root/drivers/net/ethernet/intel/e1000/e1000_ethtool.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. e1000_get_link_ksettings
  2. e1000_set_link_ksettings
  3. e1000_get_link
  4. e1000_get_pauseparam
  5. e1000_set_pauseparam
  6. e1000_get_msglevel
  7. e1000_set_msglevel
  8. e1000_get_regs_len
  9. e1000_get_regs
  10. e1000_get_eeprom_len
  11. e1000_get_eeprom
  12. e1000_set_eeprom
  13. e1000_get_drvinfo
  14. e1000_get_ringparam
  15. e1000_set_ringparam
  16. reg_pattern_test
  17. reg_set_and_check
  18. e1000_reg_test
  19. e1000_eeprom_test
  20. e1000_test_intr
  21. e1000_intr_test
  22. e1000_free_desc_rings
  23. e1000_setup_desc_rings
  24. e1000_phy_disable_receiver
  25. e1000_phy_reset_clk_and_crs
  26. e1000_nonintegrated_phy_loopback
  27. e1000_integrated_phy_loopback
  28. e1000_set_phy_loopback
  29. e1000_setup_loopback_test
  30. e1000_loopback_cleanup
  31. e1000_create_lbtest_frame
  32. e1000_check_lbtest_frame
  33. e1000_run_loopback_test
  34. e1000_loopback_test
  35. e1000_link_test
  36. e1000_get_sset_count
  37. e1000_diag_test
  38. e1000_wol_exclusion
  39. e1000_get_wol
  40. e1000_set_wol
  41. e1000_set_phys_id
  42. e1000_get_coalesce
  43. e1000_set_coalesce
  44. e1000_nway_reset
  45. e1000_get_ethtool_stats
  46. e1000_get_strings
  47. e1000_set_ethtool_ops

   1 // SPDX-License-Identifier: GPL-2.0
   2 /* Copyright(c) 1999 - 2006 Intel Corporation. */
   3 
   4 /* ethtool support for e1000 */
   5 
   6 #include "e1000.h"
   7 #include <linux/jiffies.h>
   8 #include <linux/uaccess.h>
   9 
  10 enum {NETDEV_STATS, E1000_STATS};
  11 
  12 struct e1000_stats {
  13         char stat_string[ETH_GSTRING_LEN];
  14         int type;
  15         int sizeof_stat;
  16         int stat_offset;
  17 };
  18 
  19 #define E1000_STAT(m)           E1000_STATS, \
  20                                 sizeof(((struct e1000_adapter *)0)->m), \
  21                                 offsetof(struct e1000_adapter, m)
  22 #define E1000_NETDEV_STAT(m)    NETDEV_STATS, \
  23                                 sizeof(((struct net_device *)0)->m), \
  24                                 offsetof(struct net_device, m)
  25 
  26 static const struct e1000_stats e1000_gstrings_stats[] = {
  27         { "rx_packets", E1000_STAT(stats.gprc) },
  28         { "tx_packets", E1000_STAT(stats.gptc) },
  29         { "rx_bytes", E1000_STAT(stats.gorcl) },
  30         { "tx_bytes", E1000_STAT(stats.gotcl) },
  31         { "rx_broadcast", E1000_STAT(stats.bprc) },
  32         { "tx_broadcast", E1000_STAT(stats.bptc) },
  33         { "rx_multicast", E1000_STAT(stats.mprc) },
  34         { "tx_multicast", E1000_STAT(stats.mptc) },
  35         { "rx_errors", E1000_STAT(stats.rxerrc) },
  36         { "tx_errors", E1000_STAT(stats.txerrc) },
  37         { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
  38         { "multicast", E1000_STAT(stats.mprc) },
  39         { "collisions", E1000_STAT(stats.colc) },
  40         { "rx_length_errors", E1000_STAT(stats.rlerrc) },
  41         { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
  42         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
  43         { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
  44         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
  45         { "rx_missed_errors", E1000_STAT(stats.mpc) },
  46         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
  47         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
  48         { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
  49         { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
  50         { "tx_window_errors", E1000_STAT(stats.latecol) },
  51         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
  52         { "tx_deferred_ok", E1000_STAT(stats.dc) },
  53         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
  54         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
  55         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
  56         { "tx_restart_queue", E1000_STAT(restart_queue) },
  57         { "rx_long_length_errors", E1000_STAT(stats.roc) },
  58         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
  59         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
  60         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
  61         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
  62         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
  63         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
  64         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
  65         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
  66         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
  67         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
  68         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
  69         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
  70         { "tx_smbus", E1000_STAT(stats.mgptc) },
  71         { "rx_smbus", E1000_STAT(stats.mgprc) },
  72         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
  73 };
  74 
  75 #define E1000_QUEUE_STATS_LEN 0
  76 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
  77 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
  78 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
  79         "Register test  (offline)", "Eeprom test    (offline)",
  80         "Interrupt test (offline)", "Loopback test  (offline)",
  81         "Link test   (on/offline)"
  82 };
  83 
  84 #define E1000_TEST_LEN  ARRAY_SIZE(e1000_gstrings_test)
  85 
  86 static int e1000_get_link_ksettings(struct net_device *netdev,
  87                                     struct ethtool_link_ksettings *cmd)
  88 {
  89         struct e1000_adapter *adapter = netdev_priv(netdev);
  90         struct e1000_hw *hw = &adapter->hw;
  91         u32 supported, advertising;
  92 
  93         if (hw->media_type == e1000_media_type_copper) {
  94                 supported = (SUPPORTED_10baseT_Half |
  95                              SUPPORTED_10baseT_Full |
  96                              SUPPORTED_100baseT_Half |
  97                              SUPPORTED_100baseT_Full |
  98                              SUPPORTED_1000baseT_Full|
  99                              SUPPORTED_Autoneg |
 100                              SUPPORTED_TP);
 101                 advertising = ADVERTISED_TP;
 102 
 103                 if (hw->autoneg == 1) {
 104                         advertising |= ADVERTISED_Autoneg;
 105                         /* the e1000 autoneg seems to match ethtool nicely */
 106                         advertising |= hw->autoneg_advertised;
 107                 }
 108 
 109                 cmd->base.port = PORT_TP;
 110                 cmd->base.phy_address = hw->phy_addr;
 111         } else {
 112                 supported   = (SUPPORTED_1000baseT_Full |
 113                                SUPPORTED_FIBRE |
 114                                SUPPORTED_Autoneg);
 115 
 116                 advertising = (ADVERTISED_1000baseT_Full |
 117                                ADVERTISED_FIBRE |
 118                                ADVERTISED_Autoneg);
 119 
 120                 cmd->base.port = PORT_FIBRE;
 121         }
 122 
 123         if (er32(STATUS) & E1000_STATUS_LU) {
 124                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
 125                                            &adapter->link_duplex);
 126                 cmd->base.speed = adapter->link_speed;
 127 
 128                 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
 129                  * and HALF_DUPLEX != DUPLEX_HALF
 130                  */
 131                 if (adapter->link_duplex == FULL_DUPLEX)
 132                         cmd->base.duplex = DUPLEX_FULL;
 133                 else
 134                         cmd->base.duplex = DUPLEX_HALF;
 135         } else {
 136                 cmd->base.speed = SPEED_UNKNOWN;
 137                 cmd->base.duplex = DUPLEX_UNKNOWN;
 138         }
 139 
 140         cmd->base.autoneg = ((hw->media_type == e1000_media_type_fiber) ||
 141                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
 142 
 143         /* MDI-X => 1; MDI => 0 */
 144         if ((hw->media_type == e1000_media_type_copper) &&
 145             netif_carrier_ok(netdev))
 146                 cmd->base.eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
 147                                      ETH_TP_MDI_X : ETH_TP_MDI);
 148         else
 149                 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
 150 
 151         if (hw->mdix == AUTO_ALL_MODES)
 152                 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
 153         else
 154                 cmd->base.eth_tp_mdix_ctrl = hw->mdix;
 155 
 156         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
 157                                                 supported);
 158         ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
 159                                                 advertising);
 160 
 161         return 0;
 162 }
 163 
 164 static int e1000_set_link_ksettings(struct net_device *netdev,
 165                                     const struct ethtool_link_ksettings *cmd)
 166 {
 167         struct e1000_adapter *adapter = netdev_priv(netdev);
 168         struct e1000_hw *hw = &adapter->hw;
 169         u32 advertising;
 170 
 171         ethtool_convert_link_mode_to_legacy_u32(&advertising,
 172                                                 cmd->link_modes.advertising);
 173 
 174         /* MDI setting is only allowed when autoneg enabled because
 175          * some hardware doesn't allow MDI setting when speed or
 176          * duplex is forced.
