root/drivers/net/ethernet/intel/igb/e1000_i210.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. igb_get_hw_semaphore_i210
  2. igb_acquire_nvm_i210
  3. igb_release_nvm_i210
  4. igb_acquire_swfw_sync_i210
  5. igb_release_swfw_sync_i210
  6. igb_read_nvm_srrd_i210
  7. igb_write_nvm_srwr
  8. igb_write_nvm_srwr_i210
  9. igb_read_invm_word_i210
  10. igb_read_invm_i210
  11. igb_read_invm_version
  12. igb_validate_nvm_checksum_i210
  13. igb_update_nvm_checksum_i210
  14. igb_pool_flash_update_done_i210
  15. igb_get_flash_presence_i210
  16. igb_update_flash_i210
  17. igb_valid_led_default_i210
  18. __igb_access_xmdio_reg
  19. igb_read_xmdio_reg
  20. igb_write_xmdio_reg
  21. igb_init_nvm_params_i210
  22. igb_pll_workaround_i210
  23. igb_get_cfg_done_i210

   1 // SPDX-License-Identifier: GPL-2.0
   2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
   3 
   4 /* e1000_i210
   5  * e1000_i211
   6  */
   7 
   8 #include <linux/types.h>
   9 #include <linux/if_ether.h>
  10 
  11 #include "e1000_hw.h"
  12 #include "e1000_i210.h"
  13 
  14 static s32 igb_update_flash_i210(struct e1000_hw *hw);
  15 
  16 /**
  17  * igb_get_hw_semaphore_i210 - Acquire hardware semaphore
  18  *  @hw: pointer to the HW structure
  19  *
  20  *  Acquire the HW semaphore to access the PHY or NVM
  21  */
  22 static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw)
  23 {
  24         u32 swsm;
  25         s32 timeout = hw->nvm.word_size + 1;
  26         s32 i = 0;
  27 
  28         /* Get the SW semaphore */
  29         while (i < timeout) {
  30                 swsm = rd32(E1000_SWSM);
  31                 if (!(swsm & E1000_SWSM_SMBI))
  32                         break;
  33 
  34                 udelay(50);
  35                 i++;
  36         }
  37 
  38         if (i == timeout) {
  39                 /* In rare circumstances, the SW semaphore may already be held
  40                  * unintentionally. Clear the semaphore once before giving up.
  41                  */
  42                 if (hw->dev_spec._82575.clear_semaphore_once) {
  43                         hw->dev_spec._82575.clear_semaphore_once = false;
  44                         igb_put_hw_semaphore(hw);
  45                         for (i = 0; i < timeout; i++) {
  46                                 swsm = rd32(E1000_SWSM);
  47                                 if (!(swsm & E1000_SWSM_SMBI))
  48                                         break;
  49 
  50                                 udelay(50);
  51                         }
  52                 }
  53 
  54                 /* If we do not have the semaphore here, we have to give up. */
  55                 if (i == timeout) {
  56                         hw_dbg("Driver can't access device - SMBI bit is set.\n");
  57                         return -E1000_ERR_NVM;
  58                 }
  59         }
  60 
  61         /* Get the FW semaphore. */
  62         for (i = 0; i < timeout; i++) {
  63                 swsm = rd32(E1000_SWSM);
  64                 wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
  65 
  66                 /* Semaphore acquired if bit latched */
  67                 if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
  68                         break;
  69 
  70                 udelay(50);
  71         }
  72 
  73         if (i == timeout) {
  74                 /* Release semaphores */
  75                 igb_put_hw_semaphore(hw);
  76                 hw_dbg("Driver can't access the NVM\n");
  77                 return -E1000_ERR_NVM;
  78         }
  79 
  80         return 0;
  81 }
  82 
  83 /**
  84  *  igb_acquire_nvm_i210 - Request for access to EEPROM
  85  *  @hw: pointer to the HW structure
  86  *
  87  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
  88  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
  89  *  Return successful if access grant bit set, else clear the request for
  90  *  EEPROM access and return -E1000_ERR_NVM (-1).
