root/drivers/net/ethernet/intel/i40e/i40e_ptp.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. i40e_ptp_read
  2. i40e_ptp_write
  3. i40e_ptp_convert_to_hwtstamp
  4. i40e_ptp_adjfreq
  5. i40e_ptp_adjtime
  6. i40e_ptp_gettimex
  7. i40e_ptp_settime
  8. i40e_ptp_feature_enable
  9. i40e_ptp_get_rx_events
  10. i40e_ptp_rx_hang
  11. i40e_ptp_tx_hang
  12. i40e_ptp_tx_hwtstamp
  13. i40e_ptp_rx_hwtstamp
  14. i40e_ptp_set_increment
  15. i40e_ptp_get_ts_config
  16. i40e_ptp_set_timestamp_mode
  17. i40e_ptp_set_ts_config
  18. i40e_ptp_create_clock
  19. i40e_ptp_save_hw_time
  20. i40e_ptp_restore_hw_time
  21. i40e_ptp_init
  22. i40e_ptp_stop

   1 // SPDX-License-Identifier: GPL-2.0
   2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
   3 
   4 #include "i40e.h"
   5 #include <linux/ptp_classify.h>
   6 
   7 /* The XL710 timesync is very much like Intel's 82599 design when it comes to
   8  * the fundamental clock design. However, the clock operations are much simpler
   9  * in the XL710 because the device supports a full 64 bits of nanoseconds.
  10  * Because the field is so wide, we can forgo the cycle counter and just
  11  * operate with the nanosecond field directly without fear of overflow.
  12  *
  13  * Much like the 82599, the update period is dependent upon the link speed:
  14  * At 40Gb link or no link, the period is 1.6ns.
  15  * At 10Gb link, the period is multiplied by 2. (3.2ns)
  16  * At 1Gb link, the period is multiplied by 20. (32ns)
  17  * 1588 functionality is not supported at 100Mbps.
  18  */
  19 #define I40E_PTP_40GB_INCVAL            0x0199999999ULL
  20 #define I40E_PTP_10GB_INCVAL_MULT       2
  21 #define I40E_PTP_1GB_INCVAL_MULT        20
  22 
  23 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V1  BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
  24 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V2  (2 << \
  25                                         I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
  26 
  27 /**
  28  * i40e_ptp_read - Read the PHC time from the device
  29  * @pf: Board private structure
  30  * @ts: timespec structure to hold the current time value
  31  * @sts: structure to hold the system time before and after reading the PHC
  32  *
  33  * This function reads the PRTTSYN_TIME registers and stores them in a
  34  * timespec. However, since the registers are 64 bits of nanoseconds, we must
  35  * convert the result to a timespec before we can return.
  36  **/
  37 static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts,
  38                           struct ptp_system_timestamp *sts)
  39 {
  40         struct i40e_hw *hw = &pf->hw;
  41         u32 hi, lo;
  42         u64 ns;
  43 
  44         /* The timer latches on the lowest register read. */
  45         ptp_read_system_prets(sts);
  46         lo = rd32(hw, I40E_PRTTSYN_TIME_L);
  47         ptp_read_system_postts(sts);
  48         hi = rd32(hw, I40E_PRTTSYN_TIME_H);
  49 
  50         ns = (((u64)hi) << 32) | lo;
  51 
  52         *ts = ns_to_timespec64(ns);
  53 }
  54 
  55 /**
  56  * i40e_ptp_write - Write the PHC time to the device
  57  * @pf: Board private structure
  58  * @ts: timespec structure that holds the new time value
  59  *
  60  * This function writes the PRTTSYN_TIME registers with the user value. Since
  61  * we receive a timespec from the stack, we must convert that timespec into
  62  * nanoseconds before programming the registers.
  63  **/
  64 static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts)
  65 {
  66         struct i40e_hw *hw = &pf->hw;
  67         u64 ns = timespec64_to_ns(ts);
  68 
  69         /* The timer will not update until the high register is written, so
  70          * write the low register first.
  71          */
  72         wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF);
  73         wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32);
  74 }
  75 
  76 /**
  77  * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time
  78  * @hwtstamps: Timestamp structure to update
  79  * @timestamp: Timestamp from the hardware
  80  *
  81  * We need to convert the NIC clock value into a hwtstamp which can be used by
  82  * the upper level timestamping functions. Since the timestamp is simply a 64-
  83  * bit nanosecond value, we can call ns_to_ktime directly to handle this.
