FIBRE |
114 SUPPORTED_Autoneg);
115
116 advertising = (ADVERTISED_1000baseT_Full |
117 ADVERTISED_FIBRE |
118 ADVERTISED_Autoneg);
119
120 cmd->base.port = PORT_FIBRE;
121 }
122
123 if (er32(STATUS) & E1000_STATUS_LU) {
124 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
125 &adapter->link_duplex);
126 cmd->base.speed = adapter->link_speed;
127
128
129
130
131 if (adapter->link_duplex == FULL_DUPLEX)
132 cmd->base.duplex = DUPLEX_FULL;
133 else
134 cmd->base.duplex = DUPLEX_HALF;
135 } else {
136 cmd->base.speed = SPEED_UNKNOWN;
137 cmd->base.duplex = DUPLEX_UNKNOWN;
138 }
139
140 cmd->base.autoneg = ((hw->media_type == e1000_media_type_fiber) ||
141 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
142
143
144 if ((hw->media_type == e1000_media_type_copper) &&
145 netif_carrier_ok(netdev))
146 cmd->base.eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
147 ETH_TP_MDI_X : ETH_TP_MDI);
148 else
149 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
150
151 if (hw->mdix == AUTO_ALL_MODES)
152 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
153 else
154 cmd->base.eth_tp_mdix_ctrl = hw->mdix;
155
156 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
157 supported);
158 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
159 advertising);
160
161 return 0;
162 }
163
164 static int e1000_set_link_ksettings(struct net_device *netdev,
165 const struct ethtool_link_ksettings *cmd)
166 {
167 struct e1000_adapter *adapter = netdev_priv(netdev);
168 struct e1000_hw *hw = &adapter->hw;
169 u32 advertising;
170
171 ethtool_convert_link_mode_to_legacy_u32(&advertising,
172 cmd->link_modes.advertising);
173
174
175
176
177
178 if (cmd->base.eth_tp_mdix_ctrl) {
179 if (hw->media_type != e1000_media_type_copper)
180 return -EOPNOTSUPP;
181
182 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
183 (cmd->base.autoneg != AUTONEG_ENABLE)) {
184 e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
185 return -EINVAL;
186 }
187 }
188
189 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
190 msleep(1);
191
192 if (cmd->base.autoneg == AUTONEG_ENABLE) {
193 hw->autoneg = 1;
194 if (hw->media_type == e1000_media_type_fiber)
195 hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
196 ADVERTISED_FIBRE |
197 ADVERTISED_Autoneg;
198 else
199 hw->autoneg_advertised = advertising |
200 ADVERTISED_TP |
201 ADVERTISED_Autoneg;
202 } else {
203 u32 speed = cmd->base.speed;
204
205 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
206 clear_bit(__E1000_RESETTING, &adapter->flags);
207 return -EINVAL;
208 }
209 }
210
211
212 if (cmd->base.eth_tp_mdix_ctrl) {
213 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
214 hw->mdix = AUTO_ALL_MODES;
215 else
216 hw->mdix = cmd->base.eth_tp_mdix_ctrl;
217 }
218
219
220
221 if (netif_running(adapter->netdev)) {
222 e1000_down(adapter);
223 e1000_up(adapter);
224 } else {
225 e1000_reset(adapter);
226 }
227 clear_bit(__E1000_RESETTING, &adapter->flags);
228 return 0;
229 }
230
231 static u32 e1000_get_link(struct net_device *netdev)
232 {
233 struct e1000_adapter *adapter = netdev_priv(netdev);
234
235
236
237
238
239
240
241 if (!netif_carrier_ok(netdev))
242 adapter->hw.get_link_status = 1;
243
244 return e1000_has_link(adapter);
245 }
246
247 static void e1000_get_pauseparam(struct net_device *netdev,
248 struct ethtool_pauseparam *pause)
249 {
250 struct e1000_adapter *adapter = netdev_priv(netdev);
251 struct e1000_hw *hw = &adapter->hw;
252
253 pause->autoneg =
254 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
255
256 if (hw->fc == E1000_FC_RX_PAUSE) {
257 pause->rx_pause = 1;
258 } else if (hw->fc == E1000_FC_TX_PAUSE) {
259 pause->tx_pause = 1;
260 } else if (hw->fc == E1000_FC_FULL) {
261 pause->rx_pause = 1;
262 pause->tx_pause = 1;
263 }
264 }
265
266 static int e1000_set_pauseparam(struct net_device *netdev,
267 struct ethtool_pauseparam *pause)
268 {
269 struct e1000_adapter *adapter = netdev_priv(netdev);
270 struct e1000_hw *hw = &adapter->hw;
271 int retval = 0;
272
273 adapter->fc_autoneg = pause->autoneg;
274
275 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
276 msleep(1);
277
278 if (pause->rx_pause && pause->tx_pause)
279 hw->fc = E1000_FC_FULL;
280 else if (pause->rx_pause && !pause->tx_pause)
281 hw->fc = E1000_FC_RX_PAUSE;
282 else if (!pause->rx_pause && pause->tx_pause)
283 hw->fc = E1000_FC_TX_PAUSE;
284 else if (!pause->rx_pause && !pause->tx_pause)
285 hw->fc = E1000_FC_NONE;
286
287 hw->original_fc = hw->fc;
288
289 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
290 if (netif_running(adapter->netdev)) {
291 e1000_down(adapter);
292 e1000_up(adapter);
293 } else {
294 e1000_reset(adapter);
295 }
296 } else
297 retval = ((hw->media_type == e1000_media_type_fiber) ?