  91  **/
  92 static s32 igb_acquire_nvm_i210(struct e1000_hw *hw)
  93 {
  94         return igb_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
  95 }
  96 
  97 /**
  98  *  igb_release_nvm_i210 - Release exclusive access to EEPROM
  99  *  @hw: pointer to the HW structure
 100  *
 101  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
 102  *  then release the semaphores acquired.
 103  **/
 104 static void igb_release_nvm_i210(struct e1000_hw *hw)
 105 {
 106         igb_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
 107 }
 108 
 109 /**
 110  *  igb_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
 111  *  @hw: pointer to the HW structure
 112  *  @mask: specifies which semaphore to acquire
 113  *
 114  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 115  *  will also specify which port we're acquiring the lock for.
 116  **/
 117 s32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
 118 {
 119         u32 swfw_sync;
 120         u32 swmask = mask;
 121         u32 fwmask = mask << 16;
 122         s32 ret_val = 0;
 123         s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
 124 
 125         while (i < timeout) {
 126                 if (igb_get_hw_semaphore_i210(hw)) {
 127                         ret_val = -E1000_ERR_SWFW_SYNC;
 128                         goto out;
 129                 }
 130 
 131                 swfw_sync = rd32(E1000_SW_FW_SYNC);
 132                 if (!(swfw_sync & (fwmask | swmask)))
 133                         break;
 134 
 135                 /* Firmware currently using resource (fwmask) */
 136                 igb_put_hw_semaphore(hw);
 137                 mdelay(5);
 138                 i++;
 139         }
 140 
 141         if (i == timeout) {
 142                 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
 143                 ret_val = -E1000_ERR_SWFW_SYNC;
 144                 goto out;
 145         }
 146 
 147         swfw_sync |= swmask;
 148         wr32(E1000_SW_FW_SYNC, swfw_sync);
 149 
 150         igb_put_hw_semaphore(hw);
 151 out:
 152         return ret_val;
 153 }
 154 
 155 /**
 156  *  igb_release_swfw_sync_i210 - Release SW/FW semaphore
 157  *  @hw: pointer to the HW structure
 158  *  @mask: specifies which semaphore to acquire
 159  *
 160  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 161  *  will also specify which port we're releasing the lock for.
 162  **/
 163 void igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
 164 {
 165         u32 swfw_sync;
 166 
 167         while (igb_get_hw_semaphore_i210(hw))
 168                 ; /* Empty */
 169 
 170         swfw_sync = rd32(E1000_SW_FW_SYNC);
 171         swfw_sync &= ~mask;
 172         wr32(E1000_SW_FW_SYNC, swfw_sync);
 173 
 174         igb_put_hw_semaphore(hw);
 175 }
 176 
 177 /**
 178  *  igb_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
 179  *  @hw: pointer to the HW structure
 180  *  @offset: offset of word in the Shadow Ram to read
 181  *  @words: number of words to read
 182  *  @data: word read from the Shadow Ram
 183  *
 184  *  Reads a 16 bit word from the Shadow Ram using the EERD register.
 185  *  Uses necessary synchronization semaphores.
 186  **/
 187 static s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
 188                                   u16 *data)
 189 {
 190         s32 status = 0;
 191         u16 i, count;
 192 
 193         /* We cannot hold synchronization semaphores for too long,
 194          * because of forceful takeover procedure. However it is more efficient
 195          * to read in bursts than synchronizing access for each word.
 196          */
 197         for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
 198                 count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
 199                         E1000_EERD_EEWR_MAX_COUNT : (words - i);
 200                 if (!(hw->nvm.ops.acquire(hw))) {
 201                         status = igb_read_nvm_eerd(hw, offset, count,
 202                                                      data + i);
 203                         hw->nvm.ops.release(hw);
 204                 } else {
 205                         status = E1000_ERR_SWFW_SYNC;
 206                 }
 207 
 208                 if (status)
 209                         break;
 210         }
 211 
 212         return status;
 213 }
 214 
 215 /**
 216  *  igb_write_nvm_srwr - Write to Shadow Ram using EEWR
 217  *  @hw: pointer to the HW structure
 218  *  @offset: offset within the Shadow Ram to be written to
 219  *  @words: number of words to write
 220  *  @data: 16 bit word(s) to be written to the Shadow Ram
 221  *
 222  *  Writes data to Shadow Ram at offset using EEWR register.
