This source file includes following definitions.
- igb_get_hw_semaphore_i210
- igb_acquire_nvm_i210
- igb_release_nvm_i210
- igb_acquire_swfw_sync_i210
- igb_release_swfw_sync_i210
- igb_read_nvm_srrd_i210
- igb_write_nvm_srwr
- igb_write_nvm_srwr_i210
- igb_read_invm_word_i210
- igb_read_invm_i210
- igb_read_invm_version
- igb_validate_nvm_checksum_i210
- igb_update_nvm_checksum_i210
- igb_pool_flash_update_done_i210
- igb_get_flash_presence_i210
- igb_update_flash_i210
- igb_valid_led_default_i210
- __igb_access_xmdio_reg
- igb_read_xmdio_reg
- igb_write_xmdio_reg
- igb_init_nvm_params_i210
- igb_pll_workaround_i210
- igb_get_cfg_done_i210
1
2
3
4
5
6
7
8 #include <linux/types.h>
9 #include <linux/if_ether.h>
10
11 #include "e1000_hw.h"
12 #include "e1000_i210.h"
13
14 static s32 igb_update_flash_i210(struct e1000_hw *hw);
15
16
17
18
19
20
21
22 static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw)
23 {
24 u32 swsm;
25 s32 timeout = hw->nvm.word_size + 1;
26 s32 i = 0;
27
28
29 while (i < timeout) {
30 swsm = rd32(E1000_SWSM);
31 if (!(swsm & E1000_SWSM_SMBI))
32 break;
33
34 udelay(50);
35 i++;
36 }
37
38 if (i == timeout) {
39
40
41
42 if (hw->dev_spec._82575.clear_semaphore_once) {
43 hw->dev_spec._82575.clear_semaphore_once = false;
44 igb_put_hw_semaphore(hw);
45 for (i = 0; i < timeout; i++) {
46 swsm = rd32(E1000_SWSM);
47 if (!(swsm & E1000_SWSM_SMBI))
48 break;
49
50 udelay(50);
51 }
52 }
53
54
55 if (i == timeout) {
56 hw_dbg("Driver can't access device - SMBI bit is set.\n");
57 return -E1000_ERR_NVM;
58 }
59 }
60
61
62 for (i = 0; i < timeout; i++) {
63 swsm = rd32(E1000_SWSM);
64 wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
65
66
67 if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
68 break;
69
70 udelay(50);
71 }
72
73 if (i == timeout) {
74
75 igb_put_hw_semaphore(hw);
76 hw_dbg("Driver can't access the NVM\n");
77 return -E1000_ERR_NVM;
78 }
79
80 return 0;
81 }
82
83
84
85
86
87
88
89
90
91
92 static s32 igb_acquire_nvm_i210(struct e1000_hw *hw)
93 {
94 return igb_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
95 }
96
97
98
99
100
101
102
103
104 static void igb_release_nvm_i210(struct e1000_hw *hw)
105 {
106 igb_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
107 }
108
109
110
111
112
113
114
115
116
117 s32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
118 {
119 u32 swfw_sync;
120 u32 swmask = mask;
121 u32 fwmask = mask << 16;
122 s32 ret_val = 0;
123 s32 i = 0, timeout = 200;
124
125 while (i < timeout) {
126 if (igb_get_hw_semaphore_i210(hw)) {
127 ret_val = -E1000_ERR_SWFW_SYNC;
128 goto out;
129 }
130
131 swfw_sync = rd32(E1000_SW_FW_SYNC);
132 if (!(swfw_sync & (fwmask | swmask)))
133 break;
134
135
136 igb_put_hw_semaphore(hw);
137 mdelay(5);
138 i++;
139 }
140
141 if (i == timeout) {
142 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
143 ret_val = -E1000_ERR_SWFW_SYNC;
144 goto out;
145 }
146
147 swfw_sync |= swmask;
148 wr32(E1000_SW_FW_SYNC, swfw_sync);
149
150 igb_put_hw_semaphore(hw);
151 out:
152 return ret_val;
153 }
154
155
156
157
158
159
160
161
162
163 void igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
164 {
165 u32 swfw_sync;
166
167 while (igb_get_hw_semaphore_i210(hw))
168 ;
169
170 swfw_sync = rd32(E1000_SW_FW_SYNC);
171 swfw_sync &= ~mask;
172 wr32(E1000_SW_FW_SYNC, swfw_sync);
173
174 igb_put_hw_semaphore(hw);
175 }
176
177
178
179
180
181
182
183
184
185
186
187 static s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
188 u16 *data)
189 {
190 s32 status = 0;
191 u16 i, count;
192
193
194
195
196
197 for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
198 count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