298 e1000_setup_link(hw) : e1000_force_mac_fc(hw));
299
300 clear_bit(__E1000_RESETTING, &adapter->flags);
301 return retval;
302 }
303
304 static u32 e1000_get_msglevel(struct net_device *netdev)
305 {
306 struct e1000_adapter *adapter = netdev_priv(netdev);
307
308 return adapter->msg_enable;
309 }
310
311 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
312 {
313 struct e1000_adapter *adapter = netdev_priv(netdev);
314
315 adapter->msg_enable = data;
316 }
317
318 static int e1000_get_regs_len(struct net_device *netdev)
319 {
320 #define E1000_REGS_LEN 32
321 return E1000_REGS_LEN * sizeof(u32);
322 }
323
324 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
325 void *p)
326 {
327 struct e1000_adapter *adapter = netdev_priv(netdev);
328 struct e1000_hw *hw = &adapter->hw;
329 u32 *regs_buff = p;
330 u16 phy_data;
331
332 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
333
334 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
335
336 regs_buff[0] = er32(CTRL);
337 regs_buff[1] = er32(STATUS);
338
339 regs_buff[2] = er32(RCTL);
340 regs_buff[3] = er32(RDLEN);
341 regs_buff[4] = er32(RDH);
342 regs_buff[5] = er32(RDT);
343 regs_buff[6] = er32(RDTR);
344
345 regs_buff[7] = er32(TCTL);
346 regs_buff[8] = er32(TDLEN);
347 regs_buff[9] = er32(TDH);
348 regs_buff[10] = er32(TDT);
349 regs_buff[11] = er32(TIDV);
350
351 regs_buff[12] = hw->phy_type;
352 if (hw->phy_type == e1000_phy_igp) {
353 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
354 IGP01E1000_PHY_AGC_A);
355 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
356 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
357 regs_buff[13] = (u32)phy_data;
358 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
359 IGP01E1000_PHY_AGC_B);
360 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
361 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
362 regs_buff[14] = (u32)phy_data;
363 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
364 IGP01E1000_PHY_AGC_C);
365 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
366 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
367 regs_buff[15] = (u32)phy_data;
368 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
369 IGP01E1000_PHY_AGC_D);
370 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
371 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
372 regs_buff[16] = (u32)phy_data;
373 regs_buff[17] = 0;
374 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
375 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
376 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
377 regs_buff[18] = (u32)phy_data;
378 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
379 IGP01E1000_PHY_PCS_INIT_REG);
380 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
381 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
382 regs_buff[19] = (u32)phy_data;
383 regs_buff[20] = 0;
384 regs_buff[22] = 0;
385 regs_buff[23] = regs_buff[18];
386 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
387 } else {
388 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
389 regs_buff[13] = (u32)phy_data;
390 regs_buff[14] = 0;
391 regs_buff[15] = 0;
392 regs_buff[16] = 0;
393 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
394 regs_buff[17] = (u32)phy_data;
395 regs_buff[18] = regs_buff[13];
396 regs_buff[19] = 0;
397 regs_buff[20] = regs_buff[17];
398
399 regs_buff[22] = adapter->phy_stats.receive_errors;
400 regs_buff[23] = regs_buff[13];
401 }
402 regs_buff[21] = adapter->phy_stats.idle_errors;
403 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
404 regs_buff[24] = (u32)phy_data;
405 regs_buff[25] = regs_buff[24];
406 if (hw->mac_type >= e1000_82540 &&
407 hw->media_type == e1000_media_type_copper) {
408 regs_buff[26] = er32(MANC);
409 }
410 }
411
412 static int e1000_get_eeprom_len(struct net_device *netdev)
413 {
414 struct e1000_adapter *adapter = netdev_priv(netdev);
415 struct e1000_hw *hw = &adapter->hw;
416
417 return hw->eeprom.word_size * 2;
418 }
419
420 static int e1000_get_eeprom(struct net_device *netdev,
421 struct ethtool_eeprom *eeprom, u8 *bytes)
422 {
423 struct e1000_adapter *adapter = netdev_priv(netdev);
424 struct e1000_hw *hw = &adapter->hw;
425 u16 *eeprom_buff;
426 int first_word, last_word;
427 int ret_val = 0;
428 u16 i;
429
430 if (eeprom->len == 0)
431 return -EINVAL;
432
433 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
434
435 first_word = eeprom->offset >> 1;
436 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
437
438 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
439 GFP_KERNEL);
440 if (!eeprom_buff)
441 return -ENOMEM;
442
443 if (hw->eeprom.type == e1000_eeprom_spi)
444 ret_val = e1000_read_eeprom(hw, first_word,
445 last_word - first_word + 1,
446 eeprom_buff);
447 else {
448 for (i = 0; i < last_word - first_word + 1; i++) {
449 ret_val = e1000_read_eeprom(hw, first_word + i, 1,
450 &eeprom_buff[i]);
451 if (ret_val)
452 break;
453 }
454 }
455
456
457 for (i = 0; i < last_word - first_word + 1; i++)
458 le16_to_cpus(&eeprom_buff[i]);
459
460 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
461 eeprom->len);
462 kfree(eeprom_buff);
463
464 return ret_val;
465 }
466
467 static int e1000_set_eeprom(struct net_device *netdev,
468 struct ethtool_eeprom *eeprom, u8 *bytes)
469 {
470 struct e1000_adapter *adapter = netdev_priv(netdev);
471 struct e1000_hw *hw = &adapter->hw;
472 u16 *eeprom_buff;
473 void *ptr;
474 int max_len, first_word, last_word, ret_val = 0;
475 u16 i;
476
477 if (eeprom->len == 0)
478 return -EOPNOTSUPP;
479
480 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
481 return -EFAULT;
482
483 max_len = hw->eeprom.word_size * 2;
484
485 first_word = eeprom->offset >> 1;
486 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
487 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
488 if (!eeprom_buff)
489 return -ENOMEM;
490
491 ptr = (void *)eeprom_buff;
492
493 if (eeprom->offset & 1) {
494
495
496
497 ret_val = e1000_read_eeprom(hw, first_word, 1,
498 &eeprom_buff[0]);
499 ptr++;
500 }
501 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
502
503
504
505 ret_val = e1000_read_eeprom(hw, last_word, 1,
506 &eeprom_buff[last_word - first_word]);
507 }
508
509
510 for (i = 0; i < last_word - first_word + 1; i++)
511 le16_to_cpus(&eeprom_buff[i]);
512
513 memcpy(ptr, bytes, eeprom->len);
514
515 for (i = 0; i < last_word - first_word + 1; i++)
516 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
517
518 ret_val = e1000_write_eeprom(hw, first_word,
519 last_word - first_word + 1, eeprom_buff);
520
521
522 if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
523 e1000_update_eeprom_checksum(hw);
524
525 kfree(eeprom_buff);
526 return ret_val;
527 }
528
529 static void e1000_get_drvinfo(struct net_device *netdev,
530 struct ethtool_drvinfo *drvinfo)
531 {
532 struct e1000_adapter *adapter = netdev_priv(netdev);
533
534 strlcpy(drvinfo->driver, e1000_driver_name,
535 sizeof(drvinfo->driver));
536 strlcpy(drvinfo->version, e1000_driver_version,
537 sizeof(drvinfo->version));
538
539 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
540 sizeof(drvinfo->bus_info));
541 }
542
543 static void e1000_get_ringparam(struct net_device *netdev,
544 struct ethtool_ringparam *ring)
545 {
546 struct e1000_adapter *adapter = netdev_priv(netdev);
547 struct e1000_hw *hw = &adapter->hw;
548 e1000_mac_type mac_type = hw->mac_type;
549 struct e1000_tx_ring *txdr = adapter->tx_ring;
550 struct e1000_rx_ring *rxdr = adapter->rx_ring;
551
552 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
553 E1000_MAX_82544_RXD;
554 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
555 E1000_MAX_82544_TXD;
556 ring->rx_pending = rxdr->count;
557 ring->tx_pending = txdr->count;
558 }
559
560 static int e1000_set_ringparam(struct net_device *netdev,
561 struct ethtool_ringparam *ring)
562 {
563 struct e1000_adapter *adapter = netdev_priv(netdev);
564 struct e1000_hw *hw = &adapter->hw;
565 e1000_mac_type mac_type = hw->mac_type;
566 struct e1000_tx_ring *txdr, *tx_old;
567 struct e1000_rx_ring *rxdr, *rx_old;
568 int i, err;
569
570 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
571 return -EINVAL;
572
573 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
574 msleep(1);
575
576 if (netif_running(adapter->netdev))
577 e1000_down(adapter);
578
579 tx_old = adapter->tx_ring;
580 rx_old = adapter->rx_ring;
581
582 err = -ENOMEM;
583 txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
584 GFP_KERNEL);
585 if (!txdr)
586 goto err_alloc_tx;
587
588 rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
589 GFP_KERNEL);
590 if (!rxdr)
591 goto err_alloc_rx;
592
593 adapter->tx_ring = txdr;
594 adapter->rx_ring = rxdr;
595
596 rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
597 rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ?