 223  *
 224  *  If igb_update_nvm_checksum is not called after this function , the
 225  *  Shadow Ram will most likely contain an invalid checksum.
 226  **/
 227 static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
 228                                 u16 *data)
 229 {
 230         struct e1000_nvm_info *nvm = &hw->nvm;
 231         u32 i, k, eewr = 0;
 232         u32 attempts = 100000;
 233         s32 ret_val = 0;
 234 
 235         /* A check for invalid values:  offset too large, too many words,
 236          * too many words for the offset, and not enough words.
 237          */
 238         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
 239             (words == 0)) {
 240                 hw_dbg("nvm parameter(s) out of bounds\n");
 241                 ret_val = -E1000_ERR_NVM;
 242                 goto out;
 243         }
 244 
 245         for (i = 0; i < words; i++) {
 246                 eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
 247                         (data[i] << E1000_NVM_RW_REG_DATA) |
 248                         E1000_NVM_RW_REG_START;
 249 
 250                 wr32(E1000_SRWR, eewr);
 251 
 252                 for (k = 0; k < attempts; k++) {
 253                         if (E1000_NVM_RW_REG_DONE &
 254                             rd32(E1000_SRWR)) {
 255                                 ret_val = 0;
 256                                 break;
 257                         }
 258                         udelay(5);
 259         }
 260 
 261                 if (ret_val) {
 262                         hw_dbg("Shadow RAM write EEWR timed out\n");
 263                         break;
 264                 }
 265         }
 266 
 267 out:
 268         return ret_val;
 269 }
 270 
 271 /**
 272  *  igb_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
 273  *  @hw: pointer to the HW structure
 274  *  @offset: offset within the Shadow RAM to be written to
 275  *  @words: number of words to write
 276  *  @data: 16 bit word(s) to be written to the Shadow RAM
 277  *
 278  *  Writes data to Shadow RAM at offset using EEWR register.
 279  *
 280  *  If e1000_update_nvm_checksum is not called after this function , the
 281  *  data will not be committed to FLASH and also Shadow RAM will most likely
 282  *  contain an invalid checksum.
 283  *
 284  *  If error code is returned, data and Shadow RAM may be inconsistent - buffer
 285  *  partially written.
 286  **/
 287 static s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
 288                                    u16 *data)
 289 {
 290         s32 status = 0;
 291         u16 i, count;
 292 
 293         /* We cannot hold synchronization semaphores for too long,
 294          * because of forceful takeover procedure. However it is more efficient
 295          * to write in bursts than synchronizing access for each word.
 296          */
 297         for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
 298                 count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
 299                         E1000_EERD_EEWR_MAX_COUNT : (words - i);
 300                 if (!(hw->nvm.ops.acquire(hw))) {
 301                         status = igb_write_nvm_srwr(hw, offset, count,
 302                                                       data + i);
 303                         hw->nvm.ops.release(hw);
 304                 } else {
 305                         status = E1000_ERR_SWFW_SYNC;
 306                 }
 307 
 308                 if (status)
 309                         break;
 310         }
 311 
 312         return status;
 313 }
 314 
 315 /**
 316  *  igb_read_invm_word_i210 - Reads OTP
 317  *  @hw: pointer to the HW structure
 318  *  @address: the word address (aka eeprom offset) to read
 319  *  @data: pointer to the data read
 320  *
 321  *  Reads 16-bit words from the OTP. Return error when the word is not
 322  *  stored in OTP.
 323  **/
 324 static s32 igb_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data)
 325 {
 326         s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
 327         u32 invm_dword;
 328         u16 i;
 329         u8 record_type, word_address;
 330 
 331         for (i = 0; i < E1000_INVM_SIZE; i++) {
 332                 invm_dword = rd32(E1000_INVM_DATA_REG(i));
 333                 /* Get record type */
 334                 record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
 335                 if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
 336                         break;
 337                 if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
 338                         i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
 339                 if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
 340                         i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
 341                 if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
 342                         word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
 343                         if (word_address == address) {
 344                                 *data = INVM_DWORD_TO_WORD_DATA(invm_dword);
 345                                 hw_dbg("Read INVM Word 0x%02x = %x\n",
 346                                           address, *data);
 347                                 status = 0;
 348                                 break;
 349                         }
 350                 }
 351         }
 352         if (status)
 353                 hw_dbg("Requested word 0x%02x not found in OTP\n", address);
 354         return status;
 355 }
 356 
 357 /**
 358  * igb_read_invm_i210 - Read invm wrapper function for I210/I211
 359  *  @hw: pointer to the HW structure
 360  *  @words: number of words to read
 361  *  @data: pointer to the data read
 362  *
 363  *  Wrapper function to return data formerly found in the NVM.
