root/drivers/net/ethernet/freescale/gianfar.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. gfar_init_rxbdp
  2. gfar_init_tx_rx_base
  3. gfar_init_rqprm
  4. gfar_rx_offload_en
  5. gfar_mac_rx_config
  6. gfar_mac_tx_config
  7. gfar_configure_coalescing
  8. gfar_configure_coalescing_all
  9. gfar_get_stats
  10. gfar_set_hash_for_addr
  11. gfar_set_mac_for_addr
  12. gfar_set_mac_addr
  13. gfar_ints_disable
  14. gfar_ints_enable
  15. gfar_alloc_tx_queues
  16. gfar_alloc_rx_queues
  17. gfar_free_tx_queues
  18. gfar_free_rx_queues
  19. unmap_group_regs
  20. free_gfar_dev
  21. disable_napi
  22. enable_napi
  23. gfar_parse_group
  24. gfar_of_group_count
  25. gfar_get_interface
  26. gfar_of_init
  27. cluster_entry_per_class
  28. gfar_init_filer_table
  29. __gfar_detect_errata_83xx
  30. __gfar_detect_errata_85xx
  31. gfar_detect_errata
  32. gfar_init_addr_hash_table
  33. __gfar_is_rx_idle
  34. gfar_halt_nodisable
  35. gfar_halt
  36. free_skb_tx_queue
  37. free_skb_rx_queue
  38. free_skb_resources
  39. stop_gfar
  40. gfar_start
  41. gfar_new_page
  42. gfar_rx_alloc_err
  43. gfar_alloc_rx_buffs
  44. gfar_init_bds
  45. gfar_alloc_skb_resources
  46. startup_gfar
  47. gfar_get_flowctrl_cfg
  48. gfar_update_link_state
  49. adjust_link
  50. gfar_configure_serdes
  51. init_phy
  52. gfar_add_fcb
  53. gfar_tx_checksum
  54. gfar_tx_vlan
  55. skip_txbd
  56. next_txbd
  57. gfar_csum_errata_12
  58. gfar_csum_errata_76
  59. gfar_start_xmit
  60. gfar_set_mac_address
  61. gfar_change_mtu
  62. reset_gfar
  63. gfar_reset_task
  64. gfar_timeout
  65. gfar_hwtstamp_set
  66. gfar_hwtstamp_get
  67. gfar_ioctl
  68. gfar_clean_tx_ring
  69. count_errors
  70. gfar_receive
  71. gfar_transmit
  72. gfar_add_rx_frag
  73. gfar_reuse_rx_page
  74. gfar_get_next_rxbuff
  75. gfar_rx_checksum
  76. gfar_process_frame
  77. gfar_clean_rx_ring
  78. gfar_poll_rx_sq
  79. gfar_poll_tx_sq
  80. gfar_poll_rx
  81. gfar_poll_tx
  82. gfar_error
  83. gfar_interrupt
  84. gfar_netpoll
  85. free_grp_irqs
  86. register_grp_irqs
  87. gfar_free_irq
  88. gfar_request_irq
  89. gfar_enet_open
  90. gfar_close
  91. gfar_clear_exact_match
  92. gfar_set_multi
  93. gfar_mac_reset
  94. gfar_hw_init
  95. gfar_probe
  96. gfar_remove
  97. __gfar_filer_disable
  98. __gfar_filer_enable
  99. gfar_filer_config_wol
  100. gfar_filer_restore_table
  101. gfar_start_wol_filer
  102. gfar_suspend
  103. gfar_resume
  104. gfar_restore

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /* drivers/net/ethernet/freescale/gianfar.c
   3  *
   4  * Gianfar Ethernet Driver
   5  * This driver is designed for the non-CPM ethernet controllers
   6  * on the 85xx and 83xx family of integrated processors
   7  * Based on 8260_io/fcc_enet.c
   8  *
   9  * Author: Andy Fleming
  10  * Maintainer: Kumar Gala
  11  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
  12  *
  13  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
  14  * Copyright 2007 MontaVista Software, Inc.
  15  *
  16  *  Gianfar:  AKA Lambda Draconis, "Dragon"
  17  *  RA 11 31 24.2
  18  *  Dec +69 19 52
  19  *  V 3.84
  20  *  B-V +1.62
  21  *
  22  *  Theory of operation
  23  *
  24  *  The driver is initialized through of_device. Configuration information
  25  *  is therefore conveyed through an OF-style device tree.
  26  *
  27  *  The Gianfar Ethernet Controller uses a ring of buffer
  28  *  descriptors.  The beginning is indicated by a register
  29  *  pointing to the physical address of the start of the ring.
  30  *  The end is determined by a "wrap" bit being set in the
  31  *  last descriptor of the ring.
  32  *
  33  *  When a packet is received, the RXF bit in the
  34  *  IEVENT register is set, triggering an interrupt when the
  35  *  corresponding bit in the IMASK register is also set (if
  36  *  interrupt coalescing is active, then the interrupt may not
  37  *  happen immediately, but will wait until either a set number
  38  *  of frames or amount of time have passed).  In NAPI, the
  39  *  interrupt handler will signal there is work to be done, and
  40  *  exit. This method will start at the last known empty
  41  *  descriptor, and process every subsequent descriptor until there
  42  *  are none left with data (NAPI will stop after a set number of
  43  *  packets to give time to other tasks, but will eventually
  44  *  process all the packets).  The data arrives inside a
  45  *  pre-allocated skb, and so after the skb is passed up to the
  46  *  stack, a new skb must be allocated, and the address field in
  47  *  the buffer descriptor must be updated to indicate this new
  48  *  skb.
  49  *
  50  *  When the kernel requests that a packet be transmitted, the
  51  *  driver starts where it left off last time, and points the
  52  *  descriptor at the buffer which was passed in.  The driver
  53  *  then informs the DMA engine that there are packets ready to
  54  *  be transmitted.  Once the controller is finished transmitting
  55  *  the packet, an interrupt may be triggered (under the same
  56  *  conditions as for reception, but depending on the TXF bit).
  57  *  The driver then cleans up the buffer.
  58  */
  59 
  60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  61 #define DEBUG
  62 
  63 #include <linux/kernel.h>
  64 #include <linux/string.h>
  65 #include <linux/errno.h>
  66 #include <linux/unistd.h>
  67 #include <linux/slab.h>
  68 #include <linux/interrupt.h>
  69 #include <linux/delay.h>
  70 #include <linux/netdevice.h>
  71 #include <linux/etherdevice.h>
  72 #include <linux/skbuff.h>
  73 #include <linux/if_vlan.h>
  74 #include <linux/spinlock.h>
  75 #include <linux/mm.h>
  76 #include <linux/of_address.h>
  77 #include <linux/of_irq.h>
  78 #include <linux/of_mdio.h>
  79 #include <linux/of_platform.h>
  80 #include <linux/ip.h>
  81 #include <linux/tcp.h>
  82 #include <linux/udp.h>
  83 #include <linux/in.h>
  84 #include <linux/net_tstamp.h>
  85 
  86 #include <asm/io.h>
  87 #ifdef CONFIG_PPC
  88 #include <asm/reg.h>
  89 #include <asm/mpc85xx.h>
  90 #endif
  91 #include <asm/irq.h>
  92 #include <linux/uaccess.h>
  93 #include <linux/module.h>
  94 #include <linux/dma-mapping.h>
  95 #include <linux/crc32.h>
  96 #include <linux/mii.h>
  97 #include <linux/phy.h>
  98 #include <linux/phy_fixed.h>
  99 #include <linux/of.h>
 100 #include <linux/of_net.h>
 101 
 102 #include "gianfar.h"
 103 
 104 #define TX_TIMEOUT      (5*HZ)
 105 
 106 const char gfar_driver_version[] = "2.0";
 107 
 108 MODULE_AUTHOR("Freescale Semiconductor, Inc");
 109 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
 110 MODULE_LICENSE("GPL");
 111 
 112 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 113                             dma_addr_t buf)
 114 {
 115         u32 lstatus;
 116 
 117         bdp->bufPtr = cpu_to_be32(buf);
 118 
 119         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
 120         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
 121                 lstatus |= BD_LFLAG(RXBD_WRAP);
 122 
 123         gfar_wmb();
 124 
 125         bdp->lstatus = cpu_to_be32(lstatus);
 126 }
 127 
 128 static void gfar_init_tx_rx_base(struct gfar_private *priv)
 129 {
 130         struct gfar __iomem *regs = priv->gfargrp[0].regs;
 131         u32 __iomem *baddr;
 132         int i;
 133 
 134         baddr = &regs->tbase0;
 135         for (i = 0; i < priv->num_tx_queues; i++) {
 136                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
 137                 baddr += 2;
 138         }
 139 
 140         baddr = &regs->rbase0;
 141         for (i = 0; i < priv->num_rx_queues; i++) {
 142                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
 143                 baddr += 2;
 144         }
 145 }
 146 
 147 static void gfar_init_rqprm(struct gfar_private *priv)
 148 {
 149         struct gfar __iomem *regs = priv->gfargrp[0].regs;
 150         u32 __iomem *baddr;
 151         int i;
 152 
 153         baddr = &regs->rqprm0;
 154         for (i = 0; i < priv->num_rx_queues; i++) {
 155                 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
 156                            (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
 157                 baddr++;
 158         }
 159 }
 160 
 161 static void gfar_rx_offload_en(struct gfar_private *priv)
 162 {
 163         /* set this when rx hw offload (TOE) functions are being used */
 164         priv->uses_rxfcb = 0;
 165 
 166         if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
 167                 priv->uses_rxfcb = 1;
 168 
 169         if (priv->hwts_rx_en || priv->rx_filer_enable)
 170                 priv->uses_rxfcb = 1;
 171 }
 172 
 173 static void gfar_mac_rx_config(struct gfar_private *priv)
 174 {
 175         struct gfar __iomem *regs = priv->gfargrp[0].regs;
 176         u32 rctrl = 0;
 177 
 178         if (priv->rx_filer_enable) {
 179                 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
 180                 /* Program the RIR0 reg with the required distribution */
 181                 if (priv->poll_mode == GFAR_SQ_POLLING)
 182                         gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
 183                 else /* GFAR_MQ_POLLING */
 184                         gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
 185         }
 186 
 187         /* Restore PROMISC mode */
 188         if (priv->ndev->flags & IFF_PROMISC)
 189                 rctrl |= RCTRL_PROM;
 190 
 191         if (priv->ndev->features & NETIF_F_RXCSUM)
 192                 rctrl |= RCTRL_CHECKSUMMING;
 193 
 194         if (priv->extended_hash)
 195                 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
 196 
 197         if (priv->padding) {
 198                 rctrl &= ~RCTRL_PAL_MASK;
 199                 rctrl |= RCTRL_PADDING(priv->padding);
 200         }
 201 
 202         /* Enable HW time stamping if requested from user space */
 203         if (priv->hwts_rx_en)
 204                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
 205 
 206         if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
 207                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
 208 
 209         /* Clear the LFC bit */
 210         gfar_write(&regs->rctrl, rctrl);
 211         /* Init flow control threshold values */
 212         gfar_init_rqprm(priv);
 213         gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
 214         rctrl |= RCTRL_LFC;
 215 
 216         /* Init rctrl based on our settings */
 217         gfar_write(&regs->rctrl, rctrl);
 218 }
 219 
 220 static void gfar_mac_tx_config(struct gfar_private *priv)
 221 {
 222         struct gfar __iomem *regs = priv->gfargrp[0].regs;
 223         u32 tctrl = 0;
 224 
 225         if (priv->ndev->features & NETIF_F_IP_CSUM)
 226                 tctrl |= TCTRL_INIT_CSUM;
 227 
 228         if (priv->prio_sched_en)
 229                 tctrl |= TCTRL_TXSCHED_PRIO;
 230         else {
 231                 tctrl |= TCTRL_TXSCHED_WRRS;
 232                 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
 233                 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
 234         }
 235 
 236         if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
 237                 tctrl |= TCTRL_VLINS;
 238 
 239         gfar_write(&regs->tctrl, tctrl);
 240 }
 241 
 242 static void gfar_configure_coalescing(struct gfar_private *priv,
 243                                unsigned long tx_mask, unsigned long rx_mask)
 244 {
 245         struct gfar __iomem *regs = priv->gfargrp[0].regs;
 246         u32 __iomem *baddr;
 247 
 248         if (priv->mode == MQ_MG_MODE) {
 249                 int i = 0;
 250 
 251                 baddr = &regs->txic0;
 252                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
 253                         gfar_write(baddr + i, 0);
 254                         if (likely(priv->tx_queue[i]->txcoalescing))
 255                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
 256                 }
 257 
 258                 baddr = &regs->rxic0;
 259                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
 260                         gfar_write(baddr + i, 0);
 261                         if (likely(priv->rx_queue[i]->rxcoalescing))
 262                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
 263                 }
 264         } else {
 265                 /* Backward compatible case -- even if we enable
 266                  * multiple queues, there's only single reg to program
 267                  */
 268                 gfar_write(&regs->txic, 0);
 269                 if (likely(priv->tx_queue[0]->txcoalescing))
 270                         gfar_write(&regs->txic, priv->tx_queue[0]->txic);
 271 
 272                 gfar_write(&regs->rxic, 0);
 273                 if (unlikely(priv->rx_queue[0]->rxcoalescing))
 274                         gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
 275         }
 276 }
 277 
 278 static void gfar_configure_coalescing_all(struct gfar_private *priv)
 279 {
 280         gfar_configure_coalescing(priv, 0xFF, 0xFF);
 281 }
 282 
 283 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
 284 {
 285         struct gfar_private *priv = netdev_priv(dev);
 286         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
 287         unsigned long tx_packets = 0, tx_bytes = 0;
 288         int i;
 289 
 290         for (i = 0; i < priv->num_rx_queues; i++) {
 291                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
 292                 rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
 293                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
 294         }
 295 
 296         dev->stats.rx_packets = rx_packets;
 297         dev->stats.rx_bytes   = rx_bytes;
 298         dev->stats.rx_dropped = rx_dropped;
 299 
 300         for (i = 0; i < priv->num_tx_queues; i++) {
 301                 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
 302                 tx_packets += priv->tx_queue[i]->stats.tx_packets;
 303         }
 304 
 305         dev->stats.tx_bytes   = tx_bytes;
 306         dev->stats.tx_packets = tx_packets;
 307 
 308         return &dev->stats;
 309 }
 310 
 311 /* Set the appropriate hash bit for the given addr */
 312 /* The algorithm works like so:
 313  * 1) Take the Destination Address (ie the multicast address), and
 314  * do a CRC on it (little endian), and reverse the bits of the
 315  * result.
 316  * 2) Use the 8 most significant bits as a hash into a 256-entry
 317  * table.  The table is controlled through 8 32-bit registers:
 318  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
 319  * gaddr7.  This means that the 3 most significant bits in the
 320  * hash index which gaddr register to use, and the 5 other bits
 321  * indicate which bit (assuming an IBM numbering scheme, which
 322  * for PowerPC (tm) is usually the case) in the register holds
 323  * the entry.
 324  */
 325 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
 326 {
 327         u32 tempval;
 328         struct gfar_private *priv = netdev_priv(dev);
 329         u32 result = ether_crc(ETH_ALEN, addr);
 330         int width = priv->hash_width;
 331         u8 whichbit = (result >> (32 - width)) & 0x1f;
 332         u8 whichreg = result >> (32 - width + 5);
 333         u32 value = (1 << (31-whichbit));
 334 
 335         tempval = gfar_read(priv->hash_regs[whichreg]);
 336         tempval |= value;
 337         gfar_write(priv->hash_regs[whichreg], tempval);
 338 }
 339 
 340 /* There are multiple MAC Address register pairs on some controllers
 341  * This function sets the numth pair to a given address
 342  */
 343 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
 344                                   const u8 *addr)
 345 {
 346         struct gfar_private *priv = netdev_priv(dev);
 347         struct gfar __iomem *regs = priv->gfargrp[0].regs;
 348         u32 tempval;
 349         u32 __iomem *macptr = &regs->macstnaddr1;
 350 
 351         macptr += num*2;
 352 
 353         /* For a station address of 0x12345678ABCD in transmission
 354          * order (BE), MACnADDR1 is set to 0xCDAB7856 and
 355          * MACnADDR2 is set to 0x34120000.
