root/drivers/net/ethernet/intel/igb/igb_ptp.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. igb_ptp_read_82576
  2. igb_ptp_read_82580
  3. igb_ptp_read_i210
  4. igb_ptp_write_i210
  5. igb_ptp_systim_to_hwtstamp
  6. igb_ptp_adjfreq_82576
  7. igb_ptp_adjfine_82580
  8. igb_ptp_adjtime_82576
  9. igb_ptp_adjtime_i210
  10. igb_ptp_gettimex_82576
  11. igb_ptp_gettimex_82580
  12. igb_ptp_gettimex_i210
  13. igb_ptp_settime_82576
  14. igb_ptp_settime_i210
  15. igb_pin_direction
  16. igb_pin_extts
  17. igb_pin_perout
  18. igb_ptp_feature_enable_i210
  19. igb_ptp_feature_enable
  20. igb_ptp_verify_pin
  21. igb_ptp_tx_work
  22. igb_ptp_overflow_check
  23. igb_ptp_rx_hang
  24. igb_ptp_tx_hang
  25. igb_ptp_tx_hwtstamp
  26. igb_ptp_rx_pktstamp
  27. igb_ptp_rx_rgtstamp
  28. igb_ptp_get_ts_config
  29. igb_ptp_set_timestamp_mode
  30. igb_ptp_set_ts_config
  31. igb_ptp_init
  32. igb_ptp_suspend
  33. igb_ptp_stop
  34. igb_ptp_reset

   1 // SPDX-License-Identifier: GPL-2.0+
   2 /* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
   3 
   4 #include <linux/module.h>
   5 #include <linux/device.h>
   6 #include <linux/pci.h>
   7 #include <linux/ptp_classify.h>
   8 
   9 #include "igb.h"
  10 
  11 #define INCVALUE_MASK           0x7fffffff
  12 #define ISGN                    0x80000000
  13 
  14 /* The 82580 timesync updates the system timer every 8ns by 8ns,
  15  * and this update value cannot be reprogrammed.
  16  *
  17  * Neither the 82576 nor the 82580 offer registers wide enough to hold
  18  * nanoseconds time values for very long. For the 82580, SYSTIM always
  19  * counts nanoseconds, but the upper 24 bits are not available. The
  20  * frequency is adjusted by changing the 32 bit fractional nanoseconds
  21  * register, TIMINCA.
  22  *
  23  * For the 82576, the SYSTIM register time unit is affect by the
  24  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
  25  * field are needed to provide the nominal 16 nanosecond period,
  26  * leaving 19 bits for fractional nanoseconds.
  27  *
  28  * We scale the NIC clock cycle by a large factor so that relatively
  29  * small clock corrections can be added or subtracted at each clock
  30  * tick. The drawbacks of a large factor are a) that the clock
  31  * register overflows more quickly (not such a big deal) and b) that
  32  * the increment per tick has to fit into 24 bits.  As a result we
  33  * need to use a shift of 19 so we can fit a value of 16 into the
  34  * TIMINCA register.
  35  *
  36  *
  37  *             SYSTIMH            SYSTIML
  38  *        +--------------+   +---+---+------+
  39  *  82576 |      32      |   | 8 | 5 |  19  |
  40  *        +--------------+   +---+---+------+
  41  *         \________ 45 bits _______/  fract
  42  *
  43  *        +----------+---+   +--------------+
  44  *  82580 |    24    | 8 |   |      32      |
  45  *        +----------+---+   +--------------+
  46  *          reserved  \______ 40 bits _____/
  47  *
  48  *
  49  * The 45 bit 82576 SYSTIM overflows every
  50  *   2^45 * 10^-9 / 3600 = 9.77 hours.
  51  *
  52  * The 40 bit 82580 SYSTIM overflows every
  53  *   2^40 * 10^-9 /  60  = 18.3 minutes.
  54  *
  55  * SYSTIM is converted to real time using a timecounter. As
  56  * timecounter_cyc2time() allows old timestamps, the timecounter needs
  57  * to be updated at least once per half of the SYSTIM interval.
  58  * Scheduling of delayed work is not very accurate, and also the NIC
  59  * clock can be adjusted to run up to 6% faster and the system clock
  60  * up to 10% slower, so we aim for 6 minutes to be sure the actual
  61  * interval in the NIC time is shorter than 9.16 minutes.
  62  */
  63 
  64 #define IGB_SYSTIM_OVERFLOW_PERIOD      (HZ * 60 * 6)
  65 #define IGB_PTP_TX_TIMEOUT              (HZ * 15)
  66 #define INCPERIOD_82576                 BIT(E1000_TIMINCA_16NS_SHIFT)
  67 #define INCVALUE_82576_MASK             GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
  68 #define INCVALUE_82576                  (16u << IGB_82576_TSYNC_SHIFT)
  69 #define IGB_NBITS_82580                 40
  70 
  71 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
  72 
  73 /* SYSTIM read access for the 82576 */
  74 static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
  75 {
  76         struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
  77         struct e1000_hw *hw = &igb->hw;
  78         u64 val;
  79         u32 lo, hi;
  80 
  81         lo = rd32(E1000_SYSTIML);
  82         hi = rd32(E1000_SYSTIMH);
  83 
  84         val = ((u64) hi) << 32;
  85         val |= lo;
  86 
  87         return val;
  88 }
  89 
  90 /* SYSTIM read access for the 82580 */
  91 static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
  92 {
  93         struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
  94         struct e1000_hw *hw = &igb->hw;
  95         u32 lo, hi;
  96         u64 val;
  97 
  98         /* The timestamp latches on lowest register read. For the 82580
  99          * the lowest register is SYSTIMR instead of SYSTIML.  However we only
 100          * need to provide nanosecond resolution, so we just ignore it.