 364  **/
 365 static s32 igb_read_invm_i210(struct e1000_hw *hw, u16 offset,
 366                                 u16 words __always_unused, u16 *data)
 367 {
 368         s32 ret_val = 0;
 369 
 370         /* Only the MAC addr is required to be present in the iNVM */
 371         switch (offset) {
 372         case NVM_MAC_ADDR:
 373                 ret_val = igb_read_invm_word_i210(hw, (u8)offset, &data[0]);
 374                 ret_val |= igb_read_invm_word_i210(hw, (u8)offset+1,
 375                                                      &data[1]);
 376                 ret_val |= igb_read_invm_word_i210(hw, (u8)offset+2,
 377                                                      &data[2]);
 378                 if (ret_val)
 379                         hw_dbg("MAC Addr not found in iNVM\n");
 380                 break;
 381         case NVM_INIT_CTRL_2:
 382                 ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
 383                 if (ret_val) {
 384                         *data = NVM_INIT_CTRL_2_DEFAULT_I211;
 385                         ret_val = 0;
 386                 }
 387                 break;
 388         case NVM_INIT_CTRL_4:
 389                 ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
 390                 if (ret_val) {
 391                         *data = NVM_INIT_CTRL_4_DEFAULT_I211;
 392                         ret_val = 0;
 393                 }
 394                 break;
 395         case NVM_LED_1_CFG:
 396                 ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
 397                 if (ret_val) {
 398                         *data = NVM_LED_1_CFG_DEFAULT_I211;
 399                         ret_val = 0;
 400                 }
 401                 break;
 402         case NVM_LED_0_2_CFG:
 403                 ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
 404                 if (ret_val) {
 405                         *data = NVM_LED_0_2_CFG_DEFAULT_I211;
 406                         ret_val = 0;
 407                 }
 408                 break;
 409         case NVM_ID_LED_SETTINGS:
 410                 ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
 411                 if (ret_val) {
 412                         *data = ID_LED_RESERVED_FFFF;
 413                         ret_val = 0;
 414                 }
 415                 break;
 416         case NVM_SUB_DEV_ID:
 417                 *data = hw->subsystem_device_id;
 418                 break;
 419         case NVM_SUB_VEN_ID:
 420                 *data = hw->subsystem_vendor_id;
 421                 break;
 422         case NVM_DEV_ID:
 423                 *data = hw->device_id;
 424                 break;
 425         case NVM_VEN_ID:
 426                 *data = hw->vendor_id;
 427                 break;
 428         default:
 429                 hw_dbg("NVM word 0x%02x is not mapped.\n", offset);
 430                 *data = NVM_RESERVED_WORD;
 431                 break;
 432         }
 433         return ret_val;
 434 }
 435 
 436 /**
 437  *  igb_read_invm_version - Reads iNVM version and image type
 438  *  @hw: pointer to the HW structure
 439  *  @invm_ver: version structure for the version read
 440  *
 441  *  Reads iNVM version and image type.