 177          */
 178         if (cmd->base.eth_tp_mdix_ctrl) {
 179                 if (hw->media_type != e1000_media_type_copper)
 180                         return -EOPNOTSUPP;
 181 
 182                 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
 183                     (cmd->base.autoneg != AUTONEG_ENABLE)) {
 184                         e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
 185                         return -EINVAL;
 186                 }
 187         }
 188 
 189         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 190                 msleep(1);
 191 
 192         if (cmd->base.autoneg == AUTONEG_ENABLE) {
 193                 hw->autoneg = 1;
 194                 if (hw->media_type == e1000_media_type_fiber)
 195                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
 196                                                  ADVERTISED_FIBRE |
 197                                                  ADVERTISED_Autoneg;
 198                 else
 199                         hw->autoneg_advertised = advertising |
 200                                                  ADVERTISED_TP |
 201                                                  ADVERTISED_Autoneg;
 202         } else {
 203                 u32 speed = cmd->base.speed;
 204                 /* calling this overrides forced MDI setting */
 205                 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
 206                         clear_bit(__E1000_RESETTING, &adapter->flags);
 207                         return -EINVAL;
 208                 }
 209         }
 210 
 211         /* MDI-X => 2; MDI => 1; Auto => 3 */
 212         if (cmd->base.eth_tp_mdix_ctrl) {
 213                 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
 214                         hw->mdix = AUTO_ALL_MODES;
 215                 else
 216                         hw->mdix = cmd->base.eth_tp_mdix_ctrl;
 217         }
 218 
 219         /* reset the link */
 220 
 221         if (netif_running(adapter->netdev)) {
 222                 e1000_down(adapter);
 223                 e1000_up(adapter);
 224         } else {
 225                 e1000_reset(adapter);
 226         }
 227         clear_bit(__E1000_RESETTING, &adapter->flags);
 228         return 0;
 229 }
 230 
 231 static u32 e1000_get_link(struct net_device *netdev)
 232 {
 233         struct e1000_adapter *adapter = netdev_priv(netdev);
 234 
 235         /* If the link is not reported up to netdev, interrupts are disabled,
 236          * and so the physical link state may have changed since we last
 237          * looked. Set get_link_status to make sure that the true link
 238          * state is interrogated, rather than pulling a cached and possibly
 239          * stale link state from the driver.
 240          */
 241         if (!netif_carrier_ok(netdev))
 242                 adapter->hw.get_link_status = 1;
 243 
 244         return e1000_has_link(adapter);
 245 }
 246 
 247 static void e1000_get_pauseparam(struct net_device *netdev,
 248                                  struct ethtool_pauseparam *pause)
 249 {
 250         struct e1000_adapter *adapter = netdev_priv(netdev);
 251         struct e1000_hw *hw = &adapter->hw;
 252 
 253         pause->autoneg =
 254                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
 255 
 256         if (hw->fc == E1000_FC_RX_PAUSE) {
 257                 pause->rx_pause = 1;
 258         } else if (hw->fc == E1000_FC_TX_PAUSE) {
 259                 pause->tx_pause = 1;
 260         } else if (hw->fc == E1000_FC_FULL) {
 261                 pause->rx_pause = 1;
 262                 pause->tx_pause = 1;
 263         }
 264 }
 265 
 266 static int e1000_set_pauseparam(struct net_device *netdev,
 267                                 struct ethtool_pauseparam *pause)
 268 {
 269         struct e1000_adapter *adapter = netdev_priv(netdev);
 270         struct e1000_hw *hw = &adapter->hw;
 271         int retval = 0;
 272 
 273         adapter->fc_autoneg = pause->autoneg;
 274 
 275         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 276                 msleep(1);
 277 
 278         if (pause->rx_pause && pause->tx_pause)
 279                 hw->fc = E1000_FC_FULL;
 280         else if (pause->rx_pause && !pause->tx_pause)
 281                 hw->fc = E1000_FC_RX_PAUSE;
 282         else if (!pause->rx_pause && pause->tx_pause)
 283                 hw->fc = E1000_FC_TX_PAUSE;
 284         else if (!pause->rx_pause && !pause->tx_pause)
 285                 hw->fc = E1000_FC_NONE;
 286 
 287         hw->original_fc = hw->fc;
 288 
 289         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
 290                 if (netif_running(adapter->netdev)) {
 291                         e1000_down(adapter);
 292                         e1000_up(adapter);
 293                 } else {
 294                         e1000_reset(adapter);
 295                 }
 296         } else
 297                 retval = ((hw->media_type == e1000_media_type_fiber) ?
 298                           e1000_setup_link(hw) : e1000_force_mac_fc(hw));
 299 
 300         clear_bit(__E1000_RESETTING, &adapter->flags);
 301         return retval;
 302 }
 303 
 304 static u32 e1000_get_msglevel(struct net_device *netdev)
 305 {
 306         struct e1000_adapter *adapter = netdev_priv(netdev);
 307 
 308         return adapter->msg_enable;
 309 }
 310 
 311 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
 312 {
 313         struct e1000_adapter *adapter = netdev_priv(netdev);
 314 
 315         adapter->msg_enable = data;
 316 }
 317 
 318 static int e1000_get_regs_len(struct net_device *netdev)
 319 {
 320 #define E1000_REGS_LEN 32
 321         return E1000_REGS_LEN * sizeof(u32);
 322 }
 323 
 324 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
 325                            void *p)
 326 {
 327         struct e1000_adapter *adapter = netdev_priv(netdev);
 328         struct e1000_hw *hw = &adapter->hw;
 329         u32 *regs_buff = p;
 330         u16 phy_data;
 331 
 332         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
 333 
 334         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
 335 
 336         regs_buff[0]  = er32(CTRL);
 337         regs_buff[1]  = er32(STATUS);
 338 
 339         regs_buff[2]  = er32(RCTL);
 340         regs_buff[3]  = er32(RDLEN);
 341         regs_buff[4]  = er32(RDH);
 342         regs_buff[5]  = er32(RDT);
 343         regs_buff[6]  = er32(RDTR);
 344 
 345         regs_buff[7]  = er32(TCTL);
 346         regs_buff[8]  = er32(TDLEN);
 347         regs_buff[9]  = er32(TDH);
 348         regs_buff[10] = er32(TDT);
 349         regs_buff[11] = er32(TIDV);
 350 
 351         regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
 352         if (hw->phy_type == e1000_phy_igp) {
 353                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 354                                     IGP01E1000_PHY_AGC_A);
 355                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
 356                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 357                 regs_buff[13] = (u32)phy_data; /* cable length */
 358                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 359                                     IGP01E1000_PHY_AGC_B);
 360                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
 361                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 362                 regs_buff[14] = (u32)phy_data; /* cable length */
 363                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 364                                     IGP01E1000_PHY_AGC_C);
 365                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
 366                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 367                 regs_buff[15] = (u32)phy_data; /* cable length */
 368                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 369                                     IGP01E1000_PHY_AGC_D);
 370                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
 371                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 372                 regs_buff[16] = (u32)phy_data; /* cable length */
 373                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
 374                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
 375                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
 376                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 377                 regs_buff[18] = (u32)phy_data; /* cable polarity */
 378                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 379                                     IGP01E1000_PHY_PCS_INIT_REG);
 380                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
 381                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 382                 regs_buff[19] = (u32)phy_data; /* cable polarity */
 383                 regs_buff[20] = 0; /* polarity correction enabled (always) */
 384                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
 385                 regs_buff[23] = regs_buff[18]; /* mdix mode */