  84  **/
  85 static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps,
  86                                          u64 timestamp)
  87 {
  88         memset(hwtstamps, 0, sizeof(*hwtstamps));
  89 
  90         hwtstamps->hwtstamp = ns_to_ktime(timestamp);
  91 }
  92 
  93 /**
  94  * i40e_ptp_adjfreq - Adjust the PHC frequency
  95  * @ptp: The PTP clock structure
  96  * @ppb: Parts per billion adjustment from the base
  97  *
  98  * Adjust the frequency of the PHC by the indicated parts per billion from the
  99  * base frequency.
 100  **/
 101 static int i40e_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
 102 {
 103         struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
 104         struct i40e_hw *hw = &pf->hw;
 105         u64 adj, freq, diff;
 106         int neg_adj = 0;
 107 
 108         if (ppb < 0) {
 109                 neg_adj = 1;
 110                 ppb = -ppb;
 111         }
 112 
 113         freq = I40E_PTP_40GB_INCVAL;
 114         freq *= ppb;
 115         diff = div_u64(freq, 1000000000ULL);
 116 
 117         if (neg_adj)
 118                 adj = I40E_PTP_40GB_INCVAL - diff;
 119         else
 120                 adj = I40E_PTP_40GB_INCVAL + diff;
 121 
 122         /* At some link speeds, the base incval is so large that directly
 123          * multiplying by ppb would result in arithmetic overflow even when
 124          * using a u64. Avoid this by instead calculating the new incval
 125          * always in terms of the 40GbE clock rate and then multiplying by the
 126          * link speed factor afterwards. This does result in slightly lower
 127          * precision at lower link speeds, but it is fairly minor.
 128          */
 129         smp_mb(); /* Force any pending update before accessing. */
 130         adj *= READ_ONCE(pf->ptp_adj_mult);
 131 
 132         wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF);
 133         wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32);
 134 
 135         return 0;
 136 }
 137 
 138 /**
 139  * i40e_ptp_adjtime - Adjust the PHC time
 140  * @ptp: The PTP clock structure
 141  * @delta: Offset in nanoseconds to adjust the PHC time by
 142  *
 143  * Adjust the current clock time by a delta specified in nanoseconds.
 144  **/
 145 static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
 146 {
 147         struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
 148         struct timespec64 now, then;
 149 
 150         then = ns_to_timespec64(delta);
 151         mutex_lock(&pf->tmreg_lock);
 152 
 153         i40e_ptp_read(pf, &now, NULL);
 154         now = timespec64_add(now, then);
 155         i40e_ptp_write(pf, (const struct timespec64 *)&now);
 156 
 157         mutex_unlock(&pf->tmreg_lock);
 158 
 159         return 0;
 160 }
 161 
 162 /**
 163  * i40e_ptp_gettimex - Get the time of the PHC
 164  * @ptp: The PTP clock structure
 165  * @ts: timespec structure to hold the current time value
 166  * @sts: structure to hold the system time before and after reading the PHC
 167  *
 168  * Read the device clock and return the correct value on ns, after converting it
 169  * into a timespec struct.
 170  **/
 171 static int i40e_ptp_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts,
 172                              struct ptp_system_timestamp *sts)
 173 {
 174         struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
 175 
 176         mutex_lock(&pf->tmreg_lock);
 177         i40e_ptp_read(pf, ts, sts);
 178         mutex_unlock(&pf->tmreg_lock);
 179 
 180         return 0;
 181 }
 182 
 183 /**
 184  * i40e_ptp_settime - Set the time of the PHC
 185  * @ptp: The PTP clock structure
 186  * @ts: timespec structure that holds the new time value
 187  *
 188  * Set the device clock to the user input value. The conversion from timespec
 189  * to ns happens in the write function.
 190  **/
 191 static int i40e_ptp_settime(struct ptp_clock_info *ptp,
 192                             const struct timespec64 *ts)
 193 {
 194         struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
 195 
 196         mutex_lock(&pf->tmreg_lock);
 197         i40e_ptp_write(pf, ts);
 198         mutex_unlock(&pf->tmreg_lock);
 199 
 200         return 0;
 201 }
 202 
 203 /**
 204  * i40e_ptp_feature_enable - Enable/disable ancillary features of the PHC subsystem
 205  * @ptp: The PTP clock structure
 206  * @rq: The requested feature to change
 207  * @on: Enable/disable flag
 208  *
 209  * The XL710 does not support any of the ancillary features of the PHC
 210  * subsystem, so this function may just return.