 442  **/
 443 s32 igb_read_invm_version(struct e1000_hw *hw,
 444                           struct e1000_fw_version *invm_ver) {
 445         u32 *record = NULL;
 446         u32 *next_record = NULL;
 447         u32 i = 0;
 448         u32 invm_dword = 0;
 449         u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE /
 450                                              E1000_INVM_RECORD_SIZE_IN_BYTES);
 451         u32 buffer[E1000_INVM_SIZE];
 452         s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
 453         u16 version = 0;
 454 
 455         /* Read iNVM memory */
 456         for (i = 0; i < E1000_INVM_SIZE; i++) {
 457                 invm_dword = rd32(E1000_INVM_DATA_REG(i));
 458                 buffer[i] = invm_dword;
 459         }
 460 
 461         /* Read version number */
 462         for (i = 1; i < invm_blocks; i++) {
 463                 record = &buffer[invm_blocks - i];
 464                 next_record = &buffer[invm_blocks - i + 1];
 465 
 466                 /* Check if we have first version location used */
 467                 if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) {
 468                         version = 0;
 469                         status = 0;
 470                         break;
 471                 }
 472                 /* Check if we have second version location used */
 473                 else if ((i == 1) &&
 474                          ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) {
 475                         version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
 476                         status = 0;
 477                         break;
 478                 }
 479                 /* Check if we have odd version location
 480                  * used and it is the last one used
 481                  */
 482                 else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) &&
 483                          ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
 484                          (i != 1))) {
 485                         version = (*next_record & E1000_INVM_VER_FIELD_TWO)
 486                                   >> 13;
 487                         status = 0;
 488                         break;
 489                 }
 490                 /* Check if we have even version location
 491                  * used and it is the last one used
 492                  */
 493                 else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) &&
 494                          ((*record & 0x3) == 0)) {
 495                         version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
 496                         status = 0;
 497                         break;
 498                 }
 499         }
 500 
 501         if (!status) {
 502                 invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK)
 503                                         >> E1000_INVM_MAJOR_SHIFT;
 504                 invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK;
 505         }
 506         /* Read Image Type */
 507         for (i = 1; i < invm_blocks; i++) {
 508                 record = &buffer[invm_blocks - i];
 509                 next_record = &buffer[invm_blocks - i + 1];
 510 
 511                 /* Check if we have image type in first location used */
 512                 if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) {
 513                         invm_ver->invm_img_type = 0;
 514                         status = 0;
 515                         break;
 516                 }
 517                 /* Check if we have image type in first location used */
 518                 else if ((((*record & 0x3) == 0) &&
 519                          ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) ||
 520                          ((((*record & 0x3) != 0) && (i != 1)))) {
 521                         invm_ver->invm_img_type =
 522                                 (*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23;
 523                         status = 0;
 524                         break;
 525                 }
 526         }
 527         return status;
 528 }
 529 
 530 /**
 531  *  igb_validate_nvm_checksum_i210 - Validate EEPROM checksum
 532  *  @hw: pointer to the HW structure
 533  *
 534  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 535  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 536  **/
 537 static s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw)
 538 {
 539         s32 status = 0;
 540         s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
 541 
 542         if (!(hw->nvm.ops.acquire(hw))) {
 543 
 544                 /* Replace the read function with semaphore grabbing with
 545                  * the one that skips this for a while.
 546                  * We have semaphore taken already here.
 547                  */
 548                 read_op_ptr = hw->nvm.ops.read;
 549                 hw->nvm.ops.read = igb_read_nvm_eerd;
 550 
 551                 status = igb_validate_nvm_checksum(hw);
 552 
 553                 /* Revert original read operation. */
 554                 hw->nvm.ops.read = read_op_ptr;
 555 
 556                 hw->nvm.ops.release(hw);
 557         } else {
 558                 status = E1000_ERR_SWFW_SYNC;
 559         }
 560 
 561         return status;
 562 }
 563 
 564 /**
 565  *  igb_update_nvm_checksum_i210 - Update EEPROM checksum
 566  *  @hw: pointer to the HW structure
 567  *
 568  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 569  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 570  *  value to the EEPROM. Next commit EEPROM data onto the Flash.
 571  **/
 572 static s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw)
 573 {
 574         s32 ret_val = 0;
 575         u16 checksum = 0;
 576         u16 i, nvm_data;
 577 
 578         /* Read the first word from the EEPROM. If this times out or fails, do
 579          * not continue or we could be in for a very long wait while every
 580          * EEPROM read fails
 581          */
 582         ret_val = igb_read_nvm_eerd(hw, 0, 1, &nvm_data);
 583         if (ret_val) {
 584                 hw_dbg("EEPROM read failed\n");
 585                 goto out;
 586         }
 587 
 588         if (!(hw->nvm.ops.acquire(hw))) {
 589                 /* Do not use hw->nvm.ops.write, hw->nvm.ops.read
 590                  * because we do not want to take the synchronization
 591                  * semaphores twice here.