 356          */
 357         tempval = (addr[5] << 24) | (addr[4] << 16) |
 358                   (addr[3] << 8)  |  addr[2];
 359 
 360         gfar_write(macptr, tempval);
 361 
 362         tempval = (addr[1] << 24) | (addr[0] << 16);
 363 
 364         gfar_write(macptr+1, tempval);
 365 }
 366 
 367 static int gfar_set_mac_addr(struct net_device *dev, void *p)
 368 {
 369         eth_mac_addr(dev, p);
 370 
 371         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
 372 
 373         return 0;
 374 }
 375 
 376 static void gfar_ints_disable(struct gfar_private *priv)
 377 {
 378         int i;
 379         for (i = 0; i < priv->num_grps; i++) {
 380                 struct gfar __iomem *regs = priv->gfargrp[i].regs;
 381                 /* Clear IEVENT */
 382                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
 383 
 384                 /* Initialize IMASK */
 385                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
 386         }
 387 }
 388 
 389 static void gfar_ints_enable(struct gfar_private *priv)
 390 {
 391         int i;
 392         for (i = 0; i < priv->num_grps; i++) {
 393                 struct gfar __iomem *regs = priv->gfargrp[i].regs;
 394                 /* Unmask the interrupts we look for */
 395                 gfar_write(&regs->imask, IMASK_DEFAULT);
 396         }
 397 }
 398 
 399 static int gfar_alloc_tx_queues(struct gfar_private *priv)
 400 {
 401         int i;
 402 
 403         for (i = 0; i < priv->num_tx_queues; i++) {
 404                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
 405                                             GFP_KERNEL);
 406                 if (!priv->tx_queue[i])
 407                         return -ENOMEM;
 408 
 409                 priv->tx_queue[i]->tx_skbuff = NULL;
 410                 priv->tx_queue[i]->qindex = i;
 411                 priv->tx_queue[i]->dev = priv->ndev;
 412                 spin_lock_init(&(priv->tx_queue[i]->txlock));
 413         }
 414         return 0;
 415 }
 416 
 417 static int gfar_alloc_rx_queues(struct gfar_private *priv)
 418 {
 419         int i;
 420 
 421         for (i = 0; i < priv->num_rx_queues; i++) {
 422                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
 423                                             GFP_KERNEL);
 424                 if (!priv->rx_queue[i])
 425                         return -ENOMEM;
 426 
 427                 priv->rx_queue[i]->qindex = i;
 428                 priv->rx_queue[i]->ndev = priv->ndev;
 429         }
 430         return 0;
 431 }
 432 
 433 static void gfar_free_tx_queues(struct gfar_private *priv)
 434 {
 435         int i;
 436 
 437         for (i = 0; i < priv->num_tx_queues; i++)
 438                 kfree(priv->tx_queue[i]);
 439 }
 440 
 441 static void gfar_free_rx_queues(struct gfar_private *priv)
 442 {
 443         int i;
 444 
 445         for (i = 0; i < priv->num_rx_queues; i++)
 446                 kfree(priv->rx_queue[i]);
 447 }
 448 
 449 static void unmap_group_regs(struct gfar_private *priv)
 450 {
 451         int i;
 452 
 453         for (i = 0; i < MAXGROUPS; i++)
 454                 if (priv->gfargrp[i].regs)
 455                         iounmap(priv->gfargrp[i].regs);
 456 }
 457 
 458 static void free_gfar_dev(struct gfar_private *priv)
 459 {
 460         int i, j;
 461 
 462         for (i = 0; i < priv->num_grps; i++)
 463                 for (j = 0; j < GFAR_NUM_IRQS; j++) {
 464                         kfree(priv->gfargrp[i].irqinfo[j]);
 465                         priv->gfargrp[i].irqinfo[j] = NULL;
 466                 }
 467 
 468         free_netdev(priv->ndev);
 469 }
 470 
 471 static void disable_napi(struct gfar_private *priv)
 472 {
 473         int i;
 474 
 475         for (i = 0; i < priv->num_grps; i++) {
 476                 napi_disable(&priv->gfargrp[i].napi_rx);
 477                 napi_disable(&priv->gfargrp[i].napi_tx);
 478         }
 479 }
 480 
 481 static void enable_napi(struct gfar_private *priv)
 482 {
 483         int i;
 484 
 485         for (i = 0; i < priv->num_grps; i++) {
 486                 napi_enable(&priv->gfargrp[i].napi_rx);
 487                 napi_enable(&priv->gfargrp[i].napi_tx);
 488         }
 489 }
 490 
 491 static int gfar_parse_group(struct device_node *np,
 492                             struct gfar_private *priv, const char *model)
 493 {
 494         struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
 495         int i;
 496 
 497         for (i = 0; i < GFAR_NUM_IRQS; i++) {
 498                 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
 499                                           GFP_KERNEL);
 500                 if (!grp->irqinfo[i])
 501                         return -ENOMEM;
 502         }
 503 
 504         grp->regs = of_iomap(np, 0);
 505         if (!grp->regs)
 506                 return -ENOMEM;
 507 
 508         gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
 509 
 510         /* If we aren't the FEC we have multiple interrupts */
 511         if (model && strcasecmp(model, "FEC")) {
 512                 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
 513                 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
 514                 if (!gfar_irq(grp, TX)->irq ||
 515                     !gfar_irq(grp, RX)->irq ||
 516                     !gfar_irq(grp, ER)->irq)
 517                         return -EINVAL;
 518         }
 519 
 520         grp->priv = priv;
 521         spin_lock_init(&grp->grplock);
 522         if (priv->mode == MQ_MG_MODE) {
 523                 u32 rxq_mask, txq_mask;
 524                 int ret;
 525 
 526                 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 527                 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 528 
 529                 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
 530                 if (!ret) {
 531                         grp->rx_bit_map = rxq_mask ?
 532                         rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
 533                 }
 534 
 535                 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
 536                 if (!ret) {
 537                         grp->tx_bit_map = txq_mask ?
 538                         txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
 539                 }
 540 
 541                 if (priv->poll_mode == GFAR_SQ_POLLING) {
 542                         /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
 543                         grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 544                         grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 545                 }
 546         } else {
 547                 grp->rx_bit_map = 0xFF;
 548                 grp->tx_bit_map = 0xFF;
 549         }
 550 
 551         /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
 552          * right to left, so we need to revert the 8 bits to get the q index
 553          */
 554         grp->rx_bit_map = bitrev8(grp->rx_bit_map);
 555         grp->tx_bit_map = bitrev8(grp->tx_bit_map);
 556 
 557         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
 558          * also assign queues to groups
 559          */
 560         for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
 561                 if (!grp->rx_queue)
 562                         grp->rx_queue = priv->rx_queue[i];
 563                 grp->num_rx_queues++;
 564                 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
 565                 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
 566                 priv->rx_queue[i]->grp = grp;
 567         }
 568 
 569         for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
 570                 if (!grp->tx_queue)
 571                         grp->tx_queue = priv->tx_queue[i];
 572                 grp->num_tx_queues++;
 573                 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
 574                 priv->tqueue |= (TQUEUE_EN0 >> i);
 575                 priv->tx_queue[i]->grp = grp;
 576         }
 577 
 578         priv->num_grps++;
 579 
 580         return 0;
 581 }
 582 
 583 static int gfar_of_group_count(struct device_node *np)
 584 {
 585         struct device_node *child;
 586         int num = 0;
 587 
 588         for_each_available_child_of_node(np, child)
 589                 if (of_node_name_eq(child, "queue-group"))
 590                         num++;
 591 
 592         return num;
 593 }
 594 
 595 /* Reads the controller's registers to determine what interface
 596  * connects it to the PHY.
 597  */
 598 static phy_interface_t gfar_get_interface(struct net_device *dev)
 599 {
 600         struct gfar_private *priv = netdev_priv(dev);
 601         struct gfar __iomem *regs = priv->gfargrp[0].regs;
 602         u32 ecntrl;
 603 
 604         ecntrl = gfar_read(&regs->ecntrl);
 605 
 606         if (ecntrl & ECNTRL_SGMII_MODE)
 607                 return PHY_INTERFACE_MODE_SGMII;
 608 
 609         if (ecntrl & ECNTRL_TBI_MODE) {
 610                 if (ecntrl & ECNTRL_REDUCED_MODE)
 611                         return PHY_INTERFACE_MODE_RTBI;
 612                 else
 613                         return PHY_INTERFACE_MODE_TBI;
 614         }
 615 
 616         if (ecntrl & ECNTRL_REDUCED_MODE) {
 617                 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
 618                         return PHY_INTERFACE_MODE_RMII;
 619                 }
 620                 else {
 621                         phy_interface_t interface = priv->interface;
 622 
 623                         /* This isn't autodetected right now, so it must
 624                          * be set by the device tree or platform code.
 625                          */
 626                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
 627                                 return PHY_INTERFACE_MODE_RGMII_ID;
 628 
 629                         return PHY_INTERFACE_MODE_RGMII;
 630                 }
 631         }
 632 
 633         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
 634                 return PHY_INTERFACE_MODE_GMII;
 635 
 636         return PHY_INTERFACE_MODE_MII;
 637 }
 638 
 639 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
 640 {
 641         const char *model;
 642         const void *mac_addr;
 643         int err = 0, i;
 644         struct net_device *dev = NULL;
 645         struct gfar_private *priv = NULL;
 646         struct device_node *np = ofdev->dev.of_node;
 647         struct device_node *child = NULL;
 648         u32 stash_len = 0;
 649         u32 stash_idx = 0;
 650         unsigned int num_tx_qs, num_rx_qs;
 651         unsigned short mode, poll_mode;
 652 
 653         if (!np)
 654                 return -ENODEV;
 655 
 656         if (of_device_is_compatible(np, "fsl,etsec2")) {
 657                 mode = MQ_MG_MODE;
 658                 poll_mode = GFAR_SQ_POLLING;
 659         } else {
 660                 mode = SQ_SG_MODE;
 661                 poll_mode = GFAR_SQ_POLLING;
 662         }
 663 
 664         if (mode == SQ_SG_MODE) {
 665                 num_tx_qs = 1;
 666                 num_rx_qs = 1;
 667         } else { /* MQ_MG_MODE */
 668                 /* get the actual number of supported groups */
 669                 unsigned int num_grps = gfar_of_group_count(np);
 670 
 671                 if (num_grps == 0 || num_grps > MAXGROUPS) {
 672                         dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
 673                                 num_grps);
 674                         pr_err("Cannot do alloc_etherdev, aborting\n");
 675                         return -EINVAL;
 676                 }
 677 
 678                 if (poll_mode == GFAR_SQ_POLLING) {
 679                         num_tx_qs = num_grps; /* one txq per int group */
 680                         num_rx_qs = num_grps; /* one rxq per int group */
 681                 } else { /* GFAR_MQ_POLLING */
 682                         u32 tx_queues, rx_queues;
 683                         int ret;
 684 
 685                         /* parse the num of HW tx and rx queues */
 686                         ret = of_property_read_u32(np, "fsl,num_tx_queues",
 687                                                    &tx_queues);
 688                         num_tx_qs = ret ? 1 : tx_queues;
 689 
 690                         ret = of_property_read_u32(np, "fsl,num_rx_queues",
 691                                                    &rx_queues);
 692                         num_rx_qs = ret ? 1 : rx_queues;
 693                 }
 694         }
 695 
 696         if (num_tx_qs > MAX_TX_QS) {
 697                 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
 698                        num_tx_qs, MAX_TX_QS);
 699                 pr_err("Cannot do alloc_etherdev, aborting\n");
 700                 return -EINVAL;
 701         }
 702 
 703         if (num_rx_qs > MAX_RX_QS) {
 704                 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
 705                        num_rx_qs, MAX_RX_QS);
 706                 pr_err("Cannot do alloc_etherdev, aborting\n");
 707                 return -EINVAL;
 708         }
 709 
 710         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
 711         dev = *pdev;
 712         if (NULL == dev)
 713                 return -ENOMEM;
 714 
 715         priv = netdev_priv(dev);
 716         priv->ndev = dev;
 717 
 718         priv->mode = mode;
 719         priv->poll_mode = poll_mode;
 720 
 721         priv->num_tx_queues = num_tx_qs;
 722         netif_set_real_num_rx_queues(dev, num_rx_qs);
 723         priv->num_rx_queues = num_rx_qs;
 724 
 725         err = gfar_alloc_tx_queues(priv);
 726         if (err)
 727                 goto tx_alloc_failed;
 728 
 729         err = gfar_alloc_rx_queues(priv);
 730         if (err)
 731                 goto rx_alloc_failed;
 732 
 733         err = of_property_read_string(np, "model", &model);
 734         if (err) {
 735                 pr_err("Device model property missing, aborting\n");
 736                 goto rx_alloc_failed;
 737         }
 738 
 739         /* Init Rx queue filer rule set linked list */
 740         INIT_LIST_HEAD(&priv->rx_list.list);
 741         priv->rx_list.count = 0;
 742         mutex_init(&priv->rx_queue_access);
 743 
 744         for (i = 0; i < MAXGROUPS; i++)
 745                 priv->gfargrp[i].regs = NULL;
 746 
 747         /* Parse and initialize group specific information */
 748         if (priv->mode == MQ_MG_MODE) {
 749                 for_each_available_child_of_node(np, child) {
 750                         if (!of_node_name_eq(child, "queue-group"))
 751                                 continue;
 752 
 753                         err = gfar_parse_group(child, priv, model);
 754                         if (err)
 755                                 goto err_grp_init;
 756                 }
 757         } else { /* SQ_SG_MODE */
 758                 err = gfar_parse_group(np, priv, model);
 759                 if (err)
 760                         goto err_grp_init;
 761         }
 762 
 763         if (of_property_read_bool(np, "bd-stash")) {
 764                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
 765                 priv->bd_stash_en = 1;
 766         }
 767 
 768         err = of_property_read_u32(np, "rx-stash-len", &stash_len);
 769 
 770         if (err == 0)
 771                 priv->rx_stash_size = stash_len;
 772 
 773         err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
 774 
 775         if (err == 0)
 776                 priv->rx_stash_index = stash_idx;
 777 
 778         if (stash_len || stash_idx)
 779                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
 780 
 781         mac_addr = of_get_mac_address(np);
 782 
 783         if (!IS_ERR(mac_addr))
 784                 ether_addr_copy(dev->dev_addr, mac_addr);
 785 
 786         if (model && !strcasecmp(model, "TSEC"))
 787                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 788                                      FSL_GIANFAR_DEV_HAS_COALESCE |
 789                                      FSL_GIANFAR_DEV_HAS_RMON |
 790                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR;
 791 
 792         if (model && !strcasecmp(model, "eTSEC"))
 793                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 794                                      FSL_GIANFAR_DEV_HAS_COALESCE |
 795                                      FSL_GIANFAR_DEV_HAS_RMON |
 796                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR |
 797                                      FSL_GIANFAR_DEV_HAS_CSUM |
 798                                      FSL_GIANFAR_DEV_HAS_VLAN |
 799                                      FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
 800                                      FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
 801                                      FSL_GIANFAR_DEV_HAS_TIMER |
 802                                      FSL_GIANFAR_DEV_HAS_RX_FILER;
 803 
 804         /* Use PHY connection type from the DT node if one is specified there.
 805          * rgmii-id really needs to be specified. Other types can be
 806          * detected by hardware
 807          */
 808         err = of_get_phy_mode(np);
 809         if (err >= 0)
 810                 priv->interface = err;
 811         else
 812                 priv->interface = gfar_get_interface(dev);
 813 
 814         if (of_find_property(np, "fsl,magic-packet", NULL))
 815                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
 816 
 817         if (of_get_property(np, "fsl,wake-on-filer", NULL))
 818                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
 819 
 820         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
 821 
 822         /* In the case of a fixed PHY, the DT node associated
 823          * to the PHY is the Ethernet MAC DT node.