 211  **/
 212 static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp,
 213                                    struct ptp_clock_request *rq, int on)
 214 {
 215         return -EOPNOTSUPP;
 216 }
 217 
 218 /**
 219  * i40e_ptp_update_latch_events - Read I40E_PRTTSYN_STAT_1 and latch events
 220  * @pf: the PF data structure
 221  *
 222  * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers
 223  * for noticed latch events. This allows the driver to keep track of the first
 224  * time a latch event was noticed which will be used to help clear out Rx
 225  * timestamps for packets that got dropped or lost.
 226  *
 227  * This function will return the current value of I40E_PRTTSYN_STAT_1 and is
 228  * expected to be called only while under the ptp_rx_lock.
 229  **/
 230 static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf)
 231 {
 232         struct i40e_hw *hw = &pf->hw;
 233         u32 prttsyn_stat, new_latch_events;
 234         int  i;
 235 
 236         prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1);
 237         new_latch_events = prttsyn_stat & ~pf->latch_event_flags;
 238 
 239         /* Update the jiffies time for any newly latched timestamp. This
 240          * ensures that we store the time that we first discovered a timestamp
 241          * was latched by the hardware. The service task will later determine
 242          * if we should free the latch and drop that timestamp should too much
 243          * time pass. This flow ensures that we only update jiffies for new
 244          * events latched since the last time we checked, and not all events
 245          * currently latched, so that the service task accounting remains
 246          * accurate.
 247          */
 248         for (i = 0; i < 4; i++) {
 249                 if (new_latch_events & BIT(i))
 250                         pf->latch_events[i] = jiffies;
 251         }
 252 
 253         /* Finally, we store the current status of the Rx timestamp latches */
 254         pf->latch_event_flags = prttsyn_stat;
 255 
 256         return prttsyn_stat;
 257 }
 258 
 259 /**
 260  * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung
 261  * @pf: The PF private data structure
 262  * @vsi: The VSI with the rings relevant to 1588
 263  *
 264  * This watchdog task is scheduled to detect error case where hardware has
 265  * dropped an Rx packet that was timestamped when the ring is full. The
 266  * particular error is rare but leaves the device in a state unable to timestamp
 267  * any future packets.
 268  **/
 269 void i40e_ptp_rx_hang(struct i40e_pf *pf)
 270 {
 271         struct i40e_hw *hw = &pf->hw;
 272         unsigned int i, cleared = 0;
 273 
 274         /* Since we cannot turn off the Rx timestamp logic if the device is
 275          * configured for Tx timestamping, we check if Rx timestamping is
 276          * configured. We don't want to spuriously warn about Rx timestamp
 277          * hangs if we don't care about the timestamps.
 278          */
 279         if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
 280                 return;
 281 
 282         spin_lock_bh(&pf->ptp_rx_lock);
 283 
 284         /* Update current latch times for Rx events */
 285         i40e_ptp_get_rx_events(pf);
 286 
 287         /* Check all the currently latched Rx events and see whether they have
 288          * been latched for over a second. It is assumed that any timestamp
 289          * should have been cleared within this time, or else it was captured
 290          * for a dropped frame that the driver never received. Thus, we will
 291          * clear any timestamp that has been latched for over 1 second.
 292          */
 293         for (i = 0; i < 4; i++) {
 294                 if ((pf->latch_event_flags & BIT(i)) &&
 295                     time_is_before_jiffies(pf->latch_events[i] + HZ)) {
 296                         rd32(hw, I40E_PRTTSYN_RXTIME_H(i));
 297                         pf->latch_event_flags &= ~BIT(i);
 298                         cleared++;
 299                 }
 300         }
 301 
 302         spin_unlock_bh(&pf->ptp_rx_lock);
 303 
 304         /* Log a warning if more than 2 timestamps got dropped in the same
 305          * check. We don't want to warn about all drops because it can occur
 306          * in normal scenarios such as PTP frames on multicast addresses we
 307          * aren't listening to. However, administrator should know if this is
 308          * the reason packets aren't receiving timestamps.
