root/drivers/net/ethernet/intel/igb/e1000_nvm.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. igb_raise_eec_clk
  2. igb_lower_eec_clk
  3. igb_shift_out_eec_bits
  4. igb_shift_in_eec_bits
  5. igb_poll_eerd_eewr_done
  6. igb_acquire_nvm
  7. igb_standby_nvm
  8. e1000_stop_nvm
  9. igb_release_nvm
  10. igb_ready_nvm_eeprom
  11. igb_read_nvm_spi
  12. igb_read_nvm_eerd
  13. igb_write_nvm_spi
  14. igb_read_part_string
  15. igb_read_mac_addr
  16. igb_validate_nvm_checksum
  17. igb_update_nvm_checksum
  18. igb_get_fw_version

   1 // SPDX-License-Identifier: GPL-2.0
   2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
   3 
   4 #include <linux/if_ether.h>
   5 #include <linux/delay.h>
   6 
   7 #include "e1000_mac.h"
   8 #include "e1000_nvm.h"
   9 
  10 /**
  11  *  igb_raise_eec_clk - Raise EEPROM clock
  12  *  @hw: pointer to the HW structure
  13  *  @eecd: pointer to the EEPROM
  14  *
  15  *  Enable/Raise the EEPROM clock bit.
  16  **/
  17 static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
  18 {
  19         *eecd = *eecd | E1000_EECD_SK;
  20         wr32(E1000_EECD, *eecd);
  21         wrfl();
  22         udelay(hw->nvm.delay_usec);
  23 }
  24 
  25 /**
  26  *  igb_lower_eec_clk - Lower EEPROM clock
  27  *  @hw: pointer to the HW structure
  28  *  @eecd: pointer to the EEPROM
  29  *
  30  *  Clear/Lower the EEPROM clock bit.
  31  **/
  32 static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
  33 {
  34         *eecd = *eecd & ~E1000_EECD_SK;
  35         wr32(E1000_EECD, *eecd);
  36         wrfl();
  37         udelay(hw->nvm.delay_usec);
  38 }
  39 
  40 /**
  41  *  igb_shift_out_eec_bits - Shift data bits our to the EEPROM
  42  *  @hw: pointer to the HW structure
  43  *  @data: data to send to the EEPROM
  44  *  @count: number of bits to shift out
  45  *
  46  *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
  47  *  "data" parameter will be shifted out to the EEPROM one bit at a time.
  48  *  In order to do this, "data" must be broken down into bits.
  49  **/
  50 static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
  51 {
  52         struct e1000_nvm_info *nvm = &hw->nvm;
  53         u32 eecd = rd32(E1000_EECD);
  54         u32 mask;
  55 
  56         mask = 1u << (count - 1);
  57         if (nvm->type == e1000_nvm_eeprom_spi)
  58                 eecd |= E1000_EECD_DO;
  59 
  60         do {
  61                 eecd &= ~E1000_EECD_DI;
  62 
  63                 if (data & mask)
  64                         eecd |= E1000_EECD_DI;
  65 
  66                 wr32(E1000_EECD, eecd);
  67                 wrfl();
  68 
  69                 udelay(nvm->delay_usec);
  70 
  71                 igb_raise_eec_clk(hw, &eecd);
  72                 igb_lower_eec_clk(hw, &eecd);
  73 
  74                 mask >>= 1;
  75         } while (mask);
  76 
  77         eecd &= ~E1000_EECD_DI;
  78         wr32(E1000_EECD, eecd);
  79 }
  80 
  81 /**
  82  *  igb_shift_in_eec_bits - Shift data bits in from the EEPROM
  83  *  @hw: pointer to the HW structure
  84  *  @count: number of bits to shift in
  85  *
  86  *  In order to read a register from the EEPROM, we need to shift 'count' bits
  87  *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
  88  *  the EEPROM (setting the SK bit), and then reading the value of the data out
  89  *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
  90  *  always be clear.