 101          */
 102         rd32(E1000_SYSTIMR);
 103         lo = rd32(E1000_SYSTIML);
 104         hi = rd32(E1000_SYSTIMH);
 105 
 106         val = ((u64) hi) << 32;
 107         val |= lo;
 108 
 109         return val;
 110 }
 111 
 112 /* SYSTIM read access for I210/I211 */
 113 static void igb_ptp_read_i210(struct igb_adapter *adapter,
 114                               struct timespec64 *ts)
 115 {
 116         struct e1000_hw *hw = &adapter->hw;
 117         u32 sec, nsec;
 118 
 119         /* The timestamp latches on lowest register read. For I210/I211, the
 120          * lowest register is SYSTIMR. Since we only need to provide nanosecond
 121          * resolution, we can ignore it.
 122          */
 123         rd32(E1000_SYSTIMR);
 124         nsec = rd32(E1000_SYSTIML);
 125         sec = rd32(E1000_SYSTIMH);
 126 
 127         ts->tv_sec = sec;
 128         ts->tv_nsec = nsec;
 129 }
 130 
 131 static void igb_ptp_write_i210(struct igb_adapter *adapter,
 132                                const struct timespec64 *ts)
 133 {
 134         struct e1000_hw *hw = &adapter->hw;
 135 
 136         /* Writing the SYSTIMR register is not necessary as it only provides
 137          * sub-nanosecond resolution.
 138          */
 139         wr32(E1000_SYSTIML, ts->tv_nsec);
 140         wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
 141 }
 142 
 143 /**
 144  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
 145  * @adapter: board private structure
 146  * @hwtstamps: timestamp structure to update
 147  * @systim: unsigned 64bit system time value.
 148  *
 149  * We need to convert the system time value stored in the RX/TXSTMP registers
 150  * into a hwtstamp which can be used by the upper level timestamping functions.
 151  *
 152  * The 'tmreg_lock' spinlock is used to protect the consistency of the
 153  * system time value. This is needed because reading the 64 bit time
 154  * value involves reading two (or three) 32 bit registers. The first
 155  * read latches the value. Ditto for writing.
 156  *
 157  * In addition, here have extended the system time with an overflow
 158  * counter in software.
 159  **/
 160 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
 161                                        struct skb_shared_hwtstamps *hwtstamps,
 162                                        u64 systim)
 163 {
 164         unsigned long flags;
 165         u64 ns;
 166 
 167         switch (adapter->hw.mac.type) {
 168         case e1000_82576:
 169         case e1000_82580:
 170         case e1000_i354:
 171         case e1000_i350:
 172                 spin_lock_irqsave(&adapter->tmreg_lock, flags);
 173 
 174                 ns = timecounter_cyc2time(&adapter->tc, systim);
 175 
 176                 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 177 
 178                 memset(hwtstamps, 0, sizeof(*hwtstamps));
 179                 hwtstamps->hwtstamp = ns_to_ktime(ns);
 180                 break;
 181         case e1000_i210:
 182         case e1000_i211:
 183                 memset(hwtstamps, 0, sizeof(*hwtstamps));
 184                 /* Upper 32 bits contain s, lower 32 bits contain ns. */
 185                 hwtstamps->hwtstamp = ktime_set(systim >> 32,
 186                                                 systim & 0xFFFFFFFF);
 187                 break;
 188         default:
 189                 break;
 190         }
 191 }
 192 
 193 /* PTP clock operations */
 194 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
 195 {
 196         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 197                                                ptp_caps);
 198         struct e1000_hw *hw = &igb->hw;
 199         int neg_adj = 0;
 200         u64 rate;
 201         u32 incvalue;
 202 
 203         if (ppb < 0) {
 204                 neg_adj = 1;
 205                 ppb = -ppb;
 206         }
 207         rate = ppb;
 208         rate <<= 14;
 209         rate = div_u64(rate, 1953125);
 210 
 211         incvalue = 16 << IGB_82576_TSYNC_SHIFT;
 212 
 213         if (neg_adj)
 214                 incvalue -= rate;
 215         else
 216                 incvalue += rate;
 217 
 218         wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
 219 
 220         return 0;
 221 }
 222 
 223 static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
 224 {
 225         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 226                                                ptp_caps);
 227         struct e1000_hw *hw = &igb->hw;
 228         int neg_adj = 0;
 229         u64 rate;
 230         u32 inca;
 231 
 232         if (scaled_ppm < 0) {
 233                 neg_adj = 1;
 234                 scaled_ppm = -scaled_ppm;
 235         }
 236         rate = scaled_ppm;
 237         rate <<= 13;
 238         rate = div_u64(rate, 15625);
 239 
 240         inca = rate & INCVALUE_MASK;
 241         if (neg_adj)
 242                 inca |= ISGN;
 243 
 244         wr32(E1000_TIMINCA, inca);
 245 
 246         return 0;
 247 }
 248 
 249 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
 250 {
 251         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 252                                                ptp_caps);
 253         unsigned long flags;
 254 
 255         spin_lock_irqsave(&igb->tmreg_lock, flags);
 256         timecounter_adjtime(&igb->tc, delta);
 257         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 258 
 259         return 0;
 260 }
 261 
 262 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
 263 {
 264         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 265                                                ptp_caps);
 266         unsigned long flags;
 267         struct timespec64 now, then = ns_to_timespec64(delta);
 268 
 269         spin_lock_irqsave(&igb->tmreg_lock, flags);
 270 
 271         igb_ptp_read_i210(igb, &now);
 272         now = timespec64_add(now, then);
 273         igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
 274 
 275         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 276 
 277         return 0;
 278 }
 279 
 280 static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp,
 281                                   struct timespec64 *ts,
 282                                   struct ptp_system_timestamp *sts)
 283 {
 284         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 285                                                ptp_caps);
 286         struct e1000_hw *hw = &igb->hw;
 287         unsigned long flags;
 288         u32 lo, hi;
 289         u64 ns;
 290 
 291         spin_lock_irqsave(&igb->tmreg_lock, flags);
 292 
 293         ptp_read_system_prets(sts);
 294         lo = rd32(E1000_SYSTIML);
 295         ptp_read_system_postts(sts);
 296         hi = rd32(E1000_SYSTIMH);
 297 
 298         ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
 299 
 300         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 301 
 302         *ts = ns_to_timespec64(ns);
 303 
 304         return 0;
 305 }
 306 
 307 static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp,
 308                                   struct timespec64 *ts,
 309                                   struct ptp_system_timestamp *sts)
 310 {
 311         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 312                                                ptp_caps);
 313         struct e1000_hw *hw = &igb->hw;
 314         unsigned long flags;
 315         u32 lo, hi;
 316         u64 ns;
 317 