 309          */
 310         if (cleared > 2)
 311                 dev_dbg(&pf->pdev->dev,
 312                         "Dropped %d missed RXTIME timestamp events\n",
 313                         cleared);
 314 
 315         /* Finally, update the rx_hwtstamp_cleared counter */
 316         pf->rx_hwtstamp_cleared += cleared;
 317 }
 318 
 319 /**
 320  * i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung
 321  * @pf: The PF private data structure
 322  *
 323  * This watchdog task is run periodically to make sure that we clear the Tx
 324  * timestamp logic if we don't obtain a timestamp in a reasonable amount of
 325  * time. It is unexpected in the normal case but if it occurs it results in
 326  * permanently preventing timestamps of future packets.
 327  **/
 328 void i40e_ptp_tx_hang(struct i40e_pf *pf)
 329 {
 330         struct sk_buff *skb;
 331 
 332         if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
 333                 return;
 334 
 335         /* Nothing to do if we're not already waiting for a timestamp */
 336         if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state))
 337                 return;
 338 
 339         /* We already have a handler routine which is run when we are notified
 340          * of a Tx timestamp in the hardware. If we don't get an interrupt
 341          * within a second it is reasonable to assume that we never will.
 342          */
 343         if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) {
 344                 skb = pf->ptp_tx_skb;
 345                 pf->ptp_tx_skb = NULL;
 346                 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
 347 
 348                 /* Free the skb after we clear the bitlock */
 349                 dev_kfree_skb_any(skb);
 350                 pf->tx_hwtstamp_timeouts++;
 351         }
 352 }
 353 
 354 /**
 355  * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp
 356  * @pf: Board private structure
 357  *
 358  * Read the value of the Tx timestamp from the registers, convert it into a
 359  * value consumable by the stack, and store that result into the shhwtstamps
 360  * struct before returning it up the stack.
 361  **/
 362 void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf)
 363 {
 364         struct skb_shared_hwtstamps shhwtstamps;
 365         struct sk_buff *skb = pf->ptp_tx_skb;
 366         struct i40e_hw *hw = &pf->hw;
 367         u32 hi, lo;
 368         u64 ns;
 369 
 370         if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
 371                 return;
 372 
 373         /* don't attempt to timestamp if we don't have an skb */
 374         if (!pf->ptp_tx_skb)
 375                 return;
 376 
 377         lo = rd32(hw, I40E_PRTTSYN_TXTIME_L);
 378         hi = rd32(hw, I40E_PRTTSYN_TXTIME_H);
 379 
 380         ns = (((u64)hi) << 32) | lo;
 381         i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns);
 382 
 383         /* Clear the bit lock as soon as possible after reading the register,
 384          * and prior to notifying the stack via skb_tstamp_tx(). Otherwise
 385          * applications might wake up and attempt to request another transmit
 386          * timestamp prior to the bit lock being cleared.
 387          */
 388         pf->ptp_tx_skb = NULL;
 389         clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
 390 
 391         /* Notify the stack and free the skb after we've unlocked */
 392         skb_tstamp_tx(skb, &shhwtstamps);
 393         dev_kfree_skb_any(skb);
 394 }
 395 
 396 /**
 397  * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp
 398  * @pf: Board private structure
 399  * @skb: Particular skb to send timestamp with
 400  * @index: Index into the receive timestamp registers for the timestamp
 401  *
 402  * The XL710 receives a notification in the receive descriptor with an offset
 403  * into the set of RXTIME registers where the timestamp is for that skb. This
 404  * function goes and fetches the receive timestamp from that offset, if a valid
 405  * one exists. The RXTIME registers are in ns, so we must convert the result
 406  * first.
 407  **/
 408 void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index)
 409 {
 410         u32 prttsyn_stat, hi, lo;
 411         struct i40e_hw *hw;
 412         u64 ns;
 413 
 414         /* Since we cannot turn off the Rx timestamp logic if the device is
 415          * doing Tx timestamping, check if Rx timestamping is configured.