598 E1000_MAX_RXD : E1000_MAX_82544_RXD));
599 rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
600 txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
601 txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ?
602 E1000_MAX_TXD : E1000_MAX_82544_TXD));
603 txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
604
605 for (i = 0; i < adapter->num_tx_queues; i++)
606 txdr[i].count = txdr->count;
607 for (i = 0; i < adapter->num_rx_queues; i++)
608 rxdr[i].count = rxdr->count;
609
610 err = 0;
611 if (netif_running(adapter->netdev)) {
612
613 err = e1000_setup_all_rx_resources(adapter);
614 if (err)
615 goto err_setup_rx;
616 err = e1000_setup_all_tx_resources(adapter);
617 if (err)
618 goto err_setup_tx;
619
620
621
622
623
624 adapter->rx_ring = rx_old;
625 adapter->tx_ring = tx_old;
626 e1000_free_all_rx_resources(adapter);
627 e1000_free_all_tx_resources(adapter);
628 adapter->rx_ring = rxdr;
629 adapter->tx_ring = txdr;
630 err = e1000_up(adapter);
631 }
632 kfree(tx_old);
633 kfree(rx_old);
634
635 clear_bit(__E1000_RESETTING, &adapter->flags);
636 return err;
637
638 err_setup_tx:
639 e1000_free_all_rx_resources(adapter);
640 err_setup_rx:
641 adapter->rx_ring = rx_old;
642 adapter->tx_ring = tx_old;
643 kfree(rxdr);
644 err_alloc_rx:
645 kfree(txdr);
646 err_alloc_tx:
647 if (netif_running(adapter->netdev))
648 e1000_up(adapter);
649 clear_bit(__E1000_RESETTING, &adapter->flags);
650 return err;
651 }
652
653 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
654 u32 mask, u32 write)
655 {
656 struct e1000_hw *hw = &adapter->hw;
657 static const u32 test[] = {
658 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
659 };
660 u8 __iomem *address = hw->hw_addr + reg;
661 u32 read;
662 int i;
663
664 for (i = 0; i < ARRAY_SIZE(test); i++) {
665 writel(write & test[i], address);
666 read = readl(address);
667 if (read != (write & test[i] & mask)) {
668 e_err(drv, "pattern test reg %04X failed: "
669 "got 0x%08X expected 0x%08X\n",
670 reg, read, (write & test[i] & mask));
671 *data = reg;
672 return true;
673 }
674 }
675 return false;
676 }
677
678 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
679 u32 mask, u32 write)
680 {
681 struct e1000_hw *hw = &adapter->hw;
682 u8 __iomem *address = hw->hw_addr + reg;
683 u32 read;
684
685 writel(write & mask, address);
686 read = readl(address);
687 if ((read & mask) != (write & mask)) {
688 e_err(drv, "set/check reg %04X test failed: "
689 "got 0x%08X expected 0x%08X\n",
690 reg, (read & mask), (write & mask));
691 *data = reg;
692 return true;
693 }
694 return false;
695 }
696
697 #define REG_PATTERN_TEST(reg, mask, write) \
698 do { \
699 if (reg_pattern_test(adapter, data, \
700 (hw->mac_type >= e1000_82543) \
701 ? E1000_##reg : E1000_82542_##reg, \
702 mask, write)) \
703 return 1; \
704 } while (0)
705
706 #define REG_SET_AND_CHECK(reg, mask, write) \
707 do { \
708 if (reg_set_and_check(adapter, data, \
709 (hw->mac_type >= e1000_82543) \
710 ? E1000_##reg : E1000_82542_##reg, \
711 mask, write)) \
712 return 1; \
713 } while (0)
714
715 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
716 {
717 u32 value, before, after;
718 u32 i, toggle;
719 struct e1000_hw *hw = &adapter->hw;
720
721
722
723
724
725
726 toggle = 0xFFFFF833;
727
728 before = er32(STATUS);
729 value = (er32(STATUS) & toggle);
730 ew32(STATUS, toggle);
731 after = er32(STATUS) & toggle;
732 if (value != after) {
733 e_err(drv, "failed STATUS register test got: "
734 "0x%08X expected: 0x%08X\n", after, value);
735 *data = 1;
736 return 1;
737 }
738
739 ew32(STATUS, before);
740
741 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
742 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
743 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
744 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
745
746 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
747 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
748 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
749 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
750 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
751 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
752 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
753 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
754 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
755 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
756
757 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
758
759 before = 0x06DFB3FE;
760 REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
761 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
762
763 if (hw->mac_type >= e1000_82543) {
764 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
765 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
766 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
767 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
768 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
769 value = E1000_RAR_ENTRIES;
770 for (i = 0; i < value; i++) {
771 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2),
772 0x8003FFFF, 0xFFFFFFFF);
773 }
774 } else {
775 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
776 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
777 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
778 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
779 }
780
781 value = E1000_MC_TBL_SIZE;
782 for (i = 0; i < value; i++)
783 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
784
785 *data = 0;
786 return 0;
787 }
788
789 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
790 {
791 struct e1000_hw *hw = &adapter->hw;
792 u16 temp;
793 u16 checksum = 0;
794 u16 i;
795
796 *data = 0;
797
798 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
799 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
800 *data = 1;
801 break;
802 }
803 checksum += temp;
804 }
805
806
807 if ((checksum != (u16)EEPROM_SUM) && !(*data))
808 *data = 2;
809
810 return *data;
811 }
812
813 static irqreturn_t e1000_test_intr(int irq, void *data)
814 {
815 struct net_device *netdev = (struct net_device *)data;
816 struct e1000_adapter *adapter = netdev_priv(netdev);
817 struct e1000_hw *hw = &adapter->hw;
818
819 adapter->test_icr |= er32(ICR);
820
821 return IRQ_HANDLED;
822 }
823
824 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
825 {
826 struct net_device *netdev = adapter->netdev;
827 u32 mask, i = 0;
828 bool shared_int = true;
829 u32 irq = adapter->pdev->irq;
830 struct e1000_hw *hw = &adapter->hw;
831
832 *data = 0;
833
834
835
836
837 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
838 netdev))
839 shared_int = false;
840 else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
841 netdev->name, netdev)) {
842 *data = 1;
843 return -1;
844 }
845 e_info(hw, "testing %s interrupt\n", (shared_int ?