  91  **/
  92 static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
  93 {
  94         u32 eecd;
  95         u32 i;
  96         u16 data;
  97 
  98         eecd = rd32(E1000_EECD);
  99 
 100         eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
 101         data = 0;
 102 
 103         for (i = 0; i < count; i++) {
 104                 data <<= 1;
 105                 igb_raise_eec_clk(hw, &eecd);
 106 
 107                 eecd = rd32(E1000_EECD);
 108 
 109                 eecd &= ~E1000_EECD_DI;
 110                 if (eecd & E1000_EECD_DO)
 111                         data |= 1;
 112 
 113                 igb_lower_eec_clk(hw, &eecd);
 114         }
 115 
 116         return data;
 117 }
 118 
 119 /**
 120  *  igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion
 121  *  @hw: pointer to the HW structure
 122  *  @ee_reg: EEPROM flag for polling
 123  *
 124  *  Polls the EEPROM status bit for either read or write completion based
 125  *  upon the value of 'ee_reg'.
 126  **/
 127 static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
 128 {
 129         u32 attempts = 100000;
 130         u32 i, reg = 0;
 131         s32 ret_val = -E1000_ERR_NVM;
 132 
 133         for (i = 0; i < attempts; i++) {
 134                 if (ee_reg == E1000_NVM_POLL_READ)
 135                         reg = rd32(E1000_EERD);
 136                 else
 137                         reg = rd32(E1000_EEWR);
 138 
 139                 if (reg & E1000_NVM_RW_REG_DONE) {
 140                         ret_val = 0;
 141                         break;
 142                 }
 143 
 144                 udelay(5);
 145         }
 146 
 147         return ret_val;
 148 }
 149 
 150 /**
 151  *  igb_acquire_nvm - Generic request for access to EEPROM
 152  *  @hw: pointer to the HW structure
 153  *
 154  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
 155  *  Return successful if access grant bit set, else clear the request for
 156  *  EEPROM access and return -E1000_ERR_NVM (-1).
 157  **/
 158 s32 igb_acquire_nvm(struct e1000_hw *hw)
 159 {
 160         u32 eecd = rd32(E1000_EECD);
 161         s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
 162         s32 ret_val = 0;
 163 
 164 
 165         wr32(E1000_EECD, eecd | E1000_EECD_REQ);
 166         eecd = rd32(E1000_EECD);
 167 
 168         while (timeout) {
 169                 if (eecd & E1000_EECD_GNT)
 170                         break;
 171                 udelay(5);
 172                 eecd = rd32(E1000_EECD);
 173                 timeout--;
 174         }
 175 
 176         if (!timeout) {
 177                 eecd &= ~E1000_EECD_REQ;
 178                 wr32(E1000_EECD, eecd);
 179                 hw_dbg("Could not acquire NVM grant\n");
 180                 ret_val = -E1000_ERR_NVM;
 181         }
 182 
 183         return ret_val;
 184 }
 185 
 186 /**
 187  *  igb_standby_nvm - Return EEPROM to standby state
 188  *  @hw: pointer to the HW structure
 189  *
 190  *  Return the EEPROM to a standby state.
 191  **/
 192 static void igb_standby_nvm(struct e1000_hw *hw)
 193 {
 194         struct e1000_nvm_info *nvm = &hw->nvm;
 195         u32 eecd = rd32(E1000_EECD);
 196 
 197         if (nvm->type == e1000_nvm_eeprom_spi) {
 198                 /* Toggle CS to flush commands */
 199                 eecd |= E1000_EECD_CS;
 200                 wr32(E1000_EECD, eecd);
 201                 wrfl();
 202                 udelay(nvm->delay_usec);
 203                 eecd &= ~E1000_EECD_CS;
 204                 wr32(E1000_EECD, eecd);
 205                 wrfl();
 206                 udelay(nvm->delay_usec);
 207         }
 208 }
 209 
 210 /**
 211  *  e1000_stop_nvm - Terminate EEPROM command
 212  *  @hw: pointer to the HW structure
 213  *
 214  *  Terminates the current command by inverting the EEPROM's chip select pin.
