root/drivers/net/ethernet/intel/i40e/i40e_txrx.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. i40e_fdir
  2. i40e_program_fdir_filter
  3. i40e_add_del_fdir_udpv4
  4. i40e_add_del_fdir_tcpv4
  5. i40e_add_del_fdir_sctpv4
  6. i40e_add_del_fdir_ipv4
  7. i40e_add_del_fdir
  8. i40e_fd_handle_status
  9. i40e_unmap_and_free_tx_resource
  10. i40e_clean_tx_ring
  11. i40e_free_tx_resources
  12. i40e_get_tx_pending
  13. i40e_detect_recover_hung
  14. i40e_clean_tx_irq
  15. i40e_enable_wb_on_itr
  16. i40e_force_wb
  17. i40e_container_is_rx
  18. i40e_itr_divisor
  19. i40e_update_itr
  20. i40e_reuse_rx_page
  21. i40e_rx_is_programming_status
  22. i40e_clean_programming_status
  23. i40e_setup_tx_descriptors
  24. i40e_clean_rx_ring
  25. i40e_free_rx_resources
  26. i40e_setup_rx_descriptors
  27. i40e_release_rx_desc
  28. i40e_rx_offset
  29. i40e_alloc_mapped_page
  30. i40e_alloc_rx_buffers
  31. i40e_rx_checksum
  32. i40e_ptype_to_htype
  33. i40e_rx_hash
  34. i40e_process_skb_fields
  35. i40e_cleanup_headers
  36. i40e_page_is_reusable
  37. i40e_can_reuse_rx_page
  38. i40e_add_rx_frag
  39. i40e_get_rx_buffer
  40. i40e_construct_skb
  41. i40e_build_skb
  42. i40e_put_rx_buffer
  43. i40e_is_non_eop
  44. i40e_xmit_xdp_tx_ring
  45. i40e_run_xdp
  46. i40e_rx_buffer_flip
  47. i40e_xdp_ring_update_tail
  48. i40e_update_rx_stats
  49. i40e_finalize_xdp_rx
  50. i40e_clean_rx_irq
  51. i40e_buildreg_itr
  52. i40e_update_enable_itr
  53. i40e_napi_poll
  54. i40e_atr
  55. i40e_tx_prepare_vlan_flags
  56. i40e_tso
  57. i40e_tsyn
  58. i40e_tx_enable_csum
  59. i40e_create_tx_ctx
  60. __i40e_maybe_stop_tx
  61. __i40e_chk_linearize
  62. i40e_tx_map
  63. i40e_xmit_xdp_ring
  64. i40e_xmit_frame_ring
  65. i40e_lan_xmit_frame
  66. i40e_xdp_xmit

   1 // SPDX-License-Identifier: GPL-2.0
   2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
   3 
   4 #include <linux/prefetch.h>
   5 #include <linux/bpf_trace.h>
   6 #include <net/xdp.h>
   7 #include "i40e.h"
   8 #include "i40e_trace.h"
   9 #include "i40e_prototype.h"
  10 #include "i40e_txrx_common.h"
  11 #include "i40e_xsk.h"
  12 
  13 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  14 /**
  15  * i40e_fdir - Generate a Flow Director descriptor based on fdata
  16  * @tx_ring: Tx ring to send buffer on
  17  * @fdata: Flow director filter data
  18  * @add: Indicate if we are adding a rule or deleting one
  19  *
  20  **/
  21 static void i40e_fdir(struct i40e_ring *tx_ring,
  22                       struct i40e_fdir_filter *fdata, bool add)
  23 {
  24         struct i40e_filter_program_desc *fdir_desc;
  25         struct i40e_pf *pf = tx_ring->vsi->back;
  26         u32 flex_ptype, dtype_cmd;
  27         u16 i;
  28 
  29         /* grab the next descriptor */
  30         i = tx_ring->next_to_use;
  31         fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  32 
  33         i++;
  34         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  35 
  36         flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
  37                      (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
  38 
  39         flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
  40                       (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
  41 
  42         flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
  43                       (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
  44 
  45         flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
  46                       (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
  47 
  48         /* Use LAN VSI Id if not programmed by user */
  49         flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
  50                       ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
  51                        I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
  52 
  53         dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
  54 
  55         dtype_cmd |= add ?
  56                      I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
  57                      I40E_TXD_FLTR_QW1_PCMD_SHIFT :
  58                      I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
  59                      I40E_TXD_FLTR_QW1_PCMD_SHIFT;
  60 
  61         dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
  62                      (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
  63 
  64         dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
  65                      (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
  66 
  67         if (fdata->cnt_index) {
  68                 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
  69                 dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
  70                              ((u32)fdata->cnt_index <<
  71                               I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
  72         }
  73 
  74         fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
  75         fdir_desc->rsvd = cpu_to_le32(0);
  76         fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
  77         fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
  78 }
  79 
  80 #define I40E_FD_CLEAN_DELAY 10
  81 /**
  82  * i40e_program_fdir_filter - Program a Flow Director filter
  83  * @fdir_data: Packet data that will be filter parameters
  84  * @raw_packet: the pre-allocated packet buffer for FDir
  85  * @pf: The PF pointer
  86  * @add: True for add/update, False for remove
  87  **/
  88 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
  89                                     u8 *raw_packet, struct i40e_pf *pf,
  90                                     bool add)
  91 {
  92         struct i40e_tx_buffer *tx_buf, *first;
  93         struct i40e_tx_desc *tx_desc;
  94         struct i40e_ring *tx_ring;
  95         struct i40e_vsi *vsi;
  96         struct device *dev;
  97         dma_addr_t dma;
  98         u32 td_cmd = 0;
  99         u16 i;
 100 
 101         /* find existing FDIR VSI */
 102         vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
 103         if (!vsi)
 104                 return -ENOENT;
 105 
 106         tx_ring = vsi->tx_rings[0];
 107         dev = tx_ring->dev;
 108 
 109         /* we need two descriptors to add/del a filter and we can wait */
 110         for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
 111                 if (!i)
 112                         return -EAGAIN;
 113                 msleep_interruptible(1);
 114         }
 115 
 116         dma = dma_map_single(dev, raw_packet,
 117                              I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
 118         if (dma_mapping_error(dev, dma))
 119                 goto dma_fail;
 120 
 121         /* grab the next descriptor */
 122         i = tx_ring->next_to_use;
 123         first = &tx_ring->tx_bi[i];
 124         i40e_fdir(tx_ring, fdir_data, add);
 125 
 126         /* Now program a dummy descriptor */
 127         i = tx_ring->next_to_use;
 128         tx_desc = I40E_TX_DESC(tx_ring, i);
 129         tx_buf = &tx_ring->tx_bi[i];
 130 
 131         tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
 132 
 133         memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
 134 
 135         /* record length, and DMA address */
 136         dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
 137         dma_unmap_addr_set(tx_buf, dma, dma);
 138 
 139         tx_desc->buffer_addr = cpu_to_le64(dma);
 140         td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
 141 
 142         tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
 143         tx_buf->raw_buf = (void *)raw_packet;
 144 
 145         tx_desc->cmd_type_offset_bsz =
 146                 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
 147 
 148         /* Force memory writes to complete before letting h/w
 149          * know there are new descriptors to fetch.
 150          */
 151         wmb();
 152 
 153         /* Mark the data descriptor to be watched */
 154         first->next_to_watch = tx_desc;
 155 
 156         writel(tx_ring->next_to_use, tx_ring->tail);
 157         return 0;
 158 
 159 dma_fail:
 160         return -1;
 161 }
 162 
 163 #define IP_HEADER_OFFSET 14
 164 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
 165 /**
 166  * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 167  * @vsi: pointer to the targeted VSI
 168  * @fd_data: the flow director data required for the FDir descriptor
 169  * @add: true adds a filter, false removes it
 170  *
 171  * Returns 0 if the filters were successfully added or removed
 172  **/
 173 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
 174                                    struct i40e_fdir_filter *fd_data,
 175                                    bool add)
 176 {
 177         struct i40e_pf *pf = vsi->back;
 178         struct udphdr *udp;
 179         struct iphdr *ip;
 180         u8 *raw_packet;
 181         int ret;
 182         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 183                 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
 184                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 185 
 186         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 187         if (!raw_packet)
 188                 return -ENOMEM;
 189         memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
 190 
 191         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 192         udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
 193               + sizeof(struct iphdr));
 194 
 195         ip->daddr = fd_data->dst_ip;
 196         udp->dest = fd_data->dst_port;
 197         ip->saddr = fd_data->src_ip;
 198         udp->source = fd_data->src_port;
 199 
 200         if (fd_data->flex_filter) {
 201                 u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
 202                 __be16 pattern = fd_data->flex_word;
 203                 u16 off = fd_data->flex_offset;
 204 
 205                 *((__force __be16 *)(payload + off)) = pattern;
 206         }
 207 
 208         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
 209         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 210         if (ret) {
 211                 dev_info(&pf->pdev->dev,
 212                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 213                          fd_data->pctype, fd_data->fd_id, ret);
 214                 /* Free the packet buffer since it wasn't added to the ring */
 215                 kfree(raw_packet);
 216                 return -EOPNOTSUPP;
 217         } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 218                 if (add)
 219                         dev_info(&pf->pdev->dev,
 220                                  "Filter OK for PCTYPE %d loc = %d\n",
 221                                  fd_data->pctype, fd_data->fd_id);
 222                 else
 223                         dev_info(&pf->pdev->dev,
 224                                  "Filter deleted for PCTYPE %d loc = %d\n",
 225                                  fd_data->pctype, fd_data->fd_id);
 226         }
 227 
 228         if (add)
 229                 pf->fd_udp4_filter_cnt++;
 230         else
 231                 pf->fd_udp4_filter_cnt--;
 232 
 233         return 0;
 234 }
 235 
 236 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
 237 /**
 238  * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 239  * @vsi: pointer to the targeted VSI
 240  * @fd_data: the flow director data required for the FDir descriptor
 241  * @add: true adds a filter, false removes it
 242  *
 243  * Returns 0 if the filters were successfully added or removed
 244  **/
 245 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
 246                                    struct i40e_fdir_filter *fd_data,
 247                                    bool add)
 248 {
 249         struct i40e_pf *pf = vsi->back;
 250         struct tcphdr *tcp;
 251         struct iphdr *ip;
 252         u8 *raw_packet;
 253         int ret;
 254         /* Dummy packet */
 255         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 256                 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
 257                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
 258                 0x0, 0x72, 0, 0, 0, 0};
 259 
 260         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 261         if (!raw_packet)
 262                 return -ENOMEM;
 263         memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
 264 
 265         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 266         tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
 267               + sizeof(struct iphdr));
 268 
 269         ip->daddr = fd_data->dst_ip;
 270         tcp->dest = fd_data->dst_port;
 271         ip->saddr = fd_data->src_ip;
 272         tcp->source = fd_data->src_port;
 273 
 274         if (fd_data->flex_filter) {
 275                 u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
 276                 __be16 pattern = fd_data->flex_word;
 277                 u16 off = fd_data->flex_offset;
 278 
 279                 *((__force __be16 *)(payload + off)) = pattern;
 280         }
 281 
 282         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
 283         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 284         if (ret) {
 285                 dev_info(&pf->pdev->dev,
 286                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 287                          fd_data->pctype, fd_data->fd_id, ret);
 288                 /* Free the packet buffer since it wasn't added to the ring */
 289                 kfree(raw_packet);
 290                 return -EOPNOTSUPP;
 291         } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 292                 if (add)
 293                         dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
 294                                  fd_data->pctype, fd_data->fd_id);
 295                 else
 296                         dev_info(&pf->pdev->dev,
 297                                  "Filter deleted for PCTYPE %d loc = %d\n",
 298                                  fd_data->pctype, fd_data->fd_id);
 299         }
 300 
 301         if (add) {
 302                 pf->fd_tcp4_filter_cnt++;
 303                 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
 304                     I40E_DEBUG_FD & pf->hw.debug_mask)
 305                         dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
 306                 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 307         } else {
 308                 pf->fd_tcp4_filter_cnt--;
 309         }
 310 
 311         return 0;
 312 }
 313 
 314 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46
 315 /**
 316  * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
 317  * a specific flow spec
 318  * @vsi: pointer to the targeted VSI
 319  * @fd_data: the flow director data required for the FDir descriptor
 320  * @add: true adds a filter, false removes it
 321  *
 322  * Returns 0 if the filters were successfully added or removed
 323  **/
 324 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
 325                                     struct i40e_fdir_filter *fd_data,
 326                                     bool add)
 327 {
 328         struct i40e_pf *pf = vsi->back;
 329         struct sctphdr *sctp;
 330         struct iphdr *ip;
 331         u8 *raw_packet;
 332         int ret;
 333         /* Dummy packet */
 334         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 335                 0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
 336                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 337 
 338         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 339         if (!raw_packet)
 340                 return -ENOMEM;
 341         memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
 342 
 343         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 344         sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
 345               + sizeof(struct iphdr));
 346 
 347         ip->daddr = fd_data->dst_ip;
 348         sctp->dest = fd_data->dst_port;
 349         ip->saddr = fd_data->src_ip;
 350         sctp->source = fd_data->src_port;
 351 
 352         if (fd_data->flex_filter) {
 353                 u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
 354                 __be16 pattern = fd_data->flex_word;
 355                 u16 off = fd_data->flex_offset;
 356 
 357                 *((__force __be16 *)(payload + off)) = pattern;
 358         }
 359 
 360         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
 361         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 362         if (ret) {
 363                 dev_info(&pf->pdev->dev,
 364                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 365                          fd_data->pctype, fd_data->fd_id, ret);
 366                 /* Free the packet buffer since it wasn't added to the ring */
 367                 kfree(raw_packet);
 368                 return -EOPNOTSUPP;
 369         } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 370                 if (add)
 371                         dev_info(&pf->pdev->dev,
 372                                  "Filter OK for PCTYPE %d loc = %d\n",
 373                                  fd_data->pctype, fd_data->fd_id);
 374                 else
 375                         dev_info(&pf->pdev->dev,
 376                                  "Filter deleted for PCTYPE %d loc = %d\n",
 377                                  fd_data->pctype, fd_data->fd_id);
 378         }
 379 
 380         if (add)
 381                 pf->fd_sctp4_filter_cnt++;
 382         else
 383                 pf->fd_sctp4_filter_cnt--;
 384 
 385         return 0;
 386 }
 387 
 388 #define I40E_IP_DUMMY_PACKET_LEN 34
 389 /**
 390  * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 391  * a specific flow spec
 392  * @vsi: pointer to the targeted VSI
 393  * @fd_data: the flow director data required for the FDir descriptor
 394  * @add: true adds a filter, false removes it
 395  *
 396  * Returns 0 if the filters were successfully added or removed
 397  **/
 398 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
 399                                   struct i40e_fdir_filter *fd_data,
 400                                   bool add)
 401 {
 402         struct i40e_pf *pf = vsi->back;
 403         struct iphdr *ip;
 404         u8 *raw_packet;
 405         int ret;
 406         int i;
 407         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 408                 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
 409                 0, 0, 0, 0};
 410 
 411         for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
 412              i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
 413                 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 414                 if (!raw_packet)
 415                         return -ENOMEM;
 416                 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
 417                 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 418 
 419                 ip->saddr = fd_data->src_ip;
 420                 ip->daddr = fd_data->dst_ip;
 421                 ip->protocol = 0;
 422 
 423                 if (fd_data->flex_filter) {
 424                         u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
 425                         __be16 pattern = fd_data->flex_word;
 426                         u16 off = fd_data->flex_offset;
 427 
 428                         *((__force __be16 *)(payload + off)) = pattern;
 429                 }
 430 
 431                 fd_data->pctype = i;
 432                 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 433                 if (ret) {
 434                         dev_info(&pf->pdev->dev,
 435                                  "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 436                                  fd_data->pctype, fd_data->fd_id, ret);
 437                         /* The packet buffer wasn't added to the ring so we
 438                          * need to free it now.