 386                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
 387         } else {
 388                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
 389                 regs_buff[13] = (u32)phy_data; /* cable length */
 390                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 391                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 392                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 393                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 394                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
 395                 regs_buff[18] = regs_buff[13]; /* cable polarity */
 396                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 397                 regs_buff[20] = regs_buff[17]; /* polarity correction */
 398                 /* phy receive errors */
 399                 regs_buff[22] = adapter->phy_stats.receive_errors;
 400                 regs_buff[23] = regs_buff[13]; /* mdix mode */
 401         }
 402         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
 403         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
 404         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
 405         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
 406         if (hw->mac_type >= e1000_82540 &&
 407             hw->media_type == e1000_media_type_copper) {
 408                 regs_buff[26] = er32(MANC);
 409         }
 410 }
 411 
 412 static int e1000_get_eeprom_len(struct net_device *netdev)
 413 {
 414         struct e1000_adapter *adapter = netdev_priv(netdev);
 415         struct e1000_hw *hw = &adapter->hw;
 416 
 417         return hw->eeprom.word_size * 2;
 418 }
 419 
 420 static int e1000_get_eeprom(struct net_device *netdev,
 421                             struct ethtool_eeprom *eeprom, u8 *bytes)
 422 {
 423         struct e1000_adapter *adapter = netdev_priv(netdev);
 424         struct e1000_hw *hw = &adapter->hw;
 425         u16 *eeprom_buff;
 426         int first_word, last_word;
 427         int ret_val = 0;
 428         u16 i;
 429 
 430         if (eeprom->len == 0)
 431                 return -EINVAL;
 432 
 433         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
 434 
 435         first_word = eeprom->offset >> 1;
 436         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 437 
 438         eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
 439                                     GFP_KERNEL);
 440         if (!eeprom_buff)
 441                 return -ENOMEM;
 442 
 443         if (hw->eeprom.type == e1000_eeprom_spi)
 444                 ret_val = e1000_read_eeprom(hw, first_word,
 445                                             last_word - first_word + 1,
 446                                             eeprom_buff);
 447         else {
 448                 for (i = 0; i < last_word - first_word + 1; i++) {
 449                         ret_val = e1000_read_eeprom(hw, first_word + i, 1,
 450                                                     &eeprom_buff[i]);
 451                         if (ret_val)
 452                                 break;
 453                 }
 454         }
 455 
 456         /* Device's eeprom is always little-endian, word addressable */
 457         for (i = 0; i < last_word - first_word + 1; i++)
 458                 le16_to_cpus(&eeprom_buff[i]);
 459 
 460         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
 461                eeprom->len);
 462         kfree(eeprom_buff);
 463 
 464         return ret_val;
 465 }
 466 
 467 static int e1000_set_eeprom(struct net_device *netdev,
 468                             struct ethtool_eeprom *eeprom, u8 *bytes)
 469 {
 470         struct e1000_adapter *adapter = netdev_priv(netdev);
 471         struct e1000_hw *hw = &adapter->hw;
 472         u16 *eeprom_buff;
 473         void *ptr;
 474         int max_len, first_word, last_word, ret_val = 0;
 475         u16 i;
 476 
 477         if (eeprom->len == 0)
 478                 return -EOPNOTSUPP;
 479 
 480         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
 481                 return -EFAULT;
 482 
 483         max_len = hw->eeprom.word_size * 2;
 484 
 485         first_word = eeprom->offset >> 1;
 486         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 487         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
 488         if (!eeprom_buff)
 489                 return -ENOMEM;
 490 
 491         ptr = (void *)eeprom_buff;
 492 
 493         if (eeprom->offset & 1) {
 494                 /* need read/modify/write of first changed EEPROM word
 495                  * only the second byte of the word is being modified
 496                  */
 497                 ret_val = e1000_read_eeprom(hw, first_word, 1,
 498                                             &eeprom_buff[0]);
 499                 ptr++;
 500         }
 501         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
 502                 /* need read/modify/write of last changed EEPROM word
 503                  * only the first byte of the word is being modified
 504                  */
 505                 ret_val = e1000_read_eeprom(hw, last_word, 1,
 506                                             &eeprom_buff[last_word - first_word]);
 507         }
 508 
 509         /* Device's eeprom is always little-endian, word addressable */
 510         for (i = 0; i < last_word - first_word + 1; i++)
 511                 le16_to_cpus(&eeprom_buff[i]);
 512 
 513         memcpy(ptr, bytes, eeprom->len);
 514 
 515         for (i = 0; i < last_word - first_word + 1; i++)
 516                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
 517 
 518         ret_val = e1000_write_eeprom(hw, first_word,
 519                                      last_word - first_word + 1, eeprom_buff);
 520 
 521         /* Update the checksum over the first part of the EEPROM if needed */
 522         if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
 523                 e1000_update_eeprom_checksum(hw);
 524 
 525         kfree(eeprom_buff);
 526         return ret_val;
 527 }
 528 
 529 static void e1000_get_drvinfo(struct net_device *netdev,
 530                               struct ethtool_drvinfo *drvinfo)
 531 {
 532         struct e1000_adapter *adapter = netdev_priv(netdev);
 533 
 534         strlcpy(drvinfo->driver,  e1000_driver_name,
 535                 sizeof(drvinfo->driver));
 536         strlcpy(drvinfo->version, e1000_driver_version,
 537                 sizeof(drvinfo->version));
 538 
 539         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
 540                 sizeof(drvinfo->bus_info));
 541 }
 542 
 543 static void e1000_get_ringparam(struct net_device *netdev,
 544                                 struct ethtool_ringparam *ring)
 545 {
 546         struct e1000_adapter *adapter = netdev_priv(netdev);
 547         struct e1000_hw *hw = &adapter->hw;
 548         e1000_mac_type mac_type = hw->mac_type;
 549         struct e1000_tx_ring *txdr = adapter->tx_ring;
 550         struct e1000_rx_ring *rxdr = adapter->rx_ring;
 551 
 552         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
 553                 E1000_MAX_82544_RXD;
 554         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
 555                 E1000_MAX_82544_TXD;
 556         ring->rx_pending = rxdr->count;
 557         ring->tx_pending = txdr->count;
 558 }
 559 
 560 static int e1000_set_ringparam(struct net_device *netdev,
 561                                struct ethtool_ringparam *ring)
 562 {
 563         struct e1000_adapter *adapter = netdev_priv(netdev);
 564         struct e1000_hw *hw = &adapter->hw;
 565         e1000_mac_type mac_type = hw->mac_type;
 566         struct e1000_tx_ring *txdr, *tx_old;
 567         struct e1000_rx_ring *rxdr, *rx_old;
 568         int i, err;
 569 
 570         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 571                 return -EINVAL;
 572 
 573         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 574                 msleep(1);
 575 
 576         if (netif_running(adapter->netdev))
 577                 e1000_down(adapter);
 578 
 579         tx_old = adapter->tx_ring;
 580         rx_old = adapter->rx_ring;
 581 
 582         err = -ENOMEM;
 583         txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
 584                        GFP_KERNEL);
 585         if (!txdr)
 586                 goto err_alloc_tx;
 587 
 588         rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
 589                        GFP_KERNEL);
 590         if (!rxdr)
 591                 goto err_alloc_rx;
 592 
 593         adapter->tx_ring = txdr;
 594         adapter->rx_ring = rxdr;
 595 
 596         rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
 597         rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ?
 598                           E1000_MAX_RXD : E1000_MAX_82544_RXD));
 599         rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
 600         txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
 601         txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ?