 215  **/
 216 static void e1000_stop_nvm(struct e1000_hw *hw)
 217 {
 218         u32 eecd;
 219 
 220         eecd = rd32(E1000_EECD);
 221         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
 222                 /* Pull CS high */
 223                 eecd |= E1000_EECD_CS;
 224                 igb_lower_eec_clk(hw, &eecd);
 225         }
 226 }
 227 
 228 /**
 229  *  igb_release_nvm - Release exclusive access to EEPROM
 230  *  @hw: pointer to the HW structure
 231  *
 232  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
 233  **/
 234 void igb_release_nvm(struct e1000_hw *hw)
 235 {
 236         u32 eecd;
 237 
 238         e1000_stop_nvm(hw);
 239 
 240         eecd = rd32(E1000_EECD);
 241         eecd &= ~E1000_EECD_REQ;
 242         wr32(E1000_EECD, eecd);
 243 }
 244 
 245 /**
 246  *  igb_ready_nvm_eeprom - Prepares EEPROM for read/write
 247  *  @hw: pointer to the HW structure
 248  *
 249  *  Setups the EEPROM for reading and writing.
 250  **/
 251 static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw)
 252 {
 253         struct e1000_nvm_info *nvm = &hw->nvm;
 254         u32 eecd = rd32(E1000_EECD);
 255         s32 ret_val = 0;
 256         u16 timeout = 0;
 257         u8 spi_stat_reg;
 258 
 259 
 260         if (nvm->type == e1000_nvm_eeprom_spi) {
 261                 /* Clear SK and CS */
 262                 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
 263                 wr32(E1000_EECD, eecd);
 264                 wrfl();
 265                 udelay(1);
 266                 timeout = NVM_MAX_RETRY_SPI;
 267 
 268                 /* Read "Status Register" repeatedly until the LSB is cleared.
 269                  * The EEPROM will signal that the command has been completed
 270                  * by clearing bit 0 of the internal status register.  If it's
 271                  * not cleared within 'timeout', then error out.
 272                  */
 273                 while (timeout) {
 274                         igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
 275                                                hw->nvm.opcode_bits);
 276                         spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8);
 277                         if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
 278                                 break;
 279 
 280                         udelay(5);
 281                         igb_standby_nvm(hw);
 282                         timeout--;
 283                 }
 284 
 285                 if (!timeout) {
 286                         hw_dbg("SPI NVM Status error\n");
 287                         ret_val = -E1000_ERR_NVM;
 288                         goto out;
 289                 }
 290         }
 291 
 292 out:
 293         return ret_val;
 294 }
 295 
 296 /**
 297  *  igb_read_nvm_spi - Read EEPROM's using SPI
 298  *  @hw: pointer to the HW structure
 299  *  @offset: offset of word in the EEPROM to read
 300  *  @words: number of words to read
 301  *  @data: word read from the EEPROM
 302  *
 303  *  Reads a 16 bit word from the EEPROM.
 304  **/
 305 s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
 306 {
 307         struct e1000_nvm_info *nvm = &hw->nvm;
 308         u32 i = 0;
 309         s32 ret_val;
 310         u16 word_in;
 311         u8 read_opcode = NVM_READ_OPCODE_SPI;
 312 
 313         /* A check for invalid values:  offset too large, too many words,
 314          * and not enough words.