199 E1000_EERD_EEWR_MAX_COUNT : (words - i);
200 if (!(hw->nvm.ops.acquire(hw))) {
201 status = igb_read_nvm_eerd(hw, offset, count,
202 data + i);
203 hw->nvm.ops.release(hw);
204 } else {
205 status = E1000_ERR_SWFW_SYNC;
206 }
207
208 if (status)
209 break;
210 }
211
212 return status;
213 }
214
215
216
217
218
219
220
221
222
223
224
225
226
227 static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
228 u16 *data)
229 {
230 struct e1000_nvm_info *nvm = &hw->nvm;
231 u32 i, k, eewr = 0;
232 u32 attempts = 100000;
233 s32 ret_val = 0;
234
235
236
237
238 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
239 (words == 0)) {
240 hw_dbg("nvm parameter(s) out of bounds\n");
241 ret_val = -E1000_ERR_NVM;
242 goto out;
243 }
244
245 for (i = 0; i < words; i++) {
246 eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
247 (data[i] << E1000_NVM_RW_REG_DATA) |
248 E1000_NVM_RW_REG_START;
249
250 wr32(E1000_SRWR, eewr);
251
252 for (k = 0; k < attempts; k++) {
253 if (E1000_NVM_RW_REG_DONE &
254 rd32(E1000_SRWR)) {
255 ret_val = 0;
256 break;
257 }
258 udelay(5);
259 }
260
261 if (ret_val) {
262 hw_dbg("Shadow RAM write EEWR timed out\n");
263 break;
264 }
265 }
266
267 out:
268 return ret_val;
269 }
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287 static s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
288 u16 *data)
289 {
290 s32 status = 0;
291 u16 i, count;
292
293
294
295
296
297 for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
298 count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
299 E1000_EERD_EEWR_MAX_COUNT : (words - i);
300 if (!(hw->nvm.ops.acquire(hw))) {
301 status = igb_write_nvm_srwr(hw, offset, count,
302 data + i);
303 hw->nvm.ops.release(hw);
304 } else {
305 status = E1000_ERR_SWFW_SYNC;
306 }
307
308 if (status)
309 break;
310 }
311
312 return status;
313 }
314
315
316
317
318
319
320
321
322
323
324 static s32 igb_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data)
325 {
326 s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
327 u32 invm_dword;
328 u16 i;
329 u8 record_type, word_address;
330
331 for (i = 0; i < E1000_INVM_SIZE; i++) {
332 invm_dword = rd32(E1000_INVM_DATA_REG(i));
333
334 record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
335 if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
336 break;
337 if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
338 i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
339 if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
340 i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
341 if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
342 word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
343 if (word_address == address) {
344 *data = INVM_DWORD_TO_WORD_DATA(invm_dword);
345 hw_dbg("Read INVM Word 0x%02x = %x\n",
346 address, *data);
347 status = 0;
348 break;
349 }
350 }
351 }
352 if (status)
353 hw_dbg("Requested word 0x%02x not found in OTP\n", address);
354 return status;
355 }
356
357
358
359
360
361
362
363
364
365 static s32 igb_read_invm_i210(struct e1000_hw *hw, u16 offset,
366 u16 words __always_unused, u16 *data)
367 {
368 s32 ret_val = 0;
369
370
371 switch (offset) {
372 case NVM_MAC_ADDR:
373 ret_val = igb_read_invm_word_i210(hw, (u8)offset, &data[0]);
374 ret_val |= igb_read_invm_word_i210(hw, (u8)offset+1,
375 &data[1]);
376 ret_val |= igb_read_invm_word_i210(hw, (u8)offset+2,
377 &data[2]);
378 if (ret_val)
379 hw_dbg("MAC Addr not found in iNVM\n");
380 break;
381 case NVM_INIT_CTRL_2:
382 ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
383 if (ret_val) {
384 *data = NVM_INIT_CTRL_2_DEFAULT_I211;
