root/drivers/net/ethernet/intel/i40e/i40e_txrx.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. i40e_intrl_usec_to_reg
  2. i40e_compute_pad
  3. i40e_skb_pad
  4. i40e_test_staterr
  5. i40e_txd_use_count
  6. ring_uses_build_skb
  7. set_ring_build_skb_enabled
  8. clear_ring_build_skb_enabled
  9. ring_is_xdp
  10. set_ring_xdp
  11. i40e_rx_pg_order
  12. i40e_get_head
  13. i40e_xmit_descriptor_count
  14. i40e_maybe_stop_tx
  15. i40e_chk_linearize
  16. txring_txq

   1 /* SPDX-License-Identifier: GPL-2.0 */
   2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
   3 
   4 #ifndef _I40E_TXRX_H_
   5 #define _I40E_TXRX_H_
   6 
   7 #include <net/xdp.h>
   8 
   9 /* Interrupt Throttling and Rate Limiting Goodies */
  10 #define I40E_DEFAULT_IRQ_WORK      256
  11 
  12 /* The datasheet for the X710 and XL710 indicate that the maximum value for
  13  * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec
  14  * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing
  15  * the register value which is divided by 2 lets use the actual values and
  16  * avoid an excessive amount of translation.
  17  */
  18 #define I40E_ITR_DYNAMIC        0x8000  /* use top bit as a flag */
  19 #define I40E_ITR_MASK           0x1FFE  /* mask for ITR register value */
  20 #define I40E_MIN_ITR                 2  /* reg uses 2 usec resolution */
  21 #define I40E_ITR_100K               10  /* all values below must be even */
  22 #define I40E_ITR_50K                20
  23 #define I40E_ITR_20K                50
  24 #define I40E_ITR_18K                60
  25 #define I40E_ITR_8K                122
  26 #define I40E_MAX_ITR              8160  /* maximum value as per datasheet */
  27 #define ITR_TO_REG(setting) ((setting) & ~I40E_ITR_DYNAMIC)
  28 #define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~I40E_ITR_MASK)
  29 #define ITR_IS_DYNAMIC(setting) (!!((setting) & I40E_ITR_DYNAMIC))
  30 
  31 #define I40E_ITR_RX_DEF         (I40E_ITR_20K | I40E_ITR_DYNAMIC)
  32 #define I40E_ITR_TX_DEF         (I40E_ITR_20K | I40E_ITR_DYNAMIC)
  33 
  34 /* 0x40 is the enable bit for interrupt rate limiting, and must be set if
  35  * the value of the rate limit is non-zero
  36  */
  37 #define INTRL_ENA                  BIT(6)
  38 #define I40E_MAX_INTRL             0x3B    /* reg uses 4 usec resolution */
  39 #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
  40 
  41 /**
  42  * i40e_intrl_usec_to_reg - convert interrupt rate limit to register
  43  * @intrl: interrupt rate limit to convert
  44  *
  45  * This function converts a decimal interrupt rate limit to the appropriate
  46  * register format expected by the firmware when setting interrupt rate limit.
  47  */
  48 static inline u16 i40e_intrl_usec_to_reg(int intrl)
  49 {
  50         if (intrl >> 2)
  51                 return ((intrl >> 2) | INTRL_ENA);
  52         else
  53                 return 0;
  54 }
  55 #define I40E_INTRL_8K              125     /* 8000 ints/sec */
  56 #define I40E_INTRL_62K             16      /* 62500 ints/sec */
  57 #define I40E_INTRL_83K             12      /* 83333 ints/sec */
  58 
  59 #define I40E_QUEUE_END_OF_LIST 0x7FF
  60 
  61 /* this enum matches hardware bits and is meant to be used by DYN_CTLN
  62  * registers and QINT registers or more generally anywhere in the manual
  63  * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
  64  * register but instead is a special value meaning "don't update" ITR0/1/2.