 315          */
 316         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
 317             (words == 0)) {
 318                 hw_dbg("nvm parameter(s) out of bounds\n");
 319                 ret_val = -E1000_ERR_NVM;
 320                 goto out;
 321         }
 322 
 323         ret_val = nvm->ops.acquire(hw);
 324         if (ret_val)
 325                 goto out;
 326 
 327         ret_val = igb_ready_nvm_eeprom(hw);
 328         if (ret_val)
 329                 goto release;
 330 
 331         igb_standby_nvm(hw);
 332 
 333         if ((nvm->address_bits == 8) && (offset >= 128))
 334                 read_opcode |= NVM_A8_OPCODE_SPI;
 335 
 336         /* Send the READ command (opcode + addr) */
 337         igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
 338         igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
 339 
 340         /* Read the data.  SPI NVMs increment the address with each byte
 341          * read and will roll over if reading beyond the end.  This allows
 342          * us to read the whole NVM from any offset
 343          */
 344         for (i = 0; i < words; i++) {
 345                 word_in = igb_shift_in_eec_bits(hw, 16);
 346                 data[i] = (word_in >> 8) | (word_in << 8);
 347         }
 348 
 349 release:
 350         nvm->ops.release(hw);
 351 
 352 out:
 353         return ret_val;
 354 }
 355 
 356 /**
 357  *  igb_read_nvm_eerd - Reads EEPROM using EERD register
 358  *  @hw: pointer to the HW structure
 359  *  @offset: offset of word in the EEPROM to read
 360  *  @words: number of words to read
 361  *  @data: word read from the EEPROM
 362  *
 363  *  Reads a 16 bit word from the EEPROM using the EERD register.
 364  **/
 365 s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
 366 {
 367         struct e1000_nvm_info *nvm = &hw->nvm;
 368         u32 i, eerd = 0;
 369         s32 ret_val = 0;
 370 
 371         /* A check for invalid values:  offset too large, too many words,
 372          * and not enough words.
 373          */
 374         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
 375             (words == 0)) {
 376                 hw_dbg("nvm parameter(s) out of bounds\n");
 377                 ret_val = -E1000_ERR_NVM;
 378                 goto out;
 379         }
 380 
 381         for (i = 0; i < words; i++) {
 382                 eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
 383                         E1000_NVM_RW_REG_START;
 384 
 385                 wr32(E1000_EERD, eerd);
 386                 ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
 387                 if (ret_val)
 388                         break;
 389 
 390                 data[i] = (rd32(E1000_EERD) >>
 391                         E1000_NVM_RW_REG_DATA);
 392         }
 393 
 394 out:
 395         return ret_val;
 396 }
 397 
 398 /**
 399  *  igb_write_nvm_spi - Write to EEPROM using SPI
 400  *  @hw: pointer to the HW structure
 401  *  @offset: offset within the EEPROM to be written to
 402  *  @words: number of words to write
 403  *  @data: 16 bit word(s) to be written to the EEPROM
 404  *
 405  *  Writes data to EEPROM at offset using SPI interface.
 406  *
 407  *  If e1000_update_nvm_checksum is not called after this function , the
 408  *  EEPROM will most likley contain an invalid checksum.
 409  **/
 410 s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
 411 {
 412         struct e1000_nvm_info *nvm = &hw->nvm;
 413         s32 ret_val = -E1000_ERR_NVM;
 414         u16 widx = 0;
 415 
 416         /* A check for invalid values:  offset too large, too many words,
 417          * and not enough words.