385 ret_val = 0;
386 }
387 break;
388 case NVM_INIT_CTRL_4:
389 ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
390 if (ret_val) {
391 *data = NVM_INIT_CTRL_4_DEFAULT_I211;
392 ret_val = 0;
393 }
394 break;
395 case NVM_LED_1_CFG:
396 ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
397 if (ret_val) {
398 *data = NVM_LED_1_CFG_DEFAULT_I211;
399 ret_val = 0;
400 }
401 break;
402 case NVM_LED_0_2_CFG:
403 ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
404 if (ret_val) {
405 *data = NVM_LED_0_2_CFG_DEFAULT_I211;
406 ret_val = 0;
407 }
408 break;
409 case NVM_ID_LED_SETTINGS:
410 ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
411 if (ret_val) {
412 *data = ID_LED_RESERVED_FFFF;
413 ret_val = 0;
414 }
415 break;
416 case NVM_SUB_DEV_ID:
417 *data = hw->subsystem_device_id;
418 break;
419 case NVM_SUB_VEN_ID:
420 *data = hw->subsystem_vendor_id;
421 break;
422 case NVM_DEV_ID:
423 *data = hw->device_id;
424 break;
425 case NVM_VEN_ID:
426 *data = hw->vendor_id;
427 break;
428 default:
429 hw_dbg("NVM word 0x%02x is not mapped.\n", offset);
430 *data = NVM_RESERVED_WORD;
431 break;
432 }
433 return ret_val;
434 }
435
436
437
438
439
440
441
442
443 s32 igb_read_invm_version(struct e1000_hw *hw,
444 struct e1000_fw_version *invm_ver) {
445 u32 *record = NULL;
446 u32 *next_record = NULL;
447 u32 i = 0;
448 u32 invm_dword = 0;
449 u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE /
450 E1000_INVM_RECORD_SIZE_IN_BYTES);
451 u32 buffer[E1000_INVM_SIZE];
452 s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
453 u16 version = 0;
454
455
456 for (i = 0; i < E1000_INVM_SIZE; i++) {
457 invm_dword = rd32(E1000_INVM_DATA_REG(i));
458 buffer[i] = invm_dword;
459 }
460
461
462 for (i = 1; i < invm_blocks; i++) {
463 record = &buffer[invm_blocks - i];
464 next_record = &buffer[invm_blocks - i + 1];
465
466
467 if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) {
468 version = 0;
469 status = 0;
470 break;
471 }
472
473 else if ((i == 1) &&
474 ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) {
475 version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
476 status = 0;
477 break;
478 }
479
480
481
482 else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) &&
483 ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
484 (i != 1))) {
485 version = (*next_record & E1000_INVM_VER_FIELD_TWO)
486 >> 13;
487 status = 0;
488 break;
489 }
490
491
492
493 else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) &&
494 ((*record & 0x3) == 0)) {
495 version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
496 status = 0;
497 break;
498 }
499 }
500
501 if (!status) {
502 invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK)
503 >> E1000_INVM_MAJOR_SHIFT;
504 invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK;
505 }
506
507 for (i = 1; i < invm_blocks; i++) {
508 record = &buffer[invm_blocks - i];
509 next_record = &buffer[invm_blocks - i + 1];
510
511
512 if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) {
513 invm_ver->invm_img_type = 0;
514 status = 0;
515 break;
516 }
517
518 else if ((((*record & 0x3) == 0) &&
519 ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) ||
520 ((((*record & 0x3) != 0) && (i != 1)))) {
521 invm_ver->invm_img_type =
522 (*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23;
523 status = 0;
524 break;
525 }
526 }
527 return status;
528 }
529
530
531
532
533
534
535
536
537 static s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw)
538 {
539 s32 status = 0;
540 s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
541
542 if (!(hw->nvm.ops.acquire(hw))) {
543
544
545
546
547
548 read_op_ptr = hw->nvm.ops.read;