 824          */
 825         if (!priv->phy_node && of_phy_is_fixed_link(np)) {
 826                 err = of_phy_register_fixed_link(np);
 827                 if (err)
 828                         goto err_grp_init;
 829 
 830                 priv->phy_node = of_node_get(np);
 831         }
 832 
 833         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
 834         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
 835 
 836         return 0;
 837 
 838 err_grp_init:
 839         unmap_group_regs(priv);
 840 rx_alloc_failed:
 841         gfar_free_rx_queues(priv);
 842 tx_alloc_failed:
 843         gfar_free_tx_queues(priv);
 844         free_gfar_dev(priv);
 845         return err;
 846 }
 847 
 848 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
 849                                    u32 class)
 850 {
 851         u32 rqfpr = FPR_FILER_MASK;
 852         u32 rqfcr = 0x0;
 853 
 854         rqfar--;
 855         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
 856         priv->ftp_rqfpr[rqfar] = rqfpr;
 857         priv->ftp_rqfcr[rqfar] = rqfcr;
 858         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 859 
 860         rqfar--;
 861         rqfcr = RQFCR_CMP_NOMATCH;
 862         priv->ftp_rqfpr[rqfar] = rqfpr;
 863         priv->ftp_rqfcr[rqfar] = rqfcr;
 864         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 865 
 866         rqfar--;
 867         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
 868         rqfpr = class;
 869         priv->ftp_rqfcr[rqfar] = rqfcr;
 870         priv->ftp_rqfpr[rqfar] = rqfpr;
 871         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 872 
 873         rqfar--;
 874         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
 875         rqfpr = class;
 876         priv->ftp_rqfcr[rqfar] = rqfcr;
 877         priv->ftp_rqfpr[rqfar] = rqfpr;
 878         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 879 
 880         return rqfar;
 881 }
 882 
 883 static void gfar_init_filer_table(struct gfar_private *priv)
 884 {
 885         int i = 0x0;
 886         u32 rqfar = MAX_FILER_IDX;
 887         u32 rqfcr = 0x0;
 888         u32 rqfpr = FPR_FILER_MASK;
 889 
 890         /* Default rule */
 891         rqfcr = RQFCR_CMP_MATCH;
 892         priv->ftp_rqfcr[rqfar] = rqfcr;
 893         priv->ftp_rqfpr[rqfar] = rqfpr;
 894         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 895 
 896         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
 897         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
 898         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
 899         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
 900         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
 901         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
 902 
 903         /* cur_filer_idx indicated the first non-masked rule */
 904         priv->cur_filer_idx = rqfar;
 905 
 906         /* Rest are masked rules */
 907         rqfcr = RQFCR_CMP_NOMATCH;
 908         for (i = 0; i < rqfar; i++) {
 909                 priv->ftp_rqfcr[i] = rqfcr;
 910                 priv->ftp_rqfpr[i] = rqfpr;
 911                 gfar_write_filer(priv, i, rqfcr, rqfpr);
 912         }
 913 }
 914 
 915 #ifdef CONFIG_PPC
 916 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
 917 {
 918         unsigned int pvr = mfspr(SPRN_PVR);
 919         unsigned int svr = mfspr(SPRN_SVR);
 920         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
 921         unsigned int rev = svr & 0xffff;
 922 
 923         /* MPC8313 Rev 2.0 and higher; All MPC837x */
 924         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
 925             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 926                 priv->errata |= GFAR_ERRATA_74;
 927 
 928         /* MPC8313 and MPC837x all rev */
 929         if ((pvr == 0x80850010 && mod == 0x80b0) ||
 930             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 931                 priv->errata |= GFAR_ERRATA_76;
 932 
 933         /* MPC8313 Rev < 2.0 */
 934         if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
 935                 priv->errata |= GFAR_ERRATA_12;
 936 }
 937 
 938 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
 939 {
 940         unsigned int svr = mfspr(SPRN_SVR);
 941 
 942         if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
 943                 priv->errata |= GFAR_ERRATA_12;
 944         /* P2020/P1010 Rev 1; MPC8548 Rev 2 */
 945         if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
 946             ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
 947             ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
 948                 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
 949 }
 950 #endif
 951 
 952 static void gfar_detect_errata(struct gfar_private *priv)
 953 {
 954         struct device *dev = &priv->ofdev->dev;
 955 
 956         /* no plans to fix */
 957         priv->errata |= GFAR_ERRATA_A002;
 958 
 959 #ifdef CONFIG_PPC
 960         if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
 961                 __gfar_detect_errata_85xx(priv);
 962         else /* non-mpc85xx parts, i.e. e300 core based */
 963                 __gfar_detect_errata_83xx(priv);
 964 #endif
 965 
 966         if (priv->errata)
 967                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
 968                          priv->errata);
 969 }
 970 
 971 static void gfar_init_addr_hash_table(struct gfar_private *priv)
 972 {
 973         struct gfar __iomem *regs = priv->gfargrp[0].regs;
 974 
 975         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
 976                 priv->extended_hash = 1;
 977                 priv->hash_width = 9;
 978 
 979                 priv->hash_regs[0] = &regs->igaddr0;
 980                 priv->hash_regs[1] = &regs->igaddr1;
 981                 priv->hash_regs[2] = &regs->igaddr2;
 982                 priv->hash_regs[3] = &regs->igaddr3;
 983                 priv->hash_regs[4] = &regs->igaddr4;
 984                 priv->hash_regs[5] = &regs->igaddr5;
 985                 priv->hash_regs[6] = &regs->igaddr6;
 986                 priv->hash_regs[7] = &regs->igaddr7;
 987                 priv->hash_regs[8] = &regs->gaddr0;
 988                 priv->hash_regs[9] = &regs->gaddr1;
 989                 priv->hash_regs[10] = &regs->gaddr2;
 990                 priv->hash_regs[11] = &regs->gaddr3;
 991                 priv->hash_regs[12] = &regs->gaddr4;
 992                 priv->hash_regs[13] = &regs->gaddr5;
 993                 priv->hash_regs[14] = &regs->gaddr6;
 994                 priv->hash_regs[15] = &regs->gaddr7;
 995 
 996         } else {
 997                 priv->extended_hash = 0;
 998                 priv->hash_width = 8;
 999 
1000                 priv->hash_regs[0] = &regs->gaddr0;
1001                 priv->hash_regs[1] = &regs->gaddr1;
1002                 priv->hash_regs[2] = &regs->gaddr2;
1003                 priv->hash_regs[3] = &regs->gaddr3;
1004                 priv->hash_regs[4] = &regs->gaddr4;
1005                 priv->hash_regs[5] = &regs->gaddr5;
1006                 priv->hash_regs[6] = &regs->gaddr6;
1007                 priv->hash_regs[7] = &regs->gaddr7;
1008         }
1009 }
1010 
1011 static int __gfar_is_rx_idle(struct gfar_private *priv)
1012 {
1013         u32 res;
1014 
1015         /* Normaly TSEC should not hang on GRS commands, so we should
1016          * actually wait for IEVENT_GRSC flag.
1017          */
1018         if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1019                 return 0;
1020 
1021         /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1022          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1023          * and the Rx can be safely reset.
1024          */
1025         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1026         res &= 0x7f807f80;
1027         if ((res & 0xffff) == (res >> 16))
1028                 return 1;
1029 
1030         return 0;
1031 }
1032 
1033 /* Halt the receive and transmit queues */
1034 static void gfar_halt_nodisable(struct gfar_private *priv)
1035 {
1036         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1037         u32 tempval;
1038         unsigned int timeout;
1039         int stopped;
1040 
1041         gfar_ints_disable(priv);
1042 
1043         if (gfar_is_dma_stopped(priv))
1044                 return;
1045 
1046         /* Stop the DMA, and wait for it to stop */
1047         tempval = gfar_read(&regs->dmactrl);
1048         tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1049         gfar_write(&regs->dmactrl, tempval);
1050 
1051 retry:
1052         timeout = 1000;
1053         while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1054                 cpu_relax();
1055                 timeout--;
1056         }
1057 
1058         if (!timeout)
1059                 stopped = gfar_is_dma_stopped(priv);
1060 
1061         if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1062             !__gfar_is_rx_idle(priv))
1063                 goto retry;
1064 }
1065 
1066 /* Halt the receive and transmit queues */
1067 static void gfar_halt(struct gfar_private *priv)
1068 {
1069         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1070         u32 tempval;
1071 
1072         /* Dissable the Rx/Tx hw queues */
1073         gfar_write(&regs->rqueue, 0);
1074         gfar_write(&regs->tqueue, 0);
1075 
1076         mdelay(10);
1077 
1078         gfar_halt_nodisable(priv);
1079 
1080         /* Disable Rx/Tx DMA */
1081         tempval = gfar_read(&regs->maccfg1);
1082         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1083         gfar_write(&regs->maccfg1, tempval);
1084 }
1085 
1086 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1087 {
1088         struct txbd8 *txbdp;
1089         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1090         int i, j;
1091 
1092         txbdp = tx_queue->tx_bd_base;
1093 
1094         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1095                 if (!tx_queue->tx_skbuff[i])
1096                         continue;
1097 
1098                 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1099                                  be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1100                 txbdp->lstatus = 0;
1101                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1102                      j++) {
1103                         txbdp++;
1104                         dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1105                                        be16_to_cpu(txbdp->length),
1106                                        DMA_TO_DEVICE);
1107                 }
1108                 txbdp++;
1109                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1110                 tx_queue->tx_skbuff[i] = NULL;
1111         }
1112         kfree(tx_queue->tx_skbuff);
1113         tx_queue->tx_skbuff = NULL;
1114 }
1115 
1116 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1117 {
1118         int i;
1119 
1120         struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1121 
1122         dev_kfree_skb(rx_queue->skb);
1123 
1124         for (i = 0; i < rx_queue->rx_ring_size; i++) {
1125                 struct  gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1126 
1127                 rxbdp->lstatus = 0;
1128                 rxbdp->bufPtr = 0;
1129                 rxbdp++;
1130 
1131                 if (!rxb->page)
1132                         continue;
1133 
1134                 dma_unmap_page(rx_queue->dev, rxb->dma,
1135                                PAGE_SIZE, DMA_FROM_DEVICE);
1136                 __free_page(rxb->page);
1137 
1138                 rxb->page = NULL;
1139         }
1140 
1141         kfree(rx_queue->rx_buff);
1142         rx_queue->rx_buff = NULL;
1143 }
1144 
1145 /* If there are any tx skbs or rx skbs still around, free them.
1146  * Then free tx_skbuff and rx_skbuff
1147  */
1148 static void free_skb_resources(struct gfar_private *priv)
1149 {
1150         struct gfar_priv_tx_q *tx_queue = NULL;
1151         struct gfar_priv_rx_q *rx_queue = NULL;
1152         int i;
1153 
1154         /* Go through all the buffer descriptors and free their data buffers */
1155         for (i = 0; i < priv->num_tx_queues; i++) {
1156                 struct netdev_queue *txq;
1157 
1158                 tx_queue = priv->tx_queue[i];
1159                 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1160                 if (tx_queue->tx_skbuff)
1161                         free_skb_tx_queue(tx_queue);
1162                 netdev_tx_reset_queue(txq);
1163         }
1164 
1165         for (i = 0; i < priv->num_rx_queues; i++) {
1166                 rx_queue = priv->rx_queue[i];
1167                 if (rx_queue->rx_buff)
1168                         free_skb_rx_queue(rx_queue);
1169         }
1170 
1171         dma_free_coherent(priv->dev,
1172                           sizeof(struct txbd8) * priv->total_tx_ring_size +
1173                           sizeof(struct rxbd8) * priv->total_rx_ring_size,
1174                           priv->tx_queue[0]->tx_bd_base,
1175                           priv->tx_queue[0]->tx_bd_dma_base);
1176 }
1177 
1178 void stop_gfar(struct net_device *dev)
1179 {
1180         struct gfar_private *priv = netdev_priv(dev);
1181 
1182         netif_tx_stop_all_queues(dev);
1183 
1184         smp_mb__before_atomic();
1185         set_bit(GFAR_DOWN, &priv->state);
1186         smp_mb__after_atomic();
1187 
1188         disable_napi(priv);
1189 
1190         /* disable ints and gracefully shut down Rx/Tx DMA */
1191         gfar_halt(priv);
1192 
1193         phy_stop(dev->phydev);
1194 
1195         free_skb_resources(priv);
1196 }
1197 
1198 static void gfar_start(struct gfar_private *priv)
1199 {
1200         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1201         u32 tempval;
1202         int i = 0;
1203 
1204         /* Enable Rx/Tx hw queues */
1205         gfar_write(&regs->rqueue, priv->rqueue);
1206         gfar_write(&regs->tqueue, priv->tqueue);
1207 
1208         /* Initialize DMACTRL to have WWR and WOP */
1209         tempval = gfar_read(&regs->dmactrl);
1210         tempval |= DMACTRL_INIT_SETTINGS;
1211         gfar_write(&regs->dmactrl, tempval);
1212 
1213         /* Make sure we aren't stopped */
1214         tempval = gfar_read(&regs->dmactrl);
1215         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1216         gfar_write(&regs->dmactrl, tempval);
1217 
1218         for (i = 0; i < priv->num_grps; i++) {
1219                 regs = priv->gfargrp[i].regs;
1220                 /* Clear THLT/RHLT, so that the DMA starts polling now */
1221                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1222                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1223         }
1224 
1225         /* Enable Rx/Tx DMA */
1226         tempval = gfar_read(&regs->maccfg1);
1227         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1228         gfar_write(&regs->maccfg1, tempval);
1229 
1230         gfar_ints_enable(priv);
1231 
1232         netif_trans_update(priv->ndev); /* prevent tx timeout */
1233 }
1234 
1235 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
1236 {
1237         struct page *page;
1238         dma_addr_t addr;
1239 
1240         page = dev_alloc_page();
1241         if (unlikely(!page))
1242                 return false;
1243 
1244         addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1245         if (unlikely(dma_mapping_error(rxq->dev, addr))) {
1246                 __free_page(page);
1247 
1248                 return false;
1249         }
1250 
1251         rxb->dma = addr;
1252         rxb->page = page;
1253         rxb->page_offset = 0;
1254 
1255         return true;
1256 }
1257 
1258 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
1259 {
1260         struct gfar_private *priv = netdev_priv(rx_queue->ndev);
1261         struct gfar_extra_stats *estats = &priv->extra_stats;
1262 
1263         netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
1264         atomic64_inc(&estats->rx_alloc_err);
1265 }
1266 
1267 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
1268                                 int alloc_cnt)
1269 {
1270         struct rxbd8 *bdp;
1271         struct gfar_rx_buff *rxb;
1272         int i;
1273 
1274         i = rx_queue->next_to_use;
1275         bdp = &rx_queue->rx_bd_base[i];
1276         rxb = &rx_queue->rx_buff[i];
1277 
1278         while (alloc_cnt--) {
1279                 /* try reuse page */
1280                 if (unlikely(!rxb->page)) {
1281                         if (unlikely(!gfar_new_page(rx_queue, rxb))) {
1282                                 gfar_rx_alloc_err(rx_queue);
1283                                 break;
1284                         }
1285                 }
1286 
1287                 /* Setup the new RxBD */
1288                 gfar_init_rxbdp(rx_queue, bdp,
1289                                 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
1290 
1291                 /* Update to the next pointer */
1292                 bdp++;
1293                 rxb++;
1294 
1295                 if (unlikely(++i == rx_queue->rx_ring_size)) {
1296                         i = 0;
1297                         bdp = rx_queue->rx_bd_base;
1298                         rxb = rx_queue->rx_buff;
1299                 }
1300         }
1301 
1302         rx_queue->next_to_use = i;
1303         rx_queue->next_to_alloc = i;
1304 }
1305 
1306 static void gfar_init_bds(struct net_device *ndev)
1307 {
1308         struct gfar_private *priv = netdev_priv(ndev);
1309         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1310         struct gfar_priv_tx_q *tx_queue = NULL;
1311         struct gfar_priv_rx_q *rx_queue = NULL;
1312         struct txbd8 *txbdp;
1313         u32 __iomem *rfbptr;
1314         int i, j;
1315 
1316         for (i = 0; i < priv->num_tx_queues; i++) {
1317                 tx_queue = priv->tx_queue[i];
1318                 /* Initialize some variables in our dev structure */
1319                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
1320                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
1321                 tx_queue->cur_tx = tx_queue->tx_bd_base;
1322                 tx_queue->skb_curtx = 0;
1323                 tx_queue->skb_dirtytx = 0;
1324 
1325                 /* Initialize Transmit Descriptor Ring */
1326                 txbdp = tx_queue->tx_bd_base;