 602                           E1000_MAX_TXD : E1000_MAX_82544_TXD));
 603         txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
 604 
 605         for (i = 0; i < adapter->num_tx_queues; i++)
 606                 txdr[i].count = txdr->count;
 607         for (i = 0; i < adapter->num_rx_queues; i++)
 608                 rxdr[i].count = rxdr->count;
 609 
 610         err = 0;
 611         if (netif_running(adapter->netdev)) {
 612                 /* Try to get new resources before deleting old */
 613                 err = e1000_setup_all_rx_resources(adapter);
 614                 if (err)
 615                         goto err_setup_rx;
 616                 err = e1000_setup_all_tx_resources(adapter);
 617                 if (err)
 618                         goto err_setup_tx;
 619 
 620                 /* save the new, restore the old in order to free it,
 621                  * then restore the new back again
 622                  */
 623 
 624                 adapter->rx_ring = rx_old;
 625                 adapter->tx_ring = tx_old;
 626                 e1000_free_all_rx_resources(adapter);
 627                 e1000_free_all_tx_resources(adapter);
 628                 adapter->rx_ring = rxdr;
 629                 adapter->tx_ring = txdr;
 630                 err = e1000_up(adapter);
 631         }
 632         kfree(tx_old);
 633         kfree(rx_old);
 634 
 635         clear_bit(__E1000_RESETTING, &adapter->flags);
 636         return err;
 637 
 638 err_setup_tx:
 639         e1000_free_all_rx_resources(adapter);
 640 err_setup_rx:
 641         adapter->rx_ring = rx_old;
 642         adapter->tx_ring = tx_old;
 643         kfree(rxdr);
 644 err_alloc_rx:
 645         kfree(txdr);
 646 err_alloc_tx:
 647         if (netif_running(adapter->netdev))
 648                 e1000_up(adapter);
 649         clear_bit(__E1000_RESETTING, &adapter->flags);
 650         return err;
 651 }
 652 
 653 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
 654                              u32 mask, u32 write)
 655 {
 656         struct e1000_hw *hw = &adapter->hw;
 657         static const u32 test[] = {
 658                 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
 659         };
 660         u8 __iomem *address = hw->hw_addr + reg;
 661         u32 read;
 662         int i;
 663 
 664         for (i = 0; i < ARRAY_SIZE(test); i++) {
 665                 writel(write & test[i], address);
 666                 read = readl(address);
 667                 if (read != (write & test[i] & mask)) {
 668                         e_err(drv, "pattern test reg %04X failed: "
 669                               "got 0x%08X expected 0x%08X\n",
 670                               reg, read, (write & test[i] & mask));
 671                         *data = reg;
 672                         return true;
 673                 }
 674         }
 675         return false;
 676 }
 677 
 678 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
 679                               u32 mask, u32 write)
 680 {
 681         struct e1000_hw *hw = &adapter->hw;
 682         u8 __iomem *address = hw->hw_addr + reg;
 683         u32 read;
 684 
 685         writel(write & mask, address);
 686         read = readl(address);
 687         if ((read & mask) != (write & mask)) {
 688                 e_err(drv, "set/check reg %04X test failed: "
 689                       "got 0x%08X expected 0x%08X\n",
 690                       reg, (read & mask), (write & mask));
 691                 *data = reg;
 692                 return true;
 693         }
 694         return false;
 695 }
 696 
 697 #define REG_PATTERN_TEST(reg, mask, write)                           \
 698         do {                                                         \
 699                 if (reg_pattern_test(adapter, data,                  \
 700                              (hw->mac_type >= e1000_82543)   \
 701                              ? E1000_##reg : E1000_82542_##reg,      \
 702                              mask, write))                           \
 703                         return 1;                                    \
 704         } while (0)
 705 
 706 #define REG_SET_AND_CHECK(reg, mask, write)                          \
 707         do {                                                         \
 708                 if (reg_set_and_check(adapter, data,                 \
 709                               (hw->mac_type >= e1000_82543)  \
 710                               ? E1000_##reg : E1000_82542_##reg,     \
 711                               mask, write))                          \
 712                         return 1;                                    \
 713         } while (0)
 714 
 715 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
 716 {
 717         u32 value, before, after;
 718         u32 i, toggle;
 719         struct e1000_hw *hw = &adapter->hw;
 720 
 721         /* The status register is Read Only, so a write should fail.
 722          * Some bits that get toggled are ignored.
 723          */
 724 
 725         /* there are several bits on newer hardware that are r/w */
 726         toggle = 0xFFFFF833;
 727 
 728         before = er32(STATUS);
 729         value = (er32(STATUS) & toggle);
 730         ew32(STATUS, toggle);
 731         after = er32(STATUS) & toggle;
 732         if (value != after) {
 733                 e_err(drv, "failed STATUS register test got: "
 734                       "0x%08X expected: 0x%08X\n", after, value);
 735                 *data = 1;
 736                 return 1;
 737         }
 738         /* restore previous status */
 739         ew32(STATUS, before);
 740 
 741         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
 742         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
 743         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
 744         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
 745 
 746         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
 747         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
 748         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
 749         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
 750         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
 751         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
 752         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
 753         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
 754         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
 755         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
 756 
 757         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
 758 
 759         before = 0x06DFB3FE;
 760         REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
 761         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
 762 
 763         if (hw->mac_type >= e1000_82543) {
 764                 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
 765                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
 766                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
 767                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
 768                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
 769                 value = E1000_RAR_ENTRIES;
 770                 for (i = 0; i < value; i++) {
 771                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2),
 772                                          0x8003FFFF, 0xFFFFFFFF);
 773                 }
 774         } else {
 775                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
 776                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
 777                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
 778                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
 779         }
 780 
 781         value = E1000_MC_TBL_SIZE;
 782         for (i = 0; i < value; i++)
 783                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
 784 
 785         *data = 0;
 786         return 0;
 787 }
 788 
 789 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
 790 {
 791         struct e1000_hw *hw = &adapter->hw;
 792         u16 temp;
 793         u16 checksum = 0;
 794         u16 i;
 795 
 796         *data = 0;
 797         /* Read and add up the contents of the EEPROM */
 798         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
 799                 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
 800                         *data = 1;
 801                         break;
 802                 }
 803                 checksum += temp;
 804         }
 805 
 806         /* If Checksum is not Correct return error else test passed */
 807         if ((checksum != (u16)EEPROM_SUM) && !(*data))
 808                 *data = 2;
 809 
 810         return *data;
 811 }
 812 
 813 static irqreturn_t e1000_test_intr(int irq, void *data)
 814 {
 815         struct net_device *netdev = (struct net_device *)data;
 816         struct e1000_adapter *adapter = netdev_priv(netdev);
 817         struct e1000_hw *hw = &adapter->hw;
 818 
 819         adapter->test_icr |= er32(ICR);
 820 
 821         return IRQ_HANDLED;
 822 }
 823 
 824 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
 825 {
 826         struct net_device *netdev = adapter->netdev;
 827         u32 mask, i = 0;
 828         bool shared_int = true;
 829         u32 irq = adapter->pdev->irq;
 830         struct e1000_hw *hw = &adapter->hw;
 831 
 832         *data = 0;
 833 
 834         /* NOTE: we don't test MSI interrupts here, yet
 835          * Hook up test interrupt handler just for this test
 836          */
 837         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
 838                          netdev))
 839                 shared_int = false;
 840         else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
 841                              netdev->name, netdev)) {
 842                 *data = 1;
 843                 return -1;
 844         }
 845         e_info(hw, "testing %s interrupt\n", (shared_int ?
 846                "shared" : "unshared"));
 847 
 848         /* Disable all the interrupts */
 849         ew32(IMC, 0xFFFFFFFF);
 850         E1000_WRITE_FLUSH();
 851         msleep(10);
 852 
 853         /* Test each interrupt */
 854         for (; i < 10; i++) {
 855                 /* Interrupt to test */
 856                 mask = 1 << i;
 857 
 858                 if (!shared_int) {
 859                         /* Disable the interrupt to be reported in
 860                          * the cause register and then force the same
 861                          * interrupt and see if one gets posted.  If
 862                          * an interrupt was posted to the bus, the
 863                          * test failed.
 864                          */
 865                         adapter->test_icr = 0;
 866                         ew32(IMC, mask);
 867                         ew32(ICS, mask);
 868                         E1000_WRITE_FLUSH();
 869                         msleep(10);
 870 
 871                         if (adapter->test_icr & mask) {
 872                                 *data = 3;
 873                                 break;
 874                         }
 875                 }
 876 
 877                 /* Enable the interrupt to be reported in
 878                  * the cause register and then force the same
 879                  * interrupt and see if one gets posted.  If
 880                  * an interrupt was not posted to the bus, the
 881                  * test failed.
 882                  */
 883                 adapter->test_icr = 0;
 884                 ew32(IMS, mask);
 885                 ew32(ICS, mask);
 886                 E1000_WRITE_FLUSH();
 887                 msleep(10);
 888 
 889                 if (!(adapter->test_icr & mask)) {
 890                         *data = 4;
 891                         break;
 892                 }
 893 
 894                 if (!shared_int) {
 895                         /* Disable the other interrupts to be reported in
 896                          * the cause register and then force the other
 897                          * interrupts and see if any get posted.  If
 898                          * an interrupt was posted to the bus, the
 899                          * test failed.