  65  */
  66 enum i40e_dyn_idx_t {
  67         I40E_IDX_ITR0 = 0,
  68         I40E_IDX_ITR1 = 1,
  69         I40E_IDX_ITR2 = 2,
  70         I40E_ITR_NONE = 3       /* ITR_NONE must not be used as an index */
  71 };
  72 
  73 /* these are indexes into ITRN registers */
  74 #define I40E_RX_ITR    I40E_IDX_ITR0
  75 #define I40E_TX_ITR    I40E_IDX_ITR1
  76 #define I40E_PE_ITR    I40E_IDX_ITR2
  77 
  78 /* Supported RSS offloads */
  79 #define I40E_DEFAULT_RSS_HENA ( \
  80         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \
  81         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
  82         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \
  83         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
  84         BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \
  85         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \
  86         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \
  87         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
  88         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
  89         BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \
  90         BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD))
  91 
  92 #define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \
  93         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
  94         BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
  95         BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
  96         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
  97         BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
  98         BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
  99 
 100 #define i40e_pf_get_default_rss_hena(pf) \
 101         (((pf)->hw_features & I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE) ? \
 102           I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA)
 103 
 104 /* Supported Rx Buffer Sizes (a multiple of 128) */
 105 #define I40E_RXBUFFER_256   256
 106 #define I40E_RXBUFFER_1536  1536  /* 128B aligned standard Ethernet frame */
 107 #define I40E_RXBUFFER_2048  2048
 108 #define I40E_RXBUFFER_3072  3072  /* Used for large frames w/ padding */
 109 #define I40E_MAX_RXBUFFER   9728  /* largest size for single descriptor */
 110 
 111 /* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
 112  * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
 113  * this adds up to 512 bytes of extra data meaning the smallest allocation
 114  * we could have is 1K.
 115  * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
 116  * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
 117  */
 118 #define I40E_RX_HDR_SIZE I40E_RXBUFFER_256
 119 #define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
 120 #define i40e_rx_desc i40e_32byte_rx_desc
 121 
 122 #define I40E_RX_DMA_ATTR \
 123         (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
 124 
 125 /* Attempt to maximize the headroom available for incoming frames.  We
 126  * use a 2K buffer for receives and need 1536/1534 to store the data for
 127  * the frame.  This leaves us with 512 bytes of room.  From that we need
 128  * to deduct the space needed for the shared info and the padding needed
 129  * to IP align the frame.
 130  *
 131  * Note: For cache line sizes 256 or larger this value is going to end
 132  *       up negative.  In these cases we should fall back to the legacy
 133  *       receive path.
 134  */
 135 #if (PAGE_SIZE < 8192)
 136 #define I40E_2K_TOO_SMALL_WITH_PADDING \
 137 ((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048))
 138 
 139 static inline int i40e_compute_pad(int rx_buf_len)
 140 {
 141         int page_size, pad_size;
 142 
 143         page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
 144         pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len;
 145 
 146         return pad_size;
 147 }
 148 
 149 static inline int i40e_skb_pad(void)
 150 {
 151         int rx_buf_len;
 152 
 153         /* If a 2K buffer cannot handle a standard Ethernet frame then
 154          * optimize padding for a 3K buffer instead of a 1.5K buffer.
 155          *
 156          * For a 3K buffer we need to add enough padding to allow for
 157          * tailroom due to NET_IP_ALIGN possibly shifting us out of
 158          * cache-line alignment.
 159          */
 160         if (I40E_2K_TOO_SMALL_WITH_PADDING)
 161                 rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
 162         else
 163                 rx_buf_len = I40E_RXBUFFER_1536;
 164 
 165         /* if needed make room for NET_IP_ALIGN */
 166         rx_buf_len -= NET_IP_ALIGN;
 167 
 168         return i40e_compute_pad(rx_buf_len);
 169 }
 170 
 171 #define I40E_SKB_PAD i40e_skb_pad()
 172 #else
 173 #define I40E_2K_TOO_SMALL_WITH_PADDING false
 174 #define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
 175 #endif
 176 
 177 /**
 178  * i40e_test_staterr - tests bits in Rx descriptor status and error fields
 179  * @rx_desc: pointer to receive descriptor (in le64 format)
 180  * @stat_err_bits: value to mask
 181  *
 182  * This function does some fast chicanery in order to return the
 183  * value of the mask which is really only used for boolean tests.