 318         spin_lock_irqsave(&igb->tmreg_lock, flags);
 319 
 320         ptp_read_system_prets(sts);
 321         rd32(E1000_SYSTIMR);
 322         ptp_read_system_postts(sts);
 323         lo = rd32(E1000_SYSTIML);
 324         hi = rd32(E1000_SYSTIMH);
 325 
 326         ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
 327 
 328         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 329 
 330         *ts = ns_to_timespec64(ns);
 331 
 332         return 0;
 333 }
 334 
 335 static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp,
 336                                  struct timespec64 *ts,
 337                                  struct ptp_system_timestamp *sts)
 338 {
 339         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 340                                                ptp_caps);
 341         struct e1000_hw *hw = &igb->hw;
 342         unsigned long flags;
 343 
 344         spin_lock_irqsave(&igb->tmreg_lock, flags);
 345 
 346         ptp_read_system_prets(sts);
 347         rd32(E1000_SYSTIMR);
 348         ptp_read_system_postts(sts);
 349         ts->tv_nsec = rd32(E1000_SYSTIML);
 350         ts->tv_sec = rd32(E1000_SYSTIMH);
 351 
 352         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 353 
 354         return 0;
 355 }
 356 
 357 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
 358                                  const struct timespec64 *ts)
 359 {
 360         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 361                                                ptp_caps);
 362         unsigned long flags;
 363         u64 ns;
 364 
 365         ns = timespec64_to_ns(ts);
 366 
 367         spin_lock_irqsave(&igb->tmreg_lock, flags);
 368 
 369         timecounter_init(&igb->tc, &igb->cc, ns);
 370 
 371         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 372 
 373         return 0;
 374 }
 375 
 376 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
 377                                 const struct timespec64 *ts)
 378 {
 379         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 380                                                ptp_caps);
 381         unsigned long flags;
 382 
 383         spin_lock_irqsave(&igb->tmreg_lock, flags);
 384 
 385         igb_ptp_write_i210(igb, ts);
 386 
 387         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 388 
 389         return 0;
 390 }
 391 
 392 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
 393 {
 394         u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
 395         static const u32 mask[IGB_N_SDP] = {
 396                 E1000_CTRL_SDP0_DIR,
 397                 E1000_CTRL_SDP1_DIR,
 398                 E1000_CTRL_EXT_SDP2_DIR,
 399                 E1000_CTRL_EXT_SDP3_DIR,
 400         };
 401 
 402         if (input)
 403                 *ptr &= ~mask[pin];
 404         else
 405                 *ptr |= mask[pin];
 406 }
 407 
 408 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
 409 {
 410         static const u32 aux0_sel_sdp[IGB_N_SDP] = {
 411                 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
 412         };
 413         static const u32 aux1_sel_sdp[IGB_N_SDP] = {
 414                 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
 415         };
 416         static const u32 ts_sdp_en[IGB_N_SDP] = {
 417                 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
 418         };
 419         struct e1000_hw *hw = &igb->hw;
 420         u32 ctrl, ctrl_ext, tssdp = 0;
 421 
 422         ctrl = rd32(E1000_CTRL);
 423         ctrl_ext = rd32(E1000_CTRL_EXT);
 424         tssdp = rd32(E1000_TSSDP);
 425 
 426         igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
 427 
 428         /* Make sure this pin is not enabled as an output. */
 429         tssdp &= ~ts_sdp_en[pin];
 430 
 431         if (chan == 1) {
 432                 tssdp &= ~AUX1_SEL_SDP3;
 433                 tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
 434         } else {
 435                 tssdp &= ~AUX0_SEL_SDP3;
 436                 tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
 437         }
 438 
 439         wr32(E1000_TSSDP, tssdp);
 440         wr32(E1000_CTRL, ctrl);
 441         wr32(E1000_CTRL_EXT, ctrl_ext);
 442 }
 443 
 444 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
 445 {
 446         static const u32 aux0_sel_sdp[IGB_N_SDP] = {
 447                 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
 448         };
 449         static const u32 aux1_sel_sdp[IGB_N_SDP] = {
 450                 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
 451         };
 452         static const u32 ts_sdp_en[IGB_N_SDP] = {
 453                 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
 454         };
 455         static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
 456                 TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
 457                 TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
 458         };
 459         static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
 460                 TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
 461                 TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
 462         };
 463         static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
 464                 TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
 465                 TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
 466         };
 467         static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
 468                 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
 469                 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
 470         };
 471         static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
 472                 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
 473                 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
 474         };
 475         struct e1000_hw *hw = &igb->hw;
 476         u32 ctrl, ctrl_ext, tssdp = 0;
 477 
 478         ctrl = rd32(E1000_CTRL);
 479         ctrl_ext = rd32(E1000_CTRL_EXT);
 480         tssdp = rd32(E1000_TSSDP);
 481 
 482         igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
 483 
 484         /* Make sure this pin is not enabled as an input. */
 485         if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
 486                 tssdp &= ~AUX0_TS_SDP_EN;
 487 
 488         if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
 489                 tssdp &= ~AUX1_TS_SDP_EN;
 490 
 491         tssdp &= ~ts_sdp_sel_clr[pin];
 492         if (freq) {
 493                 if (chan == 1)
 494                         tssdp |= ts_sdp_sel_fc1[pin];
 495                 else
 496                         tssdp |= ts_sdp_sel_fc0[pin];
 497         } else {
 498                 if (chan == 1)
 499                         tssdp |= ts_sdp_sel_tt1[pin];
 500                 else
 501                         tssdp |= ts_sdp_sel_tt0[pin];
 502         }
 503         tssdp |= ts_sdp_en[pin];
 504 
 505         wr32(E1000_TSSDP, tssdp);
 506         wr32(E1000_CTRL, ctrl);
 507         wr32(E1000_CTRL_EXT, ctrl_ext);
 508 }
 509 
 510 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
 511                                        struct ptp_clock_request *rq, int on)
 512 {
 513         struct igb_adapter *igb =
 514                 container_of(ptp, struct igb_adapter, ptp_caps);
 515         struct e1000_hw *hw = &igb->hw;