 439                          */
 440                         kfree(raw_packet);
 441                         return -EOPNOTSUPP;
 442                 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 443                         if (add)
 444                                 dev_info(&pf->pdev->dev,
 445                                          "Filter OK for PCTYPE %d loc = %d\n",
 446                                          fd_data->pctype, fd_data->fd_id);
 447                         else
 448                                 dev_info(&pf->pdev->dev,
 449                                          "Filter deleted for PCTYPE %d loc = %d\n",
 450                                          fd_data->pctype, fd_data->fd_id);
 451                 }
 452         }
 453 
 454         if (add)
 455                 pf->fd_ip4_filter_cnt++;
 456         else
 457                 pf->fd_ip4_filter_cnt--;
 458 
 459         return 0;
 460 }
 461 
 462 /**
 463  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 464  * @vsi: pointer to the targeted VSI
 465  * @input: filter to add or delete
 466  * @add: true adds a filter, false removes it
 467  *
 468  **/
 469 int i40e_add_del_fdir(struct i40e_vsi *vsi,
 470                       struct i40e_fdir_filter *input, bool add)
 471 {
 472         struct i40e_pf *pf = vsi->back;
 473         int ret;
 474 
 475         switch (input->flow_type & ~FLOW_EXT) {
 476         case TCP_V4_FLOW:
 477                 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 478                 break;
 479         case UDP_V4_FLOW:
 480                 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 481                 break;
 482         case SCTP_V4_FLOW:
 483                 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
 484                 break;
 485         case IP_USER_FLOW:
 486                 switch (input->ip4_proto) {
 487                 case IPPROTO_TCP:
 488                         ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 489                         break;
 490                 case IPPROTO_UDP:
 491                         ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 492                         break;
 493                 case IPPROTO_SCTP:
 494                         ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
 495                         break;
 496                 case IPPROTO_IP:
 497                         ret = i40e_add_del_fdir_ipv4(vsi, input, add);
 498                         break;
 499                 default:
 500                         /* We cannot support masking based on protocol */
 501                         dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
 502                                  input->ip4_proto);
 503                         return -EINVAL;
 504                 }
 505                 break;
 506         default:
 507                 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
 508                          input->flow_type);
 509                 return -EINVAL;
 510         }
 511 
 512         /* The buffer allocated here will be normally be freed by
 513          * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
 514          * completion. In the event of an error adding the buffer to the FDIR
 515          * ring, it will immediately be freed. It may also be freed by
 516          * i40e_clean_tx_ring() when closing the VSI.
 517          */
 518         return ret;
 519 }
 520 
 521 /**
 522  * i40e_fd_handle_status - check the Programming Status for FD
 523  * @rx_ring: the Rx ring for this descriptor
 524  * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
 525  * @prog_id: the id originally used for programming
 526  *
 527  * This is used to verify if the FD programming or invalidation
 528  * requested by SW to the HW is successful or not and take actions accordingly.
 529  **/
 530 void i40e_fd_handle_status(struct i40e_ring *rx_ring,
 531                            union i40e_rx_desc *rx_desc, u8 prog_id)
 532 {
 533         struct i40e_pf *pf = rx_ring->vsi->back;
 534         struct pci_dev *pdev = pf->pdev;
 535         u32 fcnt_prog, fcnt_avail;
 536         u32 error;
 537         u64 qw;
 538 
 539         qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 540         error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
 541                 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
 542 
 543         if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
 544                 pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
 545                 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
 546                     (I40E_DEBUG_FD & pf->hw.debug_mask))
 547                         dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
 548                                  pf->fd_inv);
 549 
 550                 /* Check if the programming error is for ATR.
 551                  * If so, auto disable ATR and set a state for
 552                  * flush in progress. Next time we come here if flush is in
 553                  * progress do nothing, once flush is complete the state will
 554                  * be cleared.
 555                  */
 556                 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
 557                         return;
 558 
 559                 pf->fd_add_err++;
 560                 /* store the current atr filter count */
 561                 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
 562 
 563                 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
 564                     test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
 565                         /* These set_bit() calls aren't atomic with the
 566                          * test_bit() here, but worse case we potentially
 567                          * disable ATR and queue a flush right after SB
 568                          * support is re-enabled. That shouldn't cause an
 569                          * issue in practice
 570                          */
 571                         set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 572                         set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
 573                 }
 574 
 575                 /* filter programming failed most likely due to table full */
 576                 fcnt_prog = i40e_get_global_fd_count(pf);
 577                 fcnt_avail = pf->fdir_pf_filter_count;
 578                 /* If ATR is running fcnt_prog can quickly change,
 579                  * if we are very close to full, it makes sense to disable
 580                  * FD ATR/SB and then re-enable it when there is room.
 581                  */
 582                 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
 583                         if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
 584                             !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
 585                                               pf->state))
 586                                 if (I40E_DEBUG_FD & pf->hw.debug_mask)
 587                                         dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
 588                 }
 589         } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
 590                 if (I40E_DEBUG_FD & pf->hw.debug_mask)
 591                         dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
 592                                  rx_desc->wb.qword0.hi_dword.fd_id);
 593         }
 594 }
 595 
 596 /**
 597  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 598  * @ring:      the ring that owns the buffer
 599  * @tx_buffer: the buffer to free
 600  **/
 601 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
 602                                             struct i40e_tx_buffer *tx_buffer)
 603 {
 604         if (tx_buffer->skb) {
 605                 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
 606                         kfree(tx_buffer->raw_buf);
 607                 else if (ring_is_xdp(ring))
 608                         xdp_return_frame(tx_buffer->xdpf);
 609                 else
 610                         dev_kfree_skb_any(tx_buffer->skb);
 611                 if (dma_unmap_len(tx_buffer, len))
 612                         dma_unmap_single(ring->dev,
 613                                          dma_unmap_addr(tx_buffer, dma),
 614                                          dma_unmap_len(tx_buffer, len),
 615                                          DMA_TO_DEVICE);
 616         } else if (dma_unmap_len(tx_buffer, len)) {
 617                 dma_unmap_page(ring->dev,
 618                                dma_unmap_addr(tx_buffer, dma),
 619                                dma_unmap_len(tx_buffer, len),
 620                                DMA_TO_DEVICE);
 621         }
 622 
 623         tx_buffer->next_to_watch = NULL;
 624         tx_buffer->skb = NULL;
 625         dma_unmap_len_set(tx_buffer, len, 0);
 626         /* tx_buffer must be completely set up in the transmit path */
 627 }
 628 
 629 /**
 630  * i40e_clean_tx_ring - Free any empty Tx buffers
 631  * @tx_ring: ring to be cleaned
 632  **/
 633 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
 634 {
 635         unsigned long bi_size;
 636         u16 i;
 637 
 638         if (ring_is_xdp(tx_ring) && tx_ring->xsk_umem) {
 639                 i40e_xsk_clean_tx_ring(tx_ring);
 640         } else {
 641                 /* ring already cleared, nothing to do */
 642                 if (!tx_ring->tx_bi)
 643                         return;
 644 
 645                 /* Free all the Tx ring sk_buffs */
 646                 for (i = 0; i < tx_ring->count; i++)
 647                         i40e_unmap_and_free_tx_resource(tx_ring,
 648                                                         &tx_ring->tx_bi[i]);
 649         }
 650 
 651         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 652         memset(tx_ring->tx_bi, 0, bi_size);
 653 
 654         /* Zero out the descriptor ring */
 655         memset(tx_ring->desc, 0, tx_ring->size);
 656 
 657         tx_ring->next_to_use = 0;
 658         tx_ring->next_to_clean = 0;
 659 
 660         if (!tx_ring->netdev)
 661                 return;
 662 
 663         /* cleanup Tx queue statistics */
 664         netdev_tx_reset_queue(txring_txq(tx_ring));
 665 }
 666 
 667 /**
 668  * i40e_free_tx_resources - Free Tx resources per queue
 669  * @tx_ring: Tx descriptor ring for a specific queue
 670  *
 671  * Free all transmit software resources
 672  **/
 673 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
 674 {
 675         i40e_clean_tx_ring(tx_ring);
 676         kfree(tx_ring->tx_bi);
 677         tx_ring->tx_bi = NULL;
 678 
 679         if (tx_ring->desc) {
 680                 dma_free_coherent(tx_ring->dev, tx_ring->size,
 681                                   tx_ring->desc, tx_ring->dma);
 682                 tx_ring->desc = NULL;
 683         }
 684 }
 685 
 686 /**
 687  * i40e_get_tx_pending - how many tx descriptors not processed
 688  * @ring: the ring of descriptors
 689  * @in_sw: use SW variables
 690  *
 691  * Since there is no access to the ring head register
 692  * in XL710, we need to use our local copies
 693  **/
 694 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
 695 {
 696         u32 head, tail;
 697 
 698         if (!in_sw) {
 699                 head = i40e_get_head(ring);
 700                 tail = readl(ring->tail);
 701         } else {
 702                 head = ring->next_to_clean;
 703                 tail = ring->next_to_use;
 704         }
 705 
 706         if (head != tail)
 707                 return (head < tail) ?
 708                         tail - head : (tail + ring->count - head);
 709 
 710         return 0;
 711 }
 712 
 713 /**
 714  * i40e_detect_recover_hung - Function to detect and recover hung_queues
 715  * @vsi:  pointer to vsi struct with tx queues
 716  *
 717  * VSI has netdev and netdev has TX queues. This function is to check each of
 718  * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
 719  **/
 720 void i40e_detect_recover_hung(struct i40e_vsi *vsi)
 721 {
 722         struct i40e_ring *tx_ring = NULL;
 723         struct net_device *netdev;
 724         unsigned int i;
 725         int packets;
 726 
 727         if (!vsi)
 728                 return;
 729 
 730         if (test_bit(__I40E_VSI_DOWN, vsi->state))
 731                 return;
 732 
 733         netdev = vsi->netdev;
 734         if (!netdev)
 735                 return;
 736 
 737         if (!netif_carrier_ok(netdev))
 738                 return;
 739 
 740         for (i = 0; i < vsi->num_queue_pairs; i++) {
 741                 tx_ring = vsi->tx_rings[i];
 742                 if (tx_ring && tx_ring->desc) {
 743                         /* If packet counter has not changed the queue is
 744                          * likely stalled, so force an interrupt for this
 745                          * queue.
 746                          *
 747                          * prev_pkt_ctr would be negative if there was no
 748                          * pending work.
 749                          */
 750                         packets = tx_ring->stats.packets & INT_MAX;
 751                         if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
 752                                 i40e_force_wb(vsi, tx_ring->q_vector);
 753                                 continue;
 754                         }
 755 
 756                         /* Memory barrier between read of packet count and call
 757                          * to i40e_get_tx_pending()
 758                          */
 759                         smp_rmb();
 760                         tx_ring->tx_stats.prev_pkt_ctr =
 761                             i40e_get_tx_pending(tx_ring, true) ? packets : -1;
 762                 }
 763         }
 764 }
 765 
 766 /**
 767  * i40e_clean_tx_irq - Reclaim resources after transmit completes
 768  * @vsi: the VSI we care about
 769  * @tx_ring: Tx ring to clean
 770  * @napi_budget: Used to determine if we are in netpoll
 771  *
 772  * Returns true if there's any budget left (e.g. the clean is finished)
 773  **/
 774 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
 775                               struct i40e_ring *tx_ring, int napi_budget)
 776 {
 777         int i = tx_ring->next_to_clean;
 778         struct i40e_tx_buffer *tx_buf;
 779         struct i40e_tx_desc *tx_head;
 780         struct i40e_tx_desc *tx_desc;
 781         unsigned int total_bytes = 0, total_packets = 0;
 782         unsigned int budget = vsi->work_limit;
 783 
 784         tx_buf = &tx_ring->tx_bi[i];
 785         tx_desc = I40E_TX_DESC(tx_ring, i);
 786         i -= tx_ring->count;
 787 
 788         tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
 789 
 790         do {
 791                 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 792 
 793                 /* if next_to_watch is not set then there is no work pending */
 794                 if (!eop_desc)
 795                         break;
 796 
 797                 /* prevent any other reads prior to eop_desc */
 798                 smp_rmb();
 799 
 800                 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 801                 /* we have caught up to head, no work left to do */
 802                 if (tx_head == tx_desc)
 803                         break;
 804 
 805                 /* clear next_to_watch to prevent false hangs */
 806                 tx_buf->next_to_watch = NULL;
 807 
 808                 /* update the statistics for this packet */
 809                 total_bytes += tx_buf->bytecount;
 810                 total_packets += tx_buf->gso_segs;
 811 
 812                 /* free the skb/XDP data */
 813                 if (ring_is_xdp(tx_ring))
 814                         xdp_return_frame(tx_buf->xdpf);
 815                 else
 816                         napi_consume_skb(tx_buf->skb, napi_budget);
 817 
 818                 /* unmap skb header data */
 819                 dma_unmap_single(tx_ring->dev,
 820                                  dma_unmap_addr(tx_buf, dma),
 821                                  dma_unmap_len(tx_buf, len),
 822                                  DMA_TO_DEVICE);
 823 
 824                 /* clear tx_buffer data */
 825                 tx_buf->skb = NULL;
 826                 dma_unmap_len_set(tx_buf, len, 0);
 827 
 828                 /* unmap remaining buffers */
 829                 while (tx_desc != eop_desc) {
 830                         i40e_trace(clean_tx_irq_unmap,
 831                                    tx_ring, tx_desc, tx_buf);
 832 
 833                         tx_buf++;
 834                         tx_desc++;
 835                         i++;
 836                         if (unlikely(!i)) {
 837                                 i -= tx_ring->count;
 838                                 tx_buf = tx_ring->tx_bi;
 839                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
 840                         }
 841 
 842                         /* unmap any remaining paged data */
 843                         if (dma_unmap_len(tx_buf, len)) {
 844                                 dma_unmap_page(tx_ring->dev,
 845                                                dma_unmap_addr(tx_buf, dma),
 846                                                dma_unmap_len(tx_buf, len),
 847                                                DMA_TO_DEVICE);
 848                                 dma_unmap_len_set(tx_buf, len, 0);
 849                         }
 850                 }
 851 
 852                 /* move us one more past the eop_desc for start of next pkt */
 853                 tx_buf++;
 854                 tx_desc++;
 855                 i++;
 856                 if (unlikely(!i)) {
 857                         i -= tx_ring->count;
 858                         tx_buf = tx_ring->tx_bi;
 859                         tx_desc = I40E_TX_DESC(tx_ring, 0);
 860                 }
 861 
 862                 prefetch(tx_desc);
 863 
 864                 /* update budget accounting */
 865                 budget--;
 866         } while (likely(budget));
 867 
 868         i += tx_ring->count;
 869         tx_ring->next_to_clean = i;
 870         i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
 871         i40e_arm_wb(tx_ring, vsi, budget);
 872 
 873         if (ring_is_xdp(tx_ring))
 874                 return !!budget;
 875 
 876         /* notify netdev of completed buffers */
 877         netdev_tx_completed_queue(txring_txq(tx_ring),
 878                                   total_packets, total_bytes);
 879 
 880 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
 881         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
 882                      (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 883                 /* Make sure that anybody stopping the queue after this
 884                  * sees the new next_to_clean.