 184  * The status_error_len doesn't need to be shifted because it begins
 185  * at offset zero.
 186  */
 187 static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc,
 188                                      const u64 stat_err_bits)
 189 {
 190         return !!(rx_desc->wb.qword1.status_error_len &
 191                   cpu_to_le64(stat_err_bits));
 192 }
 193 
 194 /* How many Rx Buffers do we bundle into one write to the hardware ? */
 195 #define I40E_RX_BUFFER_WRITE    32      /* Must be power of 2 */
 196 #define I40E_RX_INCREMENT(r, i) \
 197         do {                                    \
 198                 (i)++;                          \
 199                 if ((i) == (r)->count)          \
 200                         i = 0;                  \
 201                 r->next_to_clean = i;           \
 202         } while (0)
 203 
 204 #define I40E_RX_NEXT_DESC(r, i, n)              \
 205         do {                                    \
 206                 (i)++;                          \
 207                 if ((i) == (r)->count)          \
 208                         i = 0;                  \
 209                 (n) = I40E_RX_DESC((r), (i));   \
 210         } while (0)
 211 
 212 #define I40E_RX_NEXT_DESC_PREFETCH(r, i, n)             \
 213         do {                                            \
 214                 I40E_RX_NEXT_DESC((r), (i), (n));       \
 215                 prefetch((n));                          \
 216         } while (0)
 217 
 218 #define I40E_MAX_BUFFER_TXD     8
 219 #define I40E_MIN_TX_LEN         17
 220 
 221 /* The size limit for a transmit buffer in a descriptor is (16K - 1).
 222  * In order to align with the read requests we will align the value to
 223  * the nearest 4K which represents our maximum read request size.
 224  */
 225 #define I40E_MAX_READ_REQ_SIZE          4096
 226 #define I40E_MAX_DATA_PER_TXD           (16 * 1024 - 1)
 227 #define I40E_MAX_DATA_PER_TXD_ALIGNED \
 228         (I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
 229 
 230 /**
 231  * i40e_txd_use_count  - estimate the number of descriptors needed for Tx
 232  * @size: transmit request size in bytes
 233  *
 234  * Due to hardware alignment restrictions (4K alignment), we need to
 235  * assume that we can have no more than 12K of data per descriptor, even
 236  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
 237  * Thus, we need to divide by 12K. But division is slow! Instead,
 238  * we decompose the operation into shifts and one relatively cheap
 239  * multiply operation.
 240  *
 241  * To divide by 12K, we first divide by 4K, then divide by 3:
 242  *     To divide by 4K, shift right by 12 bits
 243  *     To divide by 3, multiply by 85, then divide by 256
 244  *     (Divide by 256 is done by shifting right by 8 bits)
 245  * Finally, we add one to round up. Because 256 isn't an exact multiple of
 246  * 3, we'll underestimate near each multiple of 12K. This is actually more
 247  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
 248  * segment.  For our purposes this is accurate out to 1M which is orders of
 249  * magnitude greater than our largest possible GSO size.