 516         u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
 517         unsigned long flags;
 518         struct timespec64 ts;
 519         int use_freq = 0, pin = -1;
 520         s64 ns;
 521 
 522         switch (rq->type) {
 523         case PTP_CLK_REQ_EXTTS:
 524                 /* Reject requests with unsupported flags */
 525                 if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
 526                                         PTP_RISING_EDGE |
 527                                         PTP_FALLING_EDGE |
 528                                         PTP_STRICT_FLAGS))
 529                         return -EOPNOTSUPP;
 530 
 531                 /* Reject requests failing to enable both edges. */
 532                 if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
 533                     (rq->extts.flags & PTP_ENABLE_FEATURE) &&
 534                     (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
 535                         return -EOPNOTSUPP;
 536 
 537                 if (on) {
 538                         pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
 539                                            rq->extts.index);
 540                         if (pin < 0)
 541                                 return -EBUSY;
 542                 }
 543                 if (rq->extts.index == 1) {
 544                         tsauxc_mask = TSAUXC_EN_TS1;
 545                         tsim_mask = TSINTR_AUTT1;
 546                 } else {
 547                         tsauxc_mask = TSAUXC_EN_TS0;
 548                         tsim_mask = TSINTR_AUTT0;
 549                 }
 550                 spin_lock_irqsave(&igb->tmreg_lock, flags);
 551                 tsauxc = rd32(E1000_TSAUXC);
 552                 tsim = rd32(E1000_TSIM);
 553                 if (on) {
 554                         igb_pin_extts(igb, rq->extts.index, pin);
 555                         tsauxc |= tsauxc_mask;
 556                         tsim |= tsim_mask;
 557                 } else {
 558                         tsauxc &= ~tsauxc_mask;
 559                         tsim &= ~tsim_mask;
 560                 }
 561                 wr32(E1000_TSAUXC, tsauxc);
 562                 wr32(E1000_TSIM, tsim);
 563                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 564                 return 0;
 565 
 566         case PTP_CLK_REQ_PEROUT:
 567                 /* Reject requests with unsupported flags */
 568                 if (rq->perout.flags)
 569                         return -EOPNOTSUPP;
 570 
 571                 if (on) {
 572                         pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
 573                                            rq->perout.index);
 574                         if (pin < 0)
 575                                 return -EBUSY;
 576                 }
 577                 ts.tv_sec = rq->perout.period.sec;
 578                 ts.tv_nsec = rq->perout.period.nsec;
 579                 ns = timespec64_to_ns(&ts);
 580                 ns = ns >> 1;
 581                 if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
 582                            (ns == 250000000LL) || (ns == 500000000LL))) {
 583                         if (ns < 8LL)
 584                                 return -EINVAL;
 585                         use_freq = 1;
 586                 }
 587                 ts = ns_to_timespec64(ns);
 588                 if (rq->perout.index == 1) {
 589                         if (use_freq) {
 590                                 tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
 591                                 tsim_mask = 0;
 592                         } else {
 593                                 tsauxc_mask = TSAUXC_EN_TT1;
 594                                 tsim_mask = TSINTR_TT1;
 595                         }
 596                         trgttiml = E1000_TRGTTIML1;
 597                         trgttimh = E1000_TRGTTIMH1;
 598                         freqout = E1000_FREQOUT1;
 599                 } else {
 600                         if (use_freq) {
 601                                 tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
 602                                 tsim_mask = 0;
 603                         } else {
 604                                 tsauxc_mask = TSAUXC_EN_TT0;
 605                                 tsim_mask = TSINTR_TT0;
 606                         }
 607                         trgttiml = E1000_TRGTTIML0;
 608                         trgttimh = E1000_TRGTTIMH0;
 609                         freqout = E1000_FREQOUT0;
 610                 }
 611                 spin_lock_irqsave(&igb->tmreg_lock, flags);
 612                 tsauxc = rd32(E1000_TSAUXC);
 613                 tsim = rd32(E1000_TSIM);
 614                 if (rq->perout.index == 1) {
 615                         tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
 616                         tsim &= ~TSINTR_TT1;
 617                 } else {
 618                         tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
 619                         tsim &= ~TSINTR_TT0;
 620                 }
 621                 if (on) {
 622                         int i = rq->perout.index;
 623                         igb_pin_perout(igb, i, pin, use_freq);
 624                         igb->perout[i].start.tv_sec = rq->perout.start.sec;
 625                         igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
 626                         igb->perout[i].period.tv_sec = ts.tv_sec;
 627                         igb->perout[i].period.tv_nsec = ts.tv_nsec;
 628                         wr32(trgttimh, rq->perout.start.sec);
 629                         wr32(trgttiml, rq->perout.start.nsec);
 630                         if (use_freq)
 631                                 wr32(freqout, ns);
 632                         tsauxc |= tsauxc_mask;
 633                         tsim |= tsim_mask;
 634                 }
 635                 wr32(E1000_TSAUXC, tsauxc);
 636                 wr32(E1000_TSIM, tsim);
 637                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 638                 return 0;
 639 
 640         case PTP_CLK_REQ_PPS:
 641                 spin_lock_irqsave(&igb->tmreg_lock, flags);
 642                 tsim = rd32(E1000_TSIM);
 643                 if (on)
 644                         tsim |= TSINTR_SYS_WRAP;
 645                 else
 646                         tsim &= ~TSINTR_SYS_WRAP;
 647                 igb->pps_sys_wrap_on = !!on;
 648                 wr32(E1000_TSIM, tsim);
 649                 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 650                 return 0;
 651         }
 652 
 653         return -EOPNOTSUPP;
 654 }
 655 
 656 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
 657                                   struct ptp_clock_request *rq, int on)
 658 {
 659         return -EOPNOTSUPP;
 660 }
 661 
 662 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
 663                               enum ptp_pin_function func, unsigned int chan)
 664 {
 665         switch (func) {
 666         case PTP_PF_NONE:
 667         case PTP_PF_EXTTS:
 668         case PTP_PF_PEROUT:
 669                 break;
 670         case PTP_PF_PHYSYNC:
 671                 return -1;
 672         }
 673         return 0;
 674 }
 675 
 676 /**
 677  * igb_ptp_tx_work
 678  * @work: pointer to work struct
 679  *
 680  * This work function polls the TSYNCTXCTL valid bit to determine when a
 681  * timestamp has been taken for the current stored skb.