 416          */
 417         if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
 418                 return;
 419 
 420         hw = &pf->hw;
 421 
 422         spin_lock_bh(&pf->ptp_rx_lock);
 423 
 424         /* Get current Rx events and update latch times */
 425         prttsyn_stat = i40e_ptp_get_rx_events(pf);
 426 
 427         /* TODO: Should we warn about missing Rx timestamp event? */
 428         if (!(prttsyn_stat & BIT(index))) {
 429                 spin_unlock_bh(&pf->ptp_rx_lock);
 430                 return;
 431         }
 432 
 433         /* Clear the latched event since we're about to read its register */
 434         pf->latch_event_flags &= ~BIT(index);
 435 
 436         lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index));
 437         hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index));
 438 
 439         spin_unlock_bh(&pf->ptp_rx_lock);
 440 
 441         ns = (((u64)hi) << 32) | lo;
 442 
 443         i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns);
 444 }
 445 
 446 /**
 447  * i40e_ptp_set_increment - Utility function to update clock increment rate
 448  * @pf: Board private structure
 449  *
 450  * During a link change, the DMA frequency that drives the 1588 logic will
 451  * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds,
 452  * we must update the increment value per clock tick.
 453  **/
 454 void i40e_ptp_set_increment(struct i40e_pf *pf)
 455 {
 456         struct i40e_link_status *hw_link_info;
 457         struct i40e_hw *hw = &pf->hw;
 458         u64 incval;
 459         u32 mult;
 460 
 461         hw_link_info = &hw->phy.link_info;
 462 
 463         i40e_aq_get_link_info(&pf->hw, true, NULL, NULL);
 464 
 465         switch (hw_link_info->link_speed) {
 466         case I40E_LINK_SPEED_10GB:
 467                 mult = I40E_PTP_10GB_INCVAL_MULT;
 468                 break;
 469         case I40E_LINK_SPEED_1GB:
 470                 mult = I40E_PTP_1GB_INCVAL_MULT;
 471                 break;
 472         case I40E_LINK_SPEED_100MB:
 473         {
 474                 static int warn_once;
 475 
 476                 if (!warn_once) {
 477                         dev_warn(&pf->pdev->dev,
 478                                  "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n");
 479                         warn_once++;
 480                 }
 481                 mult = 0;
 482                 break;
 483         }
 484         case I40E_LINK_SPEED_40GB:
 485         default:
 486                 mult = 1;
 487                 break;
 488         }
 489 
 490         /* The increment value is calculated by taking the base 40GbE incvalue
 491          * and multiplying it by a factor based on the link speed.
 492          */
 493         incval = I40E_PTP_40GB_INCVAL * mult;
 494 
 495         /* Write the new increment value into the increment register. The
 496          * hardware will not update the clock until both registers have been
 497          * written.
 498          */
 499         wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF);
 500         wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32);
 501 
 502         /* Update the base adjustement value. */
 503         WRITE_ONCE(pf->ptp_adj_mult, mult);
 504         smp_mb(); /* Force the above update. */
 505 }
 506 
 507 /**
 508  * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping
 509  * @pf: Board private structure
 510  * @ifr: ioctl data
 511  *
 512  * Obtain the current hardware timestamping settigs as requested. To do this,
 513  * keep a shadow copy of the timestamp settings rather than attempting to
 514  * deconstruct it from the registers.
 515  **/
 516 int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
 517 {
 518         struct hwtstamp_config *config = &pf->tstamp_config;
 519 
 520         if (!(pf->flags & I40E_FLAG_PTP))
 521                 return -EOPNOTSUPP;
 522 
 523         return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
 524                 -EFAULT : 0;
 525 }
 526 
 527 /**
 528  * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode
 529  * @pf: Board private structure
 530  * @config: hwtstamp settings requested or saved
 531  *
 532  * Control hardware registers to enter the specific mode requested by the
 533  * user. Also used during reset path to ensure that timestamp settings are
 534  * maintained.
 535  *
 536  * Note: modifies config in place, and may update the requested mode to be
 537  * more broad if the specific filter is not directly supported.
 538  **/
 539 static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf,
 540                                        struct hwtstamp_config *config)
 541 {
 542         struct i40e_hw *hw = &pf->hw;
 543         u32 tsyntype, regval;
 544 
 545         /* Reserved for future extensions. */
 546         if (config->flags)
 547                 return -EINVAL;
 548 
 549         switch (config->tx_type) {
 550         case HWTSTAMP_TX_OFF:
 551                 pf->ptp_tx = false;
 552                 break;
 553         case HWTSTAMP_TX_ON:
 554                 pf->ptp_tx = true;
 555                 break;
 556         default:
 557                 return -ERANGE;
 558         }
 559 
 560         switch (config->rx_filter) {
 561         case HWTSTAMP_FILTER_NONE:
 562                 pf->ptp_rx = false;
 563                 /* We set the type to V1, but do not enable UDP packet
 564                  * recognition. In this way, we should be as close to
 565                  * disabling PTP Rx timestamps as possible since V1 packets
 566                  * are always UDP, since L2 packets are a V2 feature.