1327                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
1328                         txbdp->lstatus = 0;
1329                         txbdp->bufPtr = 0;
1330                         txbdp++;
1331                 }
1332 
1333                 /* Set the last descriptor in the ring to indicate wrap */
1334                 txbdp--;
1335                 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
1336                                             TXBD_WRAP);
1337         }
1338 
1339         rfbptr = &regs->rfbptr0;
1340         for (i = 0; i < priv->num_rx_queues; i++) {
1341                 rx_queue = priv->rx_queue[i];
1342 
1343                 rx_queue->next_to_clean = 0;
1344                 rx_queue->next_to_use = 0;
1345                 rx_queue->next_to_alloc = 0;
1346 
1347                 /* make sure next_to_clean != next_to_use after this
1348                  * by leaving at least 1 unused descriptor
1349                  */
1350                 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
1351 
1352                 rx_queue->rfbptr = rfbptr;
1353                 rfbptr += 2;
1354         }
1355 }
1356 
1357 static int gfar_alloc_skb_resources(struct net_device *ndev)
1358 {
1359         void *vaddr;
1360         dma_addr_t addr;
1361         int i, j;
1362         struct gfar_private *priv = netdev_priv(ndev);
1363         struct device *dev = priv->dev;
1364         struct gfar_priv_tx_q *tx_queue = NULL;
1365         struct gfar_priv_rx_q *rx_queue = NULL;
1366 
1367         priv->total_tx_ring_size = 0;
1368         for (i = 0; i < priv->num_tx_queues; i++)
1369                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
1370 
1371         priv->total_rx_ring_size = 0;
1372         for (i = 0; i < priv->num_rx_queues; i++)
1373                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
1374 
1375         /* Allocate memory for the buffer descriptors */
1376         vaddr = dma_alloc_coherent(dev,
1377                                    (priv->total_tx_ring_size *
1378                                     sizeof(struct txbd8)) +
1379                                    (priv->total_rx_ring_size *
1380                                     sizeof(struct rxbd8)),
1381                                    &addr, GFP_KERNEL);
1382         if (!vaddr)
1383                 return -ENOMEM;
1384 
1385         for (i = 0; i < priv->num_tx_queues; i++) {
1386                 tx_queue = priv->tx_queue[i];
1387                 tx_queue->tx_bd_base = vaddr;
1388                 tx_queue->tx_bd_dma_base = addr;
1389                 tx_queue->dev = ndev;
1390                 /* enet DMA only understands physical addresses */
1391                 addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1392                 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1393         }
1394 
1395         /* Start the rx descriptor ring where the tx ring leaves off */
1396         for (i = 0; i < priv->num_rx_queues; i++) {
1397                 rx_queue = priv->rx_queue[i];
1398                 rx_queue->rx_bd_base = vaddr;
1399                 rx_queue->rx_bd_dma_base = addr;
1400                 rx_queue->ndev = ndev;
1401                 rx_queue->dev = dev;
1402                 addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1403                 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1404         }
1405 
1406         /* Setup the skbuff rings */
1407         for (i = 0; i < priv->num_tx_queues; i++) {
1408                 tx_queue = priv->tx_queue[i];
1409                 tx_queue->tx_skbuff =
1410                         kmalloc_array(tx_queue->tx_ring_size,
1411                                       sizeof(*tx_queue->tx_skbuff),
1412                                       GFP_KERNEL);
1413                 if (!tx_queue->tx_skbuff)
1414                         goto cleanup;
1415 
1416                 for (j = 0; j < tx_queue->tx_ring_size; j++)
1417                         tx_queue->tx_skbuff[j] = NULL;
1418         }
1419 
1420         for (i = 0; i < priv->num_rx_queues; i++) {
1421                 rx_queue = priv->rx_queue[i];
1422                 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
1423                                             sizeof(*rx_queue->rx_buff),
1424                                             GFP_KERNEL);
1425                 if (!rx_queue->rx_buff)
1426                         goto cleanup;
1427         }
1428 
1429         gfar_init_bds(ndev);
1430 
1431         return 0;
1432 
1433 cleanup:
1434         free_skb_resources(priv);
1435         return -ENOMEM;
1436 }
1437 
1438 /* Bring the controller up and running */
1439 int startup_gfar(struct net_device *ndev)
1440 {
1441         struct gfar_private *priv = netdev_priv(ndev);
1442         int err;
1443 
1444         gfar_mac_reset(priv);
1445 
1446         err = gfar_alloc_skb_resources(ndev);
1447         if (err)
1448                 return err;
1449 
1450         gfar_init_tx_rx_base(priv);
1451 
1452         smp_mb__before_atomic();
1453         clear_bit(GFAR_DOWN, &priv->state);
1454         smp_mb__after_atomic();
1455 
1456         /* Start Rx/Tx DMA and enable the interrupts */
1457         gfar_start(priv);
1458 
1459         /* force link state update after mac reset */
1460         priv->oldlink = 0;
1461         priv->oldspeed = 0;
1462         priv->oldduplex = -1;
1463 
1464         phy_start(ndev->phydev);
1465 
1466         enable_napi(priv);
1467 
1468         netif_tx_wake_all_queues(ndev);
1469 
1470         return 0;
1471 }
1472 
1473 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
1474 {
1475         struct net_device *ndev = priv->ndev;
1476         struct phy_device *phydev = ndev->phydev;
1477         u32 val = 0;
1478 
1479         if (!phydev->duplex)
1480                 return val;
1481 
1482         if (!priv->pause_aneg_en) {
1483                 if (priv->tx_pause_en)
1484                         val |= MACCFG1_TX_FLOW;
1485                 if (priv->rx_pause_en)
1486                         val |= MACCFG1_RX_FLOW;
1487         } else {
1488                 u16 lcl_adv, rmt_adv;
1489                 u8 flowctrl;
1490                 /* get link partner capabilities */
1491                 rmt_adv = 0;
1492                 if (phydev->pause)
1493                         rmt_adv = LPA_PAUSE_CAP;
1494                 if (phydev->asym_pause)
1495                         rmt_adv |= LPA_PAUSE_ASYM;
1496 
1497                 lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
1498                 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
1499                 if (flowctrl & FLOW_CTRL_TX)
1500                         val |= MACCFG1_TX_FLOW;
1501                 if (flowctrl & FLOW_CTRL_RX)
1502                         val |= MACCFG1_RX_FLOW;
1503         }
1504 
1505         return val;
1506 }
1507 
1508 static noinline void gfar_update_link_state(struct gfar_private *priv)
1509 {
1510         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1511         struct net_device *ndev = priv->ndev;
1512         struct phy_device *phydev = ndev->phydev;
1513         struct gfar_priv_rx_q *rx_queue = NULL;
1514         int i;
1515 
1516         if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
1517                 return;
1518 
1519         if (phydev->link) {
1520                 u32 tempval1 = gfar_read(&regs->maccfg1);
1521                 u32 tempval = gfar_read(&regs->maccfg2);
1522                 u32 ecntrl = gfar_read(&regs->ecntrl);
1523                 u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
1524 
1525                 if (phydev->duplex != priv->oldduplex) {
1526                         if (!(phydev->duplex))
1527                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
1528                         else
1529                                 tempval |= MACCFG2_FULL_DUPLEX;
1530 
1531                         priv->oldduplex = phydev->duplex;
1532                 }
1533 
1534                 if (phydev->speed != priv->oldspeed) {
1535                         switch (phydev->speed) {
1536                         case 1000:
1537                                 tempval =
1538                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1539 
1540                                 ecntrl &= ~(ECNTRL_R100);
1541                                 break;
1542                         case 100:
1543                         case 10:
1544                                 tempval =
1545                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1546 
1547                                 /* Reduced mode distinguishes
1548                                  * between 10 and 100
1549                                  */
1550                                 if (phydev->speed == SPEED_100)
1551                                         ecntrl |= ECNTRL_R100;
1552                                 else
1553                                         ecntrl &= ~(ECNTRL_R100);
1554                                 break;
1555                         default:
1556                                 netif_warn(priv, link, priv->ndev,
1557                                            "Ack!  Speed (%d) is not 10/100/1000!\n",
1558                                            phydev->speed);
1559                                 break;
1560                         }
1561 
1562                         priv->oldspeed = phydev->speed;
1563                 }
1564 
1565                 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1566                 tempval1 |= gfar_get_flowctrl_cfg(priv);
1567 
1568                 /* Turn last free buffer recording on */
1569                 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
1570                         for (i = 0; i < priv->num_rx_queues; i++) {
1571                                 u32 bdp_dma;
1572 
1573                                 rx_queue = priv->rx_queue[i];
1574                                 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
1575                                 gfar_write(rx_queue->rfbptr, bdp_dma);
1576                         }
1577 
1578                         priv->tx_actual_en = 1;
1579                 }
1580 
1581                 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
1582                         priv->tx_actual_en = 0;
1583 
1584                 gfar_write(&regs->maccfg1, tempval1);
1585                 gfar_write(&regs->maccfg2, tempval);
1586                 gfar_write(&regs->ecntrl, ecntrl);
1587 
1588                 if (!priv->oldlink)
1589                         priv->oldlink = 1;
1590 
1591         } else if (priv->oldlink) {
1592                 priv->oldlink = 0;
1593                 priv->oldspeed = 0;
1594                 priv->oldduplex = -1;
1595         }
1596 
1597         if (netif_msg_link(priv))
1598                 phy_print_status(phydev);
1599 }
1600 
1601 /* Called every time the controller might need to be made
1602  * aware of new link state.  The PHY code conveys this
1603  * information through variables in the phydev structure, and this
1604  * function converts those variables into the appropriate
1605  * register values, and can bring down the device if needed.
1606  */
1607 static void adjust_link(struct net_device *dev)
1608 {
1609         struct gfar_private *priv = netdev_priv(dev);
1610         struct phy_device *phydev = dev->phydev;
1611 
1612         if (unlikely(phydev->link != priv->oldlink ||
1613                      (phydev->link && (phydev->duplex != priv->oldduplex ||
1614                                        phydev->speed != priv->oldspeed))))
1615                 gfar_update_link_state(priv);
1616 }
1617 
1618 /* Initialize TBI PHY interface for communicating with the
1619  * SERDES lynx PHY on the chip.  We communicate with this PHY
1620  * through the MDIO bus on each controller, treating it as a
1621  * "normal" PHY at the address found in the TBIPA register.  We assume
1622  * that the TBIPA register is valid.  Either the MDIO bus code will set
1623  * it to a value that doesn't conflict with other PHYs on the bus, or the
1624  * value doesn't matter, as there are no other PHYs on the bus.
1625  */
1626 static void gfar_configure_serdes(struct net_device *dev)
1627 {
1628         struct gfar_private *priv = netdev_priv(dev);
1629         struct phy_device *tbiphy;
1630 
1631         if (!priv->tbi_node) {
1632                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1633                                     "device tree specify a tbi-handle\n");
1634                 return;
1635         }
1636 
1637         tbiphy = of_phy_find_device(priv->tbi_node);
1638         if (!tbiphy) {
1639                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1640                 return;
1641         }
1642 
1643         /* If the link is already up, we must already be ok, and don't need to
1644          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1645          * everything for us?  Resetting it takes the link down and requires
1646          * several seconds for it to come back.
1647          */
1648         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1649                 put_device(&tbiphy->mdio.dev);
1650                 return;
1651         }
1652 
1653         /* Single clk mode, mii mode off(for serdes communication) */
1654         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1655 
1656         phy_write(tbiphy, MII_ADVERTISE,
1657                   ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1658                   ADVERTISE_1000XPSE_ASYM);
1659 
1660         phy_write(tbiphy, MII_BMCR,
1661                   BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1662                   BMCR_SPEED1000);
1663 
1664         put_device(&tbiphy->mdio.dev);
1665 }
1666 
1667 /* Initializes driver's PHY state, and attaches to the PHY.
1668  * Returns 0 on success.
1669  */
1670 static int init_phy(struct net_device *dev)
1671 {
1672         __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1673         struct gfar_private *priv = netdev_priv(dev);
1674         phy_interface_t interface = priv->interface;
1675         struct phy_device *phydev;
1676         struct ethtool_eee edata;
1677 
1678         linkmode_set_bit_array(phy_10_100_features_array,
1679                                ARRAY_SIZE(phy_10_100_features_array),
1680                                mask);
1681         linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1682         linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1683         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1684                 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1685 
1686         priv->oldlink = 0;
1687         priv->oldspeed = 0;
1688         priv->oldduplex = -1;
1689 
1690         phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1691                                 interface);
1692         if (!phydev) {
1693                 dev_err(&dev->dev, "could not attach to PHY\n");
1694                 return -ENODEV;
1695         }
1696 
1697         if (interface == PHY_INTERFACE_MODE_SGMII)
1698                 gfar_configure_serdes(dev);
1699 
1700         /* Remove any features not supported by the controller */
1701         linkmode_and(phydev->supported, phydev->supported, mask);
1702         linkmode_copy(phydev->advertising, phydev->supported);
1703 
1704         /* Add support for flow control */
1705         phy_support_asym_pause(phydev);
1706 
1707         /* disable EEE autoneg, EEE not supported by eTSEC */
1708         memset(&edata, 0, sizeof(struct ethtool_eee));
1709         phy_ethtool_set_eee(phydev, &edata);
1710 
1711         return 0;
1712 }
1713 
1714 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1715 {
1716         struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
1717 
1718         memset(fcb, 0, GMAC_FCB_LEN);
1719 
1720         return fcb;
1721 }
1722 
1723 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1724                                     int fcb_length)
1725 {
1726         /* If we're here, it's a IP packet with a TCP or UDP
1727          * payload.  We set it to checksum, using a pseudo-header
1728          * we provide
1729          */
1730         u8 flags = TXFCB_DEFAULT;
1731 
1732         /* Tell the controller what the protocol is
1733          * And provide the already calculated phcs
1734          */
1735         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1736                 flags |= TXFCB_UDP;
1737                 fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
1738         } else
1739                 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
1740 
1741         /* l3os is the distance between the start of the
1742          * frame (skb->data) and the start of the IP hdr.
1743          * l4os is the distance between the start of the
1744          * l3 hdr and the l4 hdr
1745          */
1746         fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
1747         fcb->l4os = skb_network_header_len(skb);
1748 
1749         fcb->flags = flags;
1750 }
1751 
1752 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1753 {
1754         fcb->flags |= TXFCB_VLN;
1755         fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
1756 }
1757 
1758 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1759                                       struct txbd8 *base, int ring_size)
1760 {
1761         struct txbd8 *new_bd = bdp + stride;
1762 
1763         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1764 }
1765 
1766 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1767                                       int ring_size)
1768 {
1769         return skip_txbd(bdp, 1, base, ring_size);
1770 }
1771 
1772 /* eTSEC12: csum generation not supported for some fcb offsets */
1773 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
1774                                        unsigned long fcb_addr)
1775 {
1776         return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
1777                (fcb_addr % 0x20) > 0x18);
1778 }
1779 
1780 /* eTSEC76: csum generation for frames larger than 2500 may
1781  * cause excess delays before start of transmission
1782  */
1783 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
1784                                        unsigned int len)
1785 {
1786         return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
1787                (len > 2500));
1788 }
1789 
1790 /* This is called by the kernel when a frame is ready for transmission.