 900                          */
 901                         adapter->test_icr = 0;
 902                         ew32(IMC, ~mask & 0x00007FFF);
 903                         ew32(ICS, ~mask & 0x00007FFF);
 904                         E1000_WRITE_FLUSH();
 905                         msleep(10);
 906 
 907                         if (adapter->test_icr) {
 908                                 *data = 5;
 909                                 break;
 910                         }
 911                 }
 912         }
 913 
 914         /* Disable all the interrupts */
 915         ew32(IMC, 0xFFFFFFFF);
 916         E1000_WRITE_FLUSH();
 917         msleep(10);
 918 
 919         /* Unhook test interrupt handler */
 920         free_irq(irq, netdev);
 921 
 922         return *data;
 923 }
 924 
 925 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
 926 {
 927         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
 928         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
 929         struct pci_dev *pdev = adapter->pdev;
 930         int i;
 931 
 932         if (txdr->desc && txdr->buffer_info) {
 933                 for (i = 0; i < txdr->count; i++) {
 934                         if (txdr->buffer_info[i].dma)
 935                                 dma_unmap_single(&pdev->dev,
 936                                                  txdr->buffer_info[i].dma,
 937                                                  txdr->buffer_info[i].length,
 938                                                  DMA_TO_DEVICE);
 939                         dev_kfree_skb(txdr->buffer_info[i].skb);
 940                 }
 941         }
 942 
 943         if (rxdr->desc && rxdr->buffer_info) {
 944                 for (i = 0; i < rxdr->count; i++) {
 945                         if (rxdr->buffer_info[i].dma)
 946                                 dma_unmap_single(&pdev->dev,
 947                                                  rxdr->buffer_info[i].dma,
 948                                                  E1000_RXBUFFER_2048,
 949                                                  DMA_FROM_DEVICE);
 950                         kfree(rxdr->buffer_info[i].rxbuf.data);
 951                 }
 952         }
 953 
 954         if (txdr->desc) {
 955                 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
 956                                   txdr->dma);
 957                 txdr->desc = NULL;
 958         }
 959         if (rxdr->desc) {
 960                 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
 961                                   rxdr->dma);
 962                 rxdr->desc = NULL;
 963         }
 964 
 965         kfree(txdr->buffer_info);
 966         txdr->buffer_info = NULL;
 967         kfree(rxdr->buffer_info);
 968         rxdr->buffer_info = NULL;
 969 }
 970 
 971 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
 972 {
 973         struct e1000_hw *hw = &adapter->hw;
 974         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
 975         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
 976         struct pci_dev *pdev = adapter->pdev;
 977         u32 rctl;
 978         int i, ret_val;
 979 
 980         /* Setup Tx descriptor ring and Tx buffers */
 981 
 982         if (!txdr->count)
 983                 txdr->count = E1000_DEFAULT_TXD;
 984 
 985         txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer),
 986                                     GFP_KERNEL);
 987         if (!txdr->buffer_info) {
 988                 ret_val = 1;
 989                 goto err_nomem;
 990         }
 991 
 992         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
 993         txdr->size = ALIGN(txdr->size, 4096);
 994         txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
 995                                         GFP_KERNEL);
 996         if (!txdr->desc) {
 997                 ret_val = 2;
 998                 goto err_nomem;
 999         }
1000         txdr->next_to_use = txdr->next_to_clean = 0;
1001 
1002         ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1003         ew32(TDBAH, ((u64)txdr->dma >> 32));
1004         ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1005         ew32(TDH, 0);
1006         ew32(TDT, 0);
1007         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1008              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1009              E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1010 
1011         for (i = 0; i < txdr->count; i++) {
1012                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1013                 struct sk_buff *skb;
1014                 unsigned int size = 1024;
1015 
1016                 skb = alloc_skb(size, GFP_KERNEL);
1017                 if (!skb) {
1018                         ret_val = 3;
1019                         goto err_nomem;
1020                 }
1021                 skb_put(skb, size);
1022                 txdr->buffer_info[i].skb = skb;
1023                 txdr->buffer_info[i].length = skb->len;
1024                 txdr->buffer_info[i].dma =
1025                         dma_map_single(&pdev->dev, skb->data, skb->len,
1026                                        DMA_TO_DEVICE);
1027                 if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1028                         ret_val = 4;
1029                         goto err_nomem;
1030                 }
1031                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1032                 tx_desc->lower.data = cpu_to_le32(skb->len);
1033                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1034                                                    E1000_TXD_CMD_IFCS |
1035                                                    E1000_TXD_CMD_RPS);
1036                 tx_desc->upper.data = 0;
1037         }
1038 
1039         /* Setup Rx descriptor ring and Rx buffers */
1040 
1041         if (!rxdr->count)
1042                 rxdr->count = E1000_DEFAULT_RXD;
1043 
1044         rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer),
1045                                     GFP_KERNEL);
1046         if (!rxdr->buffer_info) {
1047                 ret_val = 5;
1048                 goto err_nomem;
1049         }
1050 
1051         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1052         rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1053                                         GFP_KERNEL);
1054         if (!rxdr->desc) {
1055                 ret_val = 6;
1056                 goto err_nomem;
1057         }
1058         rxdr->next_to_use = rxdr->next_to_clean = 0;
1059 
1060         rctl = er32(RCTL);
1061         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1062         ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1063         ew32(RDBAH, ((u64)rxdr->dma >> 32));
1064         ew32(RDLEN, rxdr->size);
1065         ew32(RDH, 0);
1066         ew32(RDT, 0);
1067         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1068                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1069                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1070         ew32(RCTL, rctl);
1071 
1072         for (i = 0; i < rxdr->count; i++) {
1073                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1074                 u8 *buf;
1075 
1076                 buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN,
1077                               GFP_KERNEL);
1078                 if (!buf) {
1079                         ret_val = 7;
1080                         goto err_nomem;
1081                 }
1082                 rxdr->buffer_info[i].rxbuf.data = buf;
1083 
1084                 rxdr->buffer_info[i].dma =
1085                         dma_map_single(&pdev->dev,
1086                                        buf + NET_SKB_PAD + NET_IP_ALIGN,
1087                                        E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1088                 if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1089                         ret_val = 8;
1090                         goto err_nomem;
1091                 }
1092                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1093         }
1094 
1095         return 0;
1096 
1097 err_nomem:
1098         e1000_free_desc_rings(adapter);
1099         return ret_val;
1100 }
1101 
1102 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1103 {
1104         struct e1000_hw *hw = &adapter->hw;
1105 
1106         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1107         e1000_write_phy_reg(hw, 29, 0x001F);
1108         e1000_write_phy_reg(hw, 30, 0x8FFC);
1109         e1000_write_phy_reg(hw, 29, 0x001A);
1110         e1000_write_phy_reg(hw, 30, 0x8FF0);
1111 }
1112 
1113 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1114 {
1115         struct e1000_hw *hw = &adapter->hw;
1116         u16 phy_reg;
1117 
1118         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1119          * Extended PHY Specific Control Register to 25MHz clock.  This
1120          * value defaults back to a 2.5MHz clock when the PHY is reset.
1121          */
1122         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1123         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1124         e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1125 
1126         /* In addition, because of the s/w reset above, we need to enable
1127          * CRS on TX.  This must be set for both full and half duplex
1128          * operation.
1129          */
1130         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1131         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1132         e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1133 }
1134 
1135 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1136 {
1137         struct e1000_hw *hw = &adapter->hw;
1138         u32 ctrl_reg;
1139         u16 phy_reg;
1140 
1141         /* Setup the Device Control Register for PHY loopback test. */
1142 
1143         ctrl_reg = er32(CTRL);
1144         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1145                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1146                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1147                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1148                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1149 
1150         ew32(CTRL, ctrl_reg);
1151 
1152         /* Read the PHY Specific Control Register (0x10) */
1153         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1154 
1155         /* Clear Auto-Crossover bits in PHY Specific Control Register
1156          * (bits 6:5).