 592                  */
 593 
 594                 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
 595                         ret_val = igb_read_nvm_eerd(hw, i, 1, &nvm_data);
 596                         if (ret_val) {
 597                                 hw->nvm.ops.release(hw);
 598                                 hw_dbg("NVM Read Error while updating checksum.\n");
 599                                 goto out;
 600                         }
 601                         checksum += nvm_data;
 602                 }
 603                 checksum = (u16) NVM_SUM - checksum;
 604                 ret_val = igb_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
 605                                                 &checksum);
 606                 if (ret_val) {
 607                         hw->nvm.ops.release(hw);
 608                         hw_dbg("NVM Write Error while updating checksum.\n");
 609                         goto out;
 610                 }
 611 
 612                 hw->nvm.ops.release(hw);
 613 
 614                 ret_val = igb_update_flash_i210(hw);
 615         } else {
 616                 ret_val = -E1000_ERR_SWFW_SYNC;
 617         }
 618 out:
 619         return ret_val;
 620 }
 621 
 622 /**
 623  *  igb_pool_flash_update_done_i210 - Pool FLUDONE status.
 624  *  @hw: pointer to the HW structure
 625  *
 626  **/
 627 static s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw)
 628 {
 629         s32 ret_val = -E1000_ERR_NVM;
 630         u32 i, reg;
 631 
 632         for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
 633                 reg = rd32(E1000_EECD);
 634                 if (reg & E1000_EECD_FLUDONE_I210) {
 635                         ret_val = 0;
 636                         break;
 637                 }
 638                 udelay(5);
 639         }
 640 
 641         return ret_val;
 642 }
 643 
 644 /**
 645  *  igb_get_flash_presence_i210 - Check if flash device is detected.
 646  *  @hw: pointer to the HW structure
 647  *
 648  **/
 649 bool igb_get_flash_presence_i210(struct e1000_hw *hw)
 650 {
 651         u32 eec = 0;
 652         bool ret_val = false;
 653 
 654         eec = rd32(E1000_EECD);
 655         if (eec & E1000_EECD_FLASH_DETECTED_I210)
 656                 ret_val = true;
 657 
 658         return ret_val;
 659 }
 660 
 661 /**
 662  *  igb_update_flash_i210 - Commit EEPROM to the flash
 663  *  @hw: pointer to the HW structure
 664  *
 665  **/
 666 static s32 igb_update_flash_i210(struct e1000_hw *hw)
 667 {
 668         s32 ret_val = 0;
 669         u32 flup;
 670 
 671         ret_val = igb_pool_flash_update_done_i210(hw);
 672         if (ret_val == -E1000_ERR_NVM) {
 673                 hw_dbg("Flash update time out\n");
 674                 goto out;
 675         }
 676 
 677         flup = rd32(E1000_EECD) | E1000_EECD_FLUPD_I210;
 678         wr32(E1000_EECD, flup);
 679 
 680         ret_val = igb_pool_flash_update_done_i210(hw);
 681         if (ret_val)
 682                 hw_dbg("Flash update time out\n");
 683         else
 684                 hw_dbg("Flash update complete\n");
 685 
 686 out:
 687         return ret_val;
 688 }
 689 
 690 /**
 691  *  igb_valid_led_default_i210 - Verify a valid default LED config
 692  *  @hw: pointer to the HW structure
 693  *  @data: pointer to the NVM (EEPROM)
 694  *
 695  *  Read the EEPROM for the current default LED configuration.  If the
 696  *  LED configuration is not valid, set to a valid LED configuration.