 682  **/
 683 static void igb_ptp_tx_work(struct work_struct *work)
 684 {
 685         struct igb_adapter *adapter = container_of(work, struct igb_adapter,
 686                                                    ptp_tx_work);
 687         struct e1000_hw *hw = &adapter->hw;
 688         u32 tsynctxctl;
 689 
 690         if (!adapter->ptp_tx_skb)
 691                 return;
 692 
 693         if (time_is_before_jiffies(adapter->ptp_tx_start +
 694                                    IGB_PTP_TX_TIMEOUT)) {
 695                 dev_kfree_skb_any(adapter->ptp_tx_skb);
 696                 adapter->ptp_tx_skb = NULL;
 697                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 698                 adapter->tx_hwtstamp_timeouts++;
 699                 /* Clear the tx valid bit in TSYNCTXCTL register to enable
 700                  * interrupt
 701                  */
 702                 rd32(E1000_TXSTMPH);
 703                 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
 704                 return;
 705         }
 706 
 707         tsynctxctl = rd32(E1000_TSYNCTXCTL);
 708         if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
 709                 igb_ptp_tx_hwtstamp(adapter);
 710         else
 711                 /* reschedule to check later */
 712                 schedule_work(&adapter->ptp_tx_work);
 713 }
 714 
 715 static void igb_ptp_overflow_check(struct work_struct *work)
 716 {
 717         struct igb_adapter *igb =
 718                 container_of(work, struct igb_adapter, ptp_overflow_work.work);
 719         struct timespec64 ts;
 720         u64 ns;
 721 
 722         /* Update the timecounter */
 723         ns = timecounter_read(&igb->tc);
 724 
 725         ts = ns_to_timespec64(ns);
 726         pr_debug("igb overflow check at %lld.%09lu\n",
 727                  (long long) ts.tv_sec, ts.tv_nsec);
 728 
 729         schedule_delayed_work(&igb->ptp_overflow_work,
 730                               IGB_SYSTIM_OVERFLOW_PERIOD);
 731 }
 732 
 733 /**
 734  * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
 735  * @adapter: private network adapter structure
 736  *
 737  * This watchdog task is scheduled to detect error case where hardware has
 738  * dropped an Rx packet that was timestamped when the ring is full. The
 739  * particular error is rare but leaves the device in a state unable to timestamp
 740  * any future packets.
 741  **/
 742 void igb_ptp_rx_hang(struct igb_adapter *adapter)
 743 {
 744         struct e1000_hw *hw = &adapter->hw;
 745         u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
 746         unsigned long rx_event;
 747 
 748         /* Other hardware uses per-packet timestamps */
 749         if (hw->mac.type != e1000_82576)
 750                 return;
 751 
 752         /* If we don't have a valid timestamp in the registers, just update the
 753          * timeout counter and exit
 754          */
 755         if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
 756                 adapter->last_rx_ptp_check = jiffies;
 757                 return;
 758         }
 759 
 760         /* Determine the most recent watchdog or rx_timestamp event */
 761         rx_event = adapter->last_rx_ptp_check;
 762         if (time_after(adapter->last_rx_timestamp, rx_event))
 763                 rx_event = adapter->last_rx_timestamp;
 764 
 765         /* Only need to read the high RXSTMP register to clear the lock */
 766         if (time_is_before_jiffies(rx_event + 5 * HZ)) {
 767                 rd32(E1000_RXSTMPH);
 768                 adapter->last_rx_ptp_check = jiffies;
 769                 adapter->rx_hwtstamp_cleared++;
 770                 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
 771         }
 772 }
 773 
 774 /**
 775  * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
 776  * @adapter: private network adapter structure
 777  */
 778 void igb_ptp_tx_hang(struct igb_adapter *adapter)
 779 {
 780         struct e1000_hw *hw = &adapter->hw;
 781         bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
 782                                               IGB_PTP_TX_TIMEOUT);
 783 
 784         if (!adapter->ptp_tx_skb)
 785                 return;
 786 
 787         if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
 788                 return;
 789 
 790         /* If we haven't received a timestamp within the timeout, it is
 791          * reasonable to assume that it will never occur, so we can unlock the
 792          * timestamp bit when this occurs.
 793          */
 794         if (timeout) {
 795                 cancel_work_sync(&adapter->ptp_tx_work);
 796                 dev_kfree_skb_any(adapter->ptp_tx_skb);
 797                 adapter->ptp_tx_skb = NULL;
 798                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 799                 adapter->tx_hwtstamp_timeouts++;
 800                 /* Clear the tx valid bit in TSYNCTXCTL register to enable
 801                  * interrupt
 802                  */
 803                 rd32(E1000_TXSTMPH);
 804                 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
 805         }
 806 }
 807 
 808 /**
 809  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
 810  * @adapter: Board private structure.
 811  *
 812  * If we were asked to do hardware stamping and such a time stamp is
 813  * available, then it must have been for this skb here because we only
 814  * allow only one such packet into the queue.