 418          */
 419         if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
 420             (words == 0)) {
 421                 hw_dbg("nvm parameter(s) out of bounds\n");
 422                 return ret_val;
 423         }
 424 
 425         while (widx < words) {
 426                 u8 write_opcode = NVM_WRITE_OPCODE_SPI;
 427 
 428                 ret_val = nvm->ops.acquire(hw);
 429                 if (ret_val)
 430                         return ret_val;
 431 
 432                 ret_val = igb_ready_nvm_eeprom(hw);
 433                 if (ret_val) {
 434                         nvm->ops.release(hw);
 435                         return ret_val;
 436                 }
 437 
 438                 igb_standby_nvm(hw);
 439 
 440                 /* Send the WRITE ENABLE command (8 bit opcode) */
 441                 igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
 442                                          nvm->opcode_bits);
 443 
 444                 igb_standby_nvm(hw);
 445 
 446                 /* Some SPI eeproms use the 8th address bit embedded in the
 447                  * opcode
 448                  */
 449                 if ((nvm->address_bits == 8) && (offset >= 128))
 450                         write_opcode |= NVM_A8_OPCODE_SPI;
 451 
 452                 /* Send the Write command (8-bit opcode + addr) */
 453                 igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
 454                 igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
 455                                          nvm->address_bits);
 456 
 457                 /* Loop to allow for up to whole page write of eeprom */
 458                 while (widx < words) {
 459                         u16 word_out = data[widx];
 460 
 461                         word_out = (word_out >> 8) | (word_out << 8);
 462                         igb_shift_out_eec_bits(hw, word_out, 16);
 463                         widx++;
 464 
 465                         if ((((offset + widx) * 2) % nvm->page_size) == 0) {
 466                                 igb_standby_nvm(hw);
 467                                 break;
 468                         }
 469                 }
 470                 usleep_range(1000, 2000);
 471                 nvm->ops.release(hw);
 472         }
 473 
 474         return ret_val;
 475 }
 476 
 477 /**
 478  *  igb_read_part_string - Read device part number
 479  *  @hw: pointer to the HW structure
 480  *  @part_num: pointer to device part number
 481  *  @part_num_size: size of part number buffer
 482  *
 483  *  Reads the product board assembly (PBA) number from the EEPROM and stores
 484  *  the value in part_num.
 485  **/
 486 s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size)
 487 {
 488         s32 ret_val;
 489         u16 nvm_data;
 490         u16 pointer;
 491         u16 offset;
 492         u16 length;
 493 
 494         if (part_num == NULL) {
 495                 hw_dbg("PBA string buffer was null\n");
 496                 ret_val = E1000_ERR_INVALID_ARGUMENT;
 497                 goto out;
 498         }
 499 
 500         ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
 501         if (ret_val) {
 502                 hw_dbg("NVM Read Error\n");
 503                 goto out;
 504         }
 505 
 506         ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer);
 507         if (ret_val) {
 508                 hw_dbg("NVM Read Error\n");
 509                 goto out;
 510         }
 511 
 512         /* if nvm_data is not ptr guard the PBA must be in legacy format which
 513          * means pointer is actually our second data word for the PBA number
 514          * and we can decode it into an ascii string
 515          */
 516         if (nvm_data != NVM_PBA_PTR_GUARD) {
 517                 hw_dbg("NVM PBA number is not stored as string\n");
 518 
 519                 /* we will need 11 characters to store the PBA */
 520                 if (part_num_size < 11) {
 521                         hw_dbg("PBA string buffer too small\n");
 522                         return E1000_ERR_NO_SPACE;
 523                 }
 524 
 525                 /* extract hex string from data and pointer */
 526                 part_num[0] = (nvm_data >> 12) & 0xF;
 527                 part_num[1] = (nvm_data >> 8) & 0xF;
 528                 part_num[2] = (nvm_data >> 4) & 0xF;
 529                 part_num[3] = nvm_data & 0xF;
 530                 part_num[4] = (pointer >> 12) & 0xF;
 531                 part_num[5] = (pointer >> 8) & 0xF;
 532                 part_num[6] = '-';
 533                 part_num[7] = 0;
 534                 part_num[8] = (pointer >> 4) & 0xF;
 535                 part_num[9] = pointer & 0xF;
 536 
 537                 /* put a null character on the end of our string */
 538                 part_num[10] = '\0';
 539 
 540                 /* switch all the data but the '-' to hex char */
 541                 for (offset = 0; offset < 10; offset++) {
 542                         if (part_num[offset] < 0xA)
 543                                 part_num[offset] += '0';
 544                         else if (part_num[offset] < 0x10)
 545                                 part_num[offset] += 'A' - 0xA;