846 "shared" : "unshared"));
847
848
849 ew32(IMC, 0xFFFFFFFF);
850 E1000_WRITE_FLUSH();
851 msleep(10);
852
853
854 for (; i < 10; i++) {
855
856 mask = 1 << i;
857
858 if (!shared_int) {
859
860
861
862
863
864
865 adapter->test_icr = 0;
866 ew32(IMC, mask);
867 ew32(ICS, mask);
868 E1000_WRITE_FLUSH();
869 msleep(10);
870
871 if (adapter->test_icr & mask) {
872 *data = 3;
873 break;
874 }
875 }
876
877
878
879
880
881
882
883 adapter->test_icr = 0;
884 ew32(IMS, mask);
885 ew32(ICS, mask);
886 E1000_WRITE_FLUSH();
887 msleep(10);
888
889 if (!(adapter->test_icr & mask)) {
890 *data = 4;
891 break;
892 }
893
894 if (!shared_int) {
895
896
897
898
899
900
901 adapter->test_icr = 0;
902 ew32(IMC, ~mask & 0x00007FFF);
903 ew32(ICS, ~mask & 0x00007FFF);
904 E1000_WRITE_FLUSH();
905 msleep(10);
906
907 if (adapter->test_icr) {
908 *data = 5;
909 break;
910 }
911 }
912 }
913
914
915 ew32(IMC, 0xFFFFFFFF);
916 E1000_WRITE_FLUSH();
917 msleep(10);
918
919
920 free_irq(irq, netdev);
921
922 return *data;
923 }
924
925 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
926 {
927 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
928 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
929 struct pci_dev *pdev = adapter->pdev;
930 int i;
931
932 if (txdr->desc && txdr->buffer_info) {
933 for (i = 0; i < txdr->count; i++) {
934 if (txdr->buffer_info[i].dma)
935 dma_unmap_single(&pdev->dev,
936 txdr->buffer_info[i].dma,
937 txdr->buffer_info[i].length,
938 DMA_TO_DEVICE);
939 dev_kfree_skb(txdr->buffer_info[i].skb);
940 }
941 }
942
943 if (rxdr->desc && rxdr->buffer_info) {
944 for (i = 0; i < rxdr->count; i++) {
945 if (rxdr->buffer_info[i].dma)
946 dma_unmap_single(&pdev->dev,
947 rxdr->buffer_info[i].dma,
948 E1000_RXBUFFER_2048,
949 DMA_FROM_DEVICE);
950 kfree(rxdr->buffer_info[i].rxbuf.data);
951 }
952 }
953
954 if (txdr->desc) {
955 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
956 txdr->dma);
957 txdr->desc = NULL;
958 }
959 if (rxdr->desc) {
960 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
961 rxdr->dma);
962 rxdr->desc = NULL;
963 }
964
965 kfree(txdr->buffer_info);
966 txdr->buffer_info = NULL;
967 kfree(rxdr->buffer_info);
968 rxdr->buffer_info = NULL;
969 }
970
971 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
972 {
973 struct e1000_hw *hw = &adapter->hw;
974 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
975 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
976 struct pci_dev *pdev = adapter->pdev;
977 u32 rctl;
978 int i, ret_val;
979
980
981
982 if (!txdr->count)
983 txdr->count = E1000_DEFAULT_TXD;
984
985 txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer),
986 GFP_KERNEL);
987 if (!txdr->buffer_info) {
988 ret_val = 1;
989 goto err_nomem;
990 }
991
992 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
993 txdr->size = ALIGN(txdr->size, 4096);
994 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
995 GFP_KERNEL);
996 if (!txdr->desc) {
997 ret_val = 2;
998 goto err_nomem;
999 }
1000 txdr->next_to_use = txdr->next_to_clean = 0;
1001
1002 ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1003 ew32(TDBAH, ((u64)txdr->dma >> 32));
1004 ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1005 ew32(TDH, 0);
1006 ew32(TDT, 0);
1007 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1008 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1009 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1010
1011 for (i = 0; i < txdr->count; i++) {
1012 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1013 struct sk_buff *skb;
1014 unsigned int size = 1024;
1015
1016 skb = alloc_skb(size, GFP_KERNEL);
1017 if (!skb) {
1018 ret_val = 3;
1019 goto err_nomem;
1020 }
1021 skb_put(skb, size);
1022 txdr->buffer_info[i].skb = skb;
1023 txdr->buffer_info[i].length = skb->len;
1024 txdr->buffer_info[i].dma =
1025 dma_map_single(&pdev->dev, skb->data, skb->len,
1026 DMA_TO_DEVICE);
1027 if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1028 ret_val = 4;
1029 goto err_nomem;
1030 }
1031 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1032 tx_desc->lower.data = cpu_to_le32(skb->len);
1033 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1034 E1000_TXD_CMD_IFCS |
1035 E1000_TXD_CMD_RPS);
1036 tx_desc->upper.data = 0;
1037 }
1038
1039
1040
1041 if (!rxdr->count)
1042 rxdr->count = E1000_DEFAULT_RXD;
1043
1044 rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer),
1045 GFP_KERNEL);
1046 if (!rxdr->buffer_info) {
1047 ret_val = 5;
1048 goto err_nomem;
1049 }
1050
1051 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1052 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1053 GFP_KERNEL);
1054 if (!rxdr->desc) {
1055 ret_val = 6;
1056 goto err_nomem;
1057 }
1058 rxdr->next_to_use = rxdr->next_to_clean = 0;
1059
1060 rctl = er32(RCTL);
1061 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1062 ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1063 ew32(RDBAH, ((u64)rxdr->dma >> 32));
1064 ew32(RDLEN, rxdr->size);
1065 ew32(RDH, 0);
1066 ew32(RDT, 0);