 815  **/
 816 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
 817 {
 818         struct sk_buff *skb = adapter->ptp_tx_skb;
 819         struct e1000_hw *hw = &adapter->hw;
 820         struct skb_shared_hwtstamps shhwtstamps;
 821         u64 regval;
 822         int adjust = 0;
 823 
 824         regval = rd32(E1000_TXSTMPL);
 825         regval |= (u64)rd32(E1000_TXSTMPH) << 32;
 826 
 827         igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
 828         /* adjust timestamp for the TX latency based on link speed */
 829         if (adapter->hw.mac.type == e1000_i210) {
 830                 switch (adapter->link_speed) {
 831                 case SPEED_10:
 832                         adjust = IGB_I210_TX_LATENCY_10;
 833                         break;
 834                 case SPEED_100:
 835                         adjust = IGB_I210_TX_LATENCY_100;
 836                         break;
 837                 case SPEED_1000:
 838                         adjust = IGB_I210_TX_LATENCY_1000;
 839                         break;
 840                 }
 841         }
 842 
 843         shhwtstamps.hwtstamp =
 844                 ktime_add_ns(shhwtstamps.hwtstamp, adjust);
 845 
 846         /* Clear the lock early before calling skb_tstamp_tx so that
 847          * applications are not woken up before the lock bit is clear. We use
 848          * a copy of the skb pointer to ensure other threads can't change it
 849          * while we're notifying the stack.
 850          */
 851         adapter->ptp_tx_skb = NULL;
 852         clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 853 
 854         /* Notify the stack and free the skb after we've unlocked */
 855         skb_tstamp_tx(skb, &shhwtstamps);
 856         dev_kfree_skb_any(skb);
 857 }
 858 
 859 /**
 860  * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
 861  * @q_vector: Pointer to interrupt specific structure
 862  * @va: Pointer to address containing Rx buffer
 863  * @skb: Buffer containing timestamp and packet
 864  *
 865  * This function is meant to retrieve a timestamp from the first buffer of an
 866  * incoming frame.  The value is stored in little endian format starting on
 867  * byte 8.
 868  **/
 869 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
 870                          struct sk_buff *skb)
 871 {
 872         __le64 *regval = (__le64 *)va;
 873         struct igb_adapter *adapter = q_vector->adapter;
 874         int adjust = 0;
 875 
 876         /* The timestamp is recorded in little endian format.
 877          * DWORD: 0        1        2        3
 878          * Field: Reserved Reserved SYSTIML  SYSTIMH
 879          */
 880         igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb),
 881                                    le64_to_cpu(regval[1]));
 882 
 883         /* adjust timestamp for the RX latency based on link speed */
 884         if (adapter->hw.mac.type == e1000_i210) {
 885                 switch (adapter->link_speed) {
 886                 case SPEED_10:
 887                         adjust = IGB_I210_RX_LATENCY_10;
 888                         break;
 889                 case SPEED_100:
 890                         adjust = IGB_I210_RX_LATENCY_100;
 891                         break;
 892                 case SPEED_1000:
 893                         adjust = IGB_I210_RX_LATENCY_1000;
 894                         break;
 895                 }
 896         }
 897         skb_hwtstamps(skb)->hwtstamp =
 898                 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
 899 }
 900 
 901 /**
 902  * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
 903  * @q_vector: Pointer to interrupt specific structure
 904  * @skb: Buffer containing timestamp and packet
 905  *
 906  * This function is meant to retrieve a timestamp from the internal registers
 907  * of the adapter and store it in the skb.
 908  **/
 909 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
 910                          struct sk_buff *skb)
 911 {
 912         struct igb_adapter *adapter = q_vector->adapter;
 913         struct e1000_hw *hw = &adapter->hw;
 914         u64 regval;
 915         int adjust = 0;
 916 
 917         /* If this bit is set, then the RX registers contain the time stamp. No
 918          * other packet will be time stamped until we read these registers, so
 919          * read the registers to make them available again. Because only one
 920          * packet can be time stamped at a time, we know that the register
 921          * values must belong to this one here and therefore we don't need to
 922          * compare any of the additional attributes stored for it.
 923          *
 924          * If nothing went wrong, then it should have a shared tx_flags that we
 925          * can turn into a skb_shared_hwtstamps.
 926          */
 927         if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
 928                 return;
 929 
 930         regval = rd32(E1000_RXSTMPL);
 931         regval |= (u64)rd32(E1000_RXSTMPH) << 32;
 932 
 933         igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
 934 
 935         /* adjust timestamp for the RX latency based on link speed */
 936         if (adapter->hw.mac.type == e1000_i210) {
 937                 switch (adapter->link_speed) {
 938                 case SPEED_10:
 939                         adjust = IGB_I210_RX_LATENCY_10;
 940                         break;
 941                 case SPEED_100:
 942                         adjust = IGB_I210_RX_LATENCY_100;
 943                         break;
 944                 case SPEED_1000:
 945                         adjust = IGB_I210_RX_LATENCY_1000;
 946                         break;
 947                 }
 948         }
 949         skb_hwtstamps(skb)->hwtstamp =
 950                 ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
 951 
 952         /* Update the last_rx_timestamp timer in order to enable watchdog check
 953          * for error case of latched timestamp on a dropped packet.
 954          */
 955         adapter->last_rx_timestamp = jiffies;
 956 }
 957 
 958 /**
 959  * igb_ptp_get_ts_config - get hardware time stamping config
 960  * @netdev:
 961  * @ifreq:
 962  *
 963  * Get the hwtstamp_config settings to return to the user. Rather than attempt
 964  * to deconstruct the settings from the registers, just return a shadow copy
 965  * of the last known settings.
 966  **/
 967 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
 968 {
 969         struct igb_adapter *adapter = netdev_priv(netdev);
 970         struct hwtstamp_config *config = &adapter->tstamp_config;
 971 
 972         return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
 973                 -EFAULT : 0;
 974 }
 975 
 976 /**
 977  * igb_ptp_set_timestamp_mode - setup hardware for timestamping
 978  * @adapter: networking device structure
 979  * @config: hwtstamp configuration
 980  *
 981  * Outgoing time stamping can be enabled and disabled. Play nice and
 982  * disable it when requested, although it shouldn't case any overhead
 983  * when no packet needs it. At most one packet in the queue may be
 984  * marked for time stamping, otherwise it would be impossible to tell
 985  * for sure to which packet the hardware time stamp belongs.