1157          */
1158         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1159         e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1160 
1161         /* Perform software reset on the PHY */
1162         e1000_phy_reset(hw);
1163 
1164         /* Have to setup TX_CLK and TX_CRS after software reset */
1165         e1000_phy_reset_clk_and_crs(adapter);
1166 
1167         e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1168 
1169         /* Wait for reset to complete. */
1170         udelay(500);
1171 
1172         /* Have to setup TX_CLK and TX_CRS after software reset */
1173         e1000_phy_reset_clk_and_crs(adapter);
1174 
1175         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1176         e1000_phy_disable_receiver(adapter);
1177 
1178         /* Set the loopback bit in the PHY control register. */
1179         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1180         phy_reg |= MII_CR_LOOPBACK;
1181         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1182 
1183         /* Setup TX_CLK and TX_CRS one more time. */
1184         e1000_phy_reset_clk_and_crs(adapter);
1185 
1186         /* Check Phy Configuration */
1187         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1188         if (phy_reg != 0x4100)
1189                 return 9;
1190 
1191         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1192         if (phy_reg != 0x0070)
1193                 return 10;
1194 
1195         e1000_read_phy_reg(hw, 29, &phy_reg);
1196         if (phy_reg != 0x001A)
1197                 return 11;
1198 
1199         return 0;
1200 }
1201 
1202 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1203 {
1204         struct e1000_hw *hw = &adapter->hw;
1205         u32 ctrl_reg = 0;
1206         u32 stat_reg = 0;
1207 
1208         hw->autoneg = false;
1209 
1210         if (hw->phy_type == e1000_phy_m88) {
1211                 /* Auto-MDI/MDIX Off */
1212                 e1000_write_phy_reg(hw,
1213                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1214                 /* reset to update Auto-MDI/MDIX */
1215                 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1216                 /* autoneg off */
1217                 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1218         }
1219 
1220         ctrl_reg = er32(CTRL);
1221 
1222         /* force 1000, set loopback */
1223         e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1224 
1225         /* Now set up the MAC to the same speed/duplex as the PHY. */
1226         ctrl_reg = er32(CTRL);
1227         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1228         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1229                         E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1230                         E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1231                         E1000_CTRL_FD); /* Force Duplex to FULL */
1232 
1233         if (hw->media_type == e1000_media_type_copper &&
1234             hw->phy_type == e1000_phy_m88)
1235                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1236         else {
1237                 /* Set the ILOS bit on the fiber Nic is half
1238                  * duplex link is detected.
1239                  */
1240                 stat_reg = er32(STATUS);
1241                 if ((stat_reg & E1000_STATUS_FD) == 0)
1242                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1243         }
1244 
1245         ew32(CTRL, ctrl_reg);
1246 
1247         /* Disable the receiver on the PHY so when a cable is plugged in, the
1248          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1249          */
1250         if (hw->phy_type == e1000_phy_m88)
1251                 e1000_phy_disable_receiver(adapter);
1252 
1253         udelay(500);
1254 
1255         return 0;
1256 }
1257 
1258 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1259 {
1260         struct e1000_hw *hw = &adapter->hw;
1261         u16 phy_reg = 0;
1262         u16 count = 0;
1263 
1264         switch (hw->mac_type) {
1265         case e1000_82543:
1266                 if (hw->media_type == e1000_media_type_copper) {
1267                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1268                          * Some PHY registers get corrupted at random, so
1269                          * attempt this 10 times.
1270                          */
1271                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1272                                count++ < 10);
1273                         if (count < 11)
1274                                 return 0;
1275                 }
1276                 break;
1277 
1278         case e1000_82544:
1279         case e1000_82540:
1280         case e1000_82545:
1281         case e1000_82545_rev_3:
1282         case e1000_82546:
1283         case e1000_82546_rev_3:
1284         case e1000_82541:
1285         case e1000_82541_rev_2:
1286         case e1000_82547:
1287         case e1000_82547_rev_2:
1288                 return e1000_integrated_phy_loopback(adapter);
1289         default:
1290                 /* Default PHY loopback work is to read the MII
1291                  * control register and assert bit 14 (loopback mode).
1292                  */
1293                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1294                 phy_reg |= MII_CR_LOOPBACK;
1295                 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1296                 return 0;
1297         }
1298 
1299         return 8;
1300 }
1301 
1302 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1303 {
1304         struct e1000_hw *hw = &adapter->hw;
1305         u32 rctl;
1306 
1307         if (hw->media_type == e1000_media_type_fiber ||
1308             hw->media_type == e1000_media_type_internal_serdes) {
1309                 switch (hw->mac_type) {
1310                 case e1000_82545:
1311                 case e1000_82546:
1312                 case e1000_82545_rev_3:
1313                 case e1000_82546_rev_3:
1314                         return e1000_set_phy_loopback(adapter);
1315                 default:
1316                         rctl = er32(RCTL);
1317                         rctl |= E1000_RCTL_LBM_TCVR;
1318                         ew32(RCTL, rctl);
1319                         return 0;
1320                 }
1321         } else if (hw->media_type == e1000_media_type_copper) {
1322                 return e1000_set_phy_loopback(adapter);
1323         }
1324 
1325         return 7;
1326 }
1327 
1328 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1329 {
1330         struct e1000_hw *hw = &adapter->hw;
1331         u32 rctl;
1332         u16 phy_reg;
1333 
1334         rctl = er32(RCTL);
1335         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1336         ew32(RCTL, rctl);
1337 
1338         switch (hw->mac_type) {
1339         case e1000_82545:
1340         case e1000_82546:
1341         case e1000_82545_rev_3:
1342         case e1000_82546_rev_3:
1343         default:
1344                 hw->autoneg = true;
1345                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1346                 if (phy_reg & MII_CR_LOOPBACK) {
1347                         phy_reg &= ~MII_CR_LOOPBACK;
1348                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1349                         e1000_phy_reset(hw);
1350                 }
1351                 break;
1352         }
1353 }
1354 
1355 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1356                                       unsigned int frame_size)
1357 {
1358         memset(skb->data, 0xFF, frame_size);
1359         frame_size &= ~1;
1360         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1361         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1362         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1363 }
1364 
1365 static int e1000_check_lbtest_frame(const unsigned char *data,
1366                                     unsigned int frame_size)
1367 {
1368         frame_size &= ~1;
1369         if (*(data + 3) == 0xFF) {
1370                 if ((*(data + frame_size / 2 + 10) == 0xBE) &&
1371                     (*(data + frame_size / 2 + 12) == 0xAF)) {
1372                         return 0;
1373                 }
1374         }
1375         return 13;
1376 }
1377 
1378 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1379 {
1380         struct e1000_hw *hw = &adapter->hw;
1381         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1382         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1383         struct pci_dev *pdev = adapter->pdev;
1384         int i, j, k, l, lc, good_cnt, ret_val = 0;
1385         unsigned long time;
1386 
1387         ew32(RDT, rxdr->count - 1);
1388 
1389         /* Calculate the loop count based on the largest descriptor ring
1390          * The idea is to wrap the largest ring a number of times using 64
1391          * send/receive pairs during each loop
1392          */
1393 
1394         if (rxdr->count <= txdr->count)
1395                 lc = ((txdr->count / 64) * 2) + 1;
1396         else
1397                 lc = ((rxdr->count / 64) * 2) + 1;
1398 
1399         k = l = 0;
1400         for (j = 0; j <= lc; j++) { /* loop count loop */
1401                 for (i = 0; i < 64; i++) { /* send the packets */
1402                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1403                                                   1024);
1404                         dma_sync_single_for_device(&pdev->dev,
1405                                                    txdr->buffer_info[k].dma,
1406                                                    txdr->buffer_info[k].length,