1067 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1068 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1069 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1070 ew32(RCTL, rctl);
1071
1072 for (i = 0; i < rxdr->count; i++) {
1073 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1074 u8 *buf;
1075
1076 buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN,
1077 GFP_KERNEL);
1078 if (!buf) {
1079 ret_val = 7;
1080 goto err_nomem;
1081 }
1082 rxdr->buffer_info[i].rxbuf.data = buf;
1083
1084 rxdr->buffer_info[i].dma =
1085 dma_map_single(&pdev->dev,
1086 buf + NET_SKB_PAD + NET_IP_ALIGN,
1087 E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1088 if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1089 ret_val = 8;
1090 goto err_nomem;
1091 }
1092 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1093 }
1094
1095 return 0;
1096
1097 err_nomem:
1098 e1000_free_desc_rings(adapter);
1099 return ret_val;
1100 }
1101
1102 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1103 {
1104 struct e1000_hw *hw = &adapter->hw;
1105
1106
1107 e1000_write_phy_reg(hw, 29, 0x001F);
1108 e1000_write_phy_reg(hw, 30, 0x8FFC);
1109 e1000_write_phy_reg(hw, 29, 0x001A);
1110 e1000_write_phy_reg(hw, 30, 0x8FF0);
1111 }
1112
1113 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1114 {
1115 struct e1000_hw *hw = &adapter->hw;
1116 u16 phy_reg;
1117
1118
1119
1120
1121
1122 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1123 phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1124 e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1125
1126
1127
1128
1129
1130 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1131 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1132 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1133 }
1134
1135 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1136 {
1137 struct e1000_hw *hw = &adapter->hw;
1138 u32 ctrl_reg;
1139 u16 phy_reg;
1140
1141
1142
1143 ctrl_reg = er32(CTRL);
1144 ctrl_reg |= (E1000_CTRL_ILOS |
1145 E1000_CTRL_FRCSPD |
1146 E1000_CTRL_FRCDPX |
1147 E1000_CTRL_SPD_1000 |
1148 E1000_CTRL_FD);
1149
1150 ew32(CTRL, ctrl_reg);
1151
1152
1153 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1154
1155
1156
1157
1158 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1159 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1160
1161
1162 e1000_phy_reset(hw);
1163
1164
1165 e1000_phy_reset_clk_and_crs(adapter);
1166
1167 e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1168
1169
1170 udelay(500);
1171
1172
1173 e1000_phy_reset_clk_and_crs(adapter);
1174
1175
1176 e1000_phy_disable_receiver(adapter);
1177
1178
1179 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1180 phy_reg |= MII_CR_LOOPBACK;
1181 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1182
1183
1184 e1000_phy_reset_clk_and_crs(adapter);
1185
1186
1187 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1188 if (phy_reg != 0x4100)
1189 return 9;
1190
1191 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1192 if (phy_reg != 0x0070)
1193 return 10;
1194
1195 e1000_read_phy_reg(hw, 29, &phy_reg);
1196 if (phy_reg != 0x001A)
1197 return 11;
1198
1199 return 0;
1200 }
1201
1202 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1203 {
1204 struct e1000_hw *hw = &adapter->hw;
1205 u32 ctrl_reg = 0;
1206 u32 stat_reg = 0;
1207
1208 hw->autoneg = false;
1209
1210 if (hw->phy_type == e1000_phy_m88) {
1211
1212 e1000_write_phy_reg(hw,
1213 M88E1000_PHY_SPEC_CTRL, 0x0808);
1214
1215 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1216
1217 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1218 }
1219
1220 ctrl_reg = er32(CTRL);
1221
1222
1223 e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1224
1225
1226 ctrl_reg = er32(CTRL);
1227 ctrl_reg &= ~E1000_CTRL_SPD_SEL;
1228 ctrl_reg |= (E1000_CTRL_FRCSPD |
1229 E1000_CTRL_FRCDPX |
1230 E1000_CTRL_SPD_1000 |
1231 E1000_CTRL_FD);
1232
1233 if (hw->media_type == e1000_media_type_copper &&
1234 hw->phy_type == e1000_phy_m88)
1235 ctrl_reg |= E1000_CTRL_ILOS;
1236 else {
1237
1238
1239
1240 stat_reg = er32(STATUS);
1241 if ((stat_reg & E1000_STATUS_FD) == 0)
1242 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1243 }
1244
1245 ew32(CTRL, ctrl_reg);
1246
1247
1248
1249
1250 if (hw->phy_type == e1000_phy_m88)
1251 e1000_phy_disable_receiver(adapter);
1252
1253 udelay(500);
1254
1255 return 0;
1256 }
1257
1258 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1259 {
1260 struct e1000_hw *hw = &adapter->hw;
1261 u16 phy_reg = 0;
1262 u16 count = 0;
1263
1264 switch (hw->mac_type) {
1265 case e1000_82543:
1266 if (hw->media_type == e1000_media_type_copper) {
1267
1268
1269
1270
1271 while (e1000_nonintegrated_phy_loopback(adapter) &&
1272 count++ < 10);
1273 if (count < 11)
1274 return 0;
1275 }
1276 break;
1277
1278 case e1000_82544:
1279 case e1000_82540:
1280 case e1000_82545:
1281 case e1000_82545_rev_3:
1282 case e1000_82546:
1283 case e1000_82546_rev_3:
1284 case e1000_82541:
1285 case e1000_82541_rev_2:
1286 case e1000_82547:
1287 case e1000_82547_rev_2:
1288 return e1000_integrated_phy_loopback(adapter);