 885                  */
 886                 smp_mb();
 887                 if (__netif_subqueue_stopped(tx_ring->netdev,
 888                                              tx_ring->queue_index) &&
 889                    !test_bit(__I40E_VSI_DOWN, vsi->state)) {
 890                         netif_wake_subqueue(tx_ring->netdev,
 891                                             tx_ring->queue_index);
 892                         ++tx_ring->tx_stats.restart_queue;
 893                 }
 894         }
 895 
 896         return !!budget;
 897 }
 898 
 899 /**
 900  * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
 901  * @vsi: the VSI we care about
 902  * @q_vector: the vector on which to enable writeback
 903  *
 904  **/
 905 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
 906                                   struct i40e_q_vector *q_vector)
 907 {
 908         u16 flags = q_vector->tx.ring[0].flags;
 909         u32 val;
 910 
 911         if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
 912                 return;
 913 
 914         if (q_vector->arm_wb_state)
 915                 return;
 916 
 917         if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 918                 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
 919                       I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
 920 
 921                 wr32(&vsi->back->hw,
 922                      I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
 923                      val);
 924         } else {
 925                 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
 926                       I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
 927 
 928                 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
 929         }
 930         q_vector->arm_wb_state = true;
 931 }
 932 
 933 /**
 934  * i40e_force_wb - Issue SW Interrupt so HW does a wb
 935  * @vsi: the VSI we care about
 936  * @q_vector: the vector  on which to force writeback
 937  *
 938  **/
 939 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
 940 {
 941         if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 942                 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
 943                           I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
 944                           I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
 945                           I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
 946                           /* allow 00 to be written to the index */
 947 
 948                 wr32(&vsi->back->hw,
 949                      I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
 950         } else {
 951                 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
 952                           I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
 953                           I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
 954                           I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
 955                         /* allow 00 to be written to the index */
 956 
 957                 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
 958         }
 959 }
 960 
 961 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
 962                                         struct i40e_ring_container *rc)
 963 {
 964         return &q_vector->rx == rc;
 965 }
 966 
 967 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
 968 {
 969         unsigned int divisor;
 970 
 971         switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
 972         case I40E_LINK_SPEED_40GB:
 973                 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
 974                 break;
 975         case I40E_LINK_SPEED_25GB:
 976         case I40E_LINK_SPEED_20GB:
 977                 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
 978                 break;
 979         default:
 980         case I40E_LINK_SPEED_10GB:
 981                 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
 982                 break;
 983         case I40E_LINK_SPEED_1GB:
 984         case I40E_LINK_SPEED_100MB:
 985                 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
 986                 break;
 987         }
 988 
 989         return divisor;
 990 }
 991 
 992 /**
 993  * i40e_update_itr - update the dynamic ITR value based on statistics
 994  * @q_vector: structure containing interrupt and ring information
 995  * @rc: structure containing ring performance data
 996  *
 997  * Stores a new ITR value based on packets and byte
 998  * counts during the last interrupt.  The advantage of per interrupt
 999  * computation is faster updates and more accurate ITR for the current
1000  * traffic pattern.  Constants in this function were computed
1001  * based on theoretical maximum wire speed and thresholds were set based
1002  * on testing data as well as attempting to minimize response time
1003  * while increasing bulk throughput.
1004  **/
1005 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1006                             struct i40e_ring_container *rc)
1007 {
1008         unsigned int avg_wire_size, packets, bytes, itr;
1009         unsigned long next_update = jiffies;
1010 
1011         /* If we don't have any rings just leave ourselves set for maximum
1012          * possible latency so we take ourselves out of the equation.
1013          */
1014         if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1015                 return;
1016 
1017         /* For Rx we want to push the delay up and default to low latency.
1018          * for Tx we want to pull the delay down and default to high latency.
1019          */
1020         itr = i40e_container_is_rx(q_vector, rc) ?
1021               I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1022               I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1023 
1024         /* If we didn't update within up to 1 - 2 jiffies we can assume
1025          * that either packets are coming in so slow there hasn't been
1026          * any work, or that there is so much work that NAPI is dealing
1027          * with interrupt moderation and we don't need to do anything.
1028          */
1029         if (time_after(next_update, rc->next_update))
1030                 goto clear_counts;
1031 
1032         /* If itr_countdown is set it means we programmed an ITR within
1033          * the last 4 interrupt cycles. This has a side effect of us
1034          * potentially firing an early interrupt. In order to work around
1035          * this we need to throw out any data received for a few
1036          * interrupts following the update.
1037          */
1038         if (q_vector->itr_countdown) {
1039                 itr = rc->target_itr;
1040                 goto clear_counts;
1041         }
1042 
1043         packets = rc->total_packets;
1044         bytes = rc->total_bytes;
1045 
1046         if (i40e_container_is_rx(q_vector, rc)) {
1047                 /* If Rx there are 1 to 4 packets and bytes are less than
1048                  * 9000 assume insufficient data to use bulk rate limiting
1049                  * approach unless Tx is already in bulk rate limiting. We
1050                  * are likely latency driven.
1051                  */
1052                 if (packets && packets < 4 && bytes < 9000 &&
1053                     (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1054                         itr = I40E_ITR_ADAPTIVE_LATENCY;
1055                         goto adjust_by_size;
1056                 }
1057         } else if (packets < 4) {
1058                 /* If we have Tx and Rx ITR maxed and Tx ITR is running in
1059                  * bulk mode and we are receiving 4 or fewer packets just
1060                  * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1061                  * that the Rx can relax.
1062                  */
1063                 if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1064                     (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1065                      I40E_ITR_ADAPTIVE_MAX_USECS)
1066                         goto clear_counts;
1067         } else if (packets > 32) {
1068                 /* If we have processed over 32 packets in a single interrupt
1069                  * for Tx assume we need to switch over to "bulk" mode.
1070                  */
1071                 rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1072         }
1073 
1074         /* We have no packets to actually measure against. This means
1075          * either one of the other queues on this vector is active or
1076          * we are a Tx queue doing TSO with too high of an interrupt rate.
1077          *
1078          * Between 4 and 56 we can assume that our current interrupt delay
1079          * is only slightly too low. As such we should increase it by a small
1080          * fixed amount.
1081          */
1082         if (packets < 56) {
1083                 itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1084                 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1085                         itr &= I40E_ITR_ADAPTIVE_LATENCY;
1086                         itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1087                 }
1088                 goto clear_counts;
1089         }
1090 
1091         if (packets <= 256) {
1092                 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1093                 itr &= I40E_ITR_MASK;
1094 
1095                 /* Between 56 and 112 is our "goldilocks" zone where we are
1096                  * working out "just right". Just report that our current
1097                  * ITR is good for us.
1098                  */
1099                 if (packets <= 112)
1100                         goto clear_counts;
1101 
1102                 /* If packet count is 128 or greater we are likely looking
1103                  * at a slight overrun of the delay we want. Try halving
1104                  * our delay to see if that will cut the number of packets
1105                  * in half per interrupt.
1106                  */
1107                 itr /= 2;
1108                 itr &= I40E_ITR_MASK;
1109                 if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1110                         itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1111 
1112                 goto clear_counts;
1113         }
1114 
1115         /* The paths below assume we are dealing with a bulk ITR since
1116          * number of packets is greater than 256. We are just going to have
1117          * to compute a value and try to bring the count under control,
1118          * though for smaller packet sizes there isn't much we can do as
1119          * NAPI polling will likely be kicking in sooner rather than later.
1120          */
1121         itr = I40E_ITR_ADAPTIVE_BULK;
1122 
1123 adjust_by_size:
1124         /* If packet counts are 256 or greater we can assume we have a gross
1125          * overestimation of what the rate should be. Instead of trying to fine
1126          * tune it just use the formula below to try and dial in an exact value
1127          * give the current packet size of the frame.
1128          */
1129         avg_wire_size = bytes / packets;
1130 
1131         /* The following is a crude approximation of:
1132          *  wmem_default / (size + overhead) = desired_pkts_per_int
1133          *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1134          *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1135          *
1136          * Assuming wmem_default is 212992 and overhead is 640 bytes per
1137          * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1138          * formula down to
1139          *
1140          *  (170 * (size + 24)) / (size + 640) = ITR
1141          *
1142          * We first do some math on the packet size and then finally bitshift
1143          * by 8 after rounding up. We also have to account for PCIe link speed
1144          * difference as ITR scales based on this.
1145          */
1146         if (avg_wire_size <= 60) {
1147                 /* Start at 250k ints/sec */
1148                 avg_wire_size = 4096;
1149         } else if (avg_wire_size <= 380) {
1150                 /* 250K ints/sec to 60K ints/sec */
1151                 avg_wire_size *= 40;
1152                 avg_wire_size += 1696;
1153         } else if (avg_wire_size <= 1084) {
1154                 /* 60K ints/sec to 36K ints/sec */
1155                 avg_wire_size *= 15;
1156                 avg_wire_size += 11452;
1157         } else if (avg_wire_size <= 1980) {
1158                 /* 36K ints/sec to 30K ints/sec */
1159                 avg_wire_size *= 5;
1160                 avg_wire_size += 22420;
1161         } else {
1162                 /* plateau at a limit of 30K ints/sec */
1163                 avg_wire_size = 32256;
1164         }
1165 
1166         /* If we are in low latency mode halve our delay which doubles the
1167          * rate to somewhere between 100K to 16K ints/sec
1168          */
1169         if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1170                 avg_wire_size /= 2;
1171 
1172         /* Resultant value is 256 times larger than it needs to be. This
1173          * gives us room to adjust the value as needed to either increase
1174          * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1175          *
1176          * Use addition as we have already recorded the new latency flag
1177          * for the ITR value.
1178          */
1179         itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1180                I40E_ITR_ADAPTIVE_MIN_INC;
1181 
1182         if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1183                 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1184                 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1185         }
1186 
1187 clear_counts:
1188         /* write back value */
1189         rc->target_itr = itr;
1190 
1191         /* next update should occur within next jiffy */
1192         rc->next_update = next_update + 1;
1193 
1194         rc->total_bytes = 0;
1195         rc->total_packets = 0;
1196 }
1197 
1198 /**
1199  * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1200  * @rx_ring: rx descriptor ring to store buffers on
1201  * @old_buff: donor buffer to have page reused
1202  *
1203  * Synchronizes page for reuse by the adapter
1204  **/
1205 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1206                                struct i40e_rx_buffer *old_buff)
1207 {
1208         struct i40e_rx_buffer *new_buff;
1209         u16 nta = rx_ring->next_to_alloc;
1210 
1211         new_buff = &rx_ring->rx_bi[nta];
1212 
1213         /* update, and store next to alloc */
1214         nta++;
1215         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1216 
1217         /* transfer page from old buffer to new buffer */
1218         new_buff->dma           = old_buff->dma;
1219         new_buff->page          = old_buff->page;
1220         new_buff->page_offset   = old_buff->page_offset;
1221         new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
1222 
1223         rx_ring->rx_stats.page_reuse_count++;
1224 
1225         /* clear contents of buffer_info */
1226         old_buff->page = NULL;
1227 }
1228 
1229 /**
1230  * i40e_rx_is_programming_status - check for programming status descriptor
1231  * @qw: qword representing status_error_len in CPU ordering
1232  *
1233  * The value of in the descriptor length field indicate if this
1234  * is a programming status descriptor for flow director or FCoE
1235  * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise
1236  * it is a packet descriptor.
1237  **/
1238 static inline bool i40e_rx_is_programming_status(u64 qw)
1239 {
1240         /* The Rx filter programming status and SPH bit occupy the same
1241          * spot in the descriptor. Since we don't support packet split we
1242          * can just reuse the bit as an indication that this is a
1243          * programming status descriptor.
1244          */
1245         return qw & I40E_RXD_QW1_LENGTH_SPH_MASK;
1246 }
1247 
1248 /**
1249  * i40e_clean_programming_status - try clean the programming status descriptor
1250  * @rx_ring: the rx ring that has this descriptor
1251  * @rx_desc: the rx descriptor written back by HW
1252  * @qw: qword representing status_error_len in CPU ordering
1253  *
1254  * Flow director should handle FD_FILTER_STATUS to check its filter programming
1255  * status being successful or not and take actions accordingly. FCoE should
1256  * handle its context/filter programming/invalidation status and take actions.
1257  *
1258  * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1259  **/
1260 struct i40e_rx_buffer *i40e_clean_programming_status(
1261         struct i40e_ring *rx_ring,
1262         union i40e_rx_desc *rx_desc,
1263         u64 qw)
1264 {
1265         struct i40e_rx_buffer *rx_buffer;
1266         u32 ntc;
1267         u8 id;
1268 
1269         if (!i40e_rx_is_programming_status(qw))
1270                 return NULL;
1271 
1272         ntc = rx_ring->next_to_clean;
1273 
1274         /* fetch, update, and store next to clean */
1275         rx_buffer = &rx_ring->rx_bi[ntc++];
1276         ntc = (ntc < rx_ring->count) ? ntc : 0;
1277         rx_ring->next_to_clean = ntc;
1278 
1279         prefetch(I40E_RX_DESC(rx_ring, ntc));
1280 
1281         id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1282                   I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1283 
1284         if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1285                 i40e_fd_handle_status(rx_ring, rx_desc, id);
1286 
1287         return rx_buffer;
1288 }
1289 
1290 /**
1291  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1292  * @tx_ring: the tx ring to set up
1293  *
1294  * Return 0 on success, negative on error
1295  **/
1296 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1297 {
1298         struct device *dev = tx_ring->dev;
1299         int bi_size;
1300 
1301         if (!dev)
1302                 return -ENOMEM;
1303 
1304         /* warn if we are about to overwrite the pointer */
1305         WARN_ON(tx_ring->tx_bi);
1306         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1307         tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1308         if (!tx_ring->tx_bi)
1309                 goto err;
1310 
1311         u64_stats_init(&tx_ring->syncp);
1312 
1313         /* round up to nearest 4K */
1314         tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1315         /* add u32 for head writeback, align after this takes care of
1316          * guaranteeing this is at least one cache line in size
1317          */
1318         tx_ring->size += sizeof(u32);
1319         tx_ring->size = ALIGN(tx_ring->size, 4096);
1320         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1321                                            &tx_ring->dma, GFP_KERNEL);
1322         if (!tx_ring->desc) {
1323                 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1324                          tx_ring->size);
1325                 goto err;
1326         }
1327 
1328         tx_ring->next_to_use = 0;
1329         tx_ring->next_to_clean = 0;
1330         tx_ring->tx_stats.prev_pkt_ctr = -1;
1331         return 0;
1332 
1333 err:
1334         kfree(tx_ring->tx_bi);
1335         tx_ring->tx_bi = NULL;
1336         return -ENOMEM;
1337 }
1338 
1339 /**
1340  * i40e_clean_rx_ring - Free Rx buffers
1341  * @rx_ring: ring to be cleaned
1342  **/
1343 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1344 {
1345         unsigned long bi_size;
1346         u16 i;
1347 
1348         /* ring already cleared, nothing to do */
1349         if (!rx_ring->rx_bi)
1350                 return;
1351 
1352         if (rx_ring->skb) {
1353                 dev_kfree_skb(rx_ring->skb);
1354                 rx_ring->skb = NULL;
1355         }
1356 
1357         if (rx_ring->xsk_umem) {
1358                 i40e_xsk_clean_rx_ring(rx_ring);
1359                 goto skip_free;
1360         }
1361 
1362         /* Free all the Rx ring sk_buffs */
1363         for (i = 0; i < rx_ring->count; i++) {
1364                 struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
1365 
1366                 if (!rx_bi->page)
1367                         continue;
1368 
1369                 /* Invalidate cache lines that may have been written to by
1370                  * device so that we avoid corrupting memory.