 546                 }
 547 
 548                 goto out;
 549         }
 550 
 551         ret_val = hw->nvm.ops.read(hw, pointer, 1, &length);
 552         if (ret_val) {
 553                 hw_dbg("NVM Read Error\n");
 554                 goto out;
 555         }
 556 
 557         if (length == 0xFFFF || length == 0) {
 558                 hw_dbg("NVM PBA number section invalid length\n");
 559                 ret_val = E1000_ERR_NVM_PBA_SECTION;
 560                 goto out;
 561         }
 562         /* check if part_num buffer is big enough */
 563         if (part_num_size < (((u32)length * 2) - 1)) {
 564                 hw_dbg("PBA string buffer too small\n");
 565                 ret_val = E1000_ERR_NO_SPACE;
 566                 goto out;
 567         }
 568 
 569         /* trim pba length from start of string */
 570         pointer++;
 571         length--;
 572 
 573         for (offset = 0; offset < length; offset++) {
 574                 ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data);
 575                 if (ret_val) {
 576                         hw_dbg("NVM Read Error\n");
 577                         goto out;
 578                 }
 579                 part_num[offset * 2] = (u8)(nvm_data >> 8);
 580                 part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
 581         }
 582         part_num[offset * 2] = '\0';
 583 
 584 out:
 585         return ret_val;
 586 }
 587 
 588 /**
 589  *  igb_read_mac_addr - Read device MAC address
 590  *  @hw: pointer to the HW structure
 591  *
 592  *  Reads the device MAC address from the EEPROM and stores the value.
 593  *  Since devices with two ports use the same EEPROM, we increment the
 594  *  last bit in the MAC address for the second port.
 595  **/
 596 s32 igb_read_mac_addr(struct e1000_hw *hw)
 597 {
 598         u32 rar_high;
 599         u32 rar_low;
 600         u16 i;
 601 
 602         rar_high = rd32(E1000_RAH(0));
 603         rar_low = rd32(E1000_RAL(0));
 604 
 605         for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
 606                 hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
 607 
 608         for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
 609                 hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
 610 
 611         for (i = 0; i < ETH_ALEN; i++)
 612                 hw->mac.addr[i] = hw->mac.perm_addr[i];
 613 
 614         return 0;
 615 }
 616 
 617 /**
 618  *  igb_validate_nvm_checksum - Validate EEPROM checksum
 619  *  @hw: pointer to the HW structure
 620  *
 621  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 622  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 623  **/
 624 s32 igb_validate_nvm_checksum(struct e1000_hw *hw)
 625 {
 626         s32 ret_val = 0;
 627         u16 checksum = 0;
 628         u16 i, nvm_data;
 629 
 630         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
 631                 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
 632                 if (ret_val) {
 633                         hw_dbg("NVM Read Error\n");
 634                         goto out;
 635                 }
 636                 checksum += nvm_data;
 637         }
 638 
 639         if (checksum != (u16) NVM_SUM) {
 640                 hw_dbg("NVM Checksum Invalid\n");
 641                 ret_val = -E1000_ERR_NVM;
 642                 goto out;
 643         }
 644 
 645 out:
 646         return ret_val;
 647 }
 648 
 649 /**
 650  *  igb_update_nvm_checksum - Update EEPROM checksum
 651  *  @hw: pointer to the HW structure
 652  *
 653  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 654  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 655  *  value to the EEPROM.
 656  **/
 657 s32 igb_update_nvm_checksum(struct e1000_hw *hw)
 658 {
 659         s32  ret_val;
 660         u16 checksum = 0;
 661         u16 i, nvm_data;
 662 
 663         for (i = 0; i < NVM_CHECKSUM_REG; i++) {
 664                 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
 665                 if (ret_val) {
 666                         hw_dbg("NVM Read Error while updating checksum.\n");
 667                         goto out;
 668                 }
 669                 checksum += nvm_data;
 670         }
 671         checksum = (u16) NVM_SUM - checksum;
 672         ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
 673         if (ret_val)
 674                 hw_dbg("NVM Write Error while updating checksum.\n");
 675 
 676 out:
 677         return ret_val;
 678 }
 679 
 680 /**
 681  *  igb_get_fw_version - Get firmware version information
 682  *  @hw: pointer to the HW structure
 683  *  @fw_vers: pointer to output structure
 684  *
 685  *  unsupported MAC types will return all 0 version structure
 686  **/
 687 void igb_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers)
 688 {
 689         u16 eeprom_verh, eeprom_verl, etrack_test, fw_version;
 690         u8 q, hval, rem, result;
 691         u16 comb_verh, comb_verl, comb_offset;
 692 
 693         memset(fw_vers, 0, sizeof(struct e1000_fw_version));
 694 
 695         /* basic eeprom version numbers and bits used vary by part and by tool
 696          * used to create the nvm images. Check which data format we have.