 567                  */
 568                 tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1;
 569                 break;
 570         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
 571         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
 572         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
 573                 if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
 574                         return -ERANGE;
 575                 pf->ptp_rx = true;
 576                 tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK |
 577                            I40E_PRTTSYN_CTL1_TSYNTYPE_V1 |
 578                            I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
 579                 config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
 580                 break;
 581         case HWTSTAMP_FILTER_PTP_V2_EVENT:
 582         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
 583         case HWTSTAMP_FILTER_PTP_V2_SYNC:
 584         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
 585         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
 586         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
 587                 if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
 588                         return -ERANGE;
 589                 /* fall through */
 590         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
 591         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
 592         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
 593                 pf->ptp_rx = true;
 594                 tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK |
 595                            I40E_PRTTSYN_CTL1_TSYNTYPE_V2;
 596                 if (pf->hw_features & I40E_HW_PTP_L4_CAPABLE) {
 597                         tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
 598                         config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
 599                 } else {
 600                         config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
 601                 }
 602                 break;
 603         case HWTSTAMP_FILTER_NTP_ALL:
 604         case HWTSTAMP_FILTER_ALL:
 605         default:
 606                 return -ERANGE;
 607         }
 608 
 609         /* Clear out all 1588-related registers to clear and unlatch them. */
 610         spin_lock_bh(&pf->ptp_rx_lock);
 611         rd32(hw, I40E_PRTTSYN_STAT_0);
 612         rd32(hw, I40E_PRTTSYN_TXTIME_H);
 613         rd32(hw, I40E_PRTTSYN_RXTIME_H(0));
 614         rd32(hw, I40E_PRTTSYN_RXTIME_H(1));
 615         rd32(hw, I40E_PRTTSYN_RXTIME_H(2));
 616         rd32(hw, I40E_PRTTSYN_RXTIME_H(3));
 617         pf->latch_event_flags = 0;
 618         spin_unlock_bh(&pf->ptp_rx_lock);
 619 
 620         /* Enable/disable the Tx timestamp interrupt based on user input. */
 621         regval = rd32(hw, I40E_PRTTSYN_CTL0);
 622         if (pf->ptp_tx)
 623                 regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
 624         else
 625                 regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
 626         wr32(hw, I40E_PRTTSYN_CTL0, regval);
 627 
 628         regval = rd32(hw, I40E_PFINT_ICR0_ENA);
 629         if (pf->ptp_tx)
 630                 regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
 631         else
 632                 regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
 633         wr32(hw, I40E_PFINT_ICR0_ENA, regval);
 634 
 635         /* Although there is no simple on/off switch for Rx, we "disable" Rx
 636          * timestamps by setting to V1 only mode and clear the UDP
 637          * recognition. This ought to disable all PTP Rx timestamps as V1
 638          * packets are always over UDP. Note that software is configured to
 639          * ignore Rx timestamps via the pf->ptp_rx flag.
 640          */
 641         regval = rd32(hw, I40E_PRTTSYN_CTL1);
 642         /* clear everything but the enable bit */
 643         regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
 644         /* now enable bits for desired Rx timestamps */
 645         regval |= tsyntype;
 646         wr32(hw, I40E_PRTTSYN_CTL1, regval);
 647 
 648         return 0;
 649 }
 650 
 651 /**
 652  * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping
 653  * @pf: Board private structure
 654  * @ifr: ioctl data
 655  *
 656  * Respond to the user filter requests and make the appropriate hardware
 657  * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping
 658  * logic, so keep track in software of whether to indicate these timestamps
 659  * or not.
 660  *
 661  * It is permissible to "upgrade" the user request to a broader filter, as long
 662  * as the user receives the timestamps they care about and the user is notified
 663  * the filter has been broadened.