 250  *
 251  * This would then be implemented as:
 252  *     return (((size >> 12) * 85) >> 8) + 1;
 253  *
 254  * Since multiplication and division are commutative, we can reorder
 255  * operations into:
 256  *     return ((size * 85) >> 20) + 1;
 257  */
 258 static inline unsigned int i40e_txd_use_count(unsigned int size)
 259 {
 260         return ((size * 85) >> 20) + 1;
 261 }
 262 
 263 /* Tx Descriptors needed, worst case */
 264 #define DESC_NEEDED (MAX_SKB_FRAGS + 6)
 265 #define I40E_MIN_DESC_PENDING   4
 266 
 267 #define I40E_TX_FLAGS_HW_VLAN           BIT(1)
 268 #define I40E_TX_FLAGS_SW_VLAN           BIT(2)
 269 #define I40E_TX_FLAGS_TSO               BIT(3)
 270 #define I40E_TX_FLAGS_IPV4              BIT(4)
 271 #define I40E_TX_FLAGS_IPV6              BIT(5)
 272 #define I40E_TX_FLAGS_FCCRC             BIT(6)
 273 #define I40E_TX_FLAGS_FSO               BIT(7)
 274 #define I40E_TX_FLAGS_TSYN              BIT(8)
 275 #define I40E_TX_FLAGS_FD_SB             BIT(9)
 276 #define I40E_TX_FLAGS_UDP_TUNNEL        BIT(10)
 277 #define I40E_TX_FLAGS_VLAN_MASK         0xffff0000
 278 #define I40E_TX_FLAGS_VLAN_PRIO_MASK    0xe0000000
 279 #define I40E_TX_FLAGS_VLAN_PRIO_SHIFT   29
 280 #define I40E_TX_FLAGS_VLAN_SHIFT        16
 281 
 282 struct i40e_tx_buffer {
 283         struct i40e_tx_desc *next_to_watch;
 284         union {
 285                 struct xdp_frame *xdpf;
 286                 struct sk_buff *skb;
 287                 void *raw_buf;
 288         };
 289         unsigned int bytecount;
 290         unsigned short gso_segs;
 291 
 292         DEFINE_DMA_UNMAP_ADDR(dma);
 293         DEFINE_DMA_UNMAP_LEN(len);
 294         u32 tx_flags;
 295 };
 296 
 297 struct i40e_rx_buffer {
 298         dma_addr_t dma;
 299         union {
 300                 struct {
 301                         struct page *page;
 302                         __u32 page_offset;
 303                         __u16 pagecnt_bias;
 304                 };
 305                 struct {
 306                         void *addr;
 307                         u64 handle;
 308                 };
 309         };
 310 };
 311 
 312 struct i40e_queue_stats {
 313         u64 packets;
 314         u64 bytes;
 315 };
 316 
 317 struct i40e_tx_queue_stats {
 318         u64 restart_queue;
 319         u64 tx_busy;
 320         u64 tx_done_old;
 321         u64 tx_linearize;
 322         u64 tx_force_wb;
 323         int prev_pkt_ctr;
 324 };
 325 
 326 struct i40e_rx_queue_stats {
 327         u64 non_eop_descs;
 328         u64 alloc_page_failed;
 329         u64 alloc_buff_failed;
 330         u64 page_reuse_count;
 331         u64 realloc_count;
 332 };
 333 
 334 enum i40e_ring_state_t {
 335         __I40E_TX_FDIR_INIT_DONE,
 336         __I40E_TX_XPS_INIT_DONE,
 337         __I40E_RING_STATE_NBITS /* must be last */
 338 };
 339 
 340 /* some useful defines for virtchannel interface, which
 341  * is the only remaining user of header split
 342  */
 343 #define I40E_RX_DTYPE_NO_SPLIT      0
 344 #define I40E_RX_DTYPE_HEADER_SPLIT  1
 345 #define I40E_RX_DTYPE_SPLIT_ALWAYS  2
 346 #define I40E_RX_SPLIT_L2      0x1
 347 #define I40E_RX_SPLIT_IP      0x2
 348 #define I40E_RX_SPLIT_TCP_UDP 0x4
 349 #define I40E_RX_SPLIT_SCTP    0x8
 350 
 351 /* struct that defines a descriptor ring, associated with a VSI */
 352 struct i40e_ring {
 353         struct i40e_ring *next;         /* pointer to next ring in q_vector */
 354         void *desc;                     /* Descriptor ring memory */
 355         struct device *dev;             /* Used for DMA mapping */
 356         struct net_device *netdev;      /* netdev ring maps to */
 357         struct bpf_prog *xdp_prog;
 358         union {
 359                 struct i40e_tx_buffer *tx_bi;
 360                 struct i40e_rx_buffer *rx_bi;
 361         };
 362         DECLARE_BITMAP(state, __I40E_RING_STATE_NBITS);
 363         u16 queue_index;                /* Queue number of ring */
 364         u8 dcb_tc;                      /* Traffic class of ring */
 365         u8 __iomem *tail;
 366 
 367         /* high bit set means dynamic, use accessor routines to read/write.