1371                  */
1372                 dma_sync_single_range_for_cpu(rx_ring->dev,
1373                                               rx_bi->dma,
1374                                               rx_bi->page_offset,
1375                                               rx_ring->rx_buf_len,
1376                                               DMA_FROM_DEVICE);
1377 
1378                 /* free resources associated with mapping */
1379                 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1380                                      i40e_rx_pg_size(rx_ring),
1381                                      DMA_FROM_DEVICE,
1382                                      I40E_RX_DMA_ATTR);
1383 
1384                 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1385 
1386                 rx_bi->page = NULL;
1387                 rx_bi->page_offset = 0;
1388         }
1389 
1390 skip_free:
1391         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1392         memset(rx_ring->rx_bi, 0, bi_size);
1393 
1394         /* Zero out the descriptor ring */
1395         memset(rx_ring->desc, 0, rx_ring->size);
1396 
1397         rx_ring->next_to_alloc = 0;
1398         rx_ring->next_to_clean = 0;
1399         rx_ring->next_to_use = 0;
1400 }
1401 
1402 /**
1403  * i40e_free_rx_resources - Free Rx resources
1404  * @rx_ring: ring to clean the resources from
1405  *
1406  * Free all receive software resources
1407  **/
1408 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1409 {
1410         i40e_clean_rx_ring(rx_ring);
1411         if (rx_ring->vsi->type == I40E_VSI_MAIN)
1412                 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1413         rx_ring->xdp_prog = NULL;
1414         kfree(rx_ring->rx_bi);
1415         rx_ring->rx_bi = NULL;
1416 
1417         if (rx_ring->desc) {
1418                 dma_free_coherent(rx_ring->dev, rx_ring->size,
1419                                   rx_ring->desc, rx_ring->dma);
1420                 rx_ring->desc = NULL;
1421         }
1422 }
1423 
1424 /**
1425  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1426  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1427  *
1428  * Returns 0 on success, negative on failure
1429  **/
1430 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1431 {
1432         struct device *dev = rx_ring->dev;
1433         int err = -ENOMEM;
1434         int bi_size;
1435 
1436         /* warn if we are about to overwrite the pointer */
1437         WARN_ON(rx_ring->rx_bi);
1438         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1439         rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1440         if (!rx_ring->rx_bi)
1441                 goto err;
1442 
1443         u64_stats_init(&rx_ring->syncp);
1444 
1445         /* Round up to nearest 4K */
1446         rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1447         rx_ring->size = ALIGN(rx_ring->size, 4096);
1448         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1449                                            &rx_ring->dma, GFP_KERNEL);
1450 
1451         if (!rx_ring->desc) {
1452                 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1453                          rx_ring->size);
1454                 goto err;
1455         }
1456 
1457         rx_ring->next_to_alloc = 0;
1458         rx_ring->next_to_clean = 0;
1459         rx_ring->next_to_use = 0;
1460 
1461         /* XDP RX-queue info only needed for RX rings exposed to XDP */
1462         if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1463                 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1464                                        rx_ring->queue_index);
1465                 if (err < 0)
1466                         goto err;
1467         }
1468 
1469         rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1470 
1471         return 0;
1472 err:
1473         kfree(rx_ring->rx_bi);
1474         rx_ring->rx_bi = NULL;
1475         return err;
1476 }
1477 
1478 /**
1479  * i40e_release_rx_desc - Store the new tail and head values
1480  * @rx_ring: ring to bump
1481  * @val: new head index
1482  **/
1483 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1484 {
1485         rx_ring->next_to_use = val;
1486 
1487         /* update next to alloc since we have filled the ring */
1488         rx_ring->next_to_alloc = val;
1489 
1490         /* Force memory writes to complete before letting h/w
1491          * know there are new descriptors to fetch.  (Only
1492          * applicable for weak-ordered memory model archs,
1493          * such as IA-64).
1494          */
1495         wmb();
1496         writel(val, rx_ring->tail);
1497 }
1498 
1499 /**
1500  * i40e_rx_offset - Return expected offset into page to access data
1501  * @rx_ring: Ring we are requesting offset of
1502  *
1503  * Returns the offset value for ring into the data buffer.
1504  */
1505 static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1506 {
1507         return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
1508 }
1509 
1510 /**
1511  * i40e_alloc_mapped_page - recycle or make a new page
1512  * @rx_ring: ring to use
1513  * @bi: rx_buffer struct to modify
1514  *
1515  * Returns true if the page was successfully allocated or
1516  * reused.
1517  **/
1518 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1519                                    struct i40e_rx_buffer *bi)
1520 {
1521         struct page *page = bi->page;
1522         dma_addr_t dma;
1523 
1524         /* since we are recycling buffers we should seldom need to alloc */
1525         if (likely(page)) {
1526                 rx_ring->rx_stats.page_reuse_count++;
1527                 return true;
1528         }
1529 
1530         /* alloc new page for storage */
1531         page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1532         if (unlikely(!page)) {
1533                 rx_ring->rx_stats.alloc_page_failed++;
1534                 return false;
1535         }
1536 
1537         /* map page for use */
1538         dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1539                                  i40e_rx_pg_size(rx_ring),
1540                                  DMA_FROM_DEVICE,
1541                                  I40E_RX_DMA_ATTR);
1542 
1543         /* if mapping failed free memory back to system since
1544          * there isn't much point in holding memory we can't use
1545          */
1546         if (dma_mapping_error(rx_ring->dev, dma)) {
1547                 __free_pages(page, i40e_rx_pg_order(rx_ring));
1548                 rx_ring->rx_stats.alloc_page_failed++;
1549                 return false;
1550         }
1551 
1552         bi->dma = dma;
1553         bi->page = page;
1554         bi->page_offset = i40e_rx_offset(rx_ring);
1555         page_ref_add(page, USHRT_MAX - 1);
1556         bi->pagecnt_bias = USHRT_MAX;
1557 
1558         return true;
1559 }
1560 
1561 /**
1562  * i40e_alloc_rx_buffers - Replace used receive buffers
1563  * @rx_ring: ring to place buffers on
1564  * @cleaned_count: number of buffers to replace
1565  *
1566  * Returns false if all allocations were successful, true if any fail
1567  **/
1568 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1569 {
1570         u16 ntu = rx_ring->next_to_use;
1571         union i40e_rx_desc *rx_desc;
1572         struct i40e_rx_buffer *bi;
1573 
1574         /* do nothing if no valid netdev defined */
1575         if (!rx_ring->netdev || !cleaned_count)
1576                 return false;
1577 
1578         rx_desc = I40E_RX_DESC(rx_ring, ntu);
1579         bi = &rx_ring->rx_bi[ntu];
1580 
1581         do {
1582                 if (!i40e_alloc_mapped_page(rx_ring, bi))
1583                         goto no_buffers;
1584 
1585                 /* sync the buffer for use by the device */
1586                 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1587                                                  bi->page_offset,
1588                                                  rx_ring->rx_buf_len,
1589                                                  DMA_FROM_DEVICE);
1590 
1591                 /* Refresh the desc even if buffer_addrs didn't change
1592                  * because each write-back erases this info.
1593                  */
1594                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1595 
1596                 rx_desc++;
1597                 bi++;
1598                 ntu++;
1599                 if (unlikely(ntu == rx_ring->count)) {
1600                         rx_desc = I40E_RX_DESC(rx_ring, 0);
1601                         bi = rx_ring->rx_bi;
1602                         ntu = 0;
1603                 }
1604 
1605                 /* clear the status bits for the next_to_use descriptor */
1606                 rx_desc->wb.qword1.status_error_len = 0;
1607 
1608                 cleaned_count--;
1609         } while (cleaned_count);
1610 
1611         if (rx_ring->next_to_use != ntu)
1612                 i40e_release_rx_desc(rx_ring, ntu);
1613 
1614         return false;
1615 
1616 no_buffers:
1617         if (rx_ring->next_to_use != ntu)
1618                 i40e_release_rx_desc(rx_ring, ntu);
1619 
1620         /* make sure to come back via polling to try again after
1621          * allocation failure
1622          */
1623         return true;
1624 }
1625 
1626 /**
1627  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1628  * @vsi: the VSI we care about
1629  * @skb: skb currently being received and modified
1630  * @rx_desc: the receive descriptor
1631  **/
1632 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1633                                     struct sk_buff *skb,
1634                                     union i40e_rx_desc *rx_desc)
1635 {
1636         struct i40e_rx_ptype_decoded decoded;
1637         u32 rx_error, rx_status;
1638         bool ipv4, ipv6;
1639         u8 ptype;
1640         u64 qword;
1641 
1642         qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1643         ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1644         rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1645                    I40E_RXD_QW1_ERROR_SHIFT;
1646         rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1647                     I40E_RXD_QW1_STATUS_SHIFT;
1648         decoded = decode_rx_desc_ptype(ptype);
1649 
1650         skb->ip_summed = CHECKSUM_NONE;
1651 
1652         skb_checksum_none_assert(skb);
1653 
1654         /* Rx csum enabled and ip headers found? */
1655         if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1656                 return;
1657 
1658         /* did the hardware decode the packet and checksum? */
1659         if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1660                 return;
1661 
1662         /* both known and outer_ip must be set for the below code to work */
1663         if (!(decoded.known && decoded.outer_ip))
1664                 return;
1665 
1666         ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1667                (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1668         ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1669                (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1670 
1671         if (ipv4 &&
1672             (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1673                          BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1674                 goto checksum_fail;
1675 
1676         /* likely incorrect csum if alternate IP extension headers found */
1677         if (ipv6 &&
1678             rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1679                 /* don't increment checksum err here, non-fatal err */
1680                 return;
1681 
1682         /* there was some L4 error, count error and punt packet to the stack */
1683         if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1684                 goto checksum_fail;
1685 
1686         /* handle packets that were not able to be checksummed due
1687          * to arrival speed, in this case the stack can compute
1688          * the csum.
1689          */
1690         if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1691                 return;
1692 
1693         /* If there is an outer header present that might contain a checksum
1694          * we need to bump the checksum level by 1 to reflect the fact that
1695          * we are indicating we validated the inner checksum.
1696          */
1697         if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1698                 skb->csum_level = 1;
1699 
1700         /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1701         switch (decoded.inner_prot) {
1702         case I40E_RX_PTYPE_INNER_PROT_TCP:
1703         case I40E_RX_PTYPE_INNER_PROT_UDP:
1704         case I40E_RX_PTYPE_INNER_PROT_SCTP:
1705                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1706                 /* fall though */
1707         default:
1708                 break;
1709         }
1710 
1711         return;
1712 
1713 checksum_fail:
1714         vsi->back->hw_csum_rx_error++;
1715 }
1716 
1717 /**
1718  * i40e_ptype_to_htype - get a hash type
1719  * @ptype: the ptype value from the descriptor
1720  *
1721  * Returns a hash type to be used by skb_set_hash
1722  **/
1723 static inline int i40e_ptype_to_htype(u8 ptype)
1724 {
1725         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1726 
1727         if (!decoded.known)
1728                 return PKT_HASH_TYPE_NONE;
1729 
1730         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1731             decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1732                 return PKT_HASH_TYPE_L4;
1733         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1734                  decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1735                 return PKT_HASH_TYPE_L3;
1736         else
1737                 return PKT_HASH_TYPE_L2;
1738 }
1739 
1740 /**
1741  * i40e_rx_hash - set the hash value in the skb
1742  * @ring: descriptor ring
1743  * @rx_desc: specific descriptor
1744  * @skb: skb currently being received and modified
1745  * @rx_ptype: Rx packet type
1746  **/
1747 static inline void i40e_rx_hash(struct i40e_ring *ring,
1748                                 union i40e_rx_desc *rx_desc,
1749                                 struct sk_buff *skb,
1750                                 u8 rx_ptype)
1751 {
1752         u32 hash;
1753         const __le64 rss_mask =
1754                 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1755                             I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1756 
1757         if (!(ring->netdev->features & NETIF_F_RXHASH))
1758                 return;
1759 
1760         if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1761                 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1762                 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1763         }
1764 }
1765 
1766 /**
1767  * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1768  * @rx_ring: rx descriptor ring packet is being transacted on
1769  * @rx_desc: pointer to the EOP Rx descriptor
1770  * @skb: pointer to current skb being populated
1771  * @rx_ptype: the packet type decoded by hardware
1772  *
1773  * This function checks the ring, descriptor, and packet information in
1774  * order to populate the hash, checksum, VLAN, protocol, and
1775  * other fields within the skb.
1776  **/
1777 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1778                              union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1779 {
1780         u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1781         u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1782                         I40E_RXD_QW1_STATUS_SHIFT;
1783         u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1784         u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1785                    I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1786         u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1787                       I40E_RXD_QW1_PTYPE_SHIFT;
1788 
1789         if (unlikely(tsynvalid))
1790                 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1791 
1792         i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1793 
1794         i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1795 
1796         skb_record_rx_queue(skb, rx_ring->queue_index);
1797 
1798         if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1799                 u16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1800 
1801                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1802                                        le16_to_cpu(vlan_tag));
1803         }
1804 
1805         /* modifies the skb - consumes the enet header */
1806         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1807 }
1808 
1809 /**
1810  * i40e_cleanup_headers - Correct empty headers
1811  * @rx_ring: rx descriptor ring packet is being transacted on
1812  * @skb: pointer to current skb being fixed
1813  * @rx_desc: pointer to the EOP Rx descriptor
1814  *
1815  * Also address the case where we are pulling data in on pages only
1816  * and as such no data is present in the skb header.
1817  *
1818  * In addition if skb is not at least 60 bytes we need to pad it so that
1819  * it is large enough to qualify as a valid Ethernet frame.
1820  *
1821  * Returns true if an error was encountered and skb was freed.
1822  **/
1823 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1824                                  union i40e_rx_desc *rx_desc)
1825 
1826 {
1827         /* XDP packets use error pointer so abort at this point */
1828         if (IS_ERR(skb))
1829                 return true;
1830 
1831         /* ERR_MASK will only have valid bits if EOP set, and
1832          * what we are doing here is actually checking
1833          * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1834          * the error field
1835          */
1836         if (unlikely(i40e_test_staterr(rx_desc,
1837                                        BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1838                 dev_kfree_skb_any(skb);
1839                 return true;
1840         }
1841 
1842         /* if eth_skb_pad returns an error the skb was freed */
1843         if (eth_skb_pad(skb))
1844                 return true;
1845 
1846         return false;
1847 }
1848 
1849 /**
1850  * i40e_page_is_reusable - check if any reuse is possible
1851  * @page: page struct to check
1852  *
1853  * A page is not reusable if it was allocated under low memory
1854  * conditions, or it's not in the same NUMA node as this CPU.
1855  */
1856 static inline bool i40e_page_is_reusable(struct page *page)
1857 {
1858         return (page_to_nid(page) == numa_mem_id()) &&
1859                 !page_is_pfmemalloc(page);
1860 }
1861 
1862 /**
1863  * i40e_can_reuse_rx_page - Determine if this page can be reused by
1864  * the adapter for another receive
1865  *
1866  * @rx_buffer: buffer containing the page
1867  *
1868  * If page is reusable, rx_buffer->page_offset is adjusted to point to
1869  * an unused region in the page.