1791  * It is pointed to by the dev->hard_start_xmit function pointer
1792  */
1793 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1794 {
1795         struct gfar_private *priv = netdev_priv(dev);
1796         struct gfar_priv_tx_q *tx_queue = NULL;
1797         struct netdev_queue *txq;
1798         struct gfar __iomem *regs = NULL;
1799         struct txfcb *fcb = NULL;
1800         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1801         u32 lstatus;
1802         skb_frag_t *frag;
1803         int i, rq = 0;
1804         int do_tstamp, do_csum, do_vlan;
1805         u32 bufaddr;
1806         unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
1807 
1808         rq = skb->queue_mapping;
1809         tx_queue = priv->tx_queue[rq];
1810         txq = netdev_get_tx_queue(dev, rq);
1811         base = tx_queue->tx_bd_base;
1812         regs = tx_queue->grp->regs;
1813 
1814         do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
1815         do_vlan = skb_vlan_tag_present(skb);
1816         do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1817                     priv->hwts_tx_en;
1818 
1819         if (do_csum || do_vlan)
1820                 fcb_len = GMAC_FCB_LEN;
1821 
1822         /* check if time stamp should be generated */
1823         if (unlikely(do_tstamp))
1824                 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
1825 
1826         /* make space for additional header when fcb is needed */
1827         if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
1828                 struct sk_buff *skb_new;
1829 
1830                 skb_new = skb_realloc_headroom(skb, fcb_len);
1831                 if (!skb_new) {
1832                         dev->stats.tx_errors++;
1833                         dev_kfree_skb_any(skb);
1834                         return NETDEV_TX_OK;
1835                 }
1836 
1837                 if (skb->sk)
1838                         skb_set_owner_w(skb_new, skb->sk);
1839                 dev_consume_skb_any(skb);
1840                 skb = skb_new;
1841         }
1842 
1843         /* total number of fragments in the SKB */
1844         nr_frags = skb_shinfo(skb)->nr_frags;
1845 
1846         /* calculate the required number of TxBDs for this skb */
1847         if (unlikely(do_tstamp))
1848                 nr_txbds = nr_frags + 2;
1849         else
1850                 nr_txbds = nr_frags + 1;
1851 
1852         /* check if there is space to queue this packet */
1853         if (nr_txbds > tx_queue->num_txbdfree) {
1854                 /* no space, stop the queue */
1855                 netif_tx_stop_queue(txq);
1856                 dev->stats.tx_fifo_errors++;
1857                 return NETDEV_TX_BUSY;
1858         }
1859 
1860         /* Update transmit stats */
1861         bytes_sent = skb->len;
1862         tx_queue->stats.tx_bytes += bytes_sent;
1863         /* keep Tx bytes on wire for BQL accounting */
1864         GFAR_CB(skb)->bytes_sent = bytes_sent;
1865         tx_queue->stats.tx_packets++;
1866 
1867         txbdp = txbdp_start = tx_queue->cur_tx;
1868         lstatus = be32_to_cpu(txbdp->lstatus);
1869 
1870         /* Add TxPAL between FCB and frame if required */
1871         if (unlikely(do_tstamp)) {
1872                 skb_push(skb, GMAC_TXPAL_LEN);
1873                 memset(skb->data, 0, GMAC_TXPAL_LEN);
1874         }
1875 
1876         /* Add TxFCB if required */
1877         if (fcb_len) {
1878                 fcb = gfar_add_fcb(skb);
1879                 lstatus |= BD_LFLAG(TXBD_TOE);
1880         }
1881 
1882         /* Set up checksumming */
1883         if (do_csum) {
1884                 gfar_tx_checksum(skb, fcb, fcb_len);
1885 
1886                 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
1887                     unlikely(gfar_csum_errata_76(priv, skb->len))) {
1888                         __skb_pull(skb, GMAC_FCB_LEN);
1889                         skb_checksum_help(skb);
1890                         if (do_vlan || do_tstamp) {
1891                                 /* put back a new fcb for vlan/tstamp TOE */
1892                                 fcb = gfar_add_fcb(skb);
1893                         } else {
1894                                 /* Tx TOE not used */
1895                                 lstatus &= ~(BD_LFLAG(TXBD_TOE));
1896                                 fcb = NULL;
1897                         }
1898                 }
1899         }
1900 
1901         if (do_vlan)
1902                 gfar_tx_vlan(skb, fcb);
1903 
1904         bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
1905                                  DMA_TO_DEVICE);
1906         if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1907                 goto dma_map_err;
1908 
1909         txbdp_start->bufPtr = cpu_to_be32(bufaddr);
1910 
1911         /* Time stamp insertion requires one additional TxBD */
1912         if (unlikely(do_tstamp))
1913                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
1914                                                  tx_queue->tx_ring_size);
1915 
1916         if (likely(!nr_frags)) {
1917                 if (likely(!do_tstamp))
1918                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1919         } else {
1920                 u32 lstatus_start = lstatus;
1921 
1922                 /* Place the fragment addresses and lengths into the TxBDs */
1923                 frag = &skb_shinfo(skb)->frags[0];
1924                 for (i = 0; i < nr_frags; i++, frag++) {
1925                         unsigned int size;
1926 
1927                         /* Point at the next BD, wrapping as needed */
1928                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1929 
1930                         size = skb_frag_size(frag);
1931 
1932                         lstatus = be32_to_cpu(txbdp->lstatus) | size |
1933                                   BD_LFLAG(TXBD_READY);
1934 
1935                         /* Handle the last BD specially */
1936                         if (i == nr_frags - 1)
1937                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1938 
1939                         bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
1940                                                    size, DMA_TO_DEVICE);
1941                         if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1942                                 goto dma_map_err;
1943 
1944                         /* set the TxBD length and buffer pointer */
1945                         txbdp->bufPtr = cpu_to_be32(bufaddr);
1946                         txbdp->lstatus = cpu_to_be32(lstatus);
1947                 }
1948 
1949                 lstatus = lstatus_start;
1950         }
1951 
1952         /* If time stamping is requested one additional TxBD must be set up. The
1953          * first TxBD points to the FCB and must have a data length of
1954          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
1955          * the full frame length.
1956          */
1957         if (unlikely(do_tstamp)) {
1958                 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
1959 
1960                 bufaddr = be32_to_cpu(txbdp_start->bufPtr);
1961                 bufaddr += fcb_len;
1962 
1963                 lstatus_ts |= BD_LFLAG(TXBD_READY) |
1964                               (skb_headlen(skb) - fcb_len);
1965                 if (!nr_frags)
1966                         lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1967 
1968                 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
1969                 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
1970                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
1971 
1972                 /* Setup tx hardware time stamping */
1973                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1974                 fcb->ptp = 1;
1975         } else {
1976                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1977         }
1978 
1979         netdev_tx_sent_queue(txq, bytes_sent);
1980 
1981         gfar_wmb();
1982 
1983         txbdp_start->lstatus = cpu_to_be32(lstatus);
1984 
1985         gfar_wmb(); /* force lstatus write before tx_skbuff */
1986 
1987         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1988 
1989         /* Update the current skb pointer to the next entry we will use
1990          * (wrapping if necessary)
1991          */
1992         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
1993                               TX_RING_MOD_MASK(tx_queue->tx_ring_size);
1994 
1995         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1996 
1997         /* We can work in parallel with gfar_clean_tx_ring(), except
1998          * when modifying num_txbdfree. Note that we didn't grab the lock
1999          * when we were reading the num_txbdfree and checking for available
2000          * space, that's because outside of this function it can only grow.
2001          */
2002         spin_lock_bh(&tx_queue->txlock);
2003         /* reduce TxBD free count */
2004         tx_queue->num_txbdfree -= (nr_txbds);
2005         spin_unlock_bh(&tx_queue->txlock);
2006 
2007         /* If the next BD still needs to be cleaned up, then the bds
2008          * are full.  We need to tell the kernel to stop sending us stuff.
2009          */
2010         if (!tx_queue->num_txbdfree) {
2011                 netif_tx_stop_queue(txq);
2012 
2013                 dev->stats.tx_fifo_errors++;
2014         }
2015 
2016         /* Tell the DMA to go go go */
2017         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2018 
2019         return NETDEV_TX_OK;
2020 
2021 dma_map_err:
2022         txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2023         if (do_tstamp)
2024                 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2025         for (i = 0; i < nr_frags; i++) {
2026                 lstatus = be32_to_cpu(txbdp->lstatus);
2027                 if (!(lstatus & BD_LFLAG(TXBD_READY)))
2028                         break;
2029 
2030                 lstatus &= ~BD_LFLAG(TXBD_READY);
2031                 txbdp->lstatus = cpu_to_be32(lstatus);
2032                 bufaddr = be32_to_cpu(txbdp->bufPtr);
2033                 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2034                                DMA_TO_DEVICE);
2035                 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2036         }
2037         gfar_wmb();
2038         dev_kfree_skb_any(skb);
2039         return NETDEV_TX_OK;
2040 }
2041 
2042 /* Changes the mac address if the controller is not running. */
2043 static int gfar_set_mac_address(struct net_device *dev)
2044 {
2045         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2046 
2047         return 0;
2048 }
2049 
2050 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2051 {
2052         struct gfar_private *priv = netdev_priv(dev);
2053 
2054         while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2055                 cpu_relax();
2056 
2057         if (dev->flags & IFF_UP)
2058                 stop_gfar(dev);
2059 
2060         dev->mtu = new_mtu;
2061 
2062         if (dev->flags & IFF_UP)
2063                 startup_gfar(dev);
2064 
2065         clear_bit_unlock(GFAR_RESETTING, &priv->state);
2066 
2067         return 0;
2068 }
2069 
2070 static void reset_gfar(struct net_device *ndev)
2071 {
2072         struct gfar_private *priv = netdev_priv(ndev);
2073 
2074         while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2075                 cpu_relax();
2076 
2077         stop_gfar(ndev);
2078         startup_gfar(ndev);
2079 
2080         clear_bit_unlock(GFAR_RESETTING, &priv->state);
2081 }
2082 
2083 /* gfar_reset_task gets scheduled when a packet has not been
2084  * transmitted after a set amount of time.
2085  * For now, assume that clearing out all the structures, and
2086  * starting over will fix the problem.
2087  */
2088 static void gfar_reset_task(struct work_struct *work)
2089 {
2090         struct gfar_private *priv = container_of(work, struct gfar_private,
2091                                                  reset_task);
2092         reset_gfar(priv->ndev);
2093 }
2094 
2095 static void gfar_timeout(struct net_device *dev)
2096 {
2097         struct gfar_private *priv = netdev_priv(dev);
2098 
2099         dev->stats.tx_errors++;
2100         schedule_work(&priv->reset_task);
2101 }
2102 
2103 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
2104 {
2105         struct hwtstamp_config config;
2106         struct gfar_private *priv = netdev_priv(netdev);
2107 
2108         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2109                 return -EFAULT;
2110 
2111         /* reserved for future extensions */
2112         if (config.flags)
2113                 return -EINVAL;
2114 
2115         switch (config.tx_type) {
2116         case HWTSTAMP_TX_OFF:
2117                 priv->hwts_tx_en = 0;
2118                 break;
2119         case HWTSTAMP_TX_ON:
2120                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2121                         return -ERANGE;
2122                 priv->hwts_tx_en = 1;
2123                 break;
2124         default:
2125                 return -ERANGE;
2126         }
2127 
2128         switch (config.rx_filter) {
2129         case HWTSTAMP_FILTER_NONE:
2130                 if (priv->hwts_rx_en) {
2131                         priv->hwts_rx_en = 0;
2132                         reset_gfar(netdev);
2133                 }
2134                 break;
2135         default:
2136                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2137                         return -ERANGE;
2138                 if (!priv->hwts_rx_en) {
2139                         priv->hwts_rx_en = 1;
2140                         reset_gfar(netdev);
2141                 }
2142                 config.rx_filter = HWTSTAMP_FILTER_ALL;
2143                 break;
2144         }
2145 
2146         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2147                 -EFAULT : 0;
2148 }
2149 
2150 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
2151 {
2152         struct hwtstamp_config config;
2153         struct gfar_private *priv = netdev_priv(netdev);
2154 
2155         config.flags = 0;
2156         config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2157         config.rx_filter = (priv->hwts_rx_en ?
2158                             HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
2159 
2160         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2161                 -EFAULT : 0;
2162 }
2163 
2164 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2165 {
2166         struct phy_device *phydev = dev->phydev;
2167 
2168         if (!netif_running(dev))
2169                 return -EINVAL;
2170 
2171         if (cmd == SIOCSHWTSTAMP)
2172                 return gfar_hwtstamp_set(dev, rq);
2173         if (cmd == SIOCGHWTSTAMP)
2174                 return gfar_hwtstamp_get(dev, rq);
2175 
2176         if (!phydev)
2177                 return -ENODEV;
2178 
2179         return phy_mii_ioctl(phydev, rq, cmd);
2180 }
2181 
2182 /* Interrupt Handler for Transmit complete */
2183 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2184 {
2185         struct net_device *dev = tx_queue->dev;
2186         struct netdev_queue *txq;
2187         struct gfar_private *priv = netdev_priv(dev);
2188         struct txbd8 *bdp, *next = NULL;
2189         struct txbd8 *lbdp = NULL;
2190         struct txbd8 *base = tx_queue->tx_bd_base;
2191         struct sk_buff *skb;
2192         int skb_dirtytx;
2193         int tx_ring_size = tx_queue->tx_ring_size;
2194         int frags = 0, nr_txbds = 0;
2195         int i;
2196         int howmany = 0;
2197         int tqi = tx_queue->qindex;
2198         unsigned int bytes_sent = 0;
2199         u32 lstatus;
2200         size_t buflen;
2201 
2202         txq = netdev_get_tx_queue(dev, tqi);
2203         bdp = tx_queue->dirty_tx;
2204         skb_dirtytx = tx_queue->skb_dirtytx;
2205 
2206         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2207                 bool do_tstamp;
2208 
2209                 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2210                             priv->hwts_tx_en;
2211 
2212                 frags = skb_shinfo(skb)->nr_frags;
2213 
2214                 /* When time stamping, one additional TxBD must be freed.
2215                  * Also, we need to dma_unmap_single() the TxPAL.
2216                  */
2217                 if (unlikely(do_tstamp))
2218                         nr_txbds = frags + 2;
2219                 else
2220                         nr_txbds = frags + 1;
2221 
2222                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2223 
2224                 lstatus = be32_to_cpu(lbdp->lstatus);
2225 
2226                 /* Only clean completed frames */
2227                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2228                     (lstatus & BD_LENGTH_MASK))
2229                         break;
2230 
2231                 if (unlikely(do_tstamp)) {
2232                         next = next_txbd(bdp, base, tx_ring_size);
2233                         buflen = be16_to_cpu(next->length) +
2234                                  GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2235                 } else
2236                         buflen = be16_to_cpu(bdp->length);
2237 
2238                 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2239                                  buflen, DMA_TO_DEVICE);
2240 
2241                 if (unlikely(do_tstamp)) {
2242                         struct skb_shared_hwtstamps shhwtstamps;
2243                         u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2244                                           ~0x7UL);
2245 
2246                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2247                         shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2248                         skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2249                         skb_tstamp_tx(skb, &shhwtstamps);
2250                         gfar_clear_txbd_status(bdp);
2251                         bdp = next;
2252                 }
2253 
2254                 gfar_clear_txbd_status(bdp);
2255                 bdp = next_txbd(bdp, base, tx_ring_size);
2256 
2257                 for (i = 0; i < frags; i++) {
2258                         dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2259                                        be16_to_cpu(bdp->length),
2260                                        DMA_TO_DEVICE);
2261                         gfar_clear_txbd_status(bdp);
2262                         bdp = next_txbd(bdp, base, tx_ring_size);
2263                 }
2264 
2265                 bytes_sent += GFAR_CB(skb)->bytes_sent;
2266 
2267                 dev_kfree_skb_any(skb);
2268 
2269                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2270 
2271                 skb_dirtytx = (skb_dirtytx + 1) &
2272                               TX_RING_MOD_MASK(tx_ring_size);
2273 
2274                 howmany++;
2275                 spin_lock(&tx_queue->txlock);
2276                 tx_queue->num_txbdfree += nr_txbds;
2277                 spin_unlock(&tx_queue->txlock);
2278         }
2279 
2280         /* If we freed a buffer, we can restart transmission, if necessary */
2281         if (tx_queue->num_txbdfree &&
2282             netif_tx_queue_stopped(txq) &&
2283             !(test_bit(GFAR_DOWN, &priv->state)))
2284                 netif_wake_subqueue(priv->ndev, tqi);
2285 
2286         /* Update dirty indicators */
2287         tx_queue->skb_dirtytx = skb_dirtytx;
2288         tx_queue->dirty_tx = bdp;
2289 
2290         netdev_tx_completed_queue(txq, howmany, bytes_sent);
2291 }
2292 
2293 static void count_errors(u32 lstatus, struct net_device *ndev)
2294 {
2295         struct gfar_private *priv = netdev_priv(ndev);
2296         struct net_device_stats *stats = &ndev->stats;
2297         struct gfar_extra_stats *estats = &priv->extra_stats;
2298 
2299         /* If the packet was truncated, none of the other errors matter */
2300         if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2301                 stats->rx_length_errors++;
2302 
2303                 atomic64_inc(&estats->rx_trunc);
2304 
2305                 return;
2306         }
2307         /* Count the errors, if there were any */
2308         if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2309                 stats->rx_length_errors++;
2310 
2311                 if (lstatus & BD_LFLAG(RXBD_LARGE))
2312                         atomic64_inc(&estats->rx_large);
2313                 else
2314                         atomic64_inc(&estats->rx_short);
2315         }
2316         if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2317                 stats->rx_frame_errors++;
2318                 atomic64_inc(&estats->rx_nonoctet);
2319         }
2320         if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2321                 atomic64_inc(&estats->rx_crcerr);
2322                 stats->rx_crc_errors++;
2323         }
2324         if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2325                 atomic64_inc(&estats->rx_overrun);
2326                 stats->rx_over_errors++;
2327         }
2328 }
2329 
2330 static irqreturn_t gfar_receive(int irq, void *grp_id)
2331 {
2332         struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2333         unsigned long flags;
2334         u32 imask, ievent;
2335 
2336         ievent = gfar_read(&grp->regs->ievent);
2337 
2338         if (unlikely(ievent & IEVENT_FGPI)) {
2339                 gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2340                 return IRQ_HANDLED;
2341         }
2342 
2343         if (likely(napi_schedule_prep(&grp->napi_rx))) {
2344                 spin_lock_irqsave(&grp->grplock, flags);
2345                 imask = gfar_read(&grp->regs->imask);
2346                 imask &= IMASK_RX_DISABLED;
2347                 gfar_write(&grp->regs->imask, imask);
2348                 spin_unlock_irqrestore(&grp->grplock, flags);
2349                 __napi_schedule(&grp->napi_rx);
2350         } else {
2351                 /* Clear IEVENT, so interrupts aren't called again
2352                  * because of the packets that have already arrived.