 986  *
 987  * Incoming time stamping has to be configured via the hardware
 988  * filters. Not all combinations are supported, in particular event
 989  * type has to be specified. Matching the kind of event packet is
 990  * not supported, with the exception of "all V2 events regardless of
 991  * level 2 or 4".
 992  */
 993 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
 994                                       struct hwtstamp_config *config)
 995 {
 996         struct e1000_hw *hw = &adapter->hw;
 997         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
 998         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
 999         u32 tsync_rx_cfg = 0;
1000         bool is_l4 = false;
1001         bool is_l2 = false;
1002         u32 regval;
1003 
1004         /* reserved for future extensions */
1005         if (config->flags)
1006                 return -EINVAL;
1007 
1008         switch (config->tx_type) {
1009         case HWTSTAMP_TX_OFF:
1010                 tsync_tx_ctl = 0;
1011         case HWTSTAMP_TX_ON:
1012                 break;
1013         default:
1014                 return -ERANGE;
1015         }
1016 
1017         switch (config->rx_filter) {
1018         case HWTSTAMP_FILTER_NONE:
1019                 tsync_rx_ctl = 0;
1020                 break;
1021         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1022                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1023                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
1024                 is_l4 = true;
1025                 break;
1026         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1027                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1028                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
1029                 is_l4 = true;
1030                 break;
1031         case HWTSTAMP_FILTER_PTP_V2_EVENT:
1032         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1033         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1034         case HWTSTAMP_FILTER_PTP_V2_SYNC:
1035         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1036         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1037         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1038         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1039         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1040                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
1041                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1042                 is_l2 = true;
1043                 is_l4 = true;
1044                 break;
1045         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1046         case HWTSTAMP_FILTER_NTP_ALL:
1047         case HWTSTAMP_FILTER_ALL:
1048                 /* 82576 cannot timestamp all packets, which it needs to do to
1049                  * support both V1 Sync and Delay_Req messages
1050                  */
1051                 if (hw->mac.type != e1000_82576) {
1052                         tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1053                         config->rx_filter = HWTSTAMP_FILTER_ALL;
1054                         break;
1055                 }
1056                 /* fall through */
1057         default:
1058                 config->rx_filter = HWTSTAMP_FILTER_NONE;
1059                 return -ERANGE;
1060         }
1061 
1062         if (hw->mac.type == e1000_82575) {
1063                 if (tsync_rx_ctl | tsync_tx_ctl)
1064                         return -EINVAL;
1065                 return 0;
1066         }
1067 
1068         /* Per-packet timestamping only works if all packets are
1069          * timestamped, so enable timestamping in all packets as
1070          * long as one Rx filter was configured.
1071          */
1072         if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1073                 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1074                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1075                 config->rx_filter = HWTSTAMP_FILTER_ALL;
1076                 is_l2 = true;
1077                 is_l4 = true;
1078 
1079                 if ((hw->mac.type == e1000_i210) ||
1080                     (hw->mac.type == e1000_i211)) {
1081                         regval = rd32(E1000_RXPBS);
1082                         regval |= E1000_RXPBS_CFG_TS_EN;
1083                         wr32(E1000_RXPBS, regval);
1084                 }
1085         }
1086 
1087         /* enable/disable TX */
1088         regval = rd32(E1000_TSYNCTXCTL);
1089         regval &= ~E1000_TSYNCTXCTL_ENABLED;
1090         regval |= tsync_tx_ctl;
1091         wr32(E1000_TSYNCTXCTL, regval);
1092 
1093         /* enable/disable RX */
1094         regval = rd32(E1000_TSYNCRXCTL);
1095         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1096         regval |= tsync_rx_ctl;
1097         wr32(E1000_TSYNCRXCTL, regval);
1098 
1099         /* define which PTP packets are time stamped */
1100         wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1101 
1102         /* define ethertype filter for timestamped packets */
1103         if (is_l2)
1104                 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1105                      (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1106                       E1000_ETQF_1588 | /* enable timestamping */
1107                       ETH_P_1588));     /* 1588 eth protocol type */
1108         else
1109                 wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1110 
1111         /* L4 Queue Filter[3]: filter by destination port and protocol */
1112         if (is_l4) {
1113                 u32 ftqf = (IPPROTO_UDP /* UDP */
1114                         | E1000_FTQF_VF_BP /* VF not compared */
1115                         | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1116                         | E1000_FTQF_MASK); /* mask all inputs */
1117                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1118 
1119                 wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
1120                 wr32(E1000_IMIREXT(3),
1121                      (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1122                 if (hw->mac.type == e1000_82576) {
1123                         /* enable source port check */
1124                         wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
1125                         ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1126                 }
1127                 wr32(E1000_FTQF(3), ftqf);
1128         } else {
1129                 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1130         }
1131         wrfl();
1132 
1133         /* clear TX/RX time stamp registers, just to be sure */
1134         regval = rd32(E1000_TXSTMPL);
1135         regval = rd32(E1000_TXSTMPH);
1136         regval = rd32(E1000_RXSTMPL);
1137         regval = rd32(E1000_RXSTMPH);
1138 
1139         return 0;
1140 }
1141 
1142 /**
1143  * igb_ptp_set_ts_config - set hardware time stamping config
1144  * @netdev:
1145  * @ifreq:
1146  *
1147  **/
1148 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1149 {
1150         struct igb_adapter *adapter = netdev_priv(netdev);
1151         struct hwtstamp_config config;
1152         int err;
1153 
1154         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1155                 return -EFAULT;
1156 
1157         err = igb_ptp_set_timestamp_mode(adapter, &config);
1158         if (err)
1159                 return err;
1160 
1161         /* save these settings for future reference */
1162         memcpy(&adapter->tstamp_config, &config,
1163                sizeof(adapter->tstamp_config));
1164 
1165         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1166                 -EFAULT : 0;
1167 }
1168 
1169 /**
1170  * igb_ptp_init - Initialize PTP functionality
1171  * @adapter: Board private structure
1172  *
1173  * This function is called at device probe to initialize the PTP
1174  * functionality.