1870  *
1871  * For small pages, @truesize will be a constant value, half the size
1872  * of the memory at page.  We'll attempt to alternate between high and
1873  * low halves of the page, with one half ready for use by the hardware
1874  * and the other half being consumed by the stack.  We use the page
1875  * ref count to determine whether the stack has finished consuming the
1876  * portion of this page that was passed up with a previous packet.  If
1877  * the page ref count is >1, we'll assume the "other" half page is
1878  * still busy, and this page cannot be reused.
1879  *
1880  * For larger pages, @truesize will be the actual space used by the
1881  * received packet (adjusted upward to an even multiple of the cache
1882  * line size).  This will advance through the page by the amount
1883  * actually consumed by the received packets while there is still
1884  * space for a buffer.  Each region of larger pages will be used at
1885  * most once, after which the page will not be reused.
1886  *
1887  * In either case, if the page is reusable its refcount is increased.
1888  **/
1889 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1890 {
1891         unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1892         struct page *page = rx_buffer->page;
1893 
1894         /* Is any reuse possible? */
1895         if (unlikely(!i40e_page_is_reusable(page)))
1896                 return false;
1897 
1898 #if (PAGE_SIZE < 8192)
1899         /* if we are only owner of page we can reuse it */
1900         if (unlikely((page_count(page) - pagecnt_bias) > 1))
1901                 return false;
1902 #else
1903 #define I40E_LAST_OFFSET \
1904         (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1905         if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1906                 return false;
1907 #endif
1908 
1909         /* If we have drained the page fragment pool we need to update
1910          * the pagecnt_bias and page count so that we fully restock the
1911          * number of references the driver holds.
1912          */
1913         if (unlikely(pagecnt_bias == 1)) {
1914                 page_ref_add(page, USHRT_MAX - 1);
1915                 rx_buffer->pagecnt_bias = USHRT_MAX;
1916         }
1917 
1918         return true;
1919 }
1920 
1921 /**
1922  * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1923  * @rx_ring: rx descriptor ring to transact packets on
1924  * @rx_buffer: buffer containing page to add
1925  * @skb: sk_buff to place the data into
1926  * @size: packet length from rx_desc
1927  *
1928  * This function will add the data contained in rx_buffer->page to the skb.
1929  * It will just attach the page as a frag to the skb.
1930  *
1931  * The function will then update the page offset.
1932  **/
1933 static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1934                              struct i40e_rx_buffer *rx_buffer,
1935                              struct sk_buff *skb,
1936                              unsigned int size)
1937 {
1938 #if (PAGE_SIZE < 8192)
1939         unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1940 #else
1941         unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1942 #endif
1943 
1944         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1945                         rx_buffer->page_offset, size, truesize);
1946 
1947         /* page is being used so we must update the page offset */
1948 #if (PAGE_SIZE < 8192)
1949         rx_buffer->page_offset ^= truesize;
1950 #else
1951         rx_buffer->page_offset += truesize;
1952 #endif
1953 }
1954 
1955 /**
1956  * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1957  * @rx_ring: rx descriptor ring to transact packets on
1958  * @size: size of buffer to add to skb
1959  *
1960  * This function will pull an Rx buffer from the ring and synchronize it
1961  * for use by the CPU.
1962  */
1963 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1964                                                  const unsigned int size)
1965 {
1966         struct i40e_rx_buffer *rx_buffer;
1967 
1968         rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1969         prefetchw(rx_buffer->page);
1970 
1971         /* we are reusing so sync this buffer for CPU use */
1972         dma_sync_single_range_for_cpu(rx_ring->dev,
1973                                       rx_buffer->dma,
1974                                       rx_buffer->page_offset,
1975                                       size,
1976                                       DMA_FROM_DEVICE);
1977 
1978         /* We have pulled a buffer for use, so decrement pagecnt_bias */
1979         rx_buffer->pagecnt_bias--;
1980 
1981         return rx_buffer;
1982 }
1983 
1984 /**
1985  * i40e_construct_skb - Allocate skb and populate it
1986  * @rx_ring: rx descriptor ring to transact packets on
1987  * @rx_buffer: rx buffer to pull data from
1988  * @xdp: xdp_buff pointing to the data
1989  *
1990  * This function allocates an skb.  It then populates it with the page
1991  * data from the current receive descriptor, taking care to set up the
1992  * skb correctly.
1993  */
1994 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1995                                           struct i40e_rx_buffer *rx_buffer,
1996                                           struct xdp_buff *xdp)
1997 {
1998         unsigned int size = xdp->data_end - xdp->data;
1999 #if (PAGE_SIZE < 8192)
2000         unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2001 #else
2002         unsigned int truesize = SKB_DATA_ALIGN(size);
2003 #endif
2004         unsigned int headlen;
2005         struct sk_buff *skb;
2006 
2007         /* prefetch first cache line of first page */
2008         prefetch(xdp->data);
2009 #if L1_CACHE_BYTES < 128
2010         prefetch(xdp->data + L1_CACHE_BYTES);
2011 #endif
2012         /* Note, we get here by enabling legacy-rx via:
2013          *
2014          *    ethtool --set-priv-flags <dev> legacy-rx on
2015          *
2016          * In this mode, we currently get 0 extra XDP headroom as
2017          * opposed to having legacy-rx off, where we process XDP
2018          * packets going to stack via i40e_build_skb(). The latter
2019          * provides us currently with 192 bytes of headroom.
2020          *
2021          * For i40e_construct_skb() mode it means that the
2022          * xdp->data_meta will always point to xdp->data, since
2023          * the helper cannot expand the head. Should this ever
2024          * change in future for legacy-rx mode on, then lets also
2025          * add xdp->data_meta handling here.
2026          */
2027 
2028         /* allocate a skb to store the frags */
2029         skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2030                                I40E_RX_HDR_SIZE,
2031                                GFP_ATOMIC | __GFP_NOWARN);
2032         if (unlikely(!skb))
2033                 return NULL;
2034 
2035         /* Determine available headroom for copy */
2036         headlen = size;
2037         if (headlen > I40E_RX_HDR_SIZE)
2038                 headlen = eth_get_headlen(skb->dev, xdp->data,
2039                                           I40E_RX_HDR_SIZE);
2040 
2041         /* align pull length to size of long to optimize memcpy performance */
2042         memcpy(__skb_put(skb, headlen), xdp->data,
2043                ALIGN(headlen, sizeof(long)));
2044 
2045         /* update all of the pointers */
2046         size -= headlen;
2047         if (size) {
2048                 skb_add_rx_frag(skb, 0, rx_buffer->page,
2049                                 rx_buffer->page_offset + headlen,
2050                                 size, truesize);
2051 
2052                 /* buffer is used by skb, update page_offset */
2053 #if (PAGE_SIZE < 8192)
2054                 rx_buffer->page_offset ^= truesize;
2055 #else
2056                 rx_buffer->page_offset += truesize;
2057 #endif
2058         } else {
2059                 /* buffer is unused, reset bias back to rx_buffer */
2060                 rx_buffer->pagecnt_bias++;
2061         }
2062 
2063         return skb;
2064 }
2065 
2066 /**
2067  * i40e_build_skb - Build skb around an existing buffer
2068  * @rx_ring: Rx descriptor ring to transact packets on
2069  * @rx_buffer: Rx buffer to pull data from
2070  * @xdp: xdp_buff pointing to the data
2071  *
2072  * This function builds an skb around an existing Rx buffer, taking care
2073  * to set up the skb correctly and avoid any memcpy overhead.
2074  */
2075 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2076                                       struct i40e_rx_buffer *rx_buffer,
2077                                       struct xdp_buff *xdp)
2078 {
2079         unsigned int metasize = xdp->data - xdp->data_meta;
2080 #if (PAGE_SIZE < 8192)
2081         unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2082 #else
2083         unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2084                                 SKB_DATA_ALIGN(xdp->data_end -
2085                                                xdp->data_hard_start);
2086 #endif
2087         struct sk_buff *skb;
2088 
2089         /* Prefetch first cache line of first page. If xdp->data_meta
2090          * is unused, this points exactly as xdp->data, otherwise we
2091          * likely have a consumer accessing first few bytes of meta
2092          * data, and then actual data.
2093          */
2094         prefetch(xdp->data_meta);
2095 #if L1_CACHE_BYTES < 128
2096         prefetch(xdp->data_meta + L1_CACHE_BYTES);
2097 #endif
2098         /* build an skb around the page buffer */
2099         skb = build_skb(xdp->data_hard_start, truesize);
2100         if (unlikely(!skb))
2101                 return NULL;
2102 
2103         /* update pointers within the skb to store the data */
2104         skb_reserve(skb, xdp->data - xdp->data_hard_start);
2105         __skb_put(skb, xdp->data_end - xdp->data);
2106         if (metasize)
2107                 skb_metadata_set(skb, metasize);
2108 
2109         /* buffer is used by skb, update page_offset */
2110 #if (PAGE_SIZE < 8192)
2111         rx_buffer->page_offset ^= truesize;
2112 #else
2113         rx_buffer->page_offset += truesize;
2114 #endif
2115 
2116         return skb;
2117 }
2118 
2119 /**
2120  * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2121  * @rx_ring: rx descriptor ring to transact packets on
2122  * @rx_buffer: rx buffer to pull data from
2123  *
2124  * This function will clean up the contents of the rx_buffer.  It will
2125  * either recycle the buffer or unmap it and free the associated resources.
2126  */
2127 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2128                                struct i40e_rx_buffer *rx_buffer)
2129 {
2130         if (i40e_can_reuse_rx_page(rx_buffer)) {
2131                 /* hand second half of page back to the ring */
2132                 i40e_reuse_rx_page(rx_ring, rx_buffer);
2133         } else {
2134                 /* we are not reusing the buffer so unmap it */
2135                 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2136                                      i40e_rx_pg_size(rx_ring),
2137                                      DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2138                 __page_frag_cache_drain(rx_buffer->page,
2139                                         rx_buffer->pagecnt_bias);
2140                 /* clear contents of buffer_info */
2141                 rx_buffer->page = NULL;
2142         }
2143 }
2144 
2145 /**
2146  * i40e_is_non_eop - process handling of non-EOP buffers
2147  * @rx_ring: Rx ring being processed
2148  * @rx_desc: Rx descriptor for current buffer
2149  * @skb: Current socket buffer containing buffer in progress
2150  *
2151  * This function updates next to clean.  If the buffer is an EOP buffer
2152  * this function exits returning false, otherwise it will place the
2153  * sk_buff in the next buffer to be chained and return true indicating
2154  * that this is in fact a non-EOP buffer.
2155  **/
2156 static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2157                             union i40e_rx_desc *rx_desc,
2158                             struct sk_buff *skb)
2159 {
2160         u32 ntc = rx_ring->next_to_clean + 1;
2161 
2162         /* fetch, update, and store next to clean */
2163         ntc = (ntc < rx_ring->count) ? ntc : 0;
2164         rx_ring->next_to_clean = ntc;
2165 
2166         prefetch(I40E_RX_DESC(rx_ring, ntc));
2167 
2168         /* if we are the last buffer then there is nothing else to do */
2169 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2170         if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2171                 return false;
2172 
2173         rx_ring->rx_stats.non_eop_descs++;
2174 
2175         return true;
2176 }
2177 
2178 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2179                               struct i40e_ring *xdp_ring);
2180 
2181 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2182 {
2183         struct xdp_frame *xdpf = convert_to_xdp_frame(xdp);
2184 
2185         if (unlikely(!xdpf))
2186                 return I40E_XDP_CONSUMED;
2187 
2188         return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2189 }
2190 
2191 /**
2192  * i40e_run_xdp - run an XDP program
2193  * @rx_ring: Rx ring being processed
2194  * @xdp: XDP buffer containing the frame
2195  **/
2196 static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
2197                                     struct xdp_buff *xdp)
2198 {
2199         int err, result = I40E_XDP_PASS;
2200         struct i40e_ring *xdp_ring;
2201         struct bpf_prog *xdp_prog;
2202         u32 act;
2203 
2204         rcu_read_lock();
2205         xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2206 
2207         if (!xdp_prog)
2208                 goto xdp_out;
2209 
2210         prefetchw(xdp->data_hard_start); /* xdp_frame write */
2211 
2212         act = bpf_prog_run_xdp(xdp_prog, xdp);
2213         switch (act) {
2214         case XDP_PASS:
2215                 break;
2216         case XDP_TX:
2217                 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2218                 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2219                 break;
2220         case XDP_REDIRECT:
2221                 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2222                 result = !err ? I40E_XDP_REDIR : I40E_XDP_CONSUMED;
2223                 break;
2224         default:
2225                 bpf_warn_invalid_xdp_action(act);
2226                 /* fall through */
2227         case XDP_ABORTED:
2228                 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2229                 /* fall through -- handle aborts by dropping packet */
2230         case XDP_DROP:
2231                 result = I40E_XDP_CONSUMED;
2232                 break;
2233         }
2234 xdp_out:
2235         rcu_read_unlock();
2236         return ERR_PTR(-result);
2237 }
2238 
2239 /**
2240  * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2241  * @rx_ring: Rx ring
2242  * @rx_buffer: Rx buffer to adjust
2243  * @size: Size of adjustment
2244  **/
2245 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2246                                 struct i40e_rx_buffer *rx_buffer,
2247                                 unsigned int size)
2248 {
2249 #if (PAGE_SIZE < 8192)
2250         unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2251 
2252         rx_buffer->page_offset ^= truesize;
2253 #else
2254         unsigned int truesize = SKB_DATA_ALIGN(i40e_rx_offset(rx_ring) + size);
2255 
2256         rx_buffer->page_offset += truesize;
2257 #endif
2258 }
2259 
2260 /**
2261  * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2262  * @xdp_ring: XDP Tx ring
2263  *
2264  * This function updates the XDP Tx ring tail register.
2265  **/
2266 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2267 {
2268         /* Force memory writes to complete before letting h/w
2269          * know there are new descriptors to fetch.
2270          */
2271         wmb();
2272         writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2273 }
2274 
2275 /**
2276  * i40e_update_rx_stats - Update Rx ring statistics
2277  * @rx_ring: rx descriptor ring
2278  * @total_rx_bytes: number of bytes received
2279  * @total_rx_packets: number of packets received
2280  *
2281  * This function updates the Rx ring statistics.
2282  **/
2283 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2284                           unsigned int total_rx_bytes,
2285                           unsigned int total_rx_packets)
2286 {
2287         u64_stats_update_begin(&rx_ring->syncp);
2288         rx_ring->stats.packets += total_rx_packets;
2289         rx_ring->stats.bytes += total_rx_bytes;
2290         u64_stats_update_end(&rx_ring->syncp);
2291         rx_ring->q_vector->rx.total_packets += total_rx_packets;
2292         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2293 }
2294 
2295 /**
2296  * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2297  * @rx_ring: Rx ring
2298  * @xdp_res: Result of the receive batch
2299  *
2300  * This function bumps XDP Tx tail and/or flush redirect map, and
2301  * should be called when a batch of packets has been processed in the
2302  * napi loop.