549 hw->nvm.ops.read = igb_read_nvm_eerd;
550
551 status = igb_validate_nvm_checksum(hw);
552
553
554 hw->nvm.ops.read = read_op_ptr;
555
556 hw->nvm.ops.release(hw);
557 } else {
558 status = E1000_ERR_SWFW_SYNC;
559 }
560
561 return status;
562 }
563
564
565
566
567
568
569
570
571
572 static s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw)
573 {
574 s32 ret_val = 0;
575 u16 checksum = 0;
576 u16 i, nvm_data;
577
578
579
580
581
582 ret_val = igb_read_nvm_eerd(hw, 0, 1, &nvm_data);
583 if (ret_val) {
584 hw_dbg("EEPROM read failed\n");
585 goto out;
586 }
587
588 if (!(hw->nvm.ops.acquire(hw))) {
589
590
591
592
593
594 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
595 ret_val = igb_read_nvm_eerd(hw, i, 1, &nvm_data);
596 if (ret_val) {
597 hw->nvm.ops.release(hw);
598 hw_dbg("NVM Read Error while updating checksum.\n");
599 goto out;
600 }
601 checksum += nvm_data;
602 }
603 checksum = (u16) NVM_SUM - checksum;
604 ret_val = igb_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
605 &checksum);
606 if (ret_val) {
607 hw->nvm.ops.release(hw);
608 hw_dbg("NVM Write Error while updating checksum.\n");
609 goto out;
610 }
611
612 hw->nvm.ops.release(hw);
613
614 ret_val = igb_update_flash_i210(hw);
615 } else {
616 ret_val = -E1000_ERR_SWFW_SYNC;
617 }
618 out:
619 return ret_val;
620 }
621
622
623
624
625
626
627 static s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw)
628 {
629 s32 ret_val = -E1000_ERR_NVM;
630 u32 i, reg;
631
632 for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
633 reg = rd32(E1000_EECD);
634 if (reg & E1000_EECD_FLUDONE_I210) {
635 ret_val = 0;
636 break;
637 }
638 udelay(5);
639 }
640
641 return ret_val;
642 }
643
644
645
646
647
648
649 bool igb_get_flash_presence_i210(struct e1000_hw *hw)
650 {
651 u32 eec = 0;
652 bool ret_val = false;
653
654 eec = rd32(E1000_EECD);
655 if (eec & E1000_EECD_FLASH_DETECTED_I210)
656 ret_val = true;
657
658 return ret_val;
659 }
660
661
662
663
664
665
666 static s32 igb_update_flash_i210(struct e1000_hw *hw)
667 {
668 s32 ret_val = 0;
669 u32 flup;
670
671 ret_val = igb_pool_flash_update_done_i210(hw);
672 if (ret_val == -E1000_ERR_NVM) {
673 hw_dbg("Flash update time out\n");
674 goto out;
675 }
676
677 flup = rd32(E1000_EECD) | E1000_EECD_FLUPD_I210;
678 wr32(E1000_EECD, flup);
679
680 ret_val = igb_pool_flash_update_done_i210(hw);
681 if (ret_val)
682 hw_dbg("Flash update time out\n");
683 else
684 hw_dbg("Flash update complete\n");
685
686 out:
687 return ret_val;
688 }
689
690
691
692
693
694
695
696
697
698 s32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
699 {
700 s32 ret_val;
701
702 ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
703 if (ret_val) {
704 hw_dbg("NVM Read Error\n");
705 goto out;
706 }
707
708 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
709 switch (hw->phy.media_type) {
710 case e1000_media_type_internal_serdes:
711 *data = ID_LED_DEFAULT_I210_SERDES;
712 break;
713 case e1000_media_type_copper:
714 default:
715 *data = ID_LED_DEFAULT_I210;
716 break;
717 }
718 }
719 out:
720 return ret_val;
721 }
722
723
724
725
726
727
728
729
730
731 static s32 __igb_access_xmdio_reg(struct e1000_hw *hw, u16 address,
732 u8 dev_addr, u16 *data, bool read)
733 {
734 s32 ret_val = 0;
735
736 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr);
737 if (ret_val)
738 return ret_val;
739
740 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address);
741 if (ret_val)
742 return ret_val;
743
744 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA |
745 dev_addr);
746 if (ret_val)
747 return ret_val;
748
749 if (read)
750 ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data);