2353                  */
2354                 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2355         }
2356 
2357         return IRQ_HANDLED;
2358 }
2359 
2360 /* Interrupt Handler for Transmit complete */
2361 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2362 {
2363         struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2364         unsigned long flags;
2365         u32 imask;
2366 
2367         if (likely(napi_schedule_prep(&grp->napi_tx))) {
2368                 spin_lock_irqsave(&grp->grplock, flags);
2369                 imask = gfar_read(&grp->regs->imask);
2370                 imask &= IMASK_TX_DISABLED;
2371                 gfar_write(&grp->regs->imask, imask);
2372                 spin_unlock_irqrestore(&grp->grplock, flags);
2373                 __napi_schedule(&grp->napi_tx);
2374         } else {
2375                 /* Clear IEVENT, so interrupts aren't called again
2376                  * because of the packets that have already arrived.
2377                  */
2378                 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2379         }
2380 
2381         return IRQ_HANDLED;
2382 }
2383 
2384 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2385                              struct sk_buff *skb, bool first)
2386 {
2387         int size = lstatus & BD_LENGTH_MASK;
2388         struct page *page = rxb->page;
2389 
2390         if (likely(first)) {
2391                 skb_put(skb, size);
2392         } else {
2393                 /* the last fragments' length contains the full frame length */
2394                 if (lstatus & BD_LFLAG(RXBD_LAST))
2395                         size -= skb->len;
2396 
2397                 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2398                                 rxb->page_offset + RXBUF_ALIGNMENT,
2399                                 size, GFAR_RXB_TRUESIZE);
2400         }
2401 
2402         /* try reuse page */
2403         if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2404                 return false;
2405 
2406         /* change offset to the other half */
2407         rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2408 
2409         page_ref_inc(page);
2410 
2411         return true;
2412 }
2413 
2414 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2415                                struct gfar_rx_buff *old_rxb)
2416 {
2417         struct gfar_rx_buff *new_rxb;
2418         u16 nta = rxq->next_to_alloc;
2419 
2420         new_rxb = &rxq->rx_buff[nta];
2421 
2422         /* find next buf that can reuse a page */
2423         nta++;
2424         rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2425 
2426         /* copy page reference */
2427         *new_rxb = *old_rxb;
2428 
2429         /* sync for use by the device */
2430         dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2431                                          old_rxb->page_offset,
2432                                          GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2433 }
2434 
2435 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2436                                             u32 lstatus, struct sk_buff *skb)
2437 {
2438         struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2439         struct page *page = rxb->page;
2440         bool first = false;
2441 
2442         if (likely(!skb)) {
2443                 void *buff_addr = page_address(page) + rxb->page_offset;
2444 
2445                 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2446                 if (unlikely(!skb)) {
2447                         gfar_rx_alloc_err(rx_queue);
2448                         return NULL;
2449                 }
2450                 skb_reserve(skb, RXBUF_ALIGNMENT);
2451                 first = true;
2452         }
2453 
2454         dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2455                                       GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2456 
2457         if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2458                 /* reuse the free half of the page */
2459                 gfar_reuse_rx_page(rx_queue, rxb);
2460         } else {
2461                 /* page cannot be reused, unmap it */
2462                 dma_unmap_page(rx_queue->dev, rxb->dma,
2463                                PAGE_SIZE, DMA_FROM_DEVICE);
2464         }
2465 
2466         /* clear rxb content */
2467         rxb->page = NULL;
2468 
2469         return skb;
2470 }
2471 
2472 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2473 {
2474         /* If valid headers were found, and valid sums
2475          * were verified, then we tell the kernel that no
2476          * checksumming is necessary.  Otherwise, it is [FIXME]
2477          */
2478         if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2479             (RXFCB_CIP | RXFCB_CTU))
2480                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2481         else
2482                 skb_checksum_none_assert(skb);
2483 }
2484 
2485 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2486 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2487 {
2488         struct gfar_private *priv = netdev_priv(ndev);
2489         struct rxfcb *fcb = NULL;
2490 
2491         /* fcb is at the beginning if exists */
2492         fcb = (struct rxfcb *)skb->data;
2493 
2494         /* Remove the FCB from the skb
2495          * Remove the padded bytes, if there are any
2496          */
2497         if (priv->uses_rxfcb)
2498                 skb_pull(skb, GMAC_FCB_LEN);
2499 
2500         /* Get receive timestamp from the skb */
2501         if (priv->hwts_rx_en) {
2502                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2503                 u64 *ns = (u64 *) skb->data;
2504 
2505                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2506                 shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2507         }
2508 
2509         if (priv->padding)
2510                 skb_pull(skb, priv->padding);
2511 
2512         /* Trim off the FCS */
2513         pskb_trim(skb, skb->len - ETH_FCS_LEN);
2514 
2515         if (ndev->features & NETIF_F_RXCSUM)
2516                 gfar_rx_checksum(skb, fcb);
2517 
2518         /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2519          * Even if vlan rx accel is disabled, on some chips
2520          * RXFCB_VLN is pseudo randomly set.
2521          */
2522         if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2523             be16_to_cpu(fcb->flags) & RXFCB_VLN)
2524                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2525                                        be16_to_cpu(fcb->vlctl));
2526 }
2527 
2528 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2529  * until the budget/quota has been reached. Returns the number
2530  * of frames handled
2531  */
2532 static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
2533                               int rx_work_limit)
2534 {
2535         struct net_device *ndev = rx_queue->ndev;
2536         struct gfar_private *priv = netdev_priv(ndev);
2537         struct rxbd8 *bdp;
2538         int i, howmany = 0;
2539         struct sk_buff *skb = rx_queue->skb;
2540         int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2541         unsigned int total_bytes = 0, total_pkts = 0;
2542 
2543         /* Get the first full descriptor */
2544         i = rx_queue->next_to_clean;
2545 
2546         while (rx_work_limit--) {
2547                 u32 lstatus;
2548 
2549                 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2550                         gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2551                         cleaned_cnt = 0;
2552                 }
2553 
2554                 bdp = &rx_queue->rx_bd_base[i];
2555                 lstatus = be32_to_cpu(bdp->lstatus);
2556                 if (lstatus & BD_LFLAG(RXBD_EMPTY))
2557                         break;
2558 
2559                 /* order rx buffer descriptor reads */
2560                 rmb();
2561 
2562                 /* fetch next to clean buffer from the ring */
2563                 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2564                 if (unlikely(!skb))
2565                         break;
2566 
2567                 cleaned_cnt++;
2568                 howmany++;
2569 
2570                 if (unlikely(++i == rx_queue->rx_ring_size))
2571                         i = 0;
2572 
2573                 rx_queue->next_to_clean = i;
2574 
2575                 /* fetch next buffer if not the last in frame */
2576                 if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2577                         continue;
2578 
2579                 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2580                         count_errors(lstatus, ndev);
2581 
2582                         /* discard faulty buffer */
2583                         dev_kfree_skb(skb);
2584                         skb = NULL;
2585                         rx_queue->stats.rx_dropped++;
2586                         continue;
2587                 }
2588 
2589                 gfar_process_frame(ndev, skb);
2590 
2591                 /* Increment the number of packets */
2592                 total_pkts++;
2593                 total_bytes += skb->len;
2594 
2595                 skb_record_rx_queue(skb, rx_queue->qindex);
2596 
2597                 skb->protocol = eth_type_trans(skb, ndev);
2598 
2599                 /* Send the packet up the stack */
2600                 napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2601 
2602                 skb = NULL;
2603         }
2604 
2605         /* Store incomplete frames for completion */
2606         rx_queue->skb = skb;
2607 
2608         rx_queue->stats.rx_packets += total_pkts;
2609         rx_queue->stats.rx_bytes += total_bytes;
2610 
2611         if (cleaned_cnt)
2612                 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2613 
2614         /* Update Last Free RxBD pointer for LFC */
2615         if (unlikely(priv->tx_actual_en)) {
2616                 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
2617 
2618                 gfar_write(rx_queue->rfbptr, bdp_dma);
2619         }
2620 
2621         return howmany;
2622 }
2623 
2624 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2625 {
2626         struct gfar_priv_grp *gfargrp =
2627                 container_of(napi, struct gfar_priv_grp, napi_rx);
2628         struct gfar __iomem *regs = gfargrp->regs;
2629         struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2630         int work_done = 0;
2631 
2632         /* Clear IEVENT, so interrupts aren't called again
2633          * because of the packets that have already arrived
2634          */
2635         gfar_write(&regs->ievent, IEVENT_RX_MASK);
2636 
2637         work_done = gfar_clean_rx_ring(rx_queue, budget);
2638 
2639         if (work_done < budget) {
2640                 u32 imask;
2641                 napi_complete_done(napi, work_done);
2642                 /* Clear the halt bit in RSTAT */
2643                 gfar_write(&regs->rstat, gfargrp->rstat);
2644 
2645                 spin_lock_irq(&gfargrp->grplock);
2646                 imask = gfar_read(&regs->imask);
2647                 imask |= IMASK_RX_DEFAULT;
2648                 gfar_write(&regs->imask, imask);
2649                 spin_unlock_irq(&gfargrp->grplock);
2650         }
2651 
2652         return work_done;
2653 }
2654 
2655 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2656 {
2657         struct gfar_priv_grp *gfargrp =
2658                 container_of(napi, struct gfar_priv_grp, napi_tx);
2659         struct gfar __iomem *regs = gfargrp->regs;
2660         struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2661         u32 imask;
2662 
2663         /* Clear IEVENT, so interrupts aren't called again
2664          * because of the packets that have already arrived
2665          */
2666         gfar_write(&regs->ievent, IEVENT_TX_MASK);
2667 
2668         /* run Tx cleanup to completion */
2669         if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2670                 gfar_clean_tx_ring(tx_queue);
2671 
2672         napi_complete(napi);
2673 
2674         spin_lock_irq(&gfargrp->grplock);
2675         imask = gfar_read(&regs->imask);
2676         imask |= IMASK_TX_DEFAULT;
2677         gfar_write(&regs->imask, imask);
2678         spin_unlock_irq(&gfargrp->grplock);
2679 
2680         return 0;
2681 }
2682 
2683 static int gfar_poll_rx(struct napi_struct *napi, int budget)
2684 {
2685         struct gfar_priv_grp *gfargrp =
2686                 container_of(napi, struct gfar_priv_grp, napi_rx);
2687         struct gfar_private *priv = gfargrp->priv;
2688         struct gfar __iomem *regs = gfargrp->regs;
2689         struct gfar_priv_rx_q *rx_queue = NULL;
2690         int work_done = 0, work_done_per_q = 0;
2691         int i, budget_per_q = 0;
2692         unsigned long rstat_rxf;
2693         int num_act_queues;
2694 
2695         /* Clear IEVENT, so interrupts aren't called again
2696          * because of the packets that have already arrived
2697          */
2698         gfar_write(&regs->ievent, IEVENT_RX_MASK);
2699 
2700         rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2701 
2702         num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2703         if (num_act_queues)
2704                 budget_per_q = budget/num_act_queues;
2705 
2706         for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2707                 /* skip queue if not active */
2708                 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2709                         continue;
2710 
2711                 rx_queue = priv->rx_queue[i];
2712                 work_done_per_q =
2713                         gfar_clean_rx_ring(rx_queue, budget_per_q);
2714                 work_done += work_done_per_q;
2715 
2716                 /* finished processing this queue */
2717                 if (work_done_per_q < budget_per_q) {
2718                         /* clear active queue hw indication */
2719                         gfar_write(&regs->rstat,
2720                                    RSTAT_CLEAR_RXF0 >> i);
2721                         num_act_queues--;
2722 
2723                         if (!num_act_queues)
2724                                 break;
2725                 }
2726         }
2727 
2728         if (!num_act_queues) {
2729                 u32 imask;
2730                 napi_complete_done(napi, work_done);
2731 
2732                 /* Clear the halt bit in RSTAT */
2733                 gfar_write(&regs->rstat, gfargrp->rstat);
2734 
2735                 spin_lock_irq(&gfargrp->grplock);
2736                 imask = gfar_read(&regs->imask);
2737                 imask |= IMASK_RX_DEFAULT;
2738                 gfar_write(&regs->imask, imask);
2739                 spin_unlock_irq(&gfargrp->grplock);
2740         }
2741 
2742         return work_done;
2743 }
2744 
2745 static int gfar_poll_tx(struct napi_struct *napi, int budget)
2746 {
2747         struct gfar_priv_grp *gfargrp =
2748                 container_of(napi, struct gfar_priv_grp, napi_tx);
2749         struct gfar_private *priv = gfargrp->priv;
2750         struct gfar __iomem *regs = gfargrp->regs;
2751         struct gfar_priv_tx_q *tx_queue = NULL;
2752         int has_tx_work = 0;
2753         int i;
2754 
2755         /* Clear IEVENT, so interrupts aren't called again
2756          * because of the packets that have already arrived
2757          */
2758         gfar_write(&regs->ievent, IEVENT_TX_MASK);
2759 
2760         for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2761                 tx_queue = priv->tx_queue[i];
2762                 /* run Tx cleanup to completion */
2763                 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
2764                         gfar_clean_tx_ring(tx_queue);
2765                         has_tx_work = 1;
2766                 }
2767         }
2768 
2769         if (!has_tx_work) {
2770                 u32 imask;
2771                 napi_complete(napi);
2772 
2773                 spin_lock_irq(&gfargrp->grplock);
2774                 imask = gfar_read(&regs->imask);
2775                 imask |= IMASK_TX_DEFAULT;
2776                 gfar_write(&regs->imask, imask);
2777                 spin_unlock_irq(&gfargrp->grplock);
2778         }
2779 
2780         return 0;
2781 }
2782 
2783 /* GFAR error interrupt handler */
2784 static irqreturn_t gfar_error(int irq, void *grp_id)
2785 {
2786         struct gfar_priv_grp *gfargrp = grp_id;
2787         struct gfar __iomem *regs = gfargrp->regs;
2788         struct gfar_private *priv= gfargrp->priv;
2789         struct net_device *dev = priv->ndev;
2790 
2791         /* Save ievent for future reference */
2792         u32 events = gfar_read(&regs->ievent);
2793 
2794         /* Clear IEVENT */
2795         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
2796 
2797         /* Magic Packet is not an error. */
2798         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2799             (events & IEVENT_MAG))
2800                 events &= ~IEVENT_MAG;
2801 
2802         /* Hmm... */
2803         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2804                 netdev_dbg(dev,
2805                            "error interrupt (ievent=0x%08x imask=0x%08x)\n",
2806                            events, gfar_read(&regs->imask));
2807 
2808         /* Update the error counters */
2809         if (events & IEVENT_TXE) {
2810                 dev->stats.tx_errors++;
2811 
2812                 if (events & IEVENT_LC)
2813                         dev->stats.tx_window_errors++;
2814                 if (events & IEVENT_CRL)
2815                         dev->stats.tx_aborted_errors++;
2816                 if (events & IEVENT_XFUN) {
2817                         netif_dbg(priv, tx_err, dev,
2818                                   "TX FIFO underrun, packet dropped\n");
2819                         dev->stats.tx_dropped++;
2820                         atomic64_inc(&priv->extra_stats.tx_underrun);
2821 
2822                         schedule_work(&priv->reset_task);
2823                 }
2824                 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
2825         }
2826         if (events & IEVENT_BSY) {
2827                 dev->stats.rx_over_errors++;
2828                 atomic64_inc(&priv->extra_stats.rx_bsy);
2829 
2830                 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
2831                           gfar_read(&regs->rstat));
2832         }
2833         if (events & IEVENT_BABR) {
2834                 dev->stats.rx_errors++;
2835                 atomic64_inc(&priv->extra_stats.rx_babr);
2836 
2837                 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
2838         }
2839         if (events & IEVENT_EBERR) {
2840                 atomic64_inc(&priv->extra_stats.eberr);
2841                 netif_dbg(priv, rx_err, dev, "bus error\n");
2842         }
2843         if (events & IEVENT_RXC)
2844                 netif_dbg(priv, rx_status, dev, "control frame\n");
2845 
2846         if (events & IEVENT_BABT) {
2847                 atomic64_inc(&priv->extra_stats.tx_babt);
2848                 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
2849         }
2850         return IRQ_HANDLED;
2851 }
2852 
2853 /* The interrupt handler for devices with one interrupt */
2854 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2855 {
2856         struct gfar_priv_grp *gfargrp = grp_id;
2857 
2858         /* Save ievent for future reference */
2859         u32 events = gfar_read(&gfargrp->regs->ievent);
2860 
2861         /* Check for reception */
2862         if (events & IEVENT_RX_MASK)
2863                 gfar_receive(irq, grp_id);
2864 
2865         /* Check for transmit completion */
2866         if (events & IEVENT_TX_MASK)
2867                 gfar_transmit(irq, grp_id);
2868 
2869         /* Check for errors */
2870         if (events & IEVENT_ERR_MASK)
2871                 gfar_error(irq, grp_id);
2872 
2873         return IRQ_HANDLED;
2874 }
2875 
2876 #ifdef CONFIG_NET_POLL_CONTROLLER
2877 /* Polling 'interrupt' - used by things like netconsole to send skbs
2878  * without having to re-enable interrupts. It's not called while
2879  * the interrupt routine is executing.