2303  **/
2304 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2305 {
2306         if (xdp_res & I40E_XDP_REDIR)
2307                 xdp_do_flush_map();
2308 
2309         if (xdp_res & I40E_XDP_TX) {
2310                 struct i40e_ring *xdp_ring =
2311                         rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2312 
2313                 i40e_xdp_ring_update_tail(xdp_ring);
2314         }
2315 }
2316 
2317 /**
2318  * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2319  * @rx_ring: rx descriptor ring to transact packets on
2320  * @budget: Total limit on number of packets to process
2321  *
2322  * This function provides a "bounce buffer" approach to Rx interrupt
2323  * processing.  The advantage to this is that on systems that have
2324  * expensive overhead for IOMMU access this provides a means of avoiding
2325  * it by maintaining the mapping of the page to the system.
2326  *
2327  * Returns amount of work completed
2328  **/
2329 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2330 {
2331         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2332         struct sk_buff *skb = rx_ring->skb;
2333         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2334         unsigned int xdp_xmit = 0;
2335         bool failure = false;
2336         struct xdp_buff xdp;
2337 
2338         xdp.rxq = &rx_ring->xdp_rxq;
2339 
2340         while (likely(total_rx_packets < (unsigned int)budget)) {
2341                 struct i40e_rx_buffer *rx_buffer;
2342                 union i40e_rx_desc *rx_desc;
2343                 unsigned int size;
2344                 u64 qword;
2345 
2346                 /* return some buffers to hardware, one at a time is too slow */
2347                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2348                         failure = failure ||
2349                                   i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2350                         cleaned_count = 0;
2351                 }
2352 
2353                 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2354 
2355                 /* status_error_len will always be zero for unused descriptors
2356                  * because it's cleared in cleanup, and overlaps with hdr_addr
2357                  * which is always zero because packet split isn't used, if the
2358                  * hardware wrote DD then the length will be non-zero
2359                  */
2360                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2361 
2362                 /* This memory barrier is needed to keep us from reading
2363                  * any other fields out of the rx_desc until we have
2364                  * verified the descriptor has been written back.
2365                  */
2366                 dma_rmb();
2367 
2368                 rx_buffer = i40e_clean_programming_status(rx_ring, rx_desc,
2369                                                           qword);
2370                 if (unlikely(rx_buffer)) {
2371                         i40e_reuse_rx_page(rx_ring, rx_buffer);
2372                         cleaned_count++;
2373                         continue;
2374                 }
2375 
2376                 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2377                        I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2378                 if (!size)
2379                         break;
2380 
2381                 i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2382                 rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2383 
2384                 /* retrieve a buffer from the ring */
2385                 if (!skb) {
2386                         xdp.data = page_address(rx_buffer->page) +
2387                                    rx_buffer->page_offset;
2388                         xdp.data_meta = xdp.data;
2389                         xdp.data_hard_start = xdp.data -
2390                                               i40e_rx_offset(rx_ring);
2391                         xdp.data_end = xdp.data + size;
2392 
2393                         skb = i40e_run_xdp(rx_ring, &xdp);
2394                 }
2395 
2396                 if (IS_ERR(skb)) {
2397                         unsigned int xdp_res = -PTR_ERR(skb);
2398 
2399                         if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2400                                 xdp_xmit |= xdp_res;
2401                                 i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2402                         } else {
2403                                 rx_buffer->pagecnt_bias++;
2404                         }
2405                         total_rx_bytes += size;
2406                         total_rx_packets++;
2407                 } else if (skb) {
2408                         i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2409                 } else if (ring_uses_build_skb(rx_ring)) {
2410                         skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2411                 } else {
2412                         skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2413                 }
2414 
2415                 /* exit if we failed to retrieve a buffer */
2416                 if (!skb) {
2417                         rx_ring->rx_stats.alloc_buff_failed++;
2418                         rx_buffer->pagecnt_bias++;
2419                         break;
2420                 }
2421 
2422                 i40e_put_rx_buffer(rx_ring, rx_buffer);
2423                 cleaned_count++;
2424 
2425                 if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2426                         continue;
2427 
2428                 if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2429                         skb = NULL;
2430                         continue;
2431                 }
2432 
2433                 /* probably a little skewed due to removing CRC */
2434                 total_rx_bytes += skb->len;
2435 
2436                 /* populate checksum, VLAN, and protocol */
2437                 i40e_process_skb_fields(rx_ring, rx_desc, skb);
2438 
2439                 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2440                 napi_gro_receive(&rx_ring->q_vector->napi, skb);
2441                 skb = NULL;
2442 
2443                 /* update budget accounting */
2444                 total_rx_packets++;
2445         }
2446 
2447         i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2448         rx_ring->skb = skb;
2449 
2450         i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2451 
2452         /* guarantee a trip back through this routine if there was a failure */
2453         return failure ? budget : (int)total_rx_packets;
2454 }
2455 
2456 static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2457 {
2458         u32 val;
2459 
2460         /* We don't bother with setting the CLEARPBA bit as the data sheet
2461          * points out doing so is "meaningless since it was already
2462          * auto-cleared". The auto-clearing happens when the interrupt is
2463          * asserted.
2464          *
2465          * Hardware errata 28 for also indicates that writing to a
2466          * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2467          * an event in the PBA anyway so we need to rely on the automask
2468          * to hold pending events for us until the interrupt is re-enabled
2469          *
2470          * The itr value is reported in microseconds, and the register
2471          * value is recorded in 2 microsecond units. For this reason we
2472          * only need to shift by the interval shift - 1 instead of the
2473          * full value.
2474          */
2475         itr &= I40E_ITR_MASK;
2476 
2477         val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2478               (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2479               (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2480 
2481         return val;
2482 }
2483 
2484 /* a small macro to shorten up some long lines */
2485 #define INTREG I40E_PFINT_DYN_CTLN
2486 
2487 /* The act of updating the ITR will cause it to immediately trigger. In order
2488  * to prevent this from throwing off adaptive update statistics we defer the
2489  * update so that it can only happen so often. So after either Tx or Rx are
2490  * updated we make the adaptive scheme wait until either the ITR completely
2491  * expires via the next_update expiration or we have been through at least
2492  * 3 interrupts.
2493  */
2494 #define ITR_COUNTDOWN_START 3
2495 
2496 /**
2497  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2498  * @vsi: the VSI we care about
2499  * @q_vector: q_vector for which itr is being updated and interrupt enabled
2500  *
2501  **/
2502 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2503                                           struct i40e_q_vector *q_vector)
2504 {
2505         struct i40e_hw *hw = &vsi->back->hw;
2506         u32 intval;
2507 
2508         /* If we don't have MSIX, then we only need to re-enable icr0 */
2509         if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2510                 i40e_irq_dynamic_enable_icr0(vsi->back);
2511                 return;
2512         }
2513 
2514         /* These will do nothing if dynamic updates are not enabled */
2515         i40e_update_itr(q_vector, &q_vector->tx);
2516         i40e_update_itr(q_vector, &q_vector->rx);
2517 
2518         /* This block of logic allows us to get away with only updating
2519          * one ITR value with each interrupt. The idea is to perform a
2520          * pseudo-lazy update with the following criteria.
2521          *
2522          * 1. Rx is given higher priority than Tx if both are in same state
2523          * 2. If we must reduce an ITR that is given highest priority.
2524          * 3. We then give priority to increasing ITR based on amount.
2525          */
2526         if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2527                 /* Rx ITR needs to be reduced, this is highest priority */
2528                 intval = i40e_buildreg_itr(I40E_RX_ITR,
2529                                            q_vector->rx.target_itr);
2530                 q_vector->rx.current_itr = q_vector->rx.target_itr;
2531                 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2532         } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2533                    ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2534                     (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2535                 /* Tx ITR needs to be reduced, this is second priority
2536                  * Tx ITR needs to be increased more than Rx, fourth priority
2537                  */
2538                 intval = i40e_buildreg_itr(I40E_TX_ITR,
2539                                            q_vector->tx.target_itr);
2540                 q_vector->tx.current_itr = q_vector->tx.target_itr;
2541                 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2542         } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2543                 /* Rx ITR needs to be increased, third priority */
2544                 intval = i40e_buildreg_itr(I40E_RX_ITR,
2545                                            q_vector->rx.target_itr);
2546                 q_vector->rx.current_itr = q_vector->rx.target_itr;
2547                 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2548         } else {
2549                 /* No ITR update, lowest priority */
2550                 intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2551                 if (q_vector->itr_countdown)
2552                         q_vector->itr_countdown--;
2553         }
2554 
2555         if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2556                 wr32(hw, INTREG(q_vector->reg_idx), intval);
2557 }
2558 
2559 /**
2560  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2561  * @napi: napi struct with our devices info in it
2562  * @budget: amount of work driver is allowed to do this pass, in packets
2563  *
2564  * This function will clean all queues associated with a q_vector.
2565  *
2566  * Returns the amount of work done
2567  **/
2568 int i40e_napi_poll(struct napi_struct *napi, int budget)
2569 {
2570         struct i40e_q_vector *q_vector =
2571                                container_of(napi, struct i40e_q_vector, napi);
2572         struct i40e_vsi *vsi = q_vector->vsi;
2573         struct i40e_ring *ring;
2574         bool clean_complete = true;
2575         bool arm_wb = false;
2576         int budget_per_ring;
2577         int work_done = 0;
2578 
2579         if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2580                 napi_complete(napi);
2581                 return 0;
2582         }
2583 
2584         /* Since the actual Tx work is minimal, we can give the Tx a larger
2585          * budget and be more aggressive about cleaning up the Tx descriptors.
2586          */
2587         i40e_for_each_ring(ring, q_vector->tx) {
2588                 bool wd = ring->xsk_umem ?
2589                           i40e_clean_xdp_tx_irq(vsi, ring, budget) :
2590                           i40e_clean_tx_irq(vsi, ring, budget);
2591 
2592                 if (!wd) {
2593                         clean_complete = false;
2594                         continue;
2595                 }
2596                 arm_wb |= ring->arm_wb;
2597                 ring->arm_wb = false;
2598         }
2599 
2600         /* Handle case where we are called by netpoll with a budget of 0 */
2601         if (budget <= 0)
2602                 goto tx_only;
2603 
2604         /* We attempt to distribute budget to each Rx queue fairly, but don't
2605          * allow the budget to go below 1 because that would exit polling early.
2606          */
2607         budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
2608 
2609         i40e_for_each_ring(ring, q_vector->rx) {
2610                 int cleaned = ring->xsk_umem ?
2611                               i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2612                               i40e_clean_rx_irq(ring, budget_per_ring);
2613 
2614                 work_done += cleaned;
2615                 /* if we clean as many as budgeted, we must not be done */
2616                 if (cleaned >= budget_per_ring)
2617                         clean_complete = false;
2618         }
2619 
2620         /* If work not completed, return budget and polling will return */
2621         if (!clean_complete) {
2622                 int cpu_id = smp_processor_id();
2623 
2624                 /* It is possible that the interrupt affinity has changed but,
2625                  * if the cpu is pegged at 100%, polling will never exit while
2626                  * traffic continues and the interrupt will be stuck on this
2627                  * cpu.  We check to make sure affinity is correct before we
2628                  * continue to poll, otherwise we must stop polling so the
2629                  * interrupt can move to the correct cpu.
2630                  */
2631                 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2632                         /* Tell napi that we are done polling */
2633                         napi_complete_done(napi, work_done);
2634 
2635                         /* Force an interrupt */
2636                         i40e_force_wb(vsi, q_vector);
2637 
2638                         /* Return budget-1 so that polling stops */
2639                         return budget - 1;
2640                 }
2641 tx_only:
2642                 if (arm_wb) {
2643                         q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2644                         i40e_enable_wb_on_itr(vsi, q_vector);
2645                 }
2646                 return budget;
2647         }
2648 
2649         if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2650                 q_vector->arm_wb_state = false;
2651 
2652         /* Exit the polling mode, but don't re-enable interrupts if stack might
2653          * poll us due to busy-polling
2654          */
2655         if (likely(napi_complete_done(napi, work_done)))
2656                 i40e_update_enable_itr(vsi, q_vector);
2657 
2658         return min(work_done, budget - 1);
2659 }
2660 
2661 /**
2662  * i40e_atr - Add a Flow Director ATR filter
2663  * @tx_ring:  ring to add programming descriptor to
2664  * @skb:      send buffer
2665  * @tx_flags: send tx flags
2666  **/
2667 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2668                      u32 tx_flags)
2669 {
2670         struct i40e_filter_program_desc *fdir_desc;
2671         struct i40e_pf *pf = tx_ring->vsi->back;
2672         union {
2673                 unsigned char *network;
2674                 struct iphdr *ipv4;
2675                 struct ipv6hdr *ipv6;
2676         } hdr;
2677         struct tcphdr *th;
2678         unsigned int hlen;
2679         u32 flex_ptype, dtype_cmd;
2680         int l4_proto;
2681         u16 i;
2682 
2683         /* make sure ATR is enabled */
2684         if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2685                 return;
2686 
2687         if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2688                 return;
2689 
2690         /* if sampling is disabled do nothing */
2691         if (!tx_ring->atr_sample_rate)
2692                 return;
2693 
2694         /* Currently only IPv4/IPv6 with TCP is supported */
2695         if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2696                 return;
2697 
2698         /* snag network header to get L4 type and address */
2699         hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2700                       skb_inner_network_header(skb) : skb_network_header(skb);
2701 
2702         /* Note: tx_flags gets modified to reflect inner protocols in
2703          * tx_enable_csum function if encap is enabled.
2704          */
2705         if (tx_flags & I40E_TX_FLAGS_IPV4) {
2706                 /* access ihl as u8 to avoid unaligned access on ia64 */
2707                 hlen = (hdr.network[0] & 0x0F) << 2;
2708                 l4_proto = hdr.ipv4->protocol;
2709         } else {
2710                 /* find the start of the innermost ipv6 header */
2711                 unsigned int inner_hlen = hdr.network - skb->data;
2712                 unsigned int h_offset = inner_hlen;
2713 
2714                 /* this function updates h_offset to the end of the header */
2715                 l4_proto =
2716                   ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2717                 /* hlen will contain our best estimate of the tcp header */
2718                 hlen = h_offset - inner_hlen;
2719         }
2720 
2721         if (l4_proto != IPPROTO_TCP)
2722                 return;
2723 
2724         th = (struct tcphdr *)(hdr.network + hlen);
2725 
2726         /* Due to lack of space, no more new filters can be programmed */
2727         if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2728                 return;
2729         if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2730                 /* HW ATR eviction will take care of removing filters on FIN
2731                  * and RST packets.
2732                  */
2733                 if (th->fin || th->rst)
2734                         return;
2735         }
2736 
2737         tx_ring->atr_count++;
2738 
2739         /* sample on all syn/fin/rst packets or once every atr sample rate */
2740         if (!th->fin &&
2741             !th->syn &&
2742             !th->rst &&
2743             (tx_ring->atr_count < tx_ring->atr_sample_rate))
2744                 return;
2745 
2746         tx_ring->atr_count = 0;
2747 
2748         /* grab the next descriptor */
2749         i = tx_ring->next_to_use;
2750         fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2751 
2752         i++;
2753         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2754 
2755         flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2756                       I40E_TXD_FLTR_QW0_QINDEX_MASK;
2757         flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2758                       (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2759                        I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2760                       (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2761                        I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2762 
2763         flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2764 
2765         dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2766 
2767         dtype_cmd |= (th->fin || th->rst) ?