 697          */
 698         hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
 699         switch (hw->mac.type) {
 700         case e1000_i211:
 701                 igb_read_invm_version(hw, fw_vers);
 702                 return;
 703         case e1000_82575:
 704         case e1000_82576:
 705         case e1000_82580:
 706                 /* Use this format, unless EETRACK ID exists,
 707                  * then use alternate format
 708                  */
 709                 if ((etrack_test &  NVM_MAJOR_MASK) != NVM_ETRACK_VALID) {
 710                         hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
 711                         fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
 712                                               >> NVM_MAJOR_SHIFT;
 713                         fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK)
 714                                               >> NVM_MINOR_SHIFT;
 715                         fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK);
 716                         goto etrack_id;
 717                 }
 718                 break;
 719         case e1000_i210:
 720                 if (!(igb_get_flash_presence_i210(hw))) {
 721                         igb_read_invm_version(hw, fw_vers);
 722                         return;
 723                 }
 724                 /* fall through */
 725         case e1000_i350:
 726                 /* find combo image version */
 727                 hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
 728                 if ((comb_offset != 0x0) &&
 729                     (comb_offset != NVM_VER_INVALID)) {
 730 
 731                         hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
 732                                          + 1), 1, &comb_verh);
 733                         hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
 734                                          1, &comb_verl);
 735 
 736                         /* get Option Rom version if it exists and is valid */
 737                         if ((comb_verh && comb_verl) &&
 738                             ((comb_verh != NVM_VER_INVALID) &&
 739                              (comb_verl != NVM_VER_INVALID))) {
 740 
 741                                 fw_vers->or_valid = true;
 742                                 fw_vers->or_major =
 743                                         comb_verl >> NVM_COMB_VER_SHFT;
 744                                 fw_vers->or_build =
 745                                         (comb_verl << NVM_COMB_VER_SHFT)
 746                                         | (comb_verh >> NVM_COMB_VER_SHFT);
 747                                 fw_vers->or_patch =
 748                                         comb_verh & NVM_COMB_VER_MASK;
 749                         }
 750                 }
 751                 break;
 752         default:
 753                 return;
 754         }
 755         hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
 756         fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
 757                               >> NVM_MAJOR_SHIFT;
 758 
 759         /* check for old style version format in newer images*/
 760         if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) {
 761                 eeprom_verl = (fw_version & NVM_COMB_VER_MASK);
 762         } else {
 763                 eeprom_verl = (fw_version & NVM_MINOR_MASK)
 764                                 >> NVM_MINOR_SHIFT;
 765         }
 766         /* Convert minor value to hex before assigning to output struct
 767          * Val to be converted will not be higher than 99, per tool output
 768          */
 769         q = eeprom_verl / NVM_HEX_CONV;
 770         hval = q * NVM_HEX_TENS;
 771         rem = eeprom_verl % NVM_HEX_CONV;
 772         result = hval + rem;
 773         fw_vers->eep_minor = result;
 774 
 775 etrack_id:
 776         if ((etrack_test &  NVM_MAJOR_MASK) == NVM_ETRACK_VALID) {
 777                 hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl);
 778                 hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh);
 779                 fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT)
 780                         | eeprom_verl;
 781         }
 782 }

/* [<][>][^][v][top][bottom][index][help] */