 664  **/
 665 int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
 666 {
 667         struct hwtstamp_config config;
 668         int err;
 669 
 670         if (!(pf->flags & I40E_FLAG_PTP))
 671                 return -EOPNOTSUPP;
 672 
 673         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
 674                 return -EFAULT;
 675 
 676         err = i40e_ptp_set_timestamp_mode(pf, &config);
 677         if (err)
 678                 return err;
 679 
 680         /* save these settings for future reference */
 681         pf->tstamp_config = config;
 682 
 683         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
 684                 -EFAULT : 0;
 685 }
 686 
 687 /**
 688  * i40e_ptp_create_clock - Create PTP clock device for userspace
 689  * @pf: Board private structure
 690  *
 691  * This function creates a new PTP clock device. It only creates one if we
 692  * don't already have one, so it is safe to call. Will return error if it
 693  * can't create one, but success if we already have a device. Should be used
 694  * by i40e_ptp_init to create clock initially, and prevent global resets from
 695  * creating new clock devices.
 696  **/
 697 static long i40e_ptp_create_clock(struct i40e_pf *pf)
 698 {
 699         /* no need to create a clock device if we already have one */
 700         if (!IS_ERR_OR_NULL(pf->ptp_clock))
 701                 return 0;
 702 
 703         strlcpy(pf->ptp_caps.name, i40e_driver_name,
 704                 sizeof(pf->ptp_caps.name) - 1);
 705         pf->ptp_caps.owner = THIS_MODULE;
 706         pf->ptp_caps.max_adj = 999999999;
 707         pf->ptp_caps.n_ext_ts = 0;
 708         pf->ptp_caps.pps = 0;
 709         pf->ptp_caps.adjfreq = i40e_ptp_adjfreq;
 710         pf->ptp_caps.adjtime = i40e_ptp_adjtime;
 711         pf->ptp_caps.gettimex64 = i40e_ptp_gettimex;
 712         pf->ptp_caps.settime64 = i40e_ptp_settime;
 713         pf->ptp_caps.enable = i40e_ptp_feature_enable;
 714 
 715         /* Attempt to register the clock before enabling the hardware. */
 716         pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev);
 717         if (IS_ERR(pf->ptp_clock))
 718                 return PTR_ERR(pf->ptp_clock);
 719 
 720         /* clear the hwtstamp settings here during clock create, instead of
 721          * during regular init, so that we can maintain settings across a
 722          * reset or suspend.
 723          */
 724         pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
 725         pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
 726 
 727         /* Set the previous "reset" time to the current Kernel clock time */
 728         ktime_get_real_ts64(&pf->ptp_prev_hw_time);
 729         pf->ptp_reset_start = ktime_get();
 730 
 731         return 0;
 732 }
 733 
 734 /**
 735  * i40e_ptp_save_hw_time - Save the current PTP time as ptp_prev_hw_time
 736  * @pf: Board private structure
 737  *
 738  * Read the current PTP time and save it into pf->ptp_prev_hw_time. This should
 739  * be called at the end of preparing to reset, just before hardware reset
 740  * occurs, in order to preserve the PTP time as close as possible across
 741  * resets.
 742  */
 743 void i40e_ptp_save_hw_time(struct i40e_pf *pf)
 744 {
 745         /* don't try to access the PTP clock if it's not enabled */
 746         if (!(pf->flags & I40E_FLAG_PTP))
 747                 return;
 748 
 749         i40e_ptp_gettimex(&pf->ptp_caps, &pf->ptp_prev_hw_time, NULL);
 750         /* Get a monotonic starting time for this reset */
 751         pf->ptp_reset_start = ktime_get();
 752 }
 753 
 754 /**
 755  * i40e_ptp_restore_hw_time - Restore the ptp_prev_hw_time + delta to PTP regs
 756  * @pf: Board private structure
 757  *
 758  * Restore the PTP hardware clock registers. We previously cached the PTP
 759  * hardware time as pf->ptp_prev_hw_time. To be as accurate as possible,
 760  * update this value based on the time delta since the time was saved, using
 761  * CLOCK_MONOTONIC (via ktime_get()) to calculate the time difference.
 762  *
 763  * This ensures that the hardware clock is restored to nearly what it should
 764  * have been if a reset had not occurred.