 368          * hardware only supports 2us resolution for the ITR registers.
 369          * these values always store the USER setting, and must be converted
 370          * before programming to a register.
 371          */
 372         u16 itr_setting;
 373 
 374         u16 count;                      /* Number of descriptors */
 375         u16 reg_idx;                    /* HW register index of the ring */
 376         u16 rx_buf_len;
 377 
 378         /* used in interrupt processing */
 379         u16 next_to_use;
 380         u16 next_to_clean;
 381 
 382         u8 atr_sample_rate;
 383         u8 atr_count;
 384 
 385         bool ring_active;               /* is ring online or not */
 386         bool arm_wb;            /* do something to arm write back */
 387         u8 packet_stride;
 388 
 389         u16 flags;
 390 #define I40E_TXR_FLAGS_WB_ON_ITR                BIT(0)
 391 #define I40E_RXR_FLAGS_BUILD_SKB_ENABLED        BIT(1)
 392 #define I40E_TXR_FLAGS_XDP                      BIT(2)
 393 
 394         /* stats structs */
 395         struct i40e_queue_stats stats;
 396         struct u64_stats_sync syncp;
 397         union {
 398                 struct i40e_tx_queue_stats tx_stats;
 399                 struct i40e_rx_queue_stats rx_stats;
 400         };
 401 
 402         unsigned int size;              /* length of descriptor ring in bytes */
 403         dma_addr_t dma;                 /* physical address of ring */
 404 
 405         struct i40e_vsi *vsi;           /* Backreference to associated VSI */
 406         struct i40e_q_vector *q_vector; /* Backreference to associated vector */
 407 
 408         struct rcu_head rcu;            /* to avoid race on free */
 409         u16 next_to_alloc;
 410         struct sk_buff *skb;            /* When i40e_clean_rx_ring_irq() must
 411                                          * return before it sees the EOP for
 412                                          * the current packet, we save that skb
 413                                          * here and resume receiving this
 414                                          * packet the next time
 415                                          * i40e_clean_rx_ring_irq() is called
 416                                          * for this ring.
 417                                          */
 418 
 419         struct i40e_channel *ch;
 420         struct xdp_rxq_info xdp_rxq;
 421         struct xdp_umem *xsk_umem;
 422         struct zero_copy_allocator zca; /* ZC allocator anchor */
 423 } ____cacheline_internodealigned_in_smp;
 424 
 425 static inline bool ring_uses_build_skb(struct i40e_ring *ring)
 426 {
 427         return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED);
 428 }
 429 
 430 static inline void set_ring_build_skb_enabled(struct i40e_ring *ring)
 431 {
 432         ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
 433 }
 434 
 435 static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring)
 436 {
 437         ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
 438 }
 439 
 440 static inline bool ring_is_xdp(struct i40e_ring *ring)
 441 {
 442         return !!(ring->flags & I40E_TXR_FLAGS_XDP);
 443 }
 444 
 445 static inline void set_ring_xdp(struct i40e_ring *ring)
 446 {
 447         ring->flags |= I40E_TXR_FLAGS_XDP;
 448 }
 449 
 450 #define I40E_ITR_ADAPTIVE_MIN_INC       0x0002
 451 #define I40E_ITR_ADAPTIVE_MIN_USECS     0x0002
 452 #define I40E_ITR_ADAPTIVE_MAX_USECS     0x007e
 453 #define I40E_ITR_ADAPTIVE_LATENCY       0x8000
 454 #define I40E_ITR_ADAPTIVE_BULK          0x0000
 455 #define ITR_IS_BULK(x) (!((x) & I40E_ITR_ADAPTIVE_LATENCY))
 456 
 457 struct i40e_ring_container {
 458         struct i40e_ring *ring;         /* pointer to linked list of ring(s) */
 459         unsigned long next_update;      /* jiffies value of next update */
 460         unsigned int total_bytes;       /* total bytes processed this int */
 461         unsigned int total_packets;     /* total packets processed this int */
 462         u16 count;
 463         u16 target_itr;                 /* target ITR setting for ring(s) */
 464         u16 current_itr;                /* current ITR setting for ring(s) */
 465 };
 466 
 467 /* iterator for handling rings in ring container */
 468 #define i40e_for_each_ring(pos, head) \