2880  */
2881 static void gfar_netpoll(struct net_device *dev)
2882 {
2883         struct gfar_private *priv = netdev_priv(dev);
2884         int i;
2885 
2886         /* If the device has multiple interrupts, run tx/rx */
2887         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2888                 for (i = 0; i < priv->num_grps; i++) {
2889                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
2890 
2891                         disable_irq(gfar_irq(grp, TX)->irq);
2892                         disable_irq(gfar_irq(grp, RX)->irq);
2893                         disable_irq(gfar_irq(grp, ER)->irq);
2894                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2895                         enable_irq(gfar_irq(grp, ER)->irq);
2896                         enable_irq(gfar_irq(grp, RX)->irq);
2897                         enable_irq(gfar_irq(grp, TX)->irq);
2898                 }
2899         } else {
2900                 for (i = 0; i < priv->num_grps; i++) {
2901                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
2902 
2903                         disable_irq(gfar_irq(grp, TX)->irq);
2904                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2905                         enable_irq(gfar_irq(grp, TX)->irq);
2906                 }
2907         }
2908 }
2909 #endif
2910 
2911 static void free_grp_irqs(struct gfar_priv_grp *grp)
2912 {
2913         free_irq(gfar_irq(grp, TX)->irq, grp);
2914         free_irq(gfar_irq(grp, RX)->irq, grp);
2915         free_irq(gfar_irq(grp, ER)->irq, grp);
2916 }
2917 
2918 static int register_grp_irqs(struct gfar_priv_grp *grp)
2919 {
2920         struct gfar_private *priv = grp->priv;
2921         struct net_device *dev = priv->ndev;
2922         int err;
2923 
2924         /* If the device has multiple interrupts, register for
2925          * them.  Otherwise, only register for the one
2926          */
2927         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2928                 /* Install our interrupt handlers for Error,
2929                  * Transmit, and Receive
2930                  */
2931                 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2932                                   gfar_irq(grp, ER)->name, grp);
2933                 if (err < 0) {
2934                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2935                                   gfar_irq(grp, ER)->irq);
2936 
2937                         goto err_irq_fail;
2938                 }
2939                 enable_irq_wake(gfar_irq(grp, ER)->irq);
2940 
2941                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2942                                   gfar_irq(grp, TX)->name, grp);
2943                 if (err < 0) {
2944                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2945                                   gfar_irq(grp, TX)->irq);
2946                         goto tx_irq_fail;
2947                 }
2948                 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2949                                   gfar_irq(grp, RX)->name, grp);
2950                 if (err < 0) {
2951                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2952                                   gfar_irq(grp, RX)->irq);
2953                         goto rx_irq_fail;
2954                 }
2955                 enable_irq_wake(gfar_irq(grp, RX)->irq);
2956 
2957         } else {
2958                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2959                                   gfar_irq(grp, TX)->name, grp);
2960                 if (err < 0) {
2961                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2962                                   gfar_irq(grp, TX)->irq);
2963                         goto err_irq_fail;
2964                 }
2965                 enable_irq_wake(gfar_irq(grp, TX)->irq);
2966         }
2967 
2968         return 0;
2969 
2970 rx_irq_fail:
2971         free_irq(gfar_irq(grp, TX)->irq, grp);
2972 tx_irq_fail:
2973         free_irq(gfar_irq(grp, ER)->irq, grp);
2974 err_irq_fail:
2975         return err;
2976 
2977 }
2978 
2979 static void gfar_free_irq(struct gfar_private *priv)
2980 {
2981         int i;
2982 
2983         /* Free the IRQs */
2984         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2985                 for (i = 0; i < priv->num_grps; i++)
2986                         free_grp_irqs(&priv->gfargrp[i]);
2987         } else {
2988                 for (i = 0; i < priv->num_grps; i++)
2989                         free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2990                                  &priv->gfargrp[i]);
2991         }
2992 }
2993 
2994 static int gfar_request_irq(struct gfar_private *priv)
2995 {
2996         int err, i, j;
2997 
2998         for (i = 0; i < priv->num_grps; i++) {
2999                 err = register_grp_irqs(&priv->gfargrp[i]);
3000                 if (err) {
3001                         for (j = 0; j < i; j++)
3002                                 free_grp_irqs(&priv->gfargrp[j]);
3003                         return err;
3004                 }
3005         }
3006 
3007         return 0;
3008 }
3009 
3010 /* Called when something needs to use the ethernet device
3011  * Returns 0 for success.
3012  */
3013 static int gfar_enet_open(struct net_device *dev)
3014 {
3015         struct gfar_private *priv = netdev_priv(dev);
3016         int err;
3017 
3018         err = init_phy(dev);
3019         if (err)
3020                 return err;
3021 
3022         err = gfar_request_irq(priv);
3023         if (err)
3024                 return err;
3025 
3026         err = startup_gfar(dev);
3027         if (err)
3028                 return err;
3029 
3030         return err;
3031 }
3032 
3033 /* Stops the kernel queue, and halts the controller */
3034 static int gfar_close(struct net_device *dev)
3035 {
3036         struct gfar_private *priv = netdev_priv(dev);
3037 
3038         cancel_work_sync(&priv->reset_task);
3039         stop_gfar(dev);
3040 
3041         /* Disconnect from the PHY */
3042         phy_disconnect(dev->phydev);
3043 
3044         gfar_free_irq(priv);
3045 
3046         return 0;
3047 }
3048 
3049 /* Clears each of the exact match registers to zero, so they
3050  * don't interfere with normal reception
3051  */
3052 static void gfar_clear_exact_match(struct net_device *dev)
3053 {
3054         int idx;
3055         static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3056 
3057         for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3058                 gfar_set_mac_for_addr(dev, idx, zero_arr);
3059 }
3060 
3061 /* Update the hash table based on the current list of multicast
3062  * addresses we subscribe to.  Also, change the promiscuity of
3063  * the device based on the flags (this function is called
3064  * whenever dev->flags is changed
3065  */
3066 static void gfar_set_multi(struct net_device *dev)
3067 {
3068         struct netdev_hw_addr *ha;
3069         struct gfar_private *priv = netdev_priv(dev);
3070         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3071         u32 tempval;
3072 
3073         if (dev->flags & IFF_PROMISC) {
3074                 /* Set RCTRL to PROM */
3075                 tempval = gfar_read(&regs->rctrl);
3076                 tempval |= RCTRL_PROM;
3077                 gfar_write(&regs->rctrl, tempval);
3078         } else {
3079                 /* Set RCTRL to not PROM */
3080                 tempval = gfar_read(&regs->rctrl);
3081                 tempval &= ~(RCTRL_PROM);
3082                 gfar_write(&regs->rctrl, tempval);
3083         }
3084 
3085         if (dev->flags & IFF_ALLMULTI) {
3086                 /* Set the hash to rx all multicast frames */
3087                 gfar_write(&regs->igaddr0, 0xffffffff);
3088                 gfar_write(&regs->igaddr1, 0xffffffff);
3089                 gfar_write(&regs->igaddr2, 0xffffffff);
3090                 gfar_write(&regs->igaddr3, 0xffffffff);
3091                 gfar_write(&regs->igaddr4, 0xffffffff);
3092                 gfar_write(&regs->igaddr5, 0xffffffff);
3093                 gfar_write(&regs->igaddr6, 0xffffffff);
3094                 gfar_write(&regs->igaddr7, 0xffffffff);
3095                 gfar_write(&regs->gaddr0, 0xffffffff);
3096                 gfar_write(&regs->gaddr1, 0xffffffff);
3097                 gfar_write(&regs->gaddr2, 0xffffffff);
3098                 gfar_write(&regs->gaddr3, 0xffffffff);
3099                 gfar_write(&regs->gaddr4, 0xffffffff);
3100                 gfar_write(&regs->gaddr5, 0xffffffff);
3101                 gfar_write(&regs->gaddr6, 0xffffffff);
3102                 gfar_write(&regs->gaddr7, 0xffffffff);
3103         } else {
3104                 int em_num;
3105                 int idx;
3106 
3107                 /* zero out the hash */
3108                 gfar_write(&regs->igaddr0, 0x0);
3109                 gfar_write(&regs->igaddr1, 0x0);
3110                 gfar_write(&regs->igaddr2, 0x0);
3111                 gfar_write(&regs->igaddr3, 0x0);
3112                 gfar_write(&regs->igaddr4, 0x0);
3113                 gfar_write(&regs->igaddr5, 0x0);
3114                 gfar_write(&regs->igaddr6, 0x0);
3115                 gfar_write(&regs->igaddr7, 0x0);
3116                 gfar_write(&regs->gaddr0, 0x0);
3117                 gfar_write(&regs->gaddr1, 0x0);
3118                 gfar_write(&regs->gaddr2, 0x0);
3119                 gfar_write(&regs->gaddr3, 0x0);
3120                 gfar_write(&regs->gaddr4, 0x0);
3121                 gfar_write(&regs->gaddr5, 0x0);
3122                 gfar_write(&regs->gaddr6, 0x0);
3123                 gfar_write(&regs->gaddr7, 0x0);
3124 
3125                 /* If we have extended hash tables, we need to
3126                  * clear the exact match registers to prepare for
3127                  * setting them
3128                  */
3129                 if (priv->extended_hash) {
3130                         em_num = GFAR_EM_NUM + 1;
3131                         gfar_clear_exact_match(dev);
3132                         idx = 1;
3133                 } else {
3134                         idx = 0;
3135                         em_num = 0;
3136                 }
3137 
3138                 if (netdev_mc_empty(dev))
3139                         return;
3140 
3141                 /* Parse the list, and set the appropriate bits */
3142                 netdev_for_each_mc_addr(ha, dev) {
3143                         if (idx < em_num) {
3144                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3145                                 idx++;
3146                         } else
3147                                 gfar_set_hash_for_addr(dev, ha->addr);
3148                 }
3149         }
3150 }
3151 
3152 void gfar_mac_reset(struct gfar_private *priv)
3153 {
3154         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3155         u32 tempval;
3156 
3157         /* Reset MAC layer */
3158         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
3159 
3160         /* We need to delay at least 3 TX clocks */
3161         udelay(3);
3162 
3163         /* the soft reset bit is not self-resetting, so we need to
3164          * clear it before resuming normal operation
3165          */
3166         gfar_write(&regs->maccfg1, 0);
3167 
3168         udelay(3);
3169 
3170         gfar_rx_offload_en(priv);
3171 
3172         /* Initialize the max receive frame/buffer lengths */
3173         gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
3174         gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
3175 
3176         /* Initialize the Minimum Frame Length Register */
3177         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
3178 
3179         /* Initialize MACCFG2. */
3180         tempval = MACCFG2_INIT_SETTINGS;
3181 
3182         /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
3183          * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
3184          * and by checking RxBD[LG] and discarding larger than MAXFRM.
3185          */
3186         if (gfar_has_errata(priv, GFAR_ERRATA_74))
3187                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
3188 
3189         gfar_write(&regs->maccfg2, tempval);
3190 
3191         /* Clear mac addr hash registers */
3192         gfar_write(&regs->igaddr0, 0);
3193         gfar_write(&regs->igaddr1, 0);
3194         gfar_write(&regs->igaddr2, 0);
3195         gfar_write(&regs->igaddr3, 0);
3196         gfar_write(&regs->igaddr4, 0);
3197         gfar_write(&regs->igaddr5, 0);
3198         gfar_write(&regs->igaddr6, 0);
3199         gfar_write(&regs->igaddr7, 0);
3200 
3201         gfar_write(&regs->gaddr0, 0);
3202         gfar_write(&regs->gaddr1, 0);
3203         gfar_write(&regs->gaddr2, 0);
3204         gfar_write(&regs->gaddr3, 0);
3205         gfar_write(&regs->gaddr4, 0);
3206         gfar_write(&regs->gaddr5, 0);
3207         gfar_write(&regs->gaddr6, 0);
3208         gfar_write(&regs->gaddr7, 0);
3209 
3210         if (priv->extended_hash)
3211                 gfar_clear_exact_match(priv->ndev);
3212 
3213         gfar_mac_rx_config(priv);
3214 
3215         gfar_mac_tx_config(priv);
3216 
3217         gfar_set_mac_address(priv->ndev);
3218 
3219         gfar_set_multi(priv->ndev);
3220 
3221         /* clear ievent and imask before configuring coalescing */
3222         gfar_ints_disable(priv);
3223 
3224         /* Configure the coalescing support */
3225         gfar_configure_coalescing_all(priv);
3226 }
3227 
3228 static void gfar_hw_init(struct gfar_private *priv)
3229 {
3230         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3231         u32 attrs;
3232 
3233         /* Stop the DMA engine now, in case it was running before
3234          * (The firmware could have used it, and left it running).