1289 default:
1290
1291
1292
1293 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1294 phy_reg |= MII_CR_LOOPBACK;
1295 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1296 return 0;
1297 }
1298
1299 return 8;
1300 }
1301
1302 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1303 {
1304 struct e1000_hw *hw = &adapter->hw;
1305 u32 rctl;
1306
1307 if (hw->media_type == e1000_media_type_fiber ||
1308 hw->media_type == e1000_media_type_internal_serdes) {
1309 switch (hw->mac_type) {
1310 case e1000_82545:
1311 case e1000_82546:
1312 case e1000_82545_rev_3:
1313 case e1000_82546_rev_3:
1314 return e1000_set_phy_loopback(adapter);
1315 default:
1316 rctl = er32(RCTL);
1317 rctl |= E1000_RCTL_LBM_TCVR;
1318 ew32(RCTL, rctl);
1319 return 0;
1320 }
1321 } else if (hw->media_type == e1000_media_type_copper) {
1322 return e1000_set_phy_loopback(adapter);
1323 }
1324
1325 return 7;
1326 }
1327
1328 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1329 {
1330 struct e1000_hw *hw = &adapter->hw;
1331 u32 rctl;
1332 u16 phy_reg;
1333
1334 rctl = er32(RCTL);
1335 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1336 ew32(RCTL, rctl);
1337
1338 switch (hw->mac_type) {
1339 case e1000_82545:
1340 case e1000_82546:
1341 case e1000_82545_rev_3:
1342 case e1000_82546_rev_3:
1343 default:
1344 hw->autoneg = true;
1345 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1346 if (phy_reg & MII_CR_LOOPBACK) {
1347 phy_reg &= ~MII_CR_LOOPBACK;
1348 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1349 e1000_phy_reset(hw);
1350 }
1351 break;
1352 }
1353 }
1354
1355 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1356 unsigned int frame_size)
1357 {
1358 memset(skb->data, 0xFF, frame_size);
1359 frame_size &= ~1;
1360 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1361 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1362 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1363 }
1364
1365 static int e1000_check_lbtest_frame(const unsigned char *data,
1366 unsigned int frame_size)
1367 {
1368 frame_size &= ~1;
1369 if (*(data + 3) == 0xFF) {
1370 if ((*(data + frame_size / 2 + 10) == 0xBE) &&
1371 (*(data + frame_size / 2 + 12) == 0xAF)) {
1372 return 0;
1373 }
1374 }
1375 return 13;
1376 }
1377
1378 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1379 {
1380 struct e1000_hw *hw = &adapter->hw;
1381 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1382 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1383 struct pci_dev *pdev = adapter->pdev;
1384 int i, j, k, l, lc, good_cnt, ret_val = 0;
1385 unsigned long time;
1386
1387 ew32(RDT, rxdr->count - 1);
1388
1389
1390
1391
1392
1393
1394 if (rxdr->count <= txdr->count)
1395 lc = ((txdr->count / 64) * 2) + 1;
1396 else
1397 lc = ((rxdr->count / 64) * 2) + 1;
1398
1399 k = l = 0;
1400 for (j = 0; j <= lc; j++) {
1401 for (i = 0; i < 64; i++) {
1402 e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1403 1024);
1404 dma_sync_single_for_device(&pdev->dev,
1405 txdr->buffer_info[k].dma,
1406 txdr->buffer_info[k].length,
1407 DMA_TO_DEVICE);
1408 if (unlikely(++k == txdr->count))
1409 k = 0;
1410 }
1411 ew32(TDT, k);
1412 E1000_WRITE_FLUSH();
1413 msleep(200);
1414 time = jiffies;
1415 good_cnt = 0;
1416 do {
1417 dma_sync_single_for_cpu(&pdev->dev,
1418 rxdr->buffer_info[l].dma,
1419 E1000_RXBUFFER_2048,
1420 DMA_FROM_DEVICE);
1421
1422 ret_val = e1000_check_lbtest_frame(
1423 rxdr->buffer_info[l].rxbuf.data +
1424 NET_SKB_PAD + NET_IP_ALIGN,
1425 1024);
1426 if (!ret_val)
1427 good_cnt++;
1428 if (unlikely(++l == rxdr->count))
1429 l = 0;
1430
1431
1432
1433
1434 } while (good_cnt < 64 && time_after(time + 20, jiffies));
1435
1436 if (good_cnt != 64) {
1437 ret_val = 13;
1438 break;
1439 }
1440 if (time_after_eq(jiffies, time + 2)) {
1441 ret_val = 14;
1442 break;
1443 }
1444 }
1445 return ret_val;
1446 }
1447
1448 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1449 {
1450 *data = e1000_setup_desc_rings(adapter);
1451 if (*data)
1452 goto out;
1453 *data = e1000_setup_loopback_test(adapter);
1454 if (*data)
1455 goto err_loopback;
1456 *data = e1000_run_loopback_test(adapter);
1457 e1000_loopback_cleanup(adapter);
1458
1459 err_loopback:
1460 e1000_free_desc_rings(adapter);
1461 out:
1462 return *data;
1463 }
1464
1465 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1466 {
1467 struct e1000_hw *hw = &adapter->hw;
1468 *data = 0;
1469 if (hw->media_type == e1000_media_type_internal_serdes) {
1470 int i = 0;
1471
1472 hw->serdes_has_link = false;
1473
1474
1475
1476
1477 do {
1478 e1000_check_for_link(hw);
1479 if (hw->serdes_has_link)
1480 return *data;
1481 msleep(20);
1482 } while (i++ < 3750);
1483
1484 *data = 1;
1485 } else {
1486 e1000_check_for_link(hw);
1487 if (hw->autoneg)
1488 msleep(4000);
1489
1490 if (!(er32(STATUS) & E1000_STATUS_LU))
1491 *data = 1;
1492 }
1493 return *data;
1494 }
1495
1496 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1497 {
1498 switch (sset) {
1499 case ETH_SS_TEST:
1500 return E1000_TEST_LEN;
1501 case ETH_SS_STATS:
1502 return E1000_STATS_LEN;
1503 default:
1504 return -EOPNOTSUPP;
1505 }
1506 }
1507
1508 static void e1000_diag_test(struct net_device *netdev,
1509 struct ethtool_test *eth_test, u64 *data)
1510 {
1511 struct e1000_adapter *adapter = netdev_priv(netdev);
1512 struct e1000_hw *hw = &adapter->hw;
1513 bool if_running = netif_running(netdev);
1514
1515 set_bit(__E1000_TESTING, &adapter->flags);
1516 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1517
1518
1519
1520 u16 autoneg_advertised = hw->autoneg_advertised;
1521 u8 forced_speed_duplex = hw->forced_speed_duplex;
1522 u8 autoneg = hw->autoneg;
1523
1524 e_info(hw, "offline testing starting\n");
1525
1526
1527
1528
1529 if (e1000_link_test(adapter, &data[4]))
1530 eth_test->flags |= ETH_TEST_FL_FAILED;
1531
1532 if (if_running)
1533
1534 e1000_close(netdev);
1535 else
1536 e1000_reset(adapter);
1537
1538 if (e1000_reg_test(adapter, &data[0]))
1539 eth_test->flags |= ETH_TEST_FL_FAILED;
1540
1541 e1000_reset(adapter);
1542 if (e1000_eeprom_test(adapter, &data[1]))
1543 eth_test->flags |= ETH_TEST_FL_FAILED;
1544
1545 e1000_reset(adapter);
1546 if (e1000_intr_test(adapter, &data[2]))
1547 eth_test->flags |= ETH_TEST_FL_FAILED;
1548
1549 e1000_reset(adapter);
1550
1551 e1000_power_up_phy(adapter);
1552 if (e1000_loopback_test(adapter, &data[3]))
1553 eth_test->flags |= ETH_TEST_FL_FAILED;
1554
1555
1556 hw->autoneg_advertised = autoneg_advertised;
1557 hw->forced_speed_duplex = forced_speed_duplex;
1558 hw->autoneg = autoneg;
1559
1560 e1000_reset(adapter);
1561 clear_bit(__E1000_TESTING, &adapter->flags);
1562 if (if_running)
1563 e1000_open(netdev);
1564 } else {
1565 e_info(hw, "online testing starting\n");
1566
1567 if (e1000_link_test(adapter, &data[4]))
1568 eth_test->flags |= ETH_TEST_FL_FAILED;
1569
1570
1571 data[0] = 0;
1572 data[1] = 0;
1573 data[2] = 0;
1574 data[3] = 0;
1575
1576 clear_bit(__E1000_TESTING, &adapter->flags);
1577 }
1578 msleep_interruptible(4 * 1000);
1579 }
1580
1581 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1582 struct ethtool_wolinfo *wol)
1583 {
1584 struct e1000_hw *hw = &adapter->hw;
1585 int retval = 1;
1586
1587 switch (hw->device_id) {
1588 case E1000_DEV_ID_82542:
1589 case E1000_DEV_ID_82543GC_FIBER:
1590 case E1000_DEV_ID_82543GC_COPPER:
1591 case E1000_DEV_ID_82544EI_FIBER:
1592 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1593 case E1000_DEV_ID_82545EM_FIBER:
1594 case E1000_DEV_ID_82545EM_COPPER:
1595 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1596 case E1000_DEV_ID_82546GB_PCIE:
1597
1598 wol->supported = 0;
1599 break;
1600 case E1000_DEV_ID_82546EB_FIBER:
1601 case E1000_DEV_ID_82546GB_FIBER:
1602
1603 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1604 wol->supported = 0;
1605 break;
1606 }
1607
1608 retval = 0;
1609 break;
1610 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1611
1612 if (!adapter->quad_port_a) {
1613 wol->supported = 0;
1614 break;
1615 }
1616
1617 retval = 0;
1618 break;
1619 default:
1620
1621
1622
1623
1624 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1625 !adapter->eeprom_wol) {
1626 wol->supported = 0;
1627 break;
1628 }
1629
1630 retval = 0;
1631 }
1632
1633 return retval;
1634 }
1635
1636 static void e1000_get_wol(struct net_device *netdev,
1637 struct ethtool_wolinfo *wol)
1638 {
1639 struct e1000_adapter *adapter = netdev_priv(netdev);
1640 struct e1000_hw *hw = &adapter->hw;
1641
1642 wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1643 wol->wolopts = 0;
1644
1645
1646
1647
1648 if (e1000_wol_exclusion(adapter, wol) ||
1649 !device_can_wakeup(&adapter->pdev->dev))
1650 return;
1651
1652
1653 switch (hw->device_id) {
1654 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1655
1656 wol->supported &= ~WAKE_UCAST;
1657
1658 if (adapter->wol & E1000_WUFC_EX)
1659 e_err(drv, "Interface does not support directed "
1660 "(unicast) frame wake-up packets\n");
1661 break;
1662 default:
1663 break;
1664 }
1665
1666 if (adapter->wol & E1000_WUFC_EX)
1667 wol->wolopts |= WAKE_UCAST;
1668 if (adapter->wol & E1000_WUFC_MC)
1669 wol->wolopts |= WAKE_MCAST;
1670 if (adapter->wol & E1000_WUFC_BC)
1671 wol->wolopts |= WAKE_BCAST;
1672 if (adapter->wol & E1000_WUFC_MAG)
1673 wol->wolopts |= WAKE_MAGIC;
1674 }
1675
1676 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1677 {
1678 struct e1000_adapter *adapter = netdev_priv(netdev);
1679 struct e1000_hw *hw = &adapter->hw;
1680
1681 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1682 return -EOPNOTSUPP;
1683
1684 if (e1000_wol_exclusion(adapter, wol) ||
1685 !device_can_wakeup(&adapter->pdev->dev))
1686 return wol->wolopts ? -EOPNOTSUPP : 0;
1687
1688 switch (hw->device_id) {
1689 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1690 if (wol->wolopts & WAKE_UCAST) {
1691 e_err(drv, "Interface does not support directed "
1692 "(unicast) frame wake-up packets\n");
1693 return -EOPNOTSUPP;
1694 }
1695 break;
1696 default:
1697 break;
1698 }
1699
1700
1701 adapter->wol = 0;
1702
1703 if (wol->wolopts & WAKE_UCAST)