2768                      (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2769                       I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2770                      (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2771                       I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2772 
2773         dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2774                      I40E_TXD_FLTR_QW1_DEST_SHIFT;
2775 
2776         dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2777                      I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2778 
2779         dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2780         if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2781                 dtype_cmd |=
2782                         ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2783                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2784                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2785         else
2786                 dtype_cmd |=
2787                         ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2788                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2789                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2790 
2791         if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2792                 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2793 
2794         fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2795         fdir_desc->rsvd = cpu_to_le32(0);
2796         fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2797         fdir_desc->fd_id = cpu_to_le32(0);
2798 }
2799 
2800 /**
2801  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2802  * @skb:     send buffer
2803  * @tx_ring: ring to send buffer on
2804  * @flags:   the tx flags to be set
2805  *
2806  * Checks the skb and set up correspondingly several generic transmit flags
2807  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2808  *
2809  * Returns error code indicate the frame should be dropped upon error and the
2810  * otherwise  returns 0 to indicate the flags has been set properly.
2811  **/
2812 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2813                                              struct i40e_ring *tx_ring,
2814                                              u32 *flags)
2815 {
2816         __be16 protocol = skb->protocol;
2817         u32  tx_flags = 0;
2818 
2819         if (protocol == htons(ETH_P_8021Q) &&
2820             !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2821                 /* When HW VLAN acceleration is turned off by the user the
2822                  * stack sets the protocol to 8021q so that the driver
2823                  * can take any steps required to support the SW only
2824                  * VLAN handling.  In our case the driver doesn't need
2825                  * to take any further steps so just set the protocol
2826                  * to the encapsulated ethertype.
2827                  */
2828                 skb->protocol = vlan_get_protocol(skb);
2829                 goto out;
2830         }
2831 
2832         /* if we have a HW VLAN tag being added, default to the HW one */
2833         if (skb_vlan_tag_present(skb)) {
2834                 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2835                 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2836         /* else if it is a SW VLAN, check the next protocol and store the tag */
2837         } else if (protocol == htons(ETH_P_8021Q)) {
2838                 struct vlan_hdr *vhdr, _vhdr;
2839 
2840                 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2841                 if (!vhdr)
2842                         return -EINVAL;
2843 
2844                 protocol = vhdr->h_vlan_encapsulated_proto;
2845                 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2846                 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2847         }
2848 
2849         if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2850                 goto out;
2851 
2852         /* Insert 802.1p priority into VLAN header */
2853         if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2854             (skb->priority != TC_PRIO_CONTROL)) {
2855                 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2856                 tx_flags |= (skb->priority & 0x7) <<
2857                                 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2858                 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2859                         struct vlan_ethhdr *vhdr;
2860                         int rc;
2861 
2862                         rc = skb_cow_head(skb, 0);
2863                         if (rc < 0)
2864                                 return rc;
2865                         vhdr = (struct vlan_ethhdr *)skb->data;
2866                         vhdr->h_vlan_TCI = htons(tx_flags >>
2867                                                  I40E_TX_FLAGS_VLAN_SHIFT);
2868                 } else {
2869                         tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2870                 }
2871         }
2872 
2873 out:
2874         *flags = tx_flags;
2875         return 0;
2876 }
2877 
2878 /**
2879  * i40e_tso - set up the tso context descriptor
2880  * @first:    pointer to first Tx buffer for xmit
2881  * @hdr_len:  ptr to the size of the packet header
2882  * @cd_type_cmd_tso_mss: Quad Word 1
2883  *
2884  * Returns 0 if no TSO can happen, 1 if tso is going, or error
2885  **/
2886 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2887                     u64 *cd_type_cmd_tso_mss)
2888 {
2889         struct sk_buff *skb = first->skb;
2890         u64 cd_cmd, cd_tso_len, cd_mss;
2891         union {
2892                 struct iphdr *v4;
2893                 struct ipv6hdr *v6;
2894                 unsigned char *hdr;
2895         } ip;
2896         union {
2897                 struct tcphdr *tcp;
2898                 struct udphdr *udp;
2899                 unsigned char *hdr;
2900         } l4;
2901         u32 paylen, l4_offset;
2902         u16 gso_segs, gso_size;
2903         int err;
2904 
2905         if (skb->ip_summed != CHECKSUM_PARTIAL)
2906                 return 0;
2907 
2908         if (!skb_is_gso(skb))
2909                 return 0;
2910 
2911         err = skb_cow_head(skb, 0);
2912         if (err < 0)
2913                 return err;
2914 
2915         ip.hdr = skb_network_header(skb);
2916         l4.hdr = skb_transport_header(skb);
2917 
2918         /* initialize outer IP header fields */
2919         if (ip.v4->version == 4) {
2920                 ip.v4->tot_len = 0;
2921                 ip.v4->check = 0;
2922         } else {
2923                 ip.v6->payload_len = 0;
2924         }
2925 
2926         if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2927                                          SKB_GSO_GRE_CSUM |
2928                                          SKB_GSO_IPXIP4 |
2929                                          SKB_GSO_IPXIP6 |
2930                                          SKB_GSO_UDP_TUNNEL |
2931                                          SKB_GSO_UDP_TUNNEL_CSUM)) {
2932                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2933                     (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2934                         l4.udp->len = 0;
2935 
2936                         /* determine offset of outer transport header */
2937                         l4_offset = l4.hdr - skb->data;
2938 
2939                         /* remove payload length from outer checksum */
2940                         paylen = skb->len - l4_offset;
2941                         csum_replace_by_diff(&l4.udp->check,
2942                                              (__force __wsum)htonl(paylen));
2943                 }
2944 
2945                 /* reset pointers to inner headers */
2946                 ip.hdr = skb_inner_network_header(skb);
2947                 l4.hdr = skb_inner_transport_header(skb);
2948 
2949                 /* initialize inner IP header fields */
2950                 if (ip.v4->version == 4) {
2951                         ip.v4->tot_len = 0;
2952                         ip.v4->check = 0;
2953                 } else {
2954                         ip.v6->payload_len = 0;
2955                 }
2956         }
2957 
2958         /* determine offset of inner transport header */
2959         l4_offset = l4.hdr - skb->data;
2960 
2961         /* remove payload length from inner checksum */
2962         paylen = skb->len - l4_offset;
2963         csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2964 
2965         /* compute length of segmentation header */
2966         *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2967 
2968         /* pull values out of skb_shinfo */
2969         gso_size = skb_shinfo(skb)->gso_size;
2970         gso_segs = skb_shinfo(skb)->gso_segs;
2971 
2972         /* update GSO size and bytecount with header size */
2973         first->gso_segs = gso_segs;
2974         first->bytecount += (first->gso_segs - 1) * *hdr_len;
2975 
2976         /* find the field values */
2977         cd_cmd = I40E_TX_CTX_DESC_TSO;
2978         cd_tso_len = skb->len - *hdr_len;
2979         cd_mss = gso_size;
2980         *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2981                                 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2982                                 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2983         return 1;
2984 }
2985 
2986 /**
2987  * i40e_tsyn - set up the tsyn context descriptor
2988  * @tx_ring:  ptr to the ring to send
2989  * @skb:      ptr to the skb we're sending
2990  * @tx_flags: the collected send information
2991  * @cd_type_cmd_tso_mss: Quad Word 1
2992  *
2993  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2994  **/
2995 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2996                      u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2997 {
2998         struct i40e_pf *pf;
2999 
3000         if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3001                 return 0;
3002 
3003         /* Tx timestamps cannot be sampled when doing TSO */
3004         if (tx_flags & I40E_TX_FLAGS_TSO)
3005                 return 0;
3006 
3007         /* only timestamp the outbound packet if the user has requested it and
3008          * we are not already transmitting a packet to be timestamped
3009          */
3010         pf = i40e_netdev_to_pf(tx_ring->netdev);
3011         if (!(pf->flags & I40E_FLAG_PTP))
3012                 return 0;
3013 
3014         if (pf->ptp_tx &&
3015             !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3016                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3017                 pf->ptp_tx_start = jiffies;
3018                 pf->ptp_tx_skb = skb_get(skb);
3019         } else {
3020                 pf->tx_hwtstamp_skipped++;
3021                 return 0;
3022         }
3023 
3024         *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3025                                 I40E_TXD_CTX_QW1_CMD_SHIFT;
3026 
3027         return 1;
3028 }
3029 
3030 /**
3031  * i40e_tx_enable_csum - Enable Tx checksum offloads
3032  * @skb: send buffer
3033  * @tx_flags: pointer to Tx flags currently set
3034  * @td_cmd: Tx descriptor command bits to set
3035  * @td_offset: Tx descriptor header offsets to set
3036  * @tx_ring: Tx descriptor ring
3037  * @cd_tunneling: ptr to context desc bits
3038  **/
3039 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3040                                u32 *td_cmd, u32 *td_offset,
3041                                struct i40e_ring *tx_ring,
3042                                u32 *cd_tunneling)
3043 {
3044         union {
3045                 struct iphdr *v4;
3046                 struct ipv6hdr *v6;
3047                 unsigned char *hdr;
3048         } ip;
3049         union {
3050                 struct tcphdr *tcp;
3051                 struct udphdr *udp;
3052                 unsigned char *hdr;
3053         } l4;
3054         unsigned char *exthdr;
3055         u32 offset, cmd = 0;
3056         __be16 frag_off;
3057         u8 l4_proto = 0;
3058 
3059         if (skb->ip_summed != CHECKSUM_PARTIAL)
3060                 return 0;
3061 
3062         ip.hdr = skb_network_header(skb);
3063         l4.hdr = skb_transport_header(skb);
3064 
3065         /* compute outer L2 header size */
3066         offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3067 
3068         if (skb->encapsulation) {
3069                 u32 tunnel = 0;
3070                 /* define outer network header type */
3071                 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3072                         tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3073                                   I40E_TX_CTX_EXT_IP_IPV4 :
3074                                   I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3075 
3076                         l4_proto = ip.v4->protocol;
3077                 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3078                         tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3079 
3080                         exthdr = ip.hdr + sizeof(*ip.v6);
3081                         l4_proto = ip.v6->nexthdr;
3082                         if (l4.hdr != exthdr)
3083                                 ipv6_skip_exthdr(skb, exthdr - skb->data,
3084                                                  &l4_proto, &frag_off);
3085                 }
3086 
3087                 /* define outer transport */
3088                 switch (l4_proto) {
3089                 case IPPROTO_UDP:
3090                         tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3091                         *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3092                         break;
3093                 case IPPROTO_GRE:
3094                         tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3095                         *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3096                         break;
3097                 case IPPROTO_IPIP:
3098                 case IPPROTO_IPV6:
3099                         *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3100                         l4.hdr = skb_inner_network_header(skb);
3101                         break;
3102                 default:
3103                         if (*tx_flags & I40E_TX_FLAGS_TSO)
3104                                 return -1;
3105 
3106                         skb_checksum_help(skb);
3107                         return 0;
3108                 }
3109 
3110                 /* compute outer L3 header size */
3111                 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3112                           I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3113 
3114                 /* switch IP header pointer from outer to inner header */
3115                 ip.hdr = skb_inner_network_header(skb);
3116 
3117                 /* compute tunnel header size */
3118                 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3119                           I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3120 
3121                 /* indicate if we need to offload outer UDP header */
3122                 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3123                     !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3124                     (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3125                         tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3126 
3127                 /* record tunnel offload values */
3128                 *cd_tunneling |= tunnel;
3129 
3130                 /* switch L4 header pointer from outer to inner */
3131                 l4.hdr = skb_inner_transport_header(skb);
3132                 l4_proto = 0;
3133 
3134                 /* reset type as we transition from outer to inner headers */
3135                 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3136                 if (ip.v4->version == 4)
3137                         *tx_flags |= I40E_TX_FLAGS_IPV4;
3138                 if (ip.v6->version == 6)
3139                         *tx_flags |= I40E_TX_FLAGS_IPV6;
3140         }
3141 
3142         /* Enable IP checksum offloads */
3143         if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3144                 l4_proto = ip.v4->protocol;
3145                 /* the stack computes the IP header already, the only time we
3146                  * need the hardware to recompute it is in the case of TSO.
3147                  */
3148                 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3149                        I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3150                        I40E_TX_DESC_CMD_IIPT_IPV4;
3151         } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3152                 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3153 
3154                 exthdr = ip.hdr + sizeof(*ip.v6);
3155                 l4_proto = ip.v6->nexthdr;
3156                 if (l4.hdr != exthdr)
3157                         ipv6_skip_exthdr(skb, exthdr - skb->data,
3158                                          &l4_proto, &frag_off);
3159         }
3160 
3161         /* compute inner L3 header size */
3162         offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3163 
3164         /* Enable L4 checksum offloads */
3165         switch (l4_proto) {
3166         case IPPROTO_TCP:
3167                 /* enable checksum offloads */
3168                 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3169                 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3170                 break;
3171         case IPPROTO_SCTP:
3172                 /* enable SCTP checksum offload */
3173                 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3174                 offset |= (sizeof(struct sctphdr) >> 2) <<
3175                           I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3176                 break;
3177         case IPPROTO_UDP:
3178                 /* enable UDP checksum offload */
3179                 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3180                 offset |= (sizeof(struct udphdr) >> 2) <<
3181                           I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3182                 break;
3183         default:
3184                 if (*tx_flags & I40E_TX_FLAGS_TSO)
3185                         return -1;
3186                 skb_checksum_help(skb);
3187                 return 0;
3188         }
3189 
3190         *td_cmd |= cmd;
3191         *td_offset |= offset;
3192 
3193         return 1;
3194 }
3195 
3196 /**
3197  * i40e_create_tx_ctx Build the Tx context descriptor
3198  * @tx_ring:  ring to create the descriptor on
3199  * @cd_type_cmd_tso_mss: Quad Word 1
3200  * @cd_tunneling: Quad Word 0 - bits 0-31
3201  * @cd_l2tag2: Quad Word 0 - bits 32-63
3202  **/
3203 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3204                                const u64 cd_type_cmd_tso_mss,
3205                                const u32 cd_tunneling, const u32 cd_l2tag2)
3206 {
3207         struct i40e_tx_context_desc *context_desc;
3208         int i = tx_ring->next_to_use;
3209 
3210         if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3211             !cd_tunneling && !cd_l2tag2)
3212                 return;
3213 
3214         /* grab the next descriptor */
3215         context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3216 
3217         i++;
3218         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3219 
3220         /* cpu_to_le32 and assign to struct fields */
3221         context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3222         context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3223         context_desc->rsvd = cpu_to_le16(0);
3224         context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3225 }
3226 
3227 /**
3228  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3229  * @tx_ring: the ring to be checked
3230  * @size:    the size buffer we want to assure is available
3231  *
3232  * Returns -EBUSY if a stop is needed, else 0
3233  **/
3234 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3235 {
3236         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3237         /* Memory barrier before checking head and tail */
3238         smp_mb();
3239 
3240         /* Check again in a case another CPU has just made room available. */
3241         if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3242                 return -EBUSY;
3243 
3244         /* A reprieve! - use start_queue because it doesn't call schedule */
3245         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3246         ++tx_ring->tx_stats.restart_queue;
3247         return 0;
3248 }
3249 
3250 /**
3251  * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3252  * @skb:      send buffer
3253  *
3254  * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3255  * and so we need to figure out the cases where we need to linearize the skb.
3256  *
3257  * For TSO we need to count the TSO header and segment payload separately.
3258  * As such we need to check cases where we have 7 fragments or more as we
3259  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3260  * the segment payload in the first descriptor, and another 7 for the
3261  * fragments.