 697  **/
 698 s32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
 699 {
 700         s32 ret_val;
 701 
 702         ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
 703         if (ret_val) {
 704                 hw_dbg("NVM Read Error\n");
 705                 goto out;
 706         }
 707 
 708         if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
 709                 switch (hw->phy.media_type) {
 710                 case e1000_media_type_internal_serdes:
 711                         *data = ID_LED_DEFAULT_I210_SERDES;
 712                         break;
 713                 case e1000_media_type_copper:
 714                 default:
 715                         *data = ID_LED_DEFAULT_I210;
 716                         break;
 717                 }
 718         }
 719 out:
 720         return ret_val;
 721 }
 722 
 723 /**
 724  *  __igb_access_xmdio_reg - Read/write XMDIO register
 725  *  @hw: pointer to the HW structure
 726  *  @address: XMDIO address to program
 727  *  @dev_addr: device address to program
 728  *  @data: pointer to value to read/write from/to the XMDIO address
 729  *  @read: boolean flag to indicate read or write
 730  **/
 731 static s32 __igb_access_xmdio_reg(struct e1000_hw *hw, u16 address,
 732                                   u8 dev_addr, u16 *data, bool read)
 733 {
 734         s32 ret_val = 0;
 735 
 736         ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr);
 737         if (ret_val)
 738                 return ret_val;
 739 
 740         ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address);
 741         if (ret_val)
 742                 return ret_val;
 743 
 744         ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA |
 745                                                          dev_addr);
 746         if (ret_val)
 747                 return ret_val;
 748 
 749         if (read)
 750                 ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data);
 751         else
 752                 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data);
 753         if (ret_val)
 754                 return ret_val;
 755 
 756         /* Recalibrate the device back to 0 */
 757         ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0);
 758         if (ret_val)
 759                 return ret_val;
 760 
 761         return ret_val;
 762 }
 763 
 764 /**
 765  *  igb_read_xmdio_reg - Read XMDIO register
 766  *  @hw: pointer to the HW structure
 767  *  @addr: XMDIO address to program
 768  *  @dev_addr: device address to program
 769  *  @data: value to be read from the EMI address
 770  **/
 771 s32 igb_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data)
 772 {
 773         return __igb_access_xmdio_reg(hw, addr, dev_addr, data, true);
 774 }
 775 
 776 /**
 777  *  igb_write_xmdio_reg - Write XMDIO register
 778  *  @hw: pointer to the HW structure
 779  *  @addr: XMDIO address to program
 780  *  @dev_addr: device address to program
 781  *  @data: value to be written to the XMDIO address
 782  **/
 783 s32 igb_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data)
 784 {
 785         return __igb_access_xmdio_reg(hw, addr, dev_addr, &data, false);
 786 }
 787 
 788 /**
 789  *  igb_init_nvm_params_i210 - Init NVM func ptrs.
 790  *  @hw: pointer to the HW structure
 791  **/
 792 s32 igb_init_nvm_params_i210(struct e1000_hw *hw)
 793 {
 794         s32 ret_val = 0;
 795         struct e1000_nvm_info *nvm = &hw->nvm;
 796 
 797         nvm->ops.acquire = igb_acquire_nvm_i210;
 798         nvm->ops.release = igb_release_nvm_i210;
 799         nvm->ops.valid_led_default = igb_valid_led_default_i210;
 800 
 801         /* NVM Function Pointers */
 802         if (igb_get_flash_presence_i210(hw)) {
 803                 hw->nvm.type = e1000_nvm_flash_hw;
 804                 nvm->ops.read    = igb_read_nvm_srrd_i210;
 805                 nvm->ops.write   = igb_write_nvm_srwr_i210;
 806                 nvm->ops.validate = igb_validate_nvm_checksum_i210;
 807                 nvm->ops.update   = igb_update_nvm_checksum_i210;
 808         } else {
 809                 hw->nvm.type = e1000_nvm_invm;
 810                 nvm->ops.read     = igb_read_invm_i210;
 811                 nvm->ops.write    = NULL;
 812                 nvm->ops.validate = NULL;
 813                 nvm->ops.update   = NULL;
 814         }
 815         return ret_val;
 816 }
 817 
 818 /**
 819  * igb_pll_workaround_i210
 820  * @hw: pointer to the HW structure
 821  *
 822  * Works around an errata in the PLL circuit where it occasionally
 823  * provides the wrong clock frequency after power up.