 765  */
 766 void i40e_ptp_restore_hw_time(struct i40e_pf *pf)
 767 {
 768         ktime_t delta = ktime_sub(ktime_get(), pf->ptp_reset_start);
 769 
 770         /* Update the previous HW time with the ktime delta */
 771         timespec64_add_ns(&pf->ptp_prev_hw_time, ktime_to_ns(delta));
 772 
 773         /* Restore the hardware clock registers */
 774         i40e_ptp_settime(&pf->ptp_caps, &pf->ptp_prev_hw_time);
 775 }
 776 
 777 /**
 778  * i40e_ptp_init - Initialize the 1588 support after device probe or reset
 779  * @pf: Board private structure
 780  *
 781  * This function sets device up for 1588 support. The first time it is run, it
 782  * will create a PHC clock device. It does not create a clock device if one
 783  * already exists. It also reconfigures the device after a reset.
 784  *
 785  * The first time a clock is created, i40e_ptp_create_clock will set
 786  * pf->ptp_prev_hw_time to the current system time. During resets, it is
 787  * expected that this timespec will be set to the last known PTP clock time,
 788  * in order to preserve the clock time as close as possible across a reset.
 789  **/
 790 void i40e_ptp_init(struct i40e_pf *pf)
 791 {
 792         struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev;
 793         struct i40e_hw *hw = &pf->hw;
 794         u32 pf_id;
 795         long err;
 796 
 797         /* Only one PF is assigned to control 1588 logic per port. Do not
 798          * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID
 799          */
 800         pf_id = (rd32(hw, I40E_PRTTSYN_CTL0) & I40E_PRTTSYN_CTL0_PF_ID_MASK) >>
 801                 I40E_PRTTSYN_CTL0_PF_ID_SHIFT;
 802         if (hw->pf_id != pf_id) {
 803                 pf->flags &= ~I40E_FLAG_PTP;
 804                 dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n",
 805                          __func__,
 806                          netdev->name);
 807                 return;
 808         }
 809 
 810         mutex_init(&pf->tmreg_lock);
 811         spin_lock_init(&pf->ptp_rx_lock);
 812 
 813         /* ensure we have a clock device */
 814         err = i40e_ptp_create_clock(pf);
 815         if (err) {
 816                 pf->ptp_clock = NULL;
 817                 dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n",
 818                         __func__);
 819         } else if (pf->ptp_clock) {
 820                 u32 regval;
 821 
 822                 if (pf->hw.debug_mask & I40E_DEBUG_LAN)
 823                         dev_info(&pf->pdev->dev, "PHC enabled\n");
 824                 pf->flags |= I40E_FLAG_PTP;
 825 
 826                 /* Ensure the clocks are running. */
 827                 regval = rd32(hw, I40E_PRTTSYN_CTL0);
 828                 regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK;
 829                 wr32(hw, I40E_PRTTSYN_CTL0, regval);
 830                 regval = rd32(hw, I40E_PRTTSYN_CTL1);
 831                 regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
 832                 wr32(hw, I40E_PRTTSYN_CTL1, regval);
 833 
 834                 /* Set the increment value per clock tick. */
 835                 i40e_ptp_set_increment(pf);
 836 
 837                 /* reset timestamping mode */
 838                 i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config);
 839 
 840                 /* Restore the clock time based on last known value */
 841                 i40e_ptp_restore_hw_time(pf);
 842         }
 843 }
 844 
 845 /**
 846  * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC
 847  * @pf: Board private structure
 848  *
 849  * This function handles the cleanup work required from the initialization by
 850  * clearing out the important information and unregistering the PHC.
 851  **/
 852 void i40e_ptp_stop(struct i40e_pf *pf)
 853 {
 854         pf->flags &= ~I40E_FLAG_PTP;
 855         pf->ptp_tx = false;
 856         pf->ptp_rx = false;
 857 
 858         if (pf->ptp_tx_skb) {
 859                 struct sk_buff *skb = pf->ptp_tx_skb;
 860 
 861                 pf->ptp_tx_skb = NULL;
 862                 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
 863                 dev_kfree_skb_any(skb);
 864         }
 865 
 866         if (pf->ptp_clock) {
 867                 ptp_clock_unregister(pf->ptp_clock);
 868                 pf->ptp_clock = NULL;
 869                 dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__,
 870                          pf->vsi[pf->lan_vsi]->netdev->name);
 871         }
 872 }

/* [<][>][^][v][top][bottom][index][help] */