 469         for (pos = (head).ring; pos != NULL; pos = pos->next)
 470 
 471 static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring)
 472 {
 473 #if (PAGE_SIZE < 8192)
 474         if (ring->rx_buf_len > (PAGE_SIZE / 2))
 475                 return 1;
 476 #endif
 477         return 0;
 478 }
 479 
 480 #define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring))
 481 
 482 bool i40e_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count);
 483 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
 484 void i40e_clean_tx_ring(struct i40e_ring *tx_ring);
 485 void i40e_clean_rx_ring(struct i40e_ring *rx_ring);
 486 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring);
 487 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring);
 488 void i40e_free_tx_resources(struct i40e_ring *tx_ring);
 489 void i40e_free_rx_resources(struct i40e_ring *rx_ring);
 490 int i40e_napi_poll(struct napi_struct *napi, int budget);
 491 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector);
 492 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw);
 493 void i40e_detect_recover_hung(struct i40e_vsi *vsi);
 494 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size);
 495 bool __i40e_chk_linearize(struct sk_buff *skb);
 496 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
 497                   u32 flags);
 498 
 499 /**
 500  * i40e_get_head - Retrieve head from head writeback
 501  * @tx_ring:  tx ring to fetch head of
 502  *
 503  * Returns value of Tx ring head based on value stored
 504  * in head write-back location
 505  **/
 506 static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
 507 {
 508         void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
 509 
 510         return le32_to_cpu(*(volatile __le32 *)head);
 511 }
 512 
 513 /**
 514  * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
 515  * @skb:     send buffer
 516  * @tx_ring: ring to send buffer on
 517  *
 518  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
 519  * there is not enough descriptors available in this ring since we need at least
 520  * one descriptor.
 521  **/
 522 static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
 523 {
 524         const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
 525         unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
 526         int count = 0, size = skb_headlen(skb);
 527 
 528         for (;;) {
 529                 count += i40e_txd_use_count(size);
 530 
 531                 if (!nr_frags--)
 532                         break;
 533 
 534                 size = skb_frag_size(frag++);
 535         }
 536 
 537         return count;
 538 }
 539 
 540 /**
 541  * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
 542  * @tx_ring: the ring to be checked
 543  * @size:    the size buffer we want to assure is available
 544  *
 545  * Returns 0 if stop is not needed
 546  **/
 547 static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
 548 {
 549         if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
 550                 return 0;
 551         return __i40e_maybe_stop_tx(tx_ring, size);
 552 }
 553 
 554 /**
 555  * i40e_chk_linearize - Check if there are more than 8 fragments per packet
 556  * @skb:      send buffer
 557  * @count:    number of buffers used
 558  *
 559  * Note: Our HW can't scatter-gather more than 8 fragments to build
 560  * a packet on the wire and so we need to figure out the cases where we
 561  * need to linearize the skb.
 562  **/
 563 static inline bool i40e_chk_linearize(struct sk_buff *skb, int count)
 564 {
 565         /* Both TSO and single send will work if count is less than 8 */
 566         if (likely(count < I40E_MAX_BUFFER_TXD))
 567                 return false;
 568 
 569         if (skb_is_gso(skb))
 570                 return __i40e_chk_linearize(skb);
 571 
 572         /* we can support up to 8 data buffers for a single send */
 573         return count != I40E_MAX_BUFFER_TXD;
 574 }
 575 
 576 /**
 577  * txring_txq - Find the netdev Tx ring based on the i40e Tx ring
 578  * @ring: Tx ring to find the netdev equivalent of
 579  **/
 580 static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring)
 581 {
 582         return netdev_get_tx_queue(ring->netdev, ring->queue_index);
 583 }
 584 #endif /* _I40E_TXRX_H_ */

/* [<][>][^][v][top][bottom][index][help] */