 824  **/
 825 s32 igb_pll_workaround_i210(struct e1000_hw *hw)
 826 {
 827         s32 ret_val;
 828         u32 wuc, mdicnfg, ctrl, ctrl_ext, reg_val;
 829         u16 nvm_word, phy_word, pci_word, tmp_nvm;
 830         int i;
 831 
 832         /* Get and set needed register values */
 833         wuc = rd32(E1000_WUC);
 834         mdicnfg = rd32(E1000_MDICNFG);
 835         reg_val = mdicnfg & ~E1000_MDICNFG_EXT_MDIO;
 836         wr32(E1000_MDICNFG, reg_val);
 837 
 838         /* Get data from NVM, or set default */
 839         ret_val = igb_read_invm_word_i210(hw, E1000_INVM_AUTOLOAD,
 840                                           &nvm_word);
 841         if (ret_val)
 842                 nvm_word = E1000_INVM_DEFAULT_AL;
 843         tmp_nvm = nvm_word | E1000_INVM_PLL_WO_VAL;
 844         igb_write_phy_reg_82580(hw, I347AT4_PAGE_SELECT, E1000_PHY_PLL_FREQ_PAGE);
 845         phy_word = E1000_PHY_PLL_UNCONF;
 846         for (i = 0; i < E1000_MAX_PLL_TRIES; i++) {
 847                 /* check current state directly from internal PHY */
 848                 igb_read_phy_reg_82580(hw, E1000_PHY_PLL_FREQ_REG, &phy_word);
 849                 if ((phy_word & E1000_PHY_PLL_UNCONF)
 850                     != E1000_PHY_PLL_UNCONF) {
 851                         ret_val = 0;
 852                         break;
 853                 } else {
 854                         ret_val = -E1000_ERR_PHY;
 855                 }
 856                 /* directly reset the internal PHY */
 857                 ctrl = rd32(E1000_CTRL);
 858                 wr32(E1000_CTRL, ctrl|E1000_CTRL_PHY_RST);
 859 
 860                 ctrl_ext = rd32(E1000_CTRL_EXT);
 861                 ctrl_ext |= (E1000_CTRL_EXT_PHYPDEN | E1000_CTRL_EXT_SDLPE);
 862                 wr32(E1000_CTRL_EXT, ctrl_ext);
 863 
 864                 wr32(E1000_WUC, 0);
 865                 reg_val = (E1000_INVM_AUTOLOAD << 4) | (tmp_nvm << 16);
 866                 wr32(E1000_EEARBC_I210, reg_val);
 867 
 868                 igb_read_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
 869                 pci_word |= E1000_PCI_PMCSR_D3;
 870                 igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
 871                 usleep_range(1000, 2000);
 872                 pci_word &= ~E1000_PCI_PMCSR_D3;
 873                 igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
 874                 reg_val = (E1000_INVM_AUTOLOAD << 4) | (nvm_word << 16);
 875                 wr32(E1000_EEARBC_I210, reg_val);
 876 
 877                 /* restore WUC register */
 878                 wr32(E1000_WUC, wuc);
 879         }
 880         igb_write_phy_reg_82580(hw, I347AT4_PAGE_SELECT, 0);
 881         /* restore MDICNFG setting */
 882         wr32(E1000_MDICNFG, mdicnfg);
 883         return ret_val;
 884 }
 885 
 886 /**
 887  *  igb_get_cfg_done_i210 - Read config done bit
 888  *  @hw: pointer to the HW structure
 889  *
 890  *  Read the management control register for the config done bit for
 891  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
 892  *  to read the config done bit, so an error is *ONLY* logged and returns
 893  *  0.  If we were to return with error, EEPROM-less silicon
 894  *  would not be able to be reset or change link.
 895  **/
 896 s32 igb_get_cfg_done_i210(struct e1000_hw *hw)
 897 {
 898         s32 timeout = PHY_CFG_TIMEOUT;
 899         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
 900 
 901         while (timeout) {
 902                 if (rd32(E1000_EEMNGCTL_I210) & mask)
 903                         break;
 904                 usleep_range(1000, 2000);
 905                 timeout--;
 906         }
 907         if (!timeout)
 908                 hw_dbg("MNG configuration cycle has not completed.\n");
 909 
 910         return 0;
 911 }

/* [<][>][^][v][top][bottom][index][help] */