1175  */
1176 void igb_ptp_init(struct igb_adapter *adapter)
1177 {
1178         struct e1000_hw *hw = &adapter->hw;
1179         struct net_device *netdev = adapter->netdev;
1180         int i;
1181 
1182         switch (hw->mac.type) {
1183         case e1000_82576:
1184                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1185                 adapter->ptp_caps.owner = THIS_MODULE;
1186                 adapter->ptp_caps.max_adj = 999999881;
1187                 adapter->ptp_caps.n_ext_ts = 0;
1188                 adapter->ptp_caps.pps = 0;
1189                 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1190                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1191                 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576;
1192                 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1193                 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1194                 adapter->cc.read = igb_ptp_read_82576;
1195                 adapter->cc.mask = CYCLECOUNTER_MASK(64);
1196                 adapter->cc.mult = 1;
1197                 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1198                 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1199                 break;
1200         case e1000_82580:
1201         case e1000_i354:
1202         case e1000_i350:
1203                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1204                 adapter->ptp_caps.owner = THIS_MODULE;
1205                 adapter->ptp_caps.max_adj = 62499999;
1206                 adapter->ptp_caps.n_ext_ts = 0;
1207                 adapter->ptp_caps.pps = 0;
1208                 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1209                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1210                 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580;
1211                 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1212                 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1213                 adapter->cc.read = igb_ptp_read_82580;
1214                 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1215                 adapter->cc.mult = 1;
1216                 adapter->cc.shift = 0;
1217                 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1218                 break;
1219         case e1000_i210:
1220         case e1000_i211:
1221                 for (i = 0; i < IGB_N_SDP; i++) {
1222                         struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1223 
1224                         snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1225                         ppd->index = i;
1226                         ppd->func = PTP_PF_NONE;
1227                 }
1228                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1229                 adapter->ptp_caps.owner = THIS_MODULE;
1230                 adapter->ptp_caps.max_adj = 62499999;
1231                 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1232                 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1233                 adapter->ptp_caps.n_pins = IGB_N_SDP;
1234                 adapter->ptp_caps.pps = 1;
1235                 adapter->ptp_caps.pin_config = adapter->sdp_config;
1236                 adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1237                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1238                 adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210;
1239                 adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1240                 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1241                 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1242                 break;
1243         default:
1244                 adapter->ptp_clock = NULL;
1245                 return;
1246         }
1247 
1248         spin_lock_init(&adapter->tmreg_lock);
1249         INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1250 
1251         if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1252                 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1253                                   igb_ptp_overflow_check);
1254 
1255         adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1256         adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1257 
1258         igb_ptp_reset(adapter);
1259 
1260         adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1261                                                 &adapter->pdev->dev);
1262         if (IS_ERR(adapter->ptp_clock)) {
1263                 adapter->ptp_clock = NULL;
1264                 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1265         } else if (adapter->ptp_clock) {
1266                 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1267                          adapter->netdev->name);
1268                 adapter->ptp_flags |= IGB_PTP_ENABLED;
1269         }
1270 }
1271 
1272 /**
1273  * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1274  * @adapter: Board private structure
1275  *
1276  * This function stops the overflow check work and PTP Tx timestamp work, and
1277  * will prepare the device for OS suspend.
1278  */
1279 void igb_ptp_suspend(struct igb_adapter *adapter)
1280 {
1281         if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1282                 return;
1283 
1284         if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1285                 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1286 
1287         cancel_work_sync(&adapter->ptp_tx_work);
1288         if (adapter->ptp_tx_skb) {
1289                 dev_kfree_skb_any(adapter->ptp_tx_skb);
1290                 adapter->ptp_tx_skb = NULL;
1291                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1292         }
1293 }
1294 
1295 /**
1296  * igb_ptp_stop - Disable PTP device and stop the overflow check.
1297  * @adapter: Board private structure.
1298  *
1299  * This function stops the PTP support and cancels the delayed work.
1300  **/
1301 void igb_ptp_stop(struct igb_adapter *adapter)
1302 {
1303         igb_ptp_suspend(adapter);
1304 
1305         if (adapter->ptp_clock) {
1306                 ptp_clock_unregister(adapter->ptp_clock);
1307                 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1308                          adapter->netdev->name);
1309                 adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1310         }
1311 }
1312 
1313 /**
1314  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1315  * @adapter: Board private structure.
1316  *
1317  * This function handles the reset work required to re-enable the PTP device.
1318  **/
1319 void igb_ptp_reset(struct igb_adapter *adapter)
1320 {
1321         struct e1000_hw *hw = &adapter->hw;
1322         unsigned long flags;
1323 
1324         /* reset the tstamp_config */
1325         igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1326 
1327         spin_lock_irqsave(&adapter->tmreg_lock, flags);
1328 
1329         switch (adapter->hw.mac.type) {
1330         case e1000_82576:
1331                 /* Dial the nominal frequency. */
1332                 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1333                 break;
1334         case e1000_82580:
1335         case e1000_i354:
1336         case e1000_i350:
1337         case e1000_i210:
1338         case e1000_i211:
1339                 wr32(E1000_TSAUXC, 0x0);
1340                 wr32(E1000_TSSDP, 0x0);
1341                 wr32(E1000_TSIM,
1342                      TSYNC_INTERRUPTS |
1343                      (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1344                 wr32(E1000_IMS, E1000_IMS_TS);
1345                 break;
1346         default:
1347                 /* No work to do. */
1348                 goto out;
1349         }
1350 
1351         /* Re-initialize the timer. */
1352         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1353                 struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1354 
1355                 igb_ptp_write_i210(adapter, &ts);
1356         } else {
1357                 timecounter_init(&adapter->tc, &adapter->cc,
1358                                  ktime_to_ns(ktime_get_real()));
1359         }
1360 out:
1361         spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1362 
1363         wrfl();
1364 
1365         if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1366                 schedule_delayed_work(&adapter->ptp_overflow_work,
1367                                       IGB_SYSTIM_OVERFLOW_PERIOD);
1368 }

/* [<][>][^][v][top][bottom][index][help] */