1704 adapter->wol |= E1000_WUFC_EX;
1705 if (wol->wolopts & WAKE_MCAST)
1706 adapter->wol |= E1000_WUFC_MC;
1707 if (wol->wolopts & WAKE_BCAST)
1708 adapter->wol |= E1000_WUFC_BC;
1709 if (wol->wolopts & WAKE_MAGIC)
1710 adapter->wol |= E1000_WUFC_MAG;
1711
1712 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1713
1714 return 0;
1715 }
1716
1717 static int e1000_set_phys_id(struct net_device *netdev,
1718 enum ethtool_phys_id_state state)
1719 {
1720 struct e1000_adapter *adapter = netdev_priv(netdev);
1721 struct e1000_hw *hw = &adapter->hw;
1722
1723 switch (state) {
1724 case ETHTOOL_ID_ACTIVE:
1725 e1000_setup_led(hw);
1726 return 2;
1727
1728 case ETHTOOL_ID_ON:
1729 e1000_led_on(hw);
1730 break;
1731
1732 case ETHTOOL_ID_OFF:
1733 e1000_led_off(hw);
1734 break;
1735
1736 case ETHTOOL_ID_INACTIVE:
1737 e1000_cleanup_led(hw);
1738 }
1739
1740 return 0;
1741 }
1742
1743 static int e1000_get_coalesce(struct net_device *netdev,
1744 struct ethtool_coalesce *ec)
1745 {
1746 struct e1000_adapter *adapter = netdev_priv(netdev);
1747
1748 if (adapter->hw.mac_type < e1000_82545)
1749 return -EOPNOTSUPP;
1750
1751 if (adapter->itr_setting <= 4)
1752 ec->rx_coalesce_usecs = adapter->itr_setting;
1753 else
1754 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1755
1756 return 0;
1757 }
1758
1759 static int e1000_set_coalesce(struct net_device *netdev,
1760 struct ethtool_coalesce *ec)
1761 {
1762 struct e1000_adapter *adapter = netdev_priv(netdev);
1763 struct e1000_hw *hw = &adapter->hw;
1764
1765 if (hw->mac_type < e1000_82545)
1766 return -EOPNOTSUPP;
1767
1768 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1769 ((ec->rx_coalesce_usecs > 4) &&
1770 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1771 (ec->rx_coalesce_usecs == 2))
1772 return -EINVAL;
1773
1774 if (ec->rx_coalesce_usecs == 4) {
1775 adapter->itr = adapter->itr_setting = 4;
1776 } else if (ec->rx_coalesce_usecs <= 3) {
1777 adapter->itr = 20000;
1778 adapter->itr_setting = ec->rx_coalesce_usecs;
1779 } else {
1780 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1781 adapter->itr_setting = adapter->itr & ~3;
1782 }
1783
1784 if (adapter->itr_setting != 0)
1785 ew32(ITR, 1000000000 / (adapter->itr * 256));
1786 else
1787 ew32(ITR, 0);
1788
1789 return 0;
1790 }
1791
1792 static int e1000_nway_reset(struct net_device *netdev)
1793 {
1794 struct e1000_adapter *adapter = netdev_priv(netdev);
1795
1796 if (netif_running(netdev))
1797 e1000_reinit_locked(adapter);
1798 return 0;
1799 }
1800
1801 static void e1000_get_ethtool_stats(struct net_device *netdev,
1802 struct ethtool_stats *stats, u64 *data)
1803 {
1804 struct e1000_adapter *adapter = netdev_priv(netdev);
1805 int i;
1806 const struct e1000_stats *stat = e1000_gstrings_stats;
1807
1808 e1000_update_stats(adapter);
1809 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++, stat++) {
1810 char *p;
1811
1812 switch (stat->type) {
1813 case NETDEV_STATS:
1814 p = (char *)netdev + stat->stat_offset;
1815 break;
1816 case E1000_STATS:
1817 p = (char *)adapter + stat->stat_offset;
1818 break;
1819 default:
1820 netdev_WARN_ONCE(netdev, "Invalid E1000 stat type: %u index %d\n",
1821 stat->type, i);
1822 continue;
1823 }
1824
1825 if (stat->sizeof_stat == sizeof(u64))
1826 data[i] = *(u64 *)p;
1827 else
1828 data[i] = *(u32 *)p;
1829 }
1830
1831 }
1832
1833 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1834 u8 *data)
1835 {
1836 u8 *p = data;
1837 int i;
1838
1839 switch (stringset) {
1840 case ETH_SS_TEST:
1841 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1842 break;
1843 case ETH_SS_STATS:
1844 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1845 memcpy(p, e1000_gstrings_stats[i].stat_string,
1846 ETH_GSTRING_LEN);
1847 p += ETH_GSTRING_LEN;
1848 }
1849
1850 break;
1851 }
1852 }
1853
1854 static const struct ethtool_ops e1000_ethtool_ops = {
1855 .get_drvinfo = e1000_get_drvinfo,
1856 .get_regs_len = e1000_get_regs_len,
1857 .get_regs = e1000_get_regs,
1858 .get_wol = e1000_get_wol,
1859 .set_wol = e1000_set_wol,
1860 .get_msglevel = e1000_get_msglevel,
1861 .set_msglevel = e1000_set_msglevel,
1862 .nway_reset = e1000_nway_reset,
1863 .get_link = e1000_get_link,
1864 .get_eeprom_len = e1000_get_eeprom_len,
1865 .get_eeprom = e1000_get_eeprom,
1866 .set_eeprom = e1000_set_eeprom,
1867 .get_ringparam = e1000_get_ringparam,
1868 .set_ringparam = e1000_set_ringparam,
1869 .get_pauseparam = e1000_get_pauseparam,
1870 .set_pauseparam = e1000_set_pauseparam,
1871 .self_test = e1000_diag_test,
1872 .get_strings = e1000_get_strings,
1873 .set_phys_id = e1000_set_phys_id,
1874 .get_ethtool_stats = e1000_get_ethtool_stats,
1875 .get_sset_count = e1000_get_sset_count,
1876 .get_coalesce = e1000_get_coalesce,
1877 .set_coalesce = e1000_set_coalesce,
1878 .get_ts_info = ethtool_op_get_ts_info,
1879 .get_link_ksettings = e1000_get_link_ksettings,
1880 .set_link_ksettings = e1000_set_link_ksettings,
1881 };
1882
1883 void e1000_set_ethtool_ops(struct net_device *netdev)
1884 {
1885 netdev->ethtool_ops = &e1000_ethtool_ops;
1886 }