3235          */
3236         gfar_halt(priv);
3237 
3238         gfar_mac_reset(priv);
3239 
3240         /* Zero out the rmon mib registers if it has them */
3241         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3242                 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
3243 
3244                 /* Mask off the CAM interrupts */
3245                 gfar_write(&regs->rmon.cam1, 0xffffffff);
3246                 gfar_write(&regs->rmon.cam2, 0xffffffff);
3247         }
3248 
3249         /* Initialize ECNTRL */
3250         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
3251 
3252         /* Set the extraction length and index */
3253         attrs = ATTRELI_EL(priv->rx_stash_size) |
3254                 ATTRELI_EI(priv->rx_stash_index);
3255 
3256         gfar_write(&regs->attreli, attrs);
3257 
3258         /* Start with defaults, and add stashing
3259          * depending on driver parameters
3260          */
3261         attrs = ATTR_INIT_SETTINGS;
3262 
3263         if (priv->bd_stash_en)
3264                 attrs |= ATTR_BDSTASH;
3265 
3266         if (priv->rx_stash_size != 0)
3267                 attrs |= ATTR_BUFSTASH;
3268 
3269         gfar_write(&regs->attr, attrs);
3270 
3271         /* FIFO configs */
3272         gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
3273         gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
3274         gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
3275 
3276         /* Program the interrupt steering regs, only for MG devices */
3277         if (priv->num_grps > 1)
3278                 gfar_write_isrg(priv);
3279 }
3280 
3281 static const struct net_device_ops gfar_netdev_ops = {
3282         .ndo_open = gfar_enet_open,
3283         .ndo_start_xmit = gfar_start_xmit,
3284         .ndo_stop = gfar_close,
3285         .ndo_change_mtu = gfar_change_mtu,
3286         .ndo_set_features = gfar_set_features,
3287         .ndo_set_rx_mode = gfar_set_multi,
3288         .ndo_tx_timeout = gfar_timeout,
3289         .ndo_do_ioctl = gfar_ioctl,
3290         .ndo_get_stats = gfar_get_stats,
3291         .ndo_change_carrier = fixed_phy_change_carrier,
3292         .ndo_set_mac_address = gfar_set_mac_addr,
3293         .ndo_validate_addr = eth_validate_addr,
3294 #ifdef CONFIG_NET_POLL_CONTROLLER
3295         .ndo_poll_controller = gfar_netpoll,
3296 #endif
3297 };
3298 
3299 /* Set up the ethernet device structure, private data,
3300  * and anything else we need before we start
3301  */
3302 static int gfar_probe(struct platform_device *ofdev)
3303 {
3304         struct device_node *np = ofdev->dev.of_node;
3305         struct net_device *dev = NULL;
3306         struct gfar_private *priv = NULL;
3307         int err = 0, i;
3308 
3309         err = gfar_of_init(ofdev, &dev);
3310 
3311         if (err)
3312                 return err;
3313 
3314         priv = netdev_priv(dev);
3315         priv->ndev = dev;
3316         priv->ofdev = ofdev;
3317         priv->dev = &ofdev->dev;
3318         SET_NETDEV_DEV(dev, &ofdev->dev);
3319 
3320         INIT_WORK(&priv->reset_task, gfar_reset_task);
3321 
3322         platform_set_drvdata(ofdev, priv);
3323 
3324         gfar_detect_errata(priv);
3325 
3326         /* Set the dev->base_addr to the gfar reg region */
3327         dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
3328 
3329         /* Fill in the dev structure */
3330         dev->watchdog_timeo = TX_TIMEOUT;
3331         /* MTU range: 50 - 9586 */
3332         dev->mtu = 1500;
3333         dev->min_mtu = 50;
3334         dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
3335         dev->netdev_ops = &gfar_netdev_ops;
3336         dev->ethtool_ops = &gfar_ethtool_ops;
3337 
3338         /* Register for napi ...We are registering NAPI for each grp */
3339         for (i = 0; i < priv->num_grps; i++) {
3340                 if (priv->poll_mode == GFAR_SQ_POLLING) {
3341                         netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3342                                        gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
3343                         netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3344                                        gfar_poll_tx_sq, 2);
3345                 } else {
3346                         netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3347                                        gfar_poll_rx, GFAR_DEV_WEIGHT);
3348                         netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3349                                        gfar_poll_tx, 2);
3350                 }
3351         }
3352 
3353         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
3354                 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3355                                    NETIF_F_RXCSUM;
3356                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
3357                                  NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
3358         }
3359 
3360         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
3361                 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
3362                                     NETIF_F_HW_VLAN_CTAG_RX;
3363                 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3364         }
3365 
3366         dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3367 
3368         gfar_init_addr_hash_table(priv);
3369 
3370         /* Insert receive time stamps into padding alignment bytes, and
3371          * plus 2 bytes padding to ensure the cpu alignment.
3372          */
3373         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3374                 priv->padding = 8 + DEFAULT_PADDING;
3375 
3376         if (dev->features & NETIF_F_IP_CSUM ||
3377             priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3378                 dev->needed_headroom = GMAC_FCB_LEN;
3379 
3380         /* Initializing some of the rx/tx queue level parameters */
3381         for (i = 0; i < priv->num_tx_queues; i++) {
3382                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
3383                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
3384                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
3385                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
3386         }
3387 
3388         for (i = 0; i < priv->num_rx_queues; i++) {
3389                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
3390                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
3391                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
3392         }
3393 
3394         /* Always enable rx filer if available */
3395         priv->rx_filer_enable =
3396             (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
3397         /* Enable most messages by default */
3398         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
3399         /* use pritority h/w tx queue scheduling for single queue devices */
3400         if (priv->num_tx_queues == 1)
3401                 priv->prio_sched_en = 1;
3402 
3403         set_bit(GFAR_DOWN, &priv->state);
3404 
3405         gfar_hw_init(priv);
3406 
3407         /* Carrier starts down, phylib will bring it up */
3408         netif_carrier_off(dev);
3409 
3410         err = register_netdev(dev);
3411 
3412         if (err) {
3413                 pr_err("%s: Cannot register net device, aborting\n", dev->name);
3414                 goto register_fail;
3415         }
3416 
3417         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
3418                 priv->wol_supported |= GFAR_WOL_MAGIC;
3419 
3420         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
3421             priv->rx_filer_enable)
3422                 priv->wol_supported |= GFAR_WOL_FILER_UCAST;
3423 
3424         device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
3425 
3426         /* fill out IRQ number and name fields */
3427         for (i = 0; i < priv->num_grps; i++) {
3428                 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3429                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3430                         sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
3431                                 dev->name, "_g", '0' + i, "_tx");
3432                         sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
3433                                 dev->name, "_g", '0' + i, "_rx");
3434                         sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
3435                                 dev->name, "_g", '0' + i, "_er");
3436                 } else
3437                         strcpy(gfar_irq(grp, TX)->name, dev->name);
3438         }
3439 
3440         /* Initialize the filer table */
3441         gfar_init_filer_table(priv);
3442 
3443         /* Print out the device info */
3444         netdev_info(dev, "mac: %pM\n", dev->dev_addr);
3445 
3446         /* Even more device info helps when determining which kernel
3447          * provided which set of benchmarks.
3448          */
3449         netdev_info(dev, "Running with NAPI enabled\n");
3450         for (i = 0; i < priv->num_rx_queues; i++)
3451                 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
3452                             i, priv->rx_queue[i]->rx_ring_size);
3453         for (i = 0; i < priv->num_tx_queues; i++)
3454                 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
3455                             i, priv->tx_queue[i]->tx_ring_size);
3456 
3457         return 0;
3458 
3459 register_fail:
3460         if (of_phy_is_fixed_link(np))
3461                 of_phy_deregister_fixed_link(np);
3462         unmap_group_regs(priv);
3463         gfar_free_rx_queues(priv);
3464         gfar_free_tx_queues(priv);
3465         of_node_put(priv->phy_node);
3466         of_node_put(priv->tbi_node);
3467         free_gfar_dev(priv);
3468         return err;
3469 }
3470 
3471 static int gfar_remove(struct platform_device *ofdev)
3472 {
3473         struct gfar_private *priv = platform_get_drvdata(ofdev);
3474         struct device_node *np = ofdev->dev.of_node;
3475 
3476         of_node_put(priv->phy_node);
3477         of_node_put(priv->tbi_node);
3478 
3479         unregister_netdev(priv->ndev);
3480 
3481         if (of_phy_is_fixed_link(np))
3482                 of_phy_deregister_fixed_link(np);
3483 
3484         unmap_group_regs(priv);
3485         gfar_free_rx_queues(priv);
3486         gfar_free_tx_queues(priv);
3487         free_gfar_dev(priv);
3488 
3489         return 0;
3490 }
3491 
3492 #ifdef CONFIG_PM
3493 
3494 static void __gfar_filer_disable(struct gfar_private *priv)
3495 {
3496         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3497         u32 temp;
3498 
3499         temp = gfar_read(&regs->rctrl);
3500         temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
3501         gfar_write(&regs->rctrl, temp);
3502 }
3503 
3504 static void __gfar_filer_enable(struct gfar_private *priv)
3505 {
3506         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3507         u32 temp;
3508 
3509         temp = gfar_read(&regs->rctrl);
3510         temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
3511         gfar_write(&regs->rctrl, temp);
3512 }
3513 
3514 /* Filer rules implementing wol capabilities */
3515 static void gfar_filer_config_wol(struct gfar_private *priv)
3516 {
3517         unsigned int i;
3518         u32 rqfcr;
3519 
3520         __gfar_filer_disable(priv);
3521 
3522         /* clear the filer table, reject any packet by default */
3523         rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
3524         for (i = 0; i <= MAX_FILER_IDX; i++)
3525                 gfar_write_filer(priv, i, rqfcr, 0);
3526 
3527         i = 0;
3528         if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
3529                 /* unicast packet, accept it */
3530                 struct net_device *ndev = priv->ndev;
3531                 /* get the default rx queue index */
3532                 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
3533                 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
3534                                     (ndev->dev_addr[1] << 8) |
3535                                      ndev->dev_addr[2];
3536 
3537                 rqfcr = (qindex << 10) | RQFCR_AND |
3538                         RQFCR_CMP_EXACT | RQFCR_PID_DAH;
3539 
3540                 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3541 
3542                 dest_mac_addr = (ndev->dev_addr[3] << 16) |
3543                                 (ndev->dev_addr[4] << 8) |
3544                                  ndev->dev_addr[5];
3545                 rqfcr = (qindex << 10) | RQFCR_GPI |
3546                         RQFCR_CMP_EXACT | RQFCR_PID_DAL;
3547                 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3548         }
3549 
3550         __gfar_filer_enable(priv);
3551 }
3552 
3553 static void gfar_filer_restore_table(struct gfar_private *priv)
3554 {
3555         u32 rqfcr, rqfpr;
3556         unsigned int i;
3557 
3558         __gfar_filer_disable(priv);
3559 
3560         for (i = 0; i <= MAX_FILER_IDX; i++) {
3561                 rqfcr = priv->ftp_rqfcr[i];
3562                 rqfpr = priv->ftp_rqfpr[i];
3563                 gfar_write_filer(priv, i, rqfcr, rqfpr);
3564         }
3565 
3566         __gfar_filer_enable(priv);
3567 }
3568 
3569 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
3570 static void gfar_start_wol_filer(struct gfar_private *priv)
3571 {
3572         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3573         u32 tempval;
3574         int i = 0;
3575 
3576         /* Enable Rx hw queues */
3577         gfar_write(&regs->rqueue, priv->rqueue);
3578 
3579         /* Initialize DMACTRL to have WWR and WOP */
3580         tempval = gfar_read(&regs->dmactrl);
3581         tempval |= DMACTRL_INIT_SETTINGS;
3582         gfar_write(&regs->dmactrl, tempval);
3583 
3584         /* Make sure we aren't stopped */
3585         tempval = gfar_read(&regs->dmactrl);
3586         tempval &= ~DMACTRL_GRS;
3587         gfar_write(&regs->dmactrl, tempval);
3588 
3589         for (i = 0; i < priv->num_grps; i++) {
3590                 regs = priv->gfargrp[i].regs;
3591                 /* Clear RHLT, so that the DMA starts polling now */
3592                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
3593                 /* enable the Filer General Purpose Interrupt */
3594                 gfar_write(&regs->imask, IMASK_FGPI);
3595         }
3596 
3597         /* Enable Rx DMA */
3598         tempval = gfar_read(&regs->maccfg1);
3599         tempval |= MACCFG1_RX_EN;
3600         gfar_write(&regs->maccfg1, tempval);
3601 }
3602 
3603 static int gfar_suspend(struct device *dev)
3604 {
3605         struct gfar_private *priv = dev_get_drvdata(dev);
3606         struct net_device *ndev = priv->ndev;
3607         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3608         u32 tempval;
3609         u16 wol = priv->wol_opts;
3610 
3611         if (!netif_running(ndev))
3612                 return 0;
3613 
3614         disable_napi(priv);
3615         netif_tx_lock(ndev);
3616         netif_device_detach(ndev);
3617         netif_tx_unlock(ndev);
3618 
3619         gfar_halt(priv);
3620 
3621         if (wol & GFAR_WOL_MAGIC) {
3622                 /* Enable interrupt on Magic Packet */
3623                 gfar_write(&regs->imask, IMASK_MAG);
3624 
3625                 /* Enable Magic Packet mode */
3626                 tempval = gfar_read(&regs->maccfg2);
3627                 tempval |= MACCFG2_MPEN;
3628                 gfar_write(&regs->maccfg2, tempval);
3629 
3630                 /* re-enable the Rx block */
3631                 tempval = gfar_read(&regs->maccfg1);
3632                 tempval |= MACCFG1_RX_EN;
3633                 gfar_write(&regs->maccfg1, tempval);
3634 
3635         } else if (wol & GFAR_WOL_FILER_UCAST) {
3636                 gfar_filer_config_wol(priv);
3637                 gfar_start_wol_filer(priv);
3638 
3639         } else {
3640                 phy_stop(ndev->phydev);
3641         }
3642 
3643         return 0;
3644 }
3645 
3646 static int gfar_resume(struct device *dev)
3647 {
3648         struct gfar_private *priv = dev_get_drvdata(dev);
3649         struct net_device *ndev = priv->ndev;
3650         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3651         u32 tempval;
3652         u16 wol = priv->wol_opts;
3653 
3654         if (!netif_running(ndev))
3655                 return 0;
3656 
3657         if (wol & GFAR_WOL_MAGIC) {
3658                 /* Disable Magic Packet mode */
3659                 tempval = gfar_read(&regs->maccfg2);
3660                 tempval &= ~MACCFG2_MPEN;
3661                 gfar_write(&regs->maccfg2, tempval);
3662 
3663         } else if (wol & GFAR_WOL_FILER_UCAST) {
3664                 /* need to stop rx only, tx is already down */
3665                 gfar_halt(priv);
3666                 gfar_filer_restore_table(priv);
3667 
3668         } else {
3669                 phy_start(ndev->phydev);
3670         }
3671 
3672         gfar_start(priv);
3673 
3674         netif_device_attach(ndev);
3675         enable_napi(priv);
3676 
3677         return 0;
3678 }
3679 
3680 static int gfar_restore(struct device *dev)
3681 {
3682         struct gfar_private *priv = dev_get_drvdata(dev);
3683         struct net_device *ndev = priv->ndev;
3684 
3685         if (!netif_running(ndev)) {
3686                 netif_device_attach(ndev);
3687 
3688                 return 0;
3689         }
3690 
3691         gfar_init_bds(ndev);
3692 
3693         gfar_mac_reset(priv);
3694 
3695         gfar_init_tx_rx_base(priv);
3696 
3697         gfar_start(priv);
3698 
3699         priv->oldlink = 0;
3700         priv->oldspeed = 0;
3701         priv->oldduplex = -1;
3702 
3703         if (ndev->phydev)
3704                 phy_start(ndev->phydev);
3705 
3706         netif_device_attach(ndev);
3707         enable_napi(priv);
3708 
3709         return 0;
3710 }
3711 
3712 static const struct dev_pm_ops gfar_pm_ops = {
3713         .suspend = gfar_suspend,
3714         .resume = gfar_resume,
3715         .freeze = gfar_suspend,
3716         .thaw = gfar_resume,
3717         .restore = gfar_restore,
3718 };
3719 
3720 #define GFAR_PM_OPS (&gfar_pm_ops)
3721 
3722 #else
3723 
3724 #define GFAR_PM_OPS NULL
3725 
3726 #endif
3727 
3728 static const struct of_device_id gfar_match[] =
3729 {
3730         {
3731                 .type = "network",
3732                 .compatible = "gianfar",
3733         },
3734         {
3735                 .compatible = "fsl,etsec2",
3736         },
3737         {},
3738 };
3739 MODULE_DEVICE_TABLE(of, gfar_match);
3740 
3741 /* Structure for a device driver */
3742 static struct platform_driver gfar_driver = {
3743         .driver = {
3744                 .name = "fsl-gianfar",
3745                 .pm = GFAR_PM_OPS,
3746                 .of_match_table = gfar_match,
3747         },
3748         .probe = gfar_probe,
3749         .remove = gfar_remove,
3750 };
3751 
3752 module_platform_driver(gfar_driver);

/* [<][>][^][v][top][bottom][index][help] */