751 else
752 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data);
753 if (ret_val)
754 return ret_val;
755
756
757 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0);
758 if (ret_val)
759 return ret_val;
760
761 return ret_val;
762 }
763
764
765
766
767
768
769
770
771 s32 igb_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data)
772 {
773 return __igb_access_xmdio_reg(hw, addr, dev_addr, data, true);
774 }
775
776
777
778
779
780
781
782
783 s32 igb_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data)
784 {
785 return __igb_access_xmdio_reg(hw, addr, dev_addr, &data, false);
786 }
787
788
789
790
791
792 s32 igb_init_nvm_params_i210(struct e1000_hw *hw)
793 {
794 s32 ret_val = 0;
795 struct e1000_nvm_info *nvm = &hw->nvm;
796
797 nvm->ops.acquire = igb_acquire_nvm_i210;
798 nvm->ops.release = igb_release_nvm_i210;
799 nvm->ops.valid_led_default = igb_valid_led_default_i210;
800
801
802 if (igb_get_flash_presence_i210(hw)) {
803 hw->nvm.type = e1000_nvm_flash_hw;
804 nvm->ops.read = igb_read_nvm_srrd_i210;
805 nvm->ops.write = igb_write_nvm_srwr_i210;
806 nvm->ops.validate = igb_validate_nvm_checksum_i210;
807 nvm->ops.update = igb_update_nvm_checksum_i210;
808 } else {
809 hw->nvm.type = e1000_nvm_invm;
810 nvm->ops.read = igb_read_invm_i210;
811 nvm->ops.write = NULL;
812 nvm->ops.validate = NULL;
813 nvm->ops.update = NULL;
814 }
815 return ret_val;
816 }
817
818
819
820
821
822
823
824
825 s32 igb_pll_workaround_i210(struct e1000_hw *hw)
826 {
827 s32 ret_val;
828 u32 wuc, mdicnfg, ctrl, ctrl_ext, reg_val;
829 u16 nvm_word, phy_word, pci_word, tmp_nvm;
830 int i;
831
832
833 wuc = rd32(E1000_WUC);
834 mdicnfg = rd32(E1000_MDICNFG);
835 reg_val = mdicnfg & ~E1000_MDICNFG_EXT_MDIO;
836 wr32(E1000_MDICNFG, reg_val);
837
838
839 ret_val = igb_read_invm_word_i210(hw, E1000_INVM_AUTOLOAD,
840 &nvm_word);
841 if (ret_val)
842 nvm_word = E1000_INVM_DEFAULT_AL;
843 tmp_nvm = nvm_word | E1000_INVM_PLL_WO_VAL;
844 igb_write_phy_reg_82580(hw, I347AT4_PAGE_SELECT, E1000_PHY_PLL_FREQ_PAGE);
845 phy_word = E1000_PHY_PLL_UNCONF;
846 for (i = 0; i < E1000_MAX_PLL_TRIES; i++) {
847
848 igb_read_phy_reg_82580(hw, E1000_PHY_PLL_FREQ_REG, &phy_word);
849 if ((phy_word & E1000_PHY_PLL_UNCONF)
850 != E1000_PHY_PLL_UNCONF) {
851 ret_val = 0;
852 break;
853 } else {
854 ret_val = -E1000_ERR_PHY;
855 }
856
857 ctrl = rd32(E1000_CTRL);
858 wr32(E1000_CTRL, ctrl|E1000_CTRL_PHY_RST);
859
860 ctrl_ext = rd32(E1000_CTRL_EXT);
861 ctrl_ext |= (E1000_CTRL_EXT_PHYPDEN | E1000_CTRL_EXT_SDLPE);
862 wr32(E1000_CTRL_EXT, ctrl_ext);
863
864 wr32(E1000_WUC, 0);
865 reg_val = (E1000_INVM_AUTOLOAD << 4) | (tmp_nvm << 16);
866 wr32(E1000_EEARBC_I210, reg_val);
867
868 igb_read_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
869 pci_word |= E1000_PCI_PMCSR_D3;
870 igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
871 usleep_range(1000, 2000);
872 pci_word &= ~E1000_PCI_PMCSR_D3;
873 igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
874 reg_val = (E1000_INVM_AUTOLOAD << 4) | (nvm_word << 16);
875 wr32(E1000_EEARBC_I210, reg_val);
876
877
878 wr32(E1000_WUC, wuc);
879 }
880 igb_write_phy_reg_82580(hw, I347AT4_PAGE_SELECT, 0);
881
882 wr32(E1000_MDICNFG, mdicnfg);
883 return ret_val;
884 }
885
886
887
888
889
890
891
892
893
894
895
896 s32 igb_get_cfg_done_i210(struct e1000_hw *hw)
897 {
898 s32 timeout = PHY_CFG_TIMEOUT;
899 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
900
901 while (timeout) {
902 if (rd32(E1000_EEMNGCTL_I210) & mask)
903 break;
904 usleep_range(1000, 2000);
905 timeout--;
906 }
907 if (!timeout)
908 hw_dbg("MNG configuration cycle has not completed.\n");
909
910 return 0;
911 }