1407                                                    DMA_TO_DEVICE);
1408                         if (unlikely(++k == txdr->count))
1409                                 k = 0;
1410                 }
1411                 ew32(TDT, k);
1412                 E1000_WRITE_FLUSH();
1413                 msleep(200);
1414                 time = jiffies; /* set the start time for the receive */
1415                 good_cnt = 0;
1416                 do { /* receive the sent packets */
1417                         dma_sync_single_for_cpu(&pdev->dev,
1418                                                 rxdr->buffer_info[l].dma,
1419                                                 E1000_RXBUFFER_2048,
1420                                                 DMA_FROM_DEVICE);
1421 
1422                         ret_val = e1000_check_lbtest_frame(
1423                                         rxdr->buffer_info[l].rxbuf.data +
1424                                         NET_SKB_PAD + NET_IP_ALIGN,
1425                                         1024);
1426                         if (!ret_val)
1427                                 good_cnt++;
1428                         if (unlikely(++l == rxdr->count))
1429                                 l = 0;
1430                         /* time + 20 msecs (200 msecs on 2.4) is more than
1431                          * enough time to complete the receives, if it's
1432                          * exceeded, break and error off
1433                          */
1434                 } while (good_cnt < 64 && time_after(time + 20, jiffies));
1435 
1436                 if (good_cnt != 64) {
1437                         ret_val = 13; /* ret_val is the same as mis-compare */
1438                         break;
1439                 }
1440                 if (time_after_eq(jiffies, time + 2)) {
1441                         ret_val = 14; /* error code for time out error */
1442                         break;
1443                 }
1444         } /* end loop count loop */
1445         return ret_val;
1446 }
1447 
1448 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1449 {
1450         *data = e1000_setup_desc_rings(adapter);
1451         if (*data)
1452                 goto out;
1453         *data = e1000_setup_loopback_test(adapter);
1454         if (*data)
1455                 goto err_loopback;
1456         *data = e1000_run_loopback_test(adapter);
1457         e1000_loopback_cleanup(adapter);
1458 
1459 err_loopback:
1460         e1000_free_desc_rings(adapter);
1461 out:
1462         return *data;
1463 }
1464 
1465 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1466 {
1467         struct e1000_hw *hw = &adapter->hw;
1468         *data = 0;
1469         if (hw->media_type == e1000_media_type_internal_serdes) {
1470                 int i = 0;
1471 
1472                 hw->serdes_has_link = false;
1473 
1474                 /* On some blade server designs, link establishment
1475                  * could take as long as 2-3 minutes
1476                  */
1477                 do {
1478                         e1000_check_for_link(hw);
1479                         if (hw->serdes_has_link)
1480                                 return *data;
1481                         msleep(20);
1482                 } while (i++ < 3750);
1483 
1484                 *data = 1;
1485         } else {
1486                 e1000_check_for_link(hw);
1487                 if (hw->autoneg)  /* if auto_neg is set wait for it */
1488                         msleep(4000);
1489 
1490                 if (!(er32(STATUS) & E1000_STATUS_LU))
1491                         *data = 1;
1492         }
1493         return *data;
1494 }
1495 
1496 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1497 {
1498         switch (sset) {
1499         case ETH_SS_TEST:
1500                 return E1000_TEST_LEN;
1501         case ETH_SS_STATS:
1502                 return E1000_STATS_LEN;
1503         default:
1504                 return -EOPNOTSUPP;
1505         }
1506 }
1507 
1508 static void e1000_diag_test(struct net_device *netdev,
1509                             struct ethtool_test *eth_test, u64 *data)
1510 {
1511         struct e1000_adapter *adapter = netdev_priv(netdev);
1512         struct e1000_hw *hw = &adapter->hw;
1513         bool if_running = netif_running(netdev);
1514 
1515         set_bit(__E1000_TESTING, &adapter->flags);
1516         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1517                 /* Offline tests */
1518 
1519                 /* save speed, duplex, autoneg settings */
1520                 u16 autoneg_advertised = hw->autoneg_advertised;
1521                 u8 forced_speed_duplex = hw->forced_speed_duplex;
1522                 u8 autoneg = hw->autoneg;
1523 
1524                 e_info(hw, "offline testing starting\n");
1525 
1526                 /* Link test performed before hardware reset so autoneg doesn't
1527                  * interfere with test result
1528                  */
1529                 if (e1000_link_test(adapter, &data[4]))
1530                         eth_test->flags |= ETH_TEST_FL_FAILED;
1531 
1532                 if (if_running)
1533                         /* indicate we're in test mode */
1534                         e1000_close(netdev);
1535                 else
1536                         e1000_reset(adapter);
1537 
1538                 if (e1000_reg_test(adapter, &data[0]))
1539                         eth_test->flags |= ETH_TEST_FL_FAILED;
1540 
1541                 e1000_reset(adapter);
1542                 if (e1000_eeprom_test(adapter, &data[1]))
1543                         eth_test->flags |= ETH_TEST_FL_FAILED;
1544 
1545                 e1000_reset(adapter);
1546                 if (e1000_intr_test(adapter, &data[2]))
1547                         eth_test->flags |= ETH_TEST_FL_FAILED;
1548 
1549                 e1000_reset(adapter);
1550                 /* make sure the phy is powered up */
1551                 e1000_power_up_phy(adapter);
1552                 if (e1000_loopback_test(adapter, &data[3]))
1553                         eth_test->flags |= ETH_TEST_FL_FAILED;
1554 
1555                 /* restore speed, duplex, autoneg settings */
1556                 hw->autoneg_advertised = autoneg_advertised;
1557                 hw->forced_speed_duplex = forced_speed_duplex;
1558                 hw->autoneg = autoneg;
1559 
1560                 e1000_reset(adapter);
1561                 clear_bit(__E1000_TESTING, &adapter->flags);
1562                 if (if_running)
1563                         e1000_open(netdev);
1564         } else {
1565                 e_info(hw, "online testing starting\n");
1566                 /* Online tests */
1567                 if (e1000_link_test(adapter, &data[4]))
1568                         eth_test->flags |= ETH_TEST_FL_FAILED;
1569 
1570                 /* Online tests aren't run; pass by default */
1571                 data[0] = 0;
1572                 data[1] = 0;
1573                 data[2] = 0;
1574                 data[3] = 0;
1575 
1576                 clear_bit(__E1000_TESTING, &adapter->flags);
1577         }
1578         msleep_interruptible(4 * 1000);
1579 }
1580 
1581 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1582                                struct ethtool_wolinfo *wol)
1583 {
1584         struct e1000_hw *hw = &adapter->hw;
1585         int retval = 1; /* fail by default */
1586 
1587         switch (hw->device_id) {
1588         case E1000_DEV_ID_82542:
1589         case E1000_DEV_ID_82543GC_FIBER:
1590         case E1000_DEV_ID_82543GC_COPPER:
1591         case E1000_DEV_ID_82544EI_FIBER:
1592         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1593         case E1000_DEV_ID_82545EM_FIBER:
1594         case E1000_DEV_ID_82545EM_COPPER:
1595         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1596         case E1000_DEV_ID_82546GB_PCIE:
1597                 /* these don't support WoL at all */
1598                 wol->supported = 0;
1599                 break;
1600         case E1000_DEV_ID_82546EB_FIBER:
1601         case E1000_DEV_ID_82546GB_FIBER:
1602                 /* Wake events not supported on port B */
1603                 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1604                         wol->supported = 0;
1605                         break;
1606                 }
1607                 /* return success for non excluded adapter ports */
1608                 retval = 0;
1609                 break;
1610         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1611                 /* quad port adapters only support WoL on port A */
1612                 if (!adapter->quad_port_a) {
1613                         wol->supported = 0;
1614                         break;
1615                 }
1616                 /* return success for non excluded adapter ports */
1617                 retval = 0;
1618                 break;
1619         default:
1620                 /* dual port cards only support WoL on port A from now on
1621                  * unless it was enabled in the eeprom for port B
1622                  * so exclude FUNC_1 ports from having WoL enabled
1623                  */
1624                 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1625                     !adapter->eeprom_wol) {
1626                         wol->supported = 0;
1627                         break;
1628                 }
1629 
1630                 retval = 0;
1631         }
1632 
1633         return retval;
1634 }
1635 
1636 static void e1000_get_wol(struct net_device *netdev,
1637                           struct ethtool_wolinfo *wol)
1638 {
1639         struct e1000_adapter *adapter = netdev_priv(netdev);