3262  **/
3263 bool __i40e_chk_linearize(struct sk_buff *skb)
3264 {
3265         const skb_frag_t *frag, *stale;
3266         int nr_frags, sum;
3267 
3268         /* no need to check if number of frags is less than 7 */
3269         nr_frags = skb_shinfo(skb)->nr_frags;
3270         if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3271                 return false;
3272 
3273         /* We need to walk through the list and validate that each group
3274          * of 6 fragments totals at least gso_size.
3275          */
3276         nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3277         frag = &skb_shinfo(skb)->frags[0];
3278 
3279         /* Initialize size to the negative value of gso_size minus 1.  We
3280          * use this as the worst case scenerio in which the frag ahead
3281          * of us only provides one byte which is why we are limited to 6
3282          * descriptors for a single transmit as the header and previous
3283          * fragment are already consuming 2 descriptors.
3284          */
3285         sum = 1 - skb_shinfo(skb)->gso_size;
3286 
3287         /* Add size of frags 0 through 4 to create our initial sum */
3288         sum += skb_frag_size(frag++);
3289         sum += skb_frag_size(frag++);
3290         sum += skb_frag_size(frag++);
3291         sum += skb_frag_size(frag++);
3292         sum += skb_frag_size(frag++);
3293 
3294         /* Walk through fragments adding latest fragment, testing it, and
3295          * then removing stale fragments from the sum.
3296          */
3297         for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3298                 int stale_size = skb_frag_size(stale);
3299 
3300                 sum += skb_frag_size(frag++);
3301 
3302                 /* The stale fragment may present us with a smaller
3303                  * descriptor than the actual fragment size. To account
3304                  * for that we need to remove all the data on the front and
3305                  * figure out what the remainder would be in the last
3306                  * descriptor associated with the fragment.
3307                  */
3308                 if (stale_size > I40E_MAX_DATA_PER_TXD) {
3309                         int align_pad = -(skb_frag_off(stale)) &
3310                                         (I40E_MAX_READ_REQ_SIZE - 1);
3311 
3312                         sum -= align_pad;
3313                         stale_size -= align_pad;
3314 
3315                         do {
3316                                 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3317                                 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3318                         } while (stale_size > I40E_MAX_DATA_PER_TXD);
3319                 }
3320 
3321                 /* if sum is negative we failed to make sufficient progress */
3322                 if (sum < 0)
3323                         return true;
3324 
3325                 if (!nr_frags--)
3326                         break;
3327 
3328                 sum -= stale_size;
3329         }
3330 
3331         return false;
3332 }
3333 
3334 /**
3335  * i40e_tx_map - Build the Tx descriptor
3336  * @tx_ring:  ring to send buffer on
3337  * @skb:      send buffer
3338  * @first:    first buffer info buffer to use
3339  * @tx_flags: collected send information
3340  * @hdr_len:  size of the packet header
3341  * @td_cmd:   the command field in the descriptor
3342  * @td_offset: offset for checksum or crc
3343  *
3344  * Returns 0 on success, -1 on failure to DMA
3345  **/
3346 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3347                               struct i40e_tx_buffer *first, u32 tx_flags,
3348                               const u8 hdr_len, u32 td_cmd, u32 td_offset)
3349 {
3350         unsigned int data_len = skb->data_len;
3351         unsigned int size = skb_headlen(skb);
3352         skb_frag_t *frag;
3353         struct i40e_tx_buffer *tx_bi;
3354         struct i40e_tx_desc *tx_desc;
3355         u16 i = tx_ring->next_to_use;
3356         u32 td_tag = 0;
3357         dma_addr_t dma;
3358         u16 desc_count = 1;
3359 
3360         if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3361                 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3362                 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3363                          I40E_TX_FLAGS_VLAN_SHIFT;
3364         }
3365 
3366         first->tx_flags = tx_flags;
3367 
3368         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3369 
3370         tx_desc = I40E_TX_DESC(tx_ring, i);
3371         tx_bi = first;
3372 
3373         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3374                 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3375 
3376                 if (dma_mapping_error(tx_ring->dev, dma))
3377                         goto dma_error;
3378 
3379                 /* record length, and DMA address */
3380                 dma_unmap_len_set(tx_bi, len, size);
3381                 dma_unmap_addr_set(tx_bi, dma, dma);
3382 
3383                 /* align size to end of page */
3384                 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3385                 tx_desc->buffer_addr = cpu_to_le64(dma);
3386 
3387                 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3388                         tx_desc->cmd_type_offset_bsz =
3389                                 build_ctob(td_cmd, td_offset,
3390                                            max_data, td_tag);
3391 
3392                         tx_desc++;
3393                         i++;
3394                         desc_count++;
3395 
3396                         if (i == tx_ring->count) {
3397                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
3398                                 i = 0;
3399                         }
3400 
3401                         dma += max_data;
3402                         size -= max_data;
3403 
3404                         max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3405                         tx_desc->buffer_addr = cpu_to_le64(dma);
3406                 }
3407 
3408                 if (likely(!data_len))
3409                         break;
3410 
3411                 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3412                                                           size, td_tag);
3413 
3414                 tx_desc++;
3415                 i++;
3416                 desc_count++;
3417 
3418                 if (i == tx_ring->count) {
3419                         tx_desc = I40E_TX_DESC(tx_ring, 0);
3420                         i = 0;
3421                 }
3422 
3423                 size = skb_frag_size(frag);
3424                 data_len -= size;
3425 
3426                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3427                                        DMA_TO_DEVICE);
3428 
3429                 tx_bi = &tx_ring->tx_bi[i];
3430         }
3431 
3432         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3433 
3434         i++;
3435         if (i == tx_ring->count)
3436                 i = 0;
3437 
3438         tx_ring->next_to_use = i;
3439 
3440         i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3441 
3442         /* write last descriptor with EOP bit */
3443         td_cmd |= I40E_TX_DESC_CMD_EOP;
3444 
3445         /* We OR these values together to check both against 4 (WB_STRIDE)
3446          * below. This is safe since we don't re-use desc_count afterwards.
3447          */
3448         desc_count |= ++tx_ring->packet_stride;
3449 
3450         if (desc_count >= WB_STRIDE) {
3451                 /* write last descriptor with RS bit set */
3452                 td_cmd |= I40E_TX_DESC_CMD_RS;
3453                 tx_ring->packet_stride = 0;
3454         }
3455 
3456         tx_desc->cmd_type_offset_bsz =
3457                         build_ctob(td_cmd, td_offset, size, td_tag);
3458 
3459         skb_tx_timestamp(skb);
3460 
3461         /* Force memory writes to complete before letting h/w know there
3462          * are new descriptors to fetch.
3463          *
3464          * We also use this memory barrier to make certain all of the
3465          * status bits have been updated before next_to_watch is written.
3466          */
3467         wmb();
3468 
3469         /* set next_to_watch value indicating a packet is present */
3470         first->next_to_watch = tx_desc;
3471 
3472         /* notify HW of packet */
3473         if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3474                 writel(i, tx_ring->tail);
3475         }
3476 
3477         return 0;
3478 
3479 dma_error:
3480         dev_info(tx_ring->dev, "TX DMA map failed\n");
3481 
3482         /* clear dma mappings for failed tx_bi map */
3483         for (;;) {
3484                 tx_bi = &tx_ring->tx_bi[i];
3485                 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3486                 if (tx_bi == first)
3487                         break;
3488                 if (i == 0)
3489                         i = tx_ring->count;
3490                 i--;
3491         }
3492 
3493         tx_ring->next_to_use = i;
3494 
3495         return -1;
3496 }
3497 
3498 /**
3499  * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3500  * @xdp: data to transmit
3501  * @xdp_ring: XDP Tx ring
3502  **/
3503 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3504                               struct i40e_ring *xdp_ring)
3505 {
3506         u16 i = xdp_ring->next_to_use;
3507         struct i40e_tx_buffer *tx_bi;
3508         struct i40e_tx_desc *tx_desc;
3509         void *data = xdpf->data;
3510         u32 size = xdpf->len;
3511         dma_addr_t dma;
3512 
3513         if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3514                 xdp_ring->tx_stats.tx_busy++;
3515                 return I40E_XDP_CONSUMED;
3516         }
3517         dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3518         if (dma_mapping_error(xdp_ring->dev, dma))
3519                 return I40E_XDP_CONSUMED;
3520 
3521         tx_bi = &xdp_ring->tx_bi[i];
3522         tx_bi->bytecount = size;
3523         tx_bi->gso_segs = 1;
3524         tx_bi->xdpf = xdpf;
3525 
3526         /* record length, and DMA address */
3527         dma_unmap_len_set(tx_bi, len, size);
3528         dma_unmap_addr_set(tx_bi, dma, dma);
3529 
3530         tx_desc = I40E_TX_DESC(xdp_ring, i);
3531         tx_desc->buffer_addr = cpu_to_le64(dma);
3532         tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3533                                                   | I40E_TXD_CMD,
3534                                                   0, size, 0);
3535 
3536         /* Make certain all of the status bits have been updated
3537          * before next_to_watch is written.
3538          */
3539         smp_wmb();
3540 
3541         i++;
3542         if (i == xdp_ring->count)
3543                 i = 0;
3544 
3545         tx_bi->next_to_watch = tx_desc;
3546         xdp_ring->next_to_use = i;
3547 
3548         return I40E_XDP_TX;
3549 }
3550 
3551 /**
3552  * i40e_xmit_frame_ring - Sends buffer on Tx ring
3553  * @skb:     send buffer
3554  * @tx_ring: ring to send buffer on
3555  *
3556  * Returns NETDEV_TX_OK if sent, else an error code
3557  **/
3558 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3559                                         struct i40e_ring *tx_ring)
3560 {
3561         u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3562         u32 cd_tunneling = 0, cd_l2tag2 = 0;
3563         struct i40e_tx_buffer *first;
3564         u32 td_offset = 0;
3565         u32 tx_flags = 0;
3566         __be16 protocol;
3567         u32 td_cmd = 0;
3568         u8 hdr_len = 0;
3569         int tso, count;
3570         int tsyn;
3571 
3572         /* prefetch the data, we'll need it later */
3573         prefetch(skb->data);
3574 
3575         i40e_trace(xmit_frame_ring, skb, tx_ring);
3576 
3577         count = i40e_xmit_descriptor_count(skb);
3578         if (i40e_chk_linearize(skb, count)) {
3579                 if (__skb_linearize(skb)) {
3580                         dev_kfree_skb_any(skb);
3581                         return NETDEV_TX_OK;
3582                 }
3583                 count = i40e_txd_use_count(skb->len);
3584                 tx_ring->tx_stats.tx_linearize++;
3585         }
3586 
3587         /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3588          *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3589          *       + 4 desc gap to avoid the cache line where head is,
3590          *       + 1 desc for context descriptor,
3591          * otherwise try next time
3592          */
3593         if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3594                 tx_ring->tx_stats.tx_busy++;
3595                 return NETDEV_TX_BUSY;
3596         }
3597 
3598         /* record the location of the first descriptor for this packet */
3599         first = &tx_ring->tx_bi[tx_ring->next_to_use];
3600         first->skb = skb;
3601         first->bytecount = skb->len;
3602         first->gso_segs = 1;
3603 
3604         /* prepare the xmit flags */
3605         if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3606                 goto out_drop;
3607 
3608         /* obtain protocol of skb */
3609         protocol = vlan_get_protocol(skb);
3610 
3611         /* setup IPv4/IPv6 offloads */
3612         if (protocol == htons(ETH_P_IP))
3613                 tx_flags |= I40E_TX_FLAGS_IPV4;
3614         else if (protocol == htons(ETH_P_IPV6))
3615                 tx_flags |= I40E_TX_FLAGS_IPV6;
3616 
3617         tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3618 
3619         if (tso < 0)
3620                 goto out_drop;
3621         else if (tso)
3622                 tx_flags |= I40E_TX_FLAGS_TSO;
3623 
3624         /* Always offload the checksum, since it's in the data descriptor */
3625         tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3626                                   tx_ring, &cd_tunneling);
3627         if (tso < 0)
3628                 goto out_drop;
3629 
3630         tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3631 
3632         if (tsyn)
3633                 tx_flags |= I40E_TX_FLAGS_TSYN;
3634 
3635         /* always enable CRC insertion offload */
3636         td_cmd |= I40E_TX_DESC_CMD_ICRC;
3637 
3638         i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3639                            cd_tunneling, cd_l2tag2);
3640 
3641         /* Add Flow Director ATR if it's enabled.
3642          *
3643          * NOTE: this must always be directly before the data descriptor.
3644          */
3645         i40e_atr(tx_ring, skb, tx_flags);
3646 
3647         if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3648                         td_cmd, td_offset))
3649                 goto cleanup_tx_tstamp;
3650 
3651         return NETDEV_TX_OK;
3652 
3653 out_drop:
3654         i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3655         dev_kfree_skb_any(first->skb);
3656         first->skb = NULL;
3657 cleanup_tx_tstamp:
3658         if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3659                 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3660 
3661                 dev_kfree_skb_any(pf->ptp_tx_skb);
3662                 pf->ptp_tx_skb = NULL;
3663                 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3664         }
3665 
3666         return NETDEV_TX_OK;
3667 }
3668 
3669 /**
3670  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3671  * @skb:    send buffer
3672  * @netdev: network interface device structure
3673  *
3674  * Returns NETDEV_TX_OK if sent, else an error code
3675  **/
3676 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3677 {
3678         struct i40e_netdev_priv *np = netdev_priv(netdev);
3679         struct i40e_vsi *vsi = np->vsi;
3680         struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3681 
3682         /* hardware can't handle really short frames, hardware padding works
3683          * beyond this point
3684          */
3685         if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3686                 return NETDEV_TX_OK;
3687 
3688         return i40e_xmit_frame_ring(skb, tx_ring);
3689 }
3690 
3691 /**
3692  * i40e_xdp_xmit - Implements ndo_xdp_xmit
3693  * @dev: netdev
3694  * @xdp: XDP buffer
3695  *
3696  * Returns number of frames successfully sent. Frames that fail are
3697  * free'ed via XDP return API.
3698  *
3699  * For error cases, a negative errno code is returned and no-frames
3700  * are transmitted (caller must handle freeing frames).
3701  **/
3702 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
3703                   u32 flags)
3704 {
3705         struct i40e_netdev_priv *np = netdev_priv(dev);
3706         unsigned int queue_index = smp_processor_id();
3707         struct i40e_vsi *vsi = np->vsi;
3708         struct i40e_pf *pf = vsi->back;
3709         struct i40e_ring *xdp_ring;
3710         int drops = 0;
3711         int i;
3712 
3713         if (test_bit(__I40E_VSI_DOWN, vsi->state))
3714                 return -ENETDOWN;
3715 
3716         if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
3717             test_bit(__I40E_CONFIG_BUSY, pf->state))
3718                 return -ENXIO;
3719 
3720         if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3721                 return -EINVAL;
3722 
3723         xdp_ring = vsi->xdp_rings[queue_index];
3724 
3725         for (i = 0; i < n; i++) {
3726                 struct xdp_frame *xdpf = frames[i];
3727                 int err;
3728 
3729                 err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3730                 if (err != I40E_XDP_TX) {
3731                         xdp_return_frame_rx_napi(xdpf);
3732                         drops++;
3733                 }
3734         }
3735 
3736         if (unlikely(flags & XDP_XMIT_FLUSH))
3737                 i40e_xdp_ring_update_tail(xdp_ring);
3738 
3739         return n - drops;
3740 }

/* [<][>][^][v][top][bottom][index][help] */