1640         struct e1000_hw *hw = &adapter->hw;
1641 
1642         wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1643         wol->wolopts = 0;
1644 
1645         /* this function will set ->supported = 0 and return 1 if wol is not
1646          * supported by this hardware
1647          */
1648         if (e1000_wol_exclusion(adapter, wol) ||
1649             !device_can_wakeup(&adapter->pdev->dev))
1650                 return;
1651 
1652         /* apply any specific unsupported masks here */
1653         switch (hw->device_id) {
1654         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1655                 /* KSP3 does not support UCAST wake-ups */
1656                 wol->supported &= ~WAKE_UCAST;
1657 
1658                 if (adapter->wol & E1000_WUFC_EX)
1659                         e_err(drv, "Interface does not support directed "
1660                               "(unicast) frame wake-up packets\n");
1661                 break;
1662         default:
1663                 break;
1664         }
1665 
1666         if (adapter->wol & E1000_WUFC_EX)
1667                 wol->wolopts |= WAKE_UCAST;
1668         if (adapter->wol & E1000_WUFC_MC)
1669                 wol->wolopts |= WAKE_MCAST;
1670         if (adapter->wol & E1000_WUFC_BC)
1671                 wol->wolopts |= WAKE_BCAST;
1672         if (adapter->wol & E1000_WUFC_MAG)
1673                 wol->wolopts |= WAKE_MAGIC;
1674 }
1675 
1676 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1677 {
1678         struct e1000_adapter *adapter = netdev_priv(netdev);
1679         struct e1000_hw *hw = &adapter->hw;
1680 
1681         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1682                 return -EOPNOTSUPP;
1683 
1684         if (e1000_wol_exclusion(adapter, wol) ||
1685             !device_can_wakeup(&adapter->pdev->dev))
1686                 return wol->wolopts ? -EOPNOTSUPP : 0;
1687 
1688         switch (hw->device_id) {
1689         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1690                 if (wol->wolopts & WAKE_UCAST) {
1691                         e_err(drv, "Interface does not support directed "
1692                               "(unicast) frame wake-up packets\n");
1693                         return -EOPNOTSUPP;
1694                 }
1695                 break;
1696         default:
1697                 break;
1698         }
1699 
1700         /* these settings will always override what we currently have */
1701         adapter->wol = 0;
1702 
1703         if (wol->wolopts & WAKE_UCAST)
1704                 adapter->wol |= E1000_WUFC_EX;
1705         if (wol->wolopts & WAKE_MCAST)
1706                 adapter->wol |= E1000_WUFC_MC;
1707         if (wol->wolopts & WAKE_BCAST)
1708                 adapter->wol |= E1000_WUFC_BC;
1709         if (wol->wolopts & WAKE_MAGIC)
1710                 adapter->wol |= E1000_WUFC_MAG;
1711 
1712         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1713 
1714         return 0;
1715 }
1716 
1717 static int e1000_set_phys_id(struct net_device *netdev,
1718                              enum ethtool_phys_id_state state)
1719 {
1720         struct e1000_adapter *adapter = netdev_priv(netdev);
1721         struct e1000_hw *hw = &adapter->hw;
1722 
1723         switch (state) {
1724         case ETHTOOL_ID_ACTIVE:
1725                 e1000_setup_led(hw);
1726                 return 2;
1727 
1728         case ETHTOOL_ID_ON:
1729                 e1000_led_on(hw);
1730                 break;
1731 
1732         case ETHTOOL_ID_OFF:
1733                 e1000_led_off(hw);
1734                 break;
1735 
1736         case ETHTOOL_ID_INACTIVE:
1737                 e1000_cleanup_led(hw);
1738         }
1739 
1740         return 0;
1741 }
1742 
1743 static int e1000_get_coalesce(struct net_device *netdev,
1744                               struct ethtool_coalesce *ec)
1745 {
1746         struct e1000_adapter *adapter = netdev_priv(netdev);
1747 
1748         if (adapter->hw.mac_type < e1000_82545)
1749                 return -EOPNOTSUPP;
1750 
1751         if (adapter->itr_setting <= 4)
1752                 ec->rx_coalesce_usecs = adapter->itr_setting;
1753         else
1754                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1755 
1756         return 0;
1757 }
1758 
1759 static int e1000_set_coalesce(struct net_device *netdev,
1760                               struct ethtool_coalesce *ec)
1761 {
1762         struct e1000_adapter *adapter = netdev_priv(netdev);
1763         struct e1000_hw *hw = &adapter->hw;
1764 
1765         if (hw->mac_type < e1000_82545)
1766                 return -EOPNOTSUPP;
1767 
1768         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1769             ((ec->rx_coalesce_usecs > 4) &&
1770              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1771             (ec->rx_coalesce_usecs == 2))
1772                 return -EINVAL;
1773 
1774         if (ec->rx_coalesce_usecs == 4) {
1775                 adapter->itr = adapter->itr_setting = 4;
1776         } else if (ec->rx_coalesce_usecs <= 3) {
1777                 adapter->itr = 20000;
1778                 adapter->itr_setting = ec->rx_coalesce_usecs;
1779         } else {
1780                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1781                 adapter->itr_setting = adapter->itr & ~3;
1782         }
1783 
1784         if (adapter->itr_setting != 0)
1785                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1786         else
1787                 ew32(ITR, 0);
1788 
1789         return 0;
1790 }
1791 
1792 static int e1000_nway_reset(struct net_device *netdev)
1793 {
1794         struct e1000_adapter *adapter = netdev_priv(netdev);
1795 
1796         if (netif_running(netdev))
1797                 e1000_reinit_locked(adapter);
1798         return 0;
1799 }
1800 
1801 static void e1000_get_ethtool_stats(struct net_device *netdev,
1802                                     struct ethtool_stats *stats, u64 *data)
1803 {
1804         struct e1000_adapter *adapter = netdev_priv(netdev);
1805         int i;
1806         const struct e1000_stats *stat = e1000_gstrings_stats;
1807 
1808         e1000_update_stats(adapter);
1809         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++, stat++) {
1810                 char *p;
1811 
1812                 switch (stat->type) {
1813                 case NETDEV_STATS:
1814                         p = (char *)netdev + stat->stat_offset;
1815                         break;
1816                 case E1000_STATS:
1817                         p = (char *)adapter + stat->stat_offset;
1818                         break;
1819                 default:
1820                         netdev_WARN_ONCE(netdev, "Invalid E1000 stat type: %u index %d\n",
1821                                          stat->type, i);
1822                         continue;
1823                 }
1824 
1825                 if (stat->sizeof_stat == sizeof(u64))
1826                         data[i] = *(u64 *)p;
1827                 else
1828                         data[i] = *(u32 *)p;
1829         }
1830 /* BUG_ON(i != E1000_STATS_LEN); */
1831 }
1832 
1833 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1834                               u8 *data)
1835 {
1836         u8 *p = data;
1837         int i;
1838 
1839         switch (stringset) {
1840         case ETH_SS_TEST:
1841                 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1842                 break;
1843         case ETH_SS_STATS:
1844                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1845                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1846                                ETH_GSTRING_LEN);
1847                         p += ETH_GSTRING_LEN;
1848                 }
1849                 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1850                 break;
1851         }
1852 }
1853 
1854 static const struct ethtool_ops e1000_ethtool_ops = {
1855         .get_drvinfo            = e1000_get_drvinfo,
1856         .get_regs_len           = e1000_get_regs_len,
1857         .get_regs               = e1000_get_regs,
1858         .get_wol                = e1000_get_wol,
1859         .set_wol                = e1000_set_wol,
1860         .get_msglevel           = e1000_get_msglevel,
1861         .set_msglevel           = e1000_set_msglevel,
1862         .nway_reset             = e1000_nway_reset,
1863         .get_link               = e1000_get_link,
1864         .get_eeprom_len         = e1000_get_eeprom_len,
1865         .get_eeprom             = e1000_get_eeprom,
1866         .set_eeprom             = e1000_set_eeprom,
1867         .get_ringparam          = e1000_get_ringparam,
1868         .set_ringparam          = e1000_set_ringparam,
1869         .get_pauseparam         = e1000_get_pauseparam,
1870         .set_pauseparam         = e1000_set_pauseparam,
1871         .self_test              = e1000_diag_test,
1872         .get_strings            = e1000_get_strings,
1873         .set_phys_id            = e1000_set_phys_id,
1874         .get_ethtool_stats      = e1000_get_ethtool_stats,
1875         .get_sset_count         = e1000_get_sset_count,
1876         .get_coalesce           = e1000_get_coalesce,
1877         .set_coalesce           = e1000_set_coalesce,
1878         .get_ts_info            = ethtool_op_get_ts_info,
1879         .get_link_ksettings     = e1000_get_link_ksettings,
1880         .set_link_ksettings     = e1000_set_link_ksettings,
1881 };
1882 
1883 void e1000_set_ethtool_ops(struct net_device *netdev)
1884 {
1885         netdev->ethtool_ops = &e1000_ethtool_ops;
1886 }

/* [<][>][^][v][top][